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PRODUCTS

NATALIE STEWART

Abstract. Let OpG be Nardin-Shah’s ∞-category of OG-∞-operads (henceforth G-operads). We construct
the underlying G-symmetric sequence of a (one color) G-operad, yielding a monadic functor; we use this to
lift Bonventre’s genuine operadic nerve to a conservative functor of ∞-categories, restricting to an equivalence
between categories of discrete G-operads.

We then go on to define and characterize closed Boardman-Vogt tensor product
BV
⊗ on OpG; in particular,

this specializes to a G-symmetric monoidal ∞-category AlgO(C) of O-algebras in a G-symmetric monoidal
∞-category C. We show that the category of G-symmetric monoidal ∞-categories possesses a canonical
symmetric monoidal structure whose tensor products are compatible with the Boardman-Vogt tensor product
via the G-symmetric monoidal envelope.
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Introduction

Fix G a finite group. Within the burgeoning study of algebraic structures in G-equivariant homotopy
theory, relatively little is known about G-operads. In this paper, we use ∞-categorical foundations to advance
the study of G-operads in several ways. This concerns structural statements both about Nardin-Shah’s
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∞-category of (colored) OG-∞-operads OpG (henceforth just G-operads) and about the ∞-categories of
algebras AlgO(C) of O-algebras for various examples of interest.1

Our first contribution concerns generalizing the theory of G-symmetric monoidal ∞-categories to I-
symmetric monoidal ∞-categories, for I a weak indexing category in the sense of [Ste24b]; these posses
indexed tensor products over a collection of arities only under the assumptions that they can be restricted
and composed. We go on to generalize G-operads to I-operads, which occur as a fully faithful subcategory
OpI ⊂OpG with a terminal object N ⊗I∞, which we refer to as a weak N∞-operad ; in particular, an I-symmetric
monoidal ∞-category C⊗ has an underlying (colored) I-operad of the same name, and O-algebras in C⊗
correspond with maps of G-operads O⊗→C⊗.

Additionally, we define a monadic functor

sseq: Opoc
G → Fun(TotΣG,S),

the former being the one-colored G-operads and the latter being the ∞-category of G-symmetric sequences.
The objects of TotΣG are identified with pairs (H,S) where H ⊂ G is a subgroup and S ∈ FH is a finite H-set;
given this data, we write O(S)B sseqO⊗(S), which we call the S-ary structure space of O⊗. This intertwines
with Bonventre’s genuine operadic nerve, so the nerve lifts to a conservative functor of ∞-categories.

We use this data to characterize the compatible (d + 1)-categories of G-symmetric monoidal d-categories
and G-d-operads: a G-operad O⊗ is a G-d-operad if the S-ary structure space O(S) is (d − 1)-truncated for
all subgroups H ⊂ G and finite H-sets S ∈ FH . These form a localizing subcategory, with localization functor
hd : OpG→OpG,d . When d ≤ 1, we show that the inclusion of d-operads intertwines with Bonventre’s nerve.

Having done this, we define a homotopy-commutative tensor product on OpG called the Boardman-Vogt
tensor product. We show that this tensor product is closed, i.e. it has an associated (colored) G-operad of
algebras Alg⊗

O
(C). When C⊗ is an I-symmetric monoidal ∞-category, we show that Alg⊗

O
(C) underlies an

I-symmetric monoidal ∞-category, which we give the same name; in particular, Alg⊗
O

(C) is an I-symmetric
monoidal ∞-category whose P -algebras are characterized by the formula

AlgPAlg⊗
O

(C) ≃ AlgP⊗O(C).

We thus interpret P ⊗O-algebras as homotopy coherently interchanging pairs of P -algebras and O-algebras;
indeed we give a “bifunctor” presentation generalizing [HA, § 2.2.5.3].

We end by developing an “inflation and fixed points” adjunction InflGe Op⇄OpG : Γ G and showing that
it is compatible with Boardman-Vogt tensor products.

We now move on to a more careful accounting of the background and main results of this paper.

Background and motivation. Let C be a semiadditive category, i.e. a pointed 1-category whose norm map
X⊔Y → X ×Y is an isomorphism for all X,Y ∈ C. Let G be a finite group and let OG be the orbit category of
G. Recall that a semi Mackey functor valued in C is the data of:

• a contravariant functor R : Oop
G →C, and

• a covariant functor N : OG→C
subject to the conditions that

(a) for all H ⊂ G, the values R([G/H]) and N ([G/H]) are isomorphic, and
(b) writing RHK : R([G/H])→ R([G/K]) for the contravariant functoriality and NH

K : N ([G/K])→N ([G/H])
for the covariant functoriality, R and N satisfy the double coset formula

RHJ N
H
K (−) ≃

∑
g∈J\H/K

NH
H∩gKg−1 ResHK (−)g

where (−)g denotes the covariant conjugation action and J\G/K is the set of double cosets.

1 In this paper we will call ∞-categories ∞-categories and ∞-categories with discrete mapping spaces 1-categories, as their theory
is equivalent to the traditional theory of categories. More generally, we will call ∞-categories whose mapping spaces are (d−1)-truncated
d-categories.
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Let Span(FG) be the effective Burnside 1-category, whose objects are finite G-sets, whose morphisms
RXY : X→ Y are given by spans X← RXY → Y , and whose composition is given by pullback of spans

RXZ

RXY RYZ

X Y Z.

⌟

It is an observation due to Lindner [Lin76] that (semi)-Mackey functors valued in C are equivalently given by
biproduct preserving functors

Span(FG)→C.
This appears as a straightforward generalization of the Lawvere theory Span(F) for commutative monoids, so
we will refer to semi-Mackey functors as G-commutative monoids.

Moreover, any C admits a universal map from a semiadditive category, given by the forgetful functor
U : C → CMon(C); since Span(FG) possesses an identity-on-objects anti-involution, it is semiadditive, and so
U induces an equivalence

Fun×(Span(FG),CMon(C))
∼−→ Fun⊕(Span(FG),C);

in fact, replacing Span(FG) with the effective Burnside 2-category of [Bar14] (whose 2-cells are isomorphisms
of spans), C with an ∞-category, and interpreting CMon(C) as E∞-monoids in C, the semiadditivization result
for CMon(C) still holds [GGN15], and Span(FG) is still semiadditive. Thus we are justified in making the
following definition.
Definition. The ∞-category of G-commutative monoids in C is the product-preserving functor ∞-category

CMonG(C)B Fun×(Span(FG),C);

the ∞-category of small G-symmetric monoidal ∞-categories is

Cat⊗G B CMonG(Cat). ◁

This recovers the notion of [NS22], which generalizes the notion of [HH16]. Recall that, we define
G-∞-categories to be categorical coefficient systems

CatG B Fun
(
Oop
G ,C

)
;

the [G/H]-value of a G-∞-category C will be written C, and the contravariant functoriality along [G/K]→
[G/H] will be written ResHK : CH → CK . G-symmetric monoidal ∞-categories C⊗ have underlying G-∞-
categories C defined by the precomposition

C : Oop
G → Span(FG)

C⊗−−→ Cat.

Given a subgroup H ⊂ G and a finite H-set S, we will write the value of C⊗ on IndGHS as CS , noting that
there is a canonical equivalence CS ≃

∏
[H/K]∈Orb(S)CK .

We may induce the canonical map of H-sets S→ ∗H to G to construct a structure map IndGHS→ [G/H],2

and covariant functoriality yields a natural S-indexed tensor product operation
S⊗

: DS →DH .

We may induce the orbit set factorization S→
∐

[H/K]∈Orb(S) ∗H → ∗H to yield a natural equivalence

S⊗
K

XK ≃
⊗

[H/K]∈Orb(S)

NH
K XK .

Similarly, contravariant functoriality yields an S-indexed diagonal ∆S : DH →DS satisfying

∆SX ≃
(
ResHK X

)
[H/K]∈Orb(S)

.

2 See [Die09] for a discussion of induced G-sets.
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This allows us to define S-indexed tensor power of an object XH ∈ DH by

X⊗SH B
S⊗

∆SXH ≃
S⊗
K

ResHK XH ≃
⊗

[H/K]∈Orb(S)

NH
K ResHK XH .

Akin to the discrete case, these satisfy a double coset formula by functoriality under the composite span∐
g∈[J\H/K]

G/(K ∩ gJg−1)

G/J G/K

G/J G/H G/K

⌟

We are concerned with algebraic structures inside G-symmetric monoidal ∞-categories, which we will
control with a version of Nardin-Shah’s ∞-category OpG of OG-∞-operads, which we simply call G-operads.
Work of Barkan, Haugseng, and Steinebrunner [BHS22] identifies these with functors of ∞-categories
πO : O⊗→ Span(FG) with cocartesian lifts over backwards maps and satisfying a pair Segal conditions, which
we may summarize in two cases of interest:

(1) in the case that O⊗ additionally has πO-cocartesian lifts over forward maps, O⊗ is a G-operad if and
only if it is is the unstraightening of a G-symmetric monoidal ∞-category;

(2) in the case that the fibers π−1
O (S) are contractible for all S ∈ FG (i.e. O⊗ has one color), cocartesian

lifts over the backwards maps (S← [G/H] = [G/H])[G/H]∈Orb(S) furnish an equivalence

MapT→SπO
(iT , iS) ≃

∏
[G/H]∈Orb(S)

MapTH→[G/H]
πO (iTH , i[G/H]),

where we set TH B T ×S [G/H] and we write iS for the unique object of π−1
O (S).3

These span a localizing subcategory [BHS22, Cor 4.2.3].

(1) OpG Catint−cocart
/ Span(FG)

LOpG

⊣

Given O⊗ a one-color G-operad, H ⊂ G a subgroup and S ∈ FH a finite H-set, we write

O(S)BMap
IndGHS→[G/H]
πO (iIndGHS, i[G/H])

for the S-ary structure space of O⊗. An O-algebra in C⊗ is defined to be a map of G-operads O⊗→C⊗; these
posses an underlying G-object X• (i.e. cocartesian section of C →Oop

G )) together with action maps

O(S)→MapCH
(
X⊗SH ,XH

)
which are suitably functorial and compatible with cocartesian lifts of backwards maps. In fact, as in [NS22],
we may lift these to a G-∞-category Alg

O
(C) whose H-value consists of algebras over the restricted H-operad :

Alg
O

(C)H ≃ AlgResGH O
(ResGH C).

Summary of main results. Write ΣG for the G-space core of the G-∞-category of finite G-sets FG; write
Tot : CatG→ Cat for the functor taking a G-∞-category to the total∞-category of its corresponding cocartesian
fibration. We identify objects with TotΣG with pairs (H,S) where (H) ⊂ G is a conjugacy class and S ∈ FH is
a finitie H-set.

Theorem A. There exists a monadic functor

sseq: Opoc
G → Fun(TotΣG,S)

whose composite functor OpG
sseq
−−−→ Fun(TotΣG,S)

ev(H,S)
−−−−−−→ S recovers O(S).

3 Given a functor F : C → D, and ψ : FX → FY a map in D, we write Map
ψ
F (X,Y ) ⊂ MapC(X,Y ) for the disjoint union of the

connected components consisting of maps ϕ : X→ Y such that Fϕ is homotopic to ψ.
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In parallel, Bonventre-Pereira developed a model category sOpG of colored genuine G-operads, and
the one-color variant sOpG,∗ is right-transferred along a monadic underlying G-symmetric sequence functor

U : sOpG,∗G
Fun−−−→ (TotΣG,sSetQuillen) [BP21, Thm II].4 We refer to the associated ∞-categories as

gOpG B sOpG[weq−1]; gOpG,∗ B sOpG,∗[weq−1].

Unwinding definitions, we will see that sseq is total right derived from a functor of 1-categories out of
Nardin-Shah’s model structure [NS22] which preserves and reflects weak equivalences between fibrant objects,
and Bonventre’s genuine operadic nerve N⊗ satisfies P (S) ≃ (N⊗O) (S). We conclude by two-out-of-three that
N⊗ preserves and refelcts weak equivalences between fibrant objects. In Section 2.6 we extend this to the
multiple-color setting, yielding the following.

Corollary B. Bonventre’s genuine operadic nerve N⊗ possesses a conservative total right derived functor of
∞-categories

N⊗ : gOpG→OpG;
when O is a one color genuine G-operad, this satisfies O(S) ≃ (N⊗O) (S).

Moreover, in Section 2.6, we will see that this restricts to an equivalence between their respective full
subcategories of G-operads with discrete structure spaces.

Having done this, we move on to develop a notion of equivariant homotopy-coherent interchange via the
Boardman-Vogt tensor product

O⊗
BV
⊗ P⊗ B LOp

(
O⊗ ×P⊗→ Span(FG)× Span(FG)

∧−−−−→ Span(FG)
)
.

where LOpG is as in Eq. (1). We verify many basic properties of this.

Theorem C. The bifunctor
BV
⊗ : OpG ×OpG→OpG enjoys the following properties.

(1) In the case G = e is the trivial group,
BV
⊗ is naturally equivalent to the Boardman-Vogt tensor product

of [HM23; HA].

(2) The functor −
BV
⊗ O : OpG→OpG possesses a right adjoint Alg⊗

O
(−), whose underlying G-∞-category

is the G-∞-category of algebras Alg
O

(−); the associated ∞-category is the ∞-category of algebras
AlgO(−).

(3) The
BV
⊗ -unit of OpG is the G-operad triv⊗G of [NS22]; hence Alg⊗

trivG
(O) ≃ O⊗.

(4) When C⊗ is a G-symmetric monoidal ∞-category, Alg⊗
O

(C) is a G-symmteric monoidal ∞-category;
furthermore, when O⊗→P⊗ is a map of G-operads, the pullback lax G-symmetric monoidal functor

Alg⊗
P

(C)→ Alg⊗
O

(C)

is G-symmetric monoidal; in particular, if O⊗ has one object, then pullback along the unique map
triv⊗G→P

⊗ presents the unique natural transformation of operads

Alg⊗
P

(C)→C⊗,

and this is G-symmetric monoidal when C is G-symmetric monoidal.
(5) When C⊗→D⊗ is a G-symmetric monoidal functor, the induced lax G-symmetric monoidal functor

Alg⊗
O

(C)→ Alg⊗
O

(D)

is G-symmetric monoidal.
(6) The adjunction InflGe : Op⇄OpG : Γ G enjoys the following (natural) equivalences:

InflGe triv⊗ ≃ triv⊗G;

Γ GAlg⊗
InflTe O

(C) ≃ Alg⊗O
(
Γ GC

)
;

InflGe (O)
BV
⊗ InflGe (P ) ≃ InflGe (O⊗P ).

4 When we say a model category C is right-transferred along F : C →D, we mean that F preserves and reflects weak equivalences
and fibrations.
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Hence, writing En for the little nG-disks G-operad,5 the maps En,Em→ En+m induce an equivalence

E⊗n
BV
⊗ E⊗m

∼−−−−→ En+m

(7) The G-symmetric monoidal envelope of [BHS22; NS22] intertwines localized Day convolution with
Boardman-Vogt tensor products, i.e. the following diagram commutes

Op2
G OpG

Fun(Span(FG),Cat)2 Fun(Span(FG),Cat) Cat⊗G

BV
⊗

Env2 Env

⊛ LSeg

References. Statement (1) is Corollary 3.13. Statement (2) is Observation 2.52, Proposition 3.6, and Corol-
lary 3.19. Statement (3) is Proposition 3.16. Statements (4) and (5) are Corollary 3.11. Statement (6) is
Propositions 3.25 and 3.28 and Corollaries 3.26 and 3.27. Statement (7) is Proposition 3.9. □

Notation and conventions. We assume that the reader is familiar with the technology of higher category
theory and higher algebra as developed in [HTT] and [HA, § 2-3], though we encourage the reader to engage
with such technologies via a “big picture” perspective akin to that of [Gep19, § 1-2] and [Hau23, § 1-3].

Throughout this paper, we frequently describe conditions which may be satisfied by objects parameterized
over some ∞-category T . If P is a property, in the instance where there exists Borelification adjunctions

ETF : CF ⇄ CT : BorTF

along family inclusions F ⊂ T , we say that X ∈ CT is essentially P (or E-P ) when there exists some X ∈ CF
which is P such that X ≃ ETF X. We say that X is almost essentially P (or aE-P ) if CF has a terminal object
∗F for all F , and there is a pushout expression

X ≃ ∗F ′ ⊔∗F ∗F ′

for some F ′ ⊂ F we say that X is almost P (or a-P ) if it’s almost essentially P and F ′ = T in the above.

Acknowledgements. I would like to thank Jeremy Hahn for suggesting the problem of constructing equivariant
multiplications on BPR, whose (ongoing) work necessitated many of the results on equivariant Boardman-Vogt
tensor products developed in this paper; Additionally, I would like to thank Clark Barwick, Dhilan Lahoti,
Piotr Pstrągowski, Maxime Ramzi, and Andy Senger, with whom I had many helpful conversations about
equivariant homotopy theory and algebra. Of course, none of this work would be possible without the help of
my advisor, Mike Hopkins, who I’d like to thank for many helpful conversations.

1. Equivariant symmetric monoidal categories

In this section, we review and advance the equivariant ∞-category theory of of homotopical incomplete
(semi)-Mackey functors for a weak indexing system I , which we call I-commutative monoids. To that end, we
begin in Section 1.1 by reviewing our equivariant higher categorical setup. We go on to cite and prove some
basic facts about I-commutative monoids in Section 1.2. In Section 1.3 we then endow the T -∞-category
of I-commutative monoids with its mode symmetric monoidal structure, and prove that this is uniquely
determined as a presentable symmetric monoidal structure by the free functor from coefficient systems; we
use this to identify the resulting symmetric monoidal structure with the localized Day convolution structure.
Following this, in Section 1.4 we quickly develop a framework for T -symmetric monoidal d-categories.

5 Here, nG is the n-dimensional trivial orthogonal G-representation.
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1.1. Recollections on T -∞-categories. We center on the following definition.
Definition 1.1. An ∞-category T is

(1) orbital if the finite coproduct completion FT := T
∐

has all pullbacks, and
(2) atomic orbital if it is orbital and every map in T possessing a section is an equivalence. ◁

We view the setting of atmoic orbital ∞-categories as a natural axiomatic home for higher algebra
centered around the Burnside category (see [Nar16, § 4]), generalizing the orbit categories of a finite groups.
The reader who is exclusively interested in equivariant homotopy theory is encouraged to assume every atomic
orbital ∞-category is the orbit category of a family of subgroups of a finite group.
Definition 1.2. Let T be an ∞-category. Then, a full subcategory F ⊂ T is a T -family if whenever V ∈ F
and W → V is a map, we have W ∈ F .6 The poset of T -families under inclusion is denoted FamT .

Similarly, a full subcategory F ⊂ T is a T -cofamily if its opposite F op ⊂ T op is a T op-family. ◁

Example 1.3. Let G be a topological group, let SG be the ∞-category of G-spaces, and let OG ⊂ SG be the
full subcategory spanned by homogeneous G-spaces [G/H], where H ⊂ G is a closed subgroup. The following
are all atomic orbital ∞-categories (see [Ste24b]).

(1) For G is a topological group, the full subcategory Of inG ⊂ OG spanned by G/H for H finite.

(2) If G is a topological group, the wide subcategory Of .i.G ⊂ OG whose morphisms are projections
G/K → G/H for K ⊂H finite index inclusion of closed subgroups.

(3) If G is a topological group, the full subcategory Of .i.sbG ⊂ Of .i.G spanned by G/H for H ⊂ G a finite-index
closed subgroup.

(4) X a space, considered as an ∞-category.
(5) P a meet semilattice.
(6) If T is an atomic orbital ∞-category, ho(T ).
(7) If T is an atomic orbital ∞-category, F ⊂ T a full subcategory satisfying the following conditions:

(a) For all U,W ∈ F and paths U → V →W in T , V ∈ F .
(b) For all U,W ∈ F and cospans U → V ←W in T , there is a span U ← V ′→ V in F .
For instance, F may be the intersection of a family and a cofamily whose connected components
have weakly initial objects, such as T≥V .

(8) If T is an atomic orbital ∞-category and V ∈ T , the ∞-category T/V . ◁

In this section, we briefly summarize some relevant elements of parameterized and equivariant higher
category theory in the setting of atomic orbital ∞-categories. Of course, this theory has advanced far past that
which is summarized here; for instance, further details can be found in the work of Barwick-Dotto-Glasman-
Nardin-Shah [BDGNS16a; BDGNS16b; Nar16; Sha22; Sha23], Cnossen-Lenz-Linskens [CLL23a; CLL23b;
CLL24; Lin24; LNP22], Hilman [Hil24], and Martini-Wolf [Mar22a; Mar22b; MW22; MW23; MW24].

1.1.1. The T -∞-category of small T -∞-categories.
Example 1.4. Let G be a finite group, F ⊂ OG a G-family of subgroups, and SF be the ∞-category of
F -spaces, constructed e.g. by inverting F -weak equivalences between topological G-spaces. Then, a version
of Elmendorf’s theorem [Elm83] for families (see [DK84, Thm 3.1]) states that the total F -fixed points functor
yields an equivalence

SF ≃ Fun(F op,S). ◁

This motivates the following definition.
Definition 1.5. The ∞-category of small T -∞-categories is

CatT B Fun(T op,Cat),

where Cat is the ∞-category of small ∞-categories. If Ĉat is the (very large) ∞-category of arbitrary
∞-categories, then the very large ∞-category of T -∞-categories is

ĈatT B Fun(T op, Ĉat). ◁

6 These are named families after subconjugacy closed families of subgroups, which frequently occur in equivariant homotopy; these
are referred to as sieves in [BH15; NS22] and upwards-closed subcategories in [Gla17].
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Notation 1.6. Fix C ∈ CatT = Fun(T op,Cat∞). We refer to the value of C at V ∈ T op as the V -value category
of C, written as CV ; given f : V →W , we refer to the associated functor as restriction

ResWV : CW →CV . ◁

Remark 1.7. We show in Example 2.15 that CatT is equivalently presented as complete Segal obects in the
∞-topos ST B Fun(T op,S). ◁

Remark 1.8. The Grothendieck construction, imported to∞-category theory as the straightening-unstraightening
equivalence in [HTT, Thm 3.2.0.1], produces an equivalence

CatT ≃ Catcocart
/T op ,

the latter denoting the (non-full) subcategory of Cat/T op whose objects are cocartesian fibrations and whose
morphisms are functors over T op which preserve cocartesian arrows. Under this identification, the fiber
of Un(C)→ T op over V is identified with the V -value CV , and the restriction functors are identified with
cocartesian transport. ◁

Given C,D a pair of T -∞-categories, we may define the T -functor category to be the full subcategory

FunT (C,D)B Funcocart
/T op (C,D) ⊂ Fun/T op(C,D)

consisting of functors over T op which preserve cocartesian lifts of the structure maps.
Example 1.9. For any object V ∈ T , the forgetful functor (T/V )op→T op is a cocartesian fibration classified
by the representable presheaf MapT (−,V ). We refer to the associated T -category as V . This is covariantly
functorial in V , since postcomposition yields functors f! : T/V →T/W for all maps f : V →W . ◁

The representable T -categories have total categories of a particularly nice form.

Proposition 1.10 ([NS22, Prop 2.5.1]). If an atomic orbital ∞-category T has a terminal object, then it is a
1-category; in particular, T/V is a 1-category.

These play an important role in equivariant higher category theory.
Notation 1.11. Given C a T -∞-category, we define the restricted T/V -category by

CV B C ×T op (T/V )op . ◁

Proposition 1.12 ([BDGNS16b, Thm 9.7]). CatT has exponential objects FunT (C,D) classified by the functor

V 7→ FunT/V
(
CV ,DV

)
.

We refer to monomorphisms in CatT as T -subcategories, and T -functors which are fiberwise-fully faithful
as full T -subcategories, or T -fully faithful functors.
Observation 1.13. By the fiberwise expression for limits in functor categories (c.f. [HTT, Cor 5.1.2.3]), a
T -functor F : C →D is a T -subcategory inclusion if and only if FV : CV →DV is a subcategory inclusion for
all V ∈ T . ◁

Example 1.14. The terminal T -∞-category ∗T is classified by the constant functor V 7→ ∗. The poset of sub-
terminal objects in CatT (i.e. monomorphisms with codomain ∗T ) is isomorphic to FamT ; the T -∞-category
∗F associated with F is determined by the values

∗F ,V ≃

∗ V ∈ F ;
∅ otherwise.

◁

The ∞-category CatT participates in an adjunction

Tot : CatT −−−−−−−−→←−−−−−−−− Cat : CoeffT

whose left adjoint Tot is the total category of cocartesian fibrations, and whose right adjoint has V -value

(CoeffT C)V ≃ Fun
(
(T/V )op ,C

)
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where the functoriality on f is given by (f!)
∗ (see [BDGNS16b, Thm 7.8]). We refer to CoeffT as the

T -∞-category of coefficient systems in C.7

Example 1.15. There is an equivalence ∗T = CoeffT ∗ ∈ CatT , since right adjoints preserve terminal objects. ◁

We may additionally construct the associated ∞-category

Γ T CB FunT (∗,C),

whose objects consist of cocartesian sections of the structure functor C → T op. We refer to this as the
∞-category of T -objects in C. For instance, if T has a terminal object V , [BDGNS16b, Lemma 2.12] shows
that we have an equivalence

Γ T C ≃ CV ;
more generally, this implies that Γ T C ≃ limV ∈T op CV , i.e. it is the T -fixed points (or the limit of C viewed as
a T op functor). Defining the T -inflation to have V -values(

InflTe D
)
V
BD

for any D ∈ Cat and V ∈ T , the adjunction between limits and diagonals immediately yields the following.

Proposition 1.16. The functor InflTe : Cat→ CatT is left adjoint to Γ T : CatT → Cat.

Using this adjunction, given C ∈ Cat, we define the ∞-category

CoeffT CB Γ T CoeffT C ≃ Fun(T op,C);

then, we have CatT = CoeffT Cat, and Elmendorf’s theorem states that SG ≃ CoeffOGS , motivating the
following.
Definition 1.17. The T -∞-category of small T -∞-categories is CatT B CoeffT (Cat); the T -∞-category of
T -spaces is ST B CoeffT (T ), and the ∞-category of T -spaces is ST B CoeffT (S) ≃ Γ T ST . ◁

Observation 1.18. The V -value of CatT is
(
CatT

)
V

= CatT/V ; we henceforth refer to this as CatV . The
restriction functor ResWV : CatW → CatV is presented from the perspective of cocartesian fibrations by the
pullback

ResVW C C

(T/V )op (T/W )op

⌟

In particular, given a map U → V →W , abusively referring to (U → V ) ∈ T/V as U , this is characterized by
the formula (

ResVW C
)
U
≃ CU . ◁

1.1.2. Language in the case T = OG. When G is a finite group, the category OG has objects the homogeneous
G-spaces [G/H] and morphisms the G-equivariant maps [G/K]→ [G/H ]; tracking the image of the identity,
the hom set from [G/K] to [G/H] may alternatively be presented as

Hom([G/K], [G/H]) ≃

{
a ∈ G | aKa−1 ⊂H

}
a ∼ b when ab−1 ∈ K

(see e.g. [Die09, Prop 1.3.1] for details). In particular, the endomorphism monoid of [G/K] is the Weyl group
WGH =NG(H)/H . Using this, one may see that when G is a finite group, the map IndGH : OH →OG,/(G/H) is
an equivalence of categories. Thus we may set the following notation without creating clashes.
Notation 1.19. In the setting that T = OG, we use the following notation:

(1) we refer to [G/H] as H ;
(2) we refer to OG-∞-categories as G-∞-categories and CatOG as CatG;

(3) we refer to C[G/H] as CH and Res[G/H]
[G/K] as ResHK ;

7 These are referred to as the cofree parameterization CoFree(C) in [Hil24] and as the T -∞-category of T -objects CT in [Nar17]. We
avoid the former for clarity (as we do not view Tot as a forgetful functor), and we avoid the latter as it conflicts with the T -∞-category
of T -spectra SpT ; instead, our name is chosen to evoke the coefficient systems used in equivariant cohomology.
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(4) we refer to OG-spaces as G-spaces and SOG as SG. ◁

1.1.3. Join, slice, and (co)limits. We now summarize some elements of [Sha22; Sha23].
Definition 1.20 ([Sha23, Def 4.1]). Let ι : T op ×∂∆1 ↪→T op ×∆1 be the evident inclusion. Then, the T -join is
the top horizontal functor

Cat2
T CatT

Cat/T op×∂∆1 Cat/T ×I Cat/T op

−⋆T −

ι∗ π!

which exists by [Sha22, Prop 4.3]. We write

K▷ B K ⋆T ∗T and K◁ B ∗T ⋆T K ◁

Definition 1.21. If C,D ∈ CatT ,E/ are T -∞-categories under E, the T -∞-category of T -functors under E is
defined by the pullback of T -categories

FunT ,E/ (C,D) FunT (C,D)

∗ FunT (E ,D)

⌟
(πC)∗

πD

If p : K →C is a T -functor, then the T -undercategory and T -overcategory are the functor ∞-categories

C(p,T )/ := FunT ,K/ (K▷,C) ;

C/(p,T ) := FunT ,K/ (K◁,C) ◁

In the case p : ∗T →C corresponds with the T -object X ∈ Γ T C, we simply write CX/ := C(p,T )/ and similar
for overcategories. In general, the categories C(p,T )/ take part in a functor out of CatT ,K/ . Of fundamental
importance is the adjoint relationship between these functors:

Theorem 1.22 ([Sha23, Cor 4.27]). The T -join forms the left adjoint in a pair of adjunctions

K ⋆T − : CatT −−−−−−−−→←−−−−−−−− CatT ,K/ : (−)(−,T )/ ,

− ⋆T K : CatT −−−−−−−−→←−−−−−−−− CatT ,K/ : (−)/(−,T ).

We say a T -functor p : K◁→C extends p : K →C if the composite K → K◁→C is homotopic to p.

Definition 1.23. Let C be a T -∞-category. A T -object X ∈ Γ T C is final if for all V ∈ T , the object XV ∈ CV
is final; if p : K◁ → C is a T -functor extending p : K → C and the corresponding cocartesian section
σp : ∗T →C/(p,T ) is a final T -object, then we say p is a limit diagram for p. ◁

The fiberwise opposite (or vertical opposite) functor op: CatT → CatT is the T functor induced under
CoeffT by the opposite category functor op: Cat→ Cat; the notions of initial T -objects and T -colimits are
defined dually as final T -objects and T -limits in the fiberwise opposite.

In many cases, these are familiar; for instance, trivially indexed colimits are non-equivariant in nature.

Proposition 1.24 ([Sha22, Thm 8.6]). Suppose K is a T -category such that, for all morphisms V →W in T ,
the associated restriction (i.e. cocartesian transport) functor KW → KV is an equivalence. Then, a diagram
p : K◁→C is a limit diagram for p : K →C if and only if for all V , the associated diagram p

V
: K◁V →CV is a

limit diagram for pV .

Definition 1.25. Let C be a T -∞-category and let KT = (KV )V ∈T ⊂ CatT be a restriction-stable collection of
V -categories. We say that C strongly admits K-shaped limits if for each V ∈ T , each C-category K ∈ KV and
each V -functor p : K →CV , there exists a limit diagram for p. We say C is T -complete if it strongly admits
CatT -shaped limits.

If C and D are T -∞-categories which strongly admit all K-shaped limits and F : C →D is a T , functor,
we say F strongly preserves K-shaped limits if for all V ∈ T and all K ∈ KV , postcomposition with the
V -functor FV : CV →DV sends K-shaped limits diagrams to limits diagrams.
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If C ⊂ D is a full T -subcategory whose inclusion strongly preserves K-shaped limits, we say that C is
strongly closed under K-shaped limits. ◁

An important class of examples is indexed (co)products.
Definition 1.26. Consider S ∈ FV , considered as a V -category under the unique coproduct-preserving inclusion
SetV ↪→ CatV . Then, we refer to S-shaped V -limits as S-indexed products and S-shaped V -colimits as
S-indexed coproducts.

If C ⊂ FT is a full T -subcategory, we refer to T -colimits of the corresponding class as C-indexed
coproducts; similarly, following [Ste24b], if I ⊂ SetT is a pullback-stable subcategory, we define the full
T -subcategory SetI ⊂ SetT of I-admissible sets by(

SetI
)
V
B SetI,V B

{
S | IndTV S→ V ∈ I

}
⊂ SetV .

We refer to the class of SetI -indexed coproudcts as I-indexed coproducts, and use the dual language for
I-indexed products. If D strongly admits SetI -shaped limits, we simply say D admits I-indexed coproducts ; if
I = FT , we say that D admits finite indexed coproducts, and if I = SetT , we say that D admits small indexed
coproducts. ◁

Notation 1.27. Given C a T -category and S ∈ SetT , we write

CS B
∏

U∈Orb(S)

CU ,

where Orb(S) is the set of orbits expressing S as a disjoint union of elements of T . Given S ∈ SetI,V , and
(XU ) ∈ CS , we denote the S-indexed products and coproducts as

S∏
U

XU ∈ CV ,
S∐
U

XU ∈ CV .

In particular, in the case that S has one orbit U , we write IndVU (−) and CoIndVU (−) for S-indexed coproducts
and products, respectively. ◁

Indexed coproducts may be decomposed into coproducts of inductions:
Observation 1.28. If C ∈ CatT admits all indexed coproducts, S ∈ SetV , and (XU ) ∈ CS , then

∐
U∈Orb(S)

IndVUXU

satisfies the universal property for S-indexed coproducts; hence there is a natural equivalence
S∐
U

XU ≃
∐

U∈Orb(S)

IndVUXU .

and the dual argument characterizes indexed products similarly. ◁

In nonequivariant higher category theory, all colimits are geometric realizations of coproducts. The
equivariant version of this states that T -colimits are geometric realizations of indexed coproducts, hence of
coproducts of inductions. An example is the following result of Shah.

Proposition 1.29 ([Sha23, Cor 12.15]). Let T be an orbital ∞-category. Then, C is T -cocomplete if and only
if it admits all geometric realizations and indexed coproducts.

Given K ⊂ CatT a restriction-stable collection of V -categories and W ∈ T , we let KW ⊂ CatW be the
corresponding restriction-stable collection V -categories, where V ranges over T/W . We will use the following
notation for strongly (co)limit-presereving functors.
Notation 1.30. Let I ⊂ FT be a pullback-stable subcategory. Following and slightly extending [Sha22,
Notn 1.15], we use the following notation for the described distinguished full T -subcategories of FunT (C,D):

(1) FunK−LT (C,D): the V -functors which strongly preserve KV -indexed colimits;
(2) FunK−RT (C,D): the V -functors which strongly preserve KV -indexed limits;
(3) FunLT (C,D): the V -functors which strongly preserve small V -colimits;
(4) FunRT (C,D): the V -functors which strongly preserve small V -limits;
(5) FunI−⊔T (C,D): the V -functors which (strongly) preserve I-indexed coproducts;
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(6) FunI−×T (C,D): the V -functors which (strongly) preserve I-indexed products.
(7) Fun⊔T (C,D): the V -functors which (strongly) preserve finite ordinary coproducts;
(8) Fun×T (C,D): the V -functors which (strongly) preserve finite ordinary products. ◁

In many cases of interest, it is easy to verify these properties. Given K ⊂ Cat, define KV ⊂ CatT V to
consist of V -categories whose fibers lie in K, and define KB (KV ) ⊂ CatT .

Proposition 1.31 ([Sha22, Thm 8.6]). Let C,D be ∞-categories and let F : C →D be a functor.
(1) CoeffGC strongly admits K-shaped limits if and only if C admits K-shaped limits, and
(2) CoeffGF : CoeffGC → CoeffGD strongly preserves K-shaped limits if and only if F preserves K-shaped

limits.

Some important examples of indexed (co)limit preserving functors come from parameterized adjunctions.

Definition 1.32. A T -functor L : C →D is left adjoint to R : D→ C if the associated functors LV : CV →DV
are left adjoint to RV : DV →CV for all V ∈ T . ◁

These are the same as relative adjunctions over T op by [HA, Prop 7.3.2.1]; T -left adjoints strongly
preserve small T -colimits and T -right adjoints strongly preserve small T -limits [Hil24, Thm 3.1.10], and they
satisfy a parameterized version of the adjoint functor theorem [Hil24, Thm 6.2.1]. Additionally: they are
plentiful.

Lemma 1.33. Suppose L : C⇄D : R is an adjunction of ∞-categories. Then,

CoeffT L : CoeffT C⇄ CoeffT D : CoeffT R

is an adjunction of T -∞-categories.

Proof. This follows from the fiberwise description of CoeffT (−); indeed, the V -values

L∗ : Fun((T/V )op,C)⇄ Fun((T/V )op,D) : R∗
are adjoint. □

Example 1.34. We may use Lemma 1.33 to e.g. realize the full subcategory of T -spaces whose fixed points
are d-truncated and d-connected as (co)localizing subcategories

ST ,≥d −−−−−−−−→←−−−−−−−− ST −−−−−−−−→←−−−−−−−− ST ,≤d .
Under the assumption that T is orbital, the author believes that most of the results of [LM06] may be carried
out on this level of generality; later on, we will use this line of thought to understand truncatedness and
connectedness of T -operads and T -symmetric monoidal categories. ◁

Example 1.35. By Lemma 1.33, the classifying space and core double adjunction (−)≃ ⊣ ι ⊣ (−)≃ yields

CatT ST

(−)≃

(−)≃

CatT ST

(−)≃

(−)≃

a double T -adjunction and double adjunction. ◁

In the case that K = ∗T , the results [HTT, Lem 6.1.1.1], Proposition 1.24, and Proposition 1.31 together
with [Sha23, Lem 4.8] immediately imply the following.

Lemma 1.36. The T -functor Ar(C)
ev1−−−→ C is a Cartesian fibration if and only if C admits T -pullbacks; in this

case, for α : X→ Y a morphism of T -objects in C, there exists an adjunction

α! : C/X ⇄ C/Y : α∗

where α∗(Z) ≃ Z ×Y X.

Additionally, we can make genuine adjunction non-genuine using [HA, Prop 7.3.2.1].

Proposition 1.37. If L : C⇄ D : R are adjoint T -functors, then TotL : TotC⇄ TotD : TotR and ΓL : Γ C⇄
ΓD : ΓR are adjoint pairs.
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Proof. The adjunction on Tot is [HA, Prop 7.3.2.1], and it induces an adjunction

TotL∗ : Fun/T (T ,TotC) −−−−−−−−→←−−−−−−−− Fun/T (T ,TotD) : TotR∗,

which restricts to the full subcategories of cocartesian sections, and hence yields an adjunction

Γ T L : Γ T C −−−−−−−−→←−−−−−−−− Γ
T D : Γ T . □.

We will need the following lemmas later.

Lemma 1.38. Suppose a T -functor F : C → D has FV : CV →DV conservative for all V ∈ T ; then, Γ T F is
conservative.

Proof. Suppose f• : X•→ Y• is a map of T -objects in C, i.e. a natural transformation of cocartesian sections
of TotC → T op. Then, f• is an equivalence if and only if fV is an equivalence for each V ; by conservativity of
FV , this is true if and only if Fvfv is an equivalence for each V , i.e. if and only if Ff• is an equivalence, so
Γ T F is conservative. □

Lemma 1.39. Suppose L : C ⇄ D : R is a T -adjunction such that RV is monadic for all V ∈ T ; Then,
Γ T R : Γ T D→ Γ T C is monadic.

Proof. We verify that Γ T R satisfies the conditions of the∞-categorical Barr-Beck theorem [HA, Thm 4.7.3.5(c)].
First, by Lemma 1.38, Γ T R is conservative. Second, note that a simplicial object Z•(−) in Γ T D corresponds to
a family of simplicial objects ZV (−) in DV , and a Γ T R-splitting of Z•(−) corresponds with a restriction-stable
family of RV -splittings of ZV (−). Thus RV creates a colimit of ZV for all V , and the resulting cocartesian
section creates a colimit for Z•. Unwinding definitions, we’ve argued that Γ T R creates colimits for Γ T R-split
simplicial diagrams, we’ve verified the conditions of the ∞-categorical Barr-Beck theorem; hence Γ T R is
monadic, as desired. □.

1.2. I-commutative monoids. Following [Bar14], we say that an adequite triple is the data of two core-

preserving wide subcategories Xb ⊂ X ⊃ Xf of an ∞-category such that cospans X
ϕf
−−→ Y

ϕb←−− Z satisfying
ϕf ∈ Xf and ϕb ∈ Xb lift to pullback diagrams

X ×Y Z

X Z

Y

ψb ψf⌟

ϕf ϕb

satisfying ψb ∈ Xb and ψf ∈ Xf . Given an adequate triple Xb ⊂ X ⊃ Xf , we define the span category to be

Spanb,f (X ) := Aef f (X ,Xb,Xf ).

In particular, the objects of Spanb,f (X ) are precisely those of X , and the morphisms from X to Z are the

spans X
ϕb←−− Y

ϕf
−−→ Z with ϕb ∈ Xb and ϕf ∈ Xf , with composition defined by taking pullbacks. 8

Example 1.40. For T an orbital ∞-category and I ⊂ FT a pullback-stable wide subcategory, FT = FT ←↩ I is
an adequate triple; write

SpanI (FT ) := Spanall,I (FT ). ◁

Warning 1.41. Even when FT is a 1-category (i.e. T is a 1-category), SpanI (FT ) will seldom be a 1-category;
indeed, in this case, SpanI (FT ) is a 2-category whose 2-cells given by the isomorphisms of spans

Y ′

X Z

Y

∼

◁

8 Those readers more familiar with [EH23] may note that this specializes to the notion of a span pair, when backwards maps are
Xb = X , in which case Spanf (X ) recovers that of [EH23], and hence lifts to an (∞,2)-category with a universal property that we will

not use.
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In this subsection, we review the cartesian algebraic theory SpanI (FT ) corepresents, called I-commutative
monoids. We will find that, in the same way that CMon is easily characterized via semiadditivity (c.f.
[GGN15]), CMonI is easily characterized via I-semiadditivity. Little of this subsection is original; instead, it
forms a slight generalization of [Nar16] and a massive specialization of [CLL24].

1.2.1. Weak indexing systems. We briefly review the setting of weak indexing systems introduced in [Ste24b],
which we view as the combinatorial context for the intersection of category theoretic and algebraic notions of
I-commutative monoids.
Definition 1.42. A T -weak indexing category is a subcategory I ⊂ FT satisfying the following conditions:
(IC-a) (restrictions) I is stable under arbitrary pullbacks in FT ;
(IC-b) (segal condition) T → S and T ′→ S are both in I if and only if T ⊔ T ′→ S ⊔ S ′ is in I ; and
(IC-c) (ΣT -action) if S ∈ I , then all automorphisms of S are in I .

A T -weak indexing system is a full T -subcategory FI ⊂ FT satisfying the following conditions:
(IS-a) whenever the V -value FI,V B (FI )V is nonempty, we have ∗V ∈ FI,V ; and
(IS-b) FI ⊂ FT is closed under FI -indexed coproducts. ◁

Observation 1.43. By a basic inductive argument, condition (IC-b) is equivalent to the condition that S→ T
is in I if and only if TU = T ×S U → U is in I for all U ∈ Orb(S); in particular, I is determined by its slice
categories over orbits. ◁

We denote the I-admissible sets by FI B SetI ⊂ FT as in Definition 1.26. This is a full T -subcategory.
Remark 1.44. By Observation 1.43, in the presence of Condition (IC-b), Condition (IC-a) is equivalent to the
condition that for all Cartesian diagrams in FT

(2)
T ×V U T

U V

α′
⌟

α

with U,V ∈ T and α ∈ I , we have α′ ∈ I . ◁

Inspired by Observation 1.43 and Remark 1.44, in [Ste24b, Thm A] we prove the following.

Proposition 1.45. The assignment I 7→ FI implements an equivalence between the posets of T -weak indexing
categories and T -weak indexing systems.

We additionally recall the following conditions, which may equivalently be restated for weak indexing
categories by [Ste24b, Thm A]. In view of [Ste24b, § 2.4], we encourage the reader to think primarily of
unitality.
Definition 1.46. We say that FI :

(i) has one color if for all V ∈ T , we have FI,V ,∅;
(ii) is almost essentially unital (or aE-unital) if for all non-contractible V -sets S ⊔ S ′ ∈ FI,V , we have

S,S ′ ∈ FI,V ;
(iii) is essentially unital (or E-unital) if, for all V -sets S ⊔ S ′ ∈ FI,V , we have S,S ′ ∈ FI,V ; and
(iv) is an indexing system if the subcategory FI,V ⊂ FV is closed under finite coproducts for all V ∈ T .

We say that FI almost unital if it’s almost essentially unital and has one color, and we say that FI is unital if
it is essentially unital and has one color. These lie in a diagram of embedded sub-posets

IndexT ⊂wIndexuni
T ⊂wIndexEuni

T ,wIndexauni
T ⊂wIndexaEuni

T ⊂wIndexT . ◁

We say that FI is unital if it contains the V -set ∅V for all V ∈ T ; we say that FI is an indexing system
if n · ∗V is I-admissible for all V ∈ T and all n ∈ N. When T = OG, this recovers the notion given the same
name in [BH15]; see [Ste24b] for details. Some useful invariants of these include

c(I)B
{
V ∈ T | ∗V ∈ FI,V

}
;

υ(I)B
{
V ∈ T |∅V ∈ FI,V

}
;

∇(I)B
{
V ∈ T | 2 · ∗V ∈ FI,V

}
.

(3)

These are each families [Ste24b, § 1.2], which we call the families of colors, units, and fold maps in I .
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These will show in Proposition 2.33, where they parameterize a family of T -operads called the weak
N∞ operads. We will see in forthcoming work on tensor products of weak N∞-operads [Ste24a] that these
play an important structural role in the theory of T -operads. Narrowly, this role comes down to the fact that
I-indexed coproducts in FI appear as the arities of compositions of I-indexed algebraic structures, so weak
indexing systems occur as the possible “arity supports” that T -equivariant algebraic theories can have, so
long as they possess identity operations and they allows for the formation of composite operations. Indeed,
weak N∞-operads will represent a support stratification on OpT .

1.2.2. Indexed semiadditivity. One central source of weak indexing categories is indexed semiadditivity.
Definition 1.47. Given F ⊂ T a T -family, we say that D is F -pointed if DV is pointed for all V ∈ F . ◁

Given S ∈ FV a finite V -set with a distinguished orbit W ⊂ S, D a T≤V -pointed T -∞-category admitting
S-indexed products and coproducts, and (XU ) ∈ DU , [Nar16, Cons 5.2] constructs a map

χW : ResVW

S∐
U

XU → XW

by distinguishing a “diagonal” XW -summand on the left hand side and dictating the map to be the indentity
on this summand and 0 elsewhere; then, the norm map

NmS :
S∐
U

XU →
S∏
U

XW

has projected map
∐S
U XU → CoIndVWXW adjunct to χW .

Definition 1.48. Given D a T -∞-category and S ∈ FV a finite V -set, we say that S is D-ambidextrous if
D admits S-indexed products and coproducts, is T≤V -pointed, and for all (XU ) ∈ DS , the norm map is an
equivalence

S∐
U

XU
∼−→

S∏
U

XU .

Given I a T -weak indexing category, we say that D is I-semiadditive if S is D-ambidextrous for all S ∈ FI . ◁

Remark 1.49. We’ve given an elementary presentation of this notion; this has been generalized to encapsulate
Hopkins-Lurie’s higher semiadditivity in [CLL24] (see Example 3.37 there). In particular, we find that T → S
is D-ambidextrous in the sense of [CLL24] if and only if the U -set T ×S U is D-ambidextrous for all orbits
U ⊂ S, so we adpot their language for ambidextrous maps. In particular, by [Cno23, Prop 3.13, Prop 3.16],
ambidextrous maps are closed under composition and base change. ◁

Given D a T -∞-category, we define the semiadditive locus

s(D) = {f : T → S | f is D-ambidextrous} ⊂ FT .

This is closed under composition by Remark 1.49; furthermore, it’s clear that an equivalence T ≃ S is
D-ambidextrous if and only if D is T≤V -pointed, so s(D) ⊂ FT is a subcategory satisfying Condition (IC-c).
In fact, we may say more.

Proposition 1.50. s(D) is a weak indexing category, and D is I-semiadditive if and only if I ≤ s(D).

Proof. By Observation 1.43 and Remark 1.49, s(D) satisfies Condition (IC-b). In fact, by Remark 1.49,
ambidextrous maps are closed under base change, i.e. s(D) satisfies Condition (IC-a). We’re left with verifying
that D is I-semiadditive if and only if I ≤ s(D), but this follows immediately by unwinding definitions. □

By [Ste24b], the poset wIndexCatT has joins, which we write as −∨−. The following is immediate.

Corollary 1.51. D is I ∨ J-semiadditive if and only if it is I-semiadditive and J-semiadditive.
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1.2.3. I-commutative monoids as the I-semiadditivization. Let Tripadeq ⊂ Fun(• → • ← •,Cat) be the full
subcategory spanned by adequate triples. By definition [Bar14, Def 3.6], Span−,−(−) forms a functor
Tripadeq→ Cat. Fix I a one-object weak indexing category. Write FV B FT ,/V ≃ FT/V and let FIT ⊂ FT be

the wide subcategory whose V -value is
(
FIT

)
V
B IV ⊂ FV ≃ FT ,/V is the wide subcategory of maps whose

underlying map in FT lies in I .
The wide T -subcategory inclusion FIT ⊂ FT is fiberwise given by a (one object) weak indexing category

[Ste24b, § 2.1], so in particular, this yields a functor T op→ Tripadeq (c.f. [CLL24, § 4.1]). We use this to
define the composite T -functor

Span
I
(FT ) : T op (FT ,FT ,FIT )

−−−−−−−−−−→ Tripadeq Span
−−−−→ Cat.

Definition 1.52. If C is a T -∞-category admitting I-indexed products, then the T -∞-category of I-commutative
monoids in C is

CMonI (C)B FunI−×T
(
Span

I
(FT ),C

)
. ◁

Definition 1.53. We say that a T -functor F :D→ C is the I-semiadditive completion of C if D is I-semiadditive
and for all I-semiadditive T -categories E, postcomposition along F yields an equivalence

FunI−×(E ,D)
∼−→ FunI−×(E ,C). ◁

The following theorem is of fundamental importance in the theory of equivariant higher algebra.

Theorem 1.54 ([CLL24, Thm B]). U : CMonI (C)→C is the I-semiadditive completion.

1.2.4. Commutative monoids in T -objects. Let I∞ ⊂ FT denote the smallest core-preserving wide subcategory
containing the fold maps n·V → V for all V ∈ T and n ∈ N; this is precisely the indexing category corresponding
with the minimal indexing system. We set the notation

CMon∇(C)B CMonI∞(C).

Observation 1.55. I∞-indexed products are precisely trivially indexed products; by Proposition 1.24 the I∞-
indexed product preserving functors are precisely the fiberwise product-preserving T -functors. Furthermore,
a T -category is ∇-semiadditive if and only if, for each V ∈ T , the ∞-category CV is semiadditive. Thus we
have equivalences Cat×T ≃ CoeffT (Cat×) and Cat⊕T ≃ CoeffT (Cat⊕) compatible with the inclusions. ◁

Lemma 1.33 and Observation 1.55 directly imply that the I∞-semiadditive closure satisfies

CMon∇(C) ≃
(
T op C−→ Cat×

CMon−−−−−→ Cat⊕
)

;

Cnossen-Lenz-Linsken’s semiadditive closure theorem (i.e. Theorem 1.54) then yields the following.

Corollary 1.56. There is a canonical equivalence CMon∇(C) ≃ CMon(Γ C).

1.2.5. I-commutative monoids in ∞-categories. We recall a special case of Cnossen-Lenz-Linsken’s Mackey
functor theorem.

Theorem 1.57 ([CLL24, Thm C]). For every presentable ∞-category C, there are canonical equivalences

CMonI (CoeffT (C)) ≃ Fun×(SpanI (FT ),C);

CMonI (CoeffT (C))V ≃ Fun×(SpanIV (FV ),C.

Furthermore, given a map f : V →W , the associated restriction functor

ResWV : Fun(SpanIW (FW ),C)→ Fun(SpanIV (FV ),C)

is given by precomposition along Span(IndWV (−)).

This motivates us to make the following definition.
Definition 1.58. If C is an ∞-category with finite products, then the T -∞-category of I-commutative monoids
in C is

CMonI (C)B CMonI (CoeffT (C)). ◁

Similar to the case of CoeffT , this construction is compatible with adjunctions.
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Lemma 1.59. Let I ⊂ T be a pullback-stable wide subcategory of an orbital ∞-category.
(1) If f : C →D is a product-preserving functor, then postcomposition yields a T -functor

f∗ : CMonIC → CMonID.

(2) If L : C⇄: R is an adjunction whose right adjoint R is product preserving, then

L∗ : CMonIC −−−−−−−−→←−−−−−−−− CMonID : R∗

is a T -adjunction.

Proof. (1) follows by noting that f∗ exists since f is product preserving, and it is compatible with restriction
because postcomposition and precomposition commute. (2) follows by noting that the associated functors

L∗ : (CMonIC)V ≃ Fun×
(
SpanIV (FV ),C

)
−−−−−−−−→←−−−−−−−− Fun×

(
SpanIV (FV ),D

)
= (CMonID)V ) : R∗

are adjoint. □

We may unpack the structure of I-commutative monoids more using the following.
Construction 1.60. Let X ∈ CMonIC be a a I-commutative monoid, and let V ∈ T be an orbit. Let ιV : F→ FT
be the coproduct-preserving functor sending ∗ 7→ V . Then, the V -value is the pullback

CMonIC CMonIV C

Fun×(SpanI (FT ),C) Fun×(SpanI×FT ,ιV F(F),C)

(−)V

≃ ≃

ι∗V

In particular, when I contains all fold maps (i.e. I is an indexing category in the sense of [BH15; Ste24b])
and X is an I-commutative monoid, XV is a commutative monoid in C. ◁

Construction 1.61. Fix X ∈ CMonI (C) and f : V →W a map in I . There exists a natural transformation
αf : ιV → ιW whose value on n is the copower map n · V → n ·W ; this induces a natural transformation
NW
V : (−)V =⇒ (−)W , which we refer to as the norm map. ◁

1.2.6. I-symmetric monoidal ∞-categories. We refer to

Cat⊗I B CMonICat

as the T -∞-category of I-symmetric monoidal ∞-categories. In the case I = FT , we refer to these simply as
T -symmetric monoidal ∞-categories and write Cat⊗T B Cat⊗FT .

Notation 1.62. Suppose S ∈ FI . Associated with the structure map IndTV S→ V we have functors

S⊗
U

: CS →CV , ∆S : CV →CS

called the S-indexed tensor product and S-indexed diagonal. We refer to the composite (−)⊗S : CV
∆S−−→ CS

⊗SU−−−→ CV
as the S-indexed tensor power. In the case IndTV S =W is an orbit (i.e. S is a transitive V -set), we write

NV
W B

W⊗
U

: CW →CV .

In general, we will use the inset notation −⊗− for ⊗2·∗V
U , and when ∅V ∈ FI , we will refer to the ∅V -ary

operation ∗ → CV as the V -unit and denote it as 1V . ◁

Observation 1.63. Suppose S, |Orb(S)| · ∗V , and all orbits of S are is I-admissible V -sets. Then, the following
path lies in I :

IndTV S→ |Orb(S)| ·V → V .
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In algebra, this yields the formula

CS CV

C×Orb(S)
V

S⊗
U

(NV
U −) ⊗

i.e.
S⊗
U
XU ≃

⊗
U∈Orb(S)N

V
U XU . Thus, when I is an indexing category, the indexed tensor products in an

I-symmetric monoidal ∞-category is are determined by their binary tensor products and norms. Furthermore,
in [Ste24b, § 1.2], we see that I-symmetric monoidal ∞-categories satisfy a version of the double coset formula

ResVW N
V
U Z ≃

U×VW⊗
X

ResUX Z

for all cospans U → V ←W in T such that U →W is in I . ◁

Construction 1.64. Right Kan extensions preserve product preserving functors; applying this to the orbits
functor FT : FT → F yields a functor

Γ := Span(FT )∗ : Fun×(Span(FT ),C)→ Fun×(Span(F),C).

In particular, Γ is right adjoint to InflTe := Span(FT )∗. When C = Cat, the counit of this adjunction is a
natural T -symmetric monoidal functor.

InflTe Γ C⊗→C⊗

We refer to the (symmetric monoidal) V -value of this as the symmetric monoidal V -evaluation

evV : Γ C⊗→C⊗V . ◁

1.2.7. Symmetric monoidal T -∞-categories. The ∞-category of symmetric monoidal T -∞-categories is

Cat⊗I∞,T ≃ CoeffT Cat⊗∞ ≃ CMonCatT .

Definition 1.65. Suppose LC ⊂ C is a localizing T -subcategory of a symmetric monoidal T -∞-category. We
say that L is compatible with the symmetric monoidal structure if for each V ∈ T , the localization LV is
compatible with the symmetric monoidal structure on CV in the sense of [HA, Def 2.2.1.6]. ◁

We will crucially use the following proposition in Section 1.3.

Proposition 1.66. If L is compatible with the symmetric monoidal structure, there exists a commutative
diagram of T -∞-categories

C⊗ LC⊗

(F∗)triv

L⊗

p

satisfying the following conditions:

(a) LC⊗ is a symmetric monoidal T -∞-category and L⊗ is a symmetric monoidal T -functor,
(b) the underlying T -functor of L⊗ is L : C → LC, and
(c) L⊗ possesses a fully faithful and lax symmetric monoidal right T -adjoint extending the inclusion

LC ⊂ C.

Proof. This is the specialization of [NS22, Thm 2.9.2] to O⊗ B E⊗∞. □

1.3. The canonical symmetric monoidal structure on I-commutative monoids. We now explore the observation
that the parameterized presentability results of [Hil24] are sufficiently strong to power non-indexed lifts of
[GGN15] in the I-semiadditive setting.
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Definition 1.67 (c.f. [Hil24, Thm 3.1.9(2), Thm 6.1.2]). A (large) T -∞-category C is T -presentable if it
strongly admits finite T -coproducts and its straightening factors as

C : T op→ PrL,κ→ Ĉat

for some regular cardinal κ. The (nonfull) subcategory

PrLT ⊂ ĈatT

has objects given by T -presentable ∞-categories and morphisms given by T -left adjoints. ◁

Observation 1.68. The conditions of factoring through PrL,κ, of strongly admitting finite T -coproducts, and
of being T -left adjoints are preserved by restriction; hence PrLT canonically lifts to a (nonfull) T -subcategory

PrLT ⊂ ĈatT ◁

These satisfy an adjoint functor theorem [Hil24, Thm 6.2.1] and have analogous characterizations to
the non-equivariant case; in particular, PrLT ⊂ ĈatT is closed under functor categories from small categories
[Hil24, Lem 6.7.1] and by Definition 1.67, PrLT is closed under fiberwise κ-accessible T -localizations. Hence
CMonI (C) is T -presentable when C is T -presentable.

Additionally, in [Nar17], a T -symmetric monoidal structure was constructed on PrLT . In order to
characterize this structure, we use the following definition (c.f. [QS19, § 5.1]).
Definition 1.69 ([QS19, Def 5.14]). Fix S a finite V -set, (CU ) an S-∞-category, D a V -∞-category, and
F :

∏S
U CU →D a V -functor. Denote by (−)∗ the indexed products in CatT and (−)∗ the restriction. We say

that F is S-distributive if, for every pullback diagram

T ×V S T

S V

f ′

g ′
⌟

g

f

and S-colimit diagram p : K▷→ g ′∗C for p : K → g ′∗C, the composite T -functor

(f ′∗ K)▷
can−−−→ f ′∗ (K▷)

f ′∗ p−−−→ f ′∗ g
′∗C ≃ g∗f∗C

g∗F
−−−→ g∗D

is a T -colimit diagram for the associated composite f ′∗ K → g∗D. We denote by

FunδT (f∗C,D) ⊂ FunT (f∗C,D)

the full subcategory spanned by S-distributive functors. ◁

By the proof of [Nar17, Prop 3.25], Nardin’s T -symmetric monoidal structure on PrLT has V unit SV
and indexed tensor products characterized by the universal property

FunLT

 S⊗
U

C,E

 ≃ FunδT

 S∏
U

C,D

 .
Definition 1.70. The ∞-category of presentably T -symmetric monoidal ∞-categories is the (non-full) sub-
category CAlgT (PrL,⊗T ) ⊂ Ĉat

⊗
T ; the ∞-category of presentably symmetric monoidal T -∞-categories is the

(non-full) subcategory CAlg(PrLT ) ⊂ CMon(ĈatT ). ◁

Observation 1.71. By definition, a T -symmetric monoidal ∞-category whose underlying T -∞-category is
presentable factors through the inclusion PrLT ⊂ CatT if and only if its structure maps C×SV → CV are in
FunδV (C×SV ,CV ); in the language of [NS22], a presentably T -symmetric monoidal ∞-category is precisely a
distributive T -symmetric monoidal ∞-category whose underlying T -∞-category is presentable. ◁

Example 1.72. By [NS22, Prop 3.2.5], if C is a cocomplete ∞-category with finite products such that finite
products preserve colimits separately in each variable, then the cartesian symmetric monoidal structures on
CoeffV C lift to a distributive symmetric monoidal T -∞-category CoeffT C×. It follows from Hilman’s charac-
terization of parameterized presentability [Hil24, Thm 6.1.2] that CoeffT C is presentable, so Observation 1.71
implies that CoeffT C× is presentably symmetric monoidal. ◁
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Hilman used the universal property of ⊗ in [Hil24, Prop 6.7.5] to prove the formula

C ⊗D ≃ FunRT (Cop,D) .

Using this, for any T -presentable T -∞-category C, we have

CMonI (C) ≃ FunI−×T (Span
I
(FT ),C)

≃ FunI−×T (Span
I
(FT ),FunRT (Cop,ST ))

≃ FunRT (Cop,FunI−×T (Span
I
(FT ),ST ))

≃ C ⊗CMonI (ST ).

In particular, this implies that the functor C 7→ CMonI (C) is smashing. In fact, we can say more.
Notation 1.73. We say that a presentable T -∞category is I-semiadditive if its underlying T -∞-category
is I-semiadditive, and we let PrL,I−⊕T ⊂ PrLT be the full subcategory spanned by I-semiadditive presentable
T -categories. ◁

It follows from Cnossen-Lenz-Linsken’s semiadditive closure theorem [CLL24, Thm B] that a T -
presentable T -∞-category is fixed by CMonI (−) if and only if it’s I-semiadditive, i.e. CMonI (−) implements
the localization functor

PrLT → PrL,I−⊕T

left adjoint to the evident inclusion. By the above argument, we find that CMonI (−) is a smashing localization,
hence a symmetric monoidal localization; by [GGN15, Lemma 3.6], this implies that given C ∈ CAlg(PrLT ),
there is a unique compatible commutative algebra structure on its localization CMonI (C). In other words,
we’ve shown the following.

Theorem 1.74. The localizing subcategory

CMonI : PrLT ⇄ PrL,I−⊕T : ι

is smashing; in particular, if D⊗ is a presentably symmetric monoidal T -category, then there is an essentially
unique presentably symmetric monoidal T -∞-category CMon⊗−mode

I (D) possessing a (necessarily unique)
symmetric monoidal lift

Fr⊗ : D⊗→ CMon⊗−mode
I (D)

of Fr: D→ CMonI (D).

Warning 1.75. Theorem 1.74 is not as genuinely equivariant as the user may want, as it constructs symmetric
monoidal structures, but never norm maps. The author is content with this for the purposes of this paper, as
the algebraic interpretation of indexed tensor products of T -operads is unclear. She hopes to address the
indexed case in forthcoming work. ◁

Remark 1.76. Under the equivalence of Theorem 1.57, writing D = CoeffT (C), Theorem 1.74 constructs an
essentially unique presentably symmetric monoidal structure on CMonI (C) subject to the condition that the
free functor CoeffT C → CMonI (C) is bears a symmetric monoidal structure. ◁

Observation 1.77. The T -∞-category ST is freely generated under T -colimits by one T -point, in the sense
that evaluation at the V -units (∗V ) yields an equivalence [Sha23, Thm 11.5]

FunLT (ST ,C) ≃ Γ C.

In particular, every symmetric monoidal T -∞-category receives at most one symmetric monoidal T -left
adjoint from ST ; in the case C = S×T the condition of Theorem 1.74 then may be read as saying that there is
a unique presentably symmetric monoidal structure on CMonI (ST ) with V -unit 1mode

V = Fr(∗V ) for all V ∈ T .
Furthermore, by Yoneda’s lemma, these V -units are characterized by the property that

MapV (1mode
V ,XV ) ≃Map(∗V ,XV (∗V )) ≃ XV (∗V ). ◁

We’d like to identify this symmetric monoidal structure via a familiar formula. We have a candidate:
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Proposition 1.78 ([BS24b, Prop 4.24], via [CHLL24, Prop 3.3.4]). If C is a presentably symmetric monoidal
∞-category, then the Day convolution structure on Fun(SpanI (FT ),C) with respect to the smash product on
SpanI (FT ) is compatible with the localization

LSeg : Fun(SpanI (FT ),C)→ CMonI (C)

Proof. By the general criterion [CHLL24, Prop 3.3.4], it suffices to verify that A+∧− : Span(FT )→ Span(FT )
is product-preserving, which follows by the fact that it is colimit preserving and Span(FT ) is semiadditive. □

By Proposition 1.66, Proposition 1.78 constructs a symmetric monoidal structure on CMonI (C). We
will show that this agrees with the mode symmetric monoidal structure.

Theorem 1.79. Let C⊗ be a presentably symmetric monoidal ∞-category. Then, there is a unique equivalence
between the Day convolution and mode symmetric monoidal structures on CMonI (C) lifting the identity.

The proof of [BS24b, Lemma 4.21] and [CSY20, Lemma 5.2.1] apply identically to the following.

Lemma 1.80. Fix A0,A1,B ∈ CAlg(PrLT ) and L :A0→A1 a T -localization functor which is compatible with
the symmetric monoidal structure on A0. Then, L⊗ idB :A0 ⊗B →A1 ⊗B is a T -localization functor which
is compatible with the symmetric monoidal structure on A0 ⊗B.

Proof of Theorem 1.79. Set the temporary notation PCMonI (−) B FunT
(
Span

I
(FT ),−

)
. Our argument

follows along the lines of [BS24b, Thm 4.26]. Repeating the argument of Theorem 1.74, for all presentably
symmetric monoidal T -∞-categories D, we acquire a diagram

PCMonI (D) PCMonI (S)⊗D

CMonI (D) CMonI (S)⊗D

≃

≃

Furthermore, the associated map PCMonI (S)→ PCMonI (D) is postcomposition along the canonical symmetric
monoidal left adjoint ST →D, and the associated map D→ PCMonI (D) is the Yoneda lemma; the former
bears a symmetric monoidal structure for the Day convolution symmetric monoidal structure and the latter
bears an I-symmetric monoidal structure by [NS22, Prop 6.0.2]. Thus the top arrow can be lifted to a
symmetric monoidal equivalence. We may take adjoint functors to find the diagram

PCMonI (D) PCMonI (S)⊗D

CMonI (D) CMonI (S)⊗D

≃

LSeg LSeg

≃

of [CHLL24, Prop 3.3.4]. The bottom functor is a symmetric monoidal localization of the top. In particular,
choosing D = CoeffT (C), by Lemma 1.80, it suffices to prove this in the case C = ST .

The T -Yoneda embedding is T -symmetric monoidal for the T -Day convolution by [NS22, Thm 6.0.12],
so 1Day

V ≃ y(∗V ). Hence Yoneda’s lemma yields that

MapV (1Day
V ,XV ) ≃Map(y(∗V ),XV ) ≃ XV (∗V ),

which implies that 1Day ≃ 1mode, and hence the theorem, by Observation 1.77. □

Remark 1.81. It is not likely that it is necessary for T to be atomic orbital in the above argument; indeed,
for CMonI (C)B Fun×T (SpanI (FT ),C) to implement I-semiadditivization, it suffices to assume that I is a weak
indexing category with respect to an implicit atomic orbital subcategory P ⊂ T (c.f. [CLL23b; CLL24]).
Unfortunately, the author is not aware of a symmetric monodial structure on partially presentable T -categories,
and developing such a thing would lead us far afield from our current operadic goals. ◁
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1.4. The homotopy I-symmetric monoidal d-category. Recall that, a space is (−2)-truncated if it is empty,
(−1)-truncated if it is empty or contractible, and for d ≥ 0, a space X is d-truncated if it is a disjoint union of
connected spaces (Xα)α∈A such that πm (Xα) = 0 for all m > d and α ∈ A.

Recall that a (d + 1)-category is an ∞-category C such that the space Map(X,Y ) is d-truncated for
all X,Y ∈ C. We say that an ∞-category is a −1-category if it is either ∗ or empty. In general, we write
Catd ⊂ Cat for the full subcategory spanned by the ∞-categories with the property that they are d-categories.
Definition 1.82. The T -∞-category of small T -d-categories is

CatT ,d := CoeffT Catd .

A T -poset is a T -0-category. If I ⊂ FT is pullback-stable, the T -∞-category of small I-symmetric monoidal
d-categories is

Cat⊗I,d := CMonICatd .

We write CatT ,d B Γ T CatT ,d and Cat⊗I,d B Γ T Cat⊗I,d . ◁

By the following lemma, CatT ,d is a T -(d + 1)-category and CatT ,d is a (d + 1)-category.

Lemma 1.83 ([HTT, Cor 2.3.4.8, Prop 2.3.4.12, Cor 2.3.4.19]). Catd is a (d + 1)-category and the inclusion

Catd ↪→ Cat

has a right adjoint hd : Cat→ Catd .

Construction 1.84. By Lemmas 1.33 and 1.83, the functor CatT ,d ↪→ CatT is an inclusion of a localizing
T -subcategory; let hT ,d : CatT → CatT ,d be the associated T -left adjoint.

The mapping spaces in a product of categories are the product of the mapping spaces; in particular, the
inclusion Catd ↪→ Cat is product-preserving. Hence Lemmas 1.59 and 1.83 construct an adjunction

hT ,d : Cat⊗I ⇄ Cat⊗I,d : ι.

whose right adjoint is fully faithful. We refer to hT ,d as the homotopy I-symmetric monoidal d-category. ◁

The remainder of this subsection will be dedicated to recognition results for T -symmetric monoidal
d-categories, which will be useful throughout the remainder of the paper. We first reduce this consideration
to that of plain T -∞-categories; the following proposition follows by unwinding definitions and noting that
Catd ↪→ Cat is closed under products.

Proposition 1.85. If I ⊂ FT is a one-object weak indexing system, then C⊗ ∈ Cat⊗I is a I-symmetric monoidal
d-category if and only if its underlying T -∞-category C is a T -d-category.

Often in equivariant higher algebra, we will find that our objects come with natural maps to T -1-
categories, and we’d like to develop a recognition theorem in this case in terms of mapping spaces.

Proposition 1.86. A T -∞-category C is a T -d-category if and only if

MorV (C)B Fun(∆1,CV )≃

is (d − 2)-truncated for all V ∈ T .

Proof. By definition, it suffices to prove this in the case T = ∗. Fix f ,g ∈MorV (C). Then, we may present
Map(f ,g) as a disjoint union over a,b of homotopies

W X

Y Z

f

a b

g

For fixed a,b, this is either empty or equivalent to the component of the space Map(S1,Map(W,Z)) whose
underlying map is homotopic to bf . If C is a d-category, then this is (d − 2)-truncated; conversely, choosing
a,b = id and f = g, if this is (d − 2)-truncated for all f , then the mapping spaces of C are (d − 1)-truncated,
i.e. C is a d-category. □
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Given a functor F : C →D and a map ψ : ∆1→CV and F : C →D, define the pullback space

MorψF (C) MorV (C)

BAutψ MorV (D)

⌟

so that MorψF (C) is the disjoint union of the connected components of MorV (C) whose image in MorV (D) is
equivalent to ψ. We say that F has (d − 1)-truncated mapping fibers if MorψF (C) is (d − 2)-truncated for all
V ∈ T and ψ ∈MorV (C).

Corollary 1.87. Suppose F : C →D is a T -functor and D is a T -1-category. Then, the following are equivalent
for d ≥ 1:

(1) F has (d − 1)-truncated mapping fibers.
(2) C is a T -d-category.

Additionally, the following are equivalent.
(1’) F≃ : C≃→D≃ is fully faithful and F has (−1)-truncated mapping fibers.
(2’) F includes C as a (replete) T -subcategory of D.

Proof. After Proposition 1.86, the only remaining part is the equivalence between (1’) and (2’). Note that
BAutψ is −1-truncated by Proposition 1.86, so (1’) is equivalent to the conditions that C is a T -1-category
and FV : CV → DV is a faithful functor which is fully faithful on cores, i.e. it is a (replete) subcategory
inclusion; by Observation 1.13, this is equivalent to (2’). □

2. Equivariant operads and symmetric sequences

In Section 2.1, we begin by recalling rudiments of the theory of algebraic patterns and Segal objects of
[CH21] and the theory of fibrous patterns and the Segal envelope of [BHS22]; in the case of O = Span(FT ), we
show in Appendix A.1 that this recovers the theory of T -symmetric monoidal ∞-categories, T -∞-operads
(henceforth T -operads), and the T -symmetric monoidal envelope of [NS22]. We go on in Section 2.2 to
specialize several results of [BHS22; CH21] to this setting and construct the family of weak N∞-operads.

After this, we go on to study the underlying T -symmetric monoidal sequence functor in Section 2.3,
showing in Corollary 2.62 that it forms a fiberwise-monadic T -functor

sseq
T

: Op
T
→ FunT (ΣT ,ST );

in particular, this implies that it is a conservative right T -adjoint and confirms an atomic orbital lift of
Theorem A. In Section 2.6.3, we use this to confirm Corollary B.

In Section 2.4 we go on to compute the monad TO(−) for O-algebras in arbitrary T -symmetric monoidal
∞-categories; in particular, when C ≃ ST for a structure whose indexed tensor products are indexed products,
we naturally split off a O(S)-summand from TO(S); using our atomic orbital lift of Theorem A, we conclude
that Alg

(−)
(ST ) : OpT → CatT is conservative.

Last, in preparation for forthcoming work, we initiate in Section 2.5 the study of the localizing
subcategory of T -operads whose underlying T -symmetric sequence is (d − 1)-truncated, called T -d-operads;
we show in particular that the full T -subcategory of Op

T
spanned by T -operads whose S-ary spaces are

empty or contractible form a T -poset. We use this in Section 2.6 to prove that Bonventre’s nerve restricts to
an equivalence between categories of G-1-operads.

We assure the reader exclusively interested in using T -operads that the relevant interpretations of
the results of Section 2.1 will be restated throughout the following subsections, so these sections may be
black-boxed at the cost of completeness of proofs.

2.1. Recollections on algebraic patterns. An algebraic pattern is a collection of data encoding Segal conditions
for the purpose of homotopy-coherent algebra. Given an algebraic pattern O and a complete ∞-category C,
there is an ∞-category of Segal O-objects in C, which we view as O-monoids in C; these are presented as
functors O→C satisfying a Segal condition.
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We may view O-objects in Cat (aka Segal O-∞-categories) as O-monoidal∞-categories; these straighten
to cocartesian fibrations over O satisfying conditions. As in [HA, § 2], the condition of being a cocartesian
fibration may be relaxed to construct a form of operads parameterized by O, called fibrous O-patterns.

In contrast to the categorical patterns of [HA, § B], these are manifestly∞-categorical, and it is relatively
easy to construct push-pull adjunctions between categories of fibrous patterns over different algebraic patterns;
we found our theory of I-operads in this syntax for this reason, as the Boardman-Vogt tensor product is most
easily defined in terms of pushforward along maps of algebraic patterns.

The author would like to emphasize that the program surrounding algebraic patterns has achieved
many results not mentioned here, as fibrous patterns only play a foundational role. For a significantly more
thorough and elegant treatment, we recommend [BHS22; CH21; CH23].

2.1.1. Algebraic patterns, Segal objects, and fibrous patterns.
Definition 2.1. An algebraic pattern is a triple (B, (Bin,Bact),Bel), where (Bin,Bact) is a factorization system
on B and Bel ⊂ Bin is a full subcategory.9 The ∞-category AlgPatt ⊂ Fun(Q,Cat) is the full subcategory
spanned by algebraic patterns, where

◁(4) Q := •→ •→ •← •.

We refer to the morphisms in Bin as “inert morphisms,” morphisms in Bact as “active morphisms,” and
objects in Bel as “elementary objects.” When it is clear from context, we will abusively refer to the triple(
B, (Bin,Bact),Bel

)
simply as B. The following is our a primary source of examples.

Construction 2.2. An adequate quadruple is the data of an adequate triple Xb,Xf ⊂ X in the sense of Section 1.2
together with a full subcategory X0 ⊂ Xb; the ∞-category of adequate quadruples is the full subcategory

Quadadeq ⊂ Fun(Q,Cat)

spanned by adequate quadruples, where Q is defined by Eq. (4).
Given an adequate quadruple X0 ⊂ Xb ⊂ X ⊃ Xf , let X op

b ⊂ Spanb,f (X ) be the wide subcategory spanned

by the spans X
ψb←−− R

ψf
−−→ Y with ψf an equivalence, and similarly Xf ⊂ Spanb,f (X ) the side subcategory of

spans with ψb an equivalence. This yields a factorization cystem [HHLN23, Prop 4.9]

X op
b ↪→ Spanb,f (X )←↩ Xf .

We define the span pattern Spanb,f (X ;X0) via the data

• underlying ∞-category Spanb,f (X ),
• inert morphisms X op

b ⊂ Span(X ),
• active morphisms Xf ⊂ Span(X ), and
• elementary objects X op

0 ⊂ X
op
b .

Given a map of adequate quadruples
(
X , (Xb,Xf ),X0

)
→

(
Y , (Yb,Yf ),Y0

)
the associated functor Spanb,f (X )→

Spanb,f (Y ) preserves inert morphisms, active morphisms, and elementary objects by defintiion; hence the
functor Span−,−(−;−) : Quadadeq→ Fun(Q,Cat) descends to a functor

Span−,−(−;−) : Quadadeq→ AlgPatt. ◁

The central example for equivariant higher algebra is the following.
Example 2.3. When T is an orbital ∞-category, I ⊂ FT is a T -weak indexing system (e.g. I = FT ), and c(I)
its color family in the sense of Eq. (3), we define the effective I-Burnside pattern

SpanI (FT ) := Spanall,I

(
Fc(I);c(I)

)
◁

9 Throughout this paper, we adopt the definition of factorization system used in [CH21, Rmk 2.2], which does not assert any lifting
properties; that is, a facorization system on C is a pair of wide subcategories CL,CR ⊂ C satisfying the condition that, for all maps

X
f
−→ X′ , the space of factorizations X

l−→ Y
r−→ X′ with l ∈ CL and r ∈ CR is contractible.
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Example 2.4. Given T an orbital ∞-category, we may define the ∞-category of finite pointed T -sets as

FT ,∗ := Spansi,all(FT ),

where Fsi
T ⊂ FT is the wide subcategory of summand inclusions. In fact, the class of summand inclusions is

restriction-stable, so this lifts to an algebraic pattern

TotFT ,∗ ≃ Spansi,all(TotFT ;T op);

together with a map of algebraic patterns

◁(5) ϕ : TotFT ,∗ ↪→ Spanall,all(TotFT ;T op)
U−−→ Span(FT ).

Algebraic patterns provide a general framework for algebraic structures satisfying the associated Segal
conditions, which are encoded in the notion of Segal objects.
Definition 2.5. Let C be a complete ∞-category and let O be an algebraic pattern. Then, the ∞-category of
Segal O-objects in C is the full subcategory SegO(C) ⊂ Fun(O,C) consisting of functors F such that, for every
object O ∈ O, the natural map

F(O)→ lim
E∈Oel

O/

F(E)

is an equivalence, where Oel
O/ := Oel ×Oin,ev1

Oin
O/ is the ∞-category whose objects consist of inert morphisms

from O to an elementary object. ◁

Remark 2.6. By [CH21, Lem 2.9], a functor F : O→C is a Segal O-object if and only if the associated functor
F|Oint is right Kan extended from F|Oel along the inclusion Oel→Oint. ◁

Example 2.7. We show in Lemma A.5 that SpanI (FT )el
Z/ =

(
FT ,/Z

)op contains the set of orbits Orb(Z) as an
initial subcategory. Hence there is an equivalence of full subcategories

SegSpanI (FT )(C) ≃ CMonI (C) ⊂ Fun(SpanI (FT ),C). ◁

One benefit of the framework of Segal objects is their general monadicity result.

Proposition 2.8 ([CH21, Cor 8.2]). if O is an algebraic pattern and C a presentable ∞-category, then the
forgetful functor

U : SegO(C)→ Fun(Oel,C)

is monadic; in particular, it is conservative.

Corollary 2.9. A morphism of I-commutative monoids is an equivalence if and only if its underlying morphism
of c(I)-objects is an equivalence; in particular, an I-symmetric monoidal functor F : C⊗→D⊗ is an equivalence
if and only if the underlying c(I)-functor is an equivalence.

Another benefit of Segal objects is a rich framework for functoriality.
Definition 2.10. A morphism of algebraic patterns f : P→O is a called a:

• Segal morphism if pullback f ∗ : Fun(O,C) → Fun(P,C) preserves Segal objects in any complete
∞-category C.

• strong Segal morphism if the associated functor f el
X/ : Pel

X/ →Oel
f (X)/ is initial for all X ∈ P. ◁

Observation 2.11. The conditions for Segal morphisms and strong Segal morphisms are each compatible with
compositions and equivalences; that is, there are core-preserving wide subcategories AlgPattSeg,AlgPattStrong−Seg ⊂
AlgPatt whose morphisms are the Segal morphisms and strong Segal morphisms, respectively. ◁

Remark 2.12. [CH21, Lem 4.5] concludes that f is a Segal morphism if f ∗ preserves Segal objects in spaces. ◁

Example 2.13. We show in Proposition A.12 that, given any functor T → T ′ of atomic orbital ∞-categories,
the associated functor

Span(FT )→ Span(FT ′ )
is a Segal morphism. Additionally, in Corollary A.8, we show that the map ϕ of Eq. (5) is a segal morphism,
constructing a pullback map

CMonT (C) ≃ SegSpan(FT )(C)→ SegTotFT ,∗(C).
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In [Bar23, Cor 2.64], conditions for a strong Segal morphism were developed concerning when their pullback
maps are equivalences, and these conditions were checked in [BHS22, Prop 5.2.14] in the case T = Oop

G ; we
review their argument and extend it to arbitrary atomic orbital ∞-categories in Appendix A.1. The existence
of such an equivalence (not necessarily induced by a pattern) is not new, and to the author’s knowledge, first
appeared as [Nar16, Thm 6.5]. ◁

Lemma 2.14 ([CH21, Cor 5.5]). AlgPatt ⊂ Fun(Q,Cat) is a localizing subcategory; in particular, AlgPatt has
small limits.

Example 2.15. In particular, AlgPatt has products. By [CH21, Ex 5.7], there is an equivalence

SegB×B′ (C) ≃ SegBSegB′ (C).

In particular, this combined with Example 2.7 gives a complete segal space model for I-symmetric monoidal
categories; indeed, the pattern ∆op,♮ of [CH21, Ex 5.8] has Segal ∆op,♮-objects in C given by complete Segal
objects in C, specializing to the fact that Seg∆op,♮(S) ≃ Cat, and hence

Seg∆op,♮(ST ) ≃ SegT op,el×∆op,♮(S) ≃ SegT op,el(Cat) ≃ CatT ,

where T op,op,el is the algberaic pattern with
(
T op,el

)el
≃

(
T op,el

)int
≃ T op ≃

(
T op,el

)act
. Additionally,

Seg∆op,♮(CMonT (S)) ≃ Seg∆op,♮×Span(FT )(S) ≃ SegSpan(FT )(Cat) ≃ CMonT (Cat). ◁

Cartesian products of patterns play nicely with well-structured maps of patterns.

Lemma 2.16. Suppose f : O→ P and f ′ : O′→ P′ are (resp. strong) Segal morphisms. Then,

f × f ′ : O ×O′→ P×P′

is a (strong) Segal morphism.

Proof. The case of Segal morphisms follows immediately from Example 2.15, so we assume that f , f ′ are
strong Segal. Then, the induced map

f el
X/ × f

′el
X′ / = (f × f ′)el

(X,X′)/ : (O ×O′)el
(X,X′)/ → (P×P′)el

(f x,f x′)/

is a product of initial maps; it then follows that it is initial, since limits in product categories are computed
pointwise. □

The unstraightening functor of [HTT] realizes SegO(Cat) as a non-full subcategory of Cat/O consisting of
cocartesian fibrations satisfying Segal conditions; we relax this for the following definition, which is equivalent
to the original definition stated in [BHS22, Def 4.1.2] by [BHS22, Prop 4.1.6].
Definition 2.17. Let B be an algebraic pattern. A fibrous B-pattern is a functor π : O→B such that

(1) (inert morphisms) O has π-cocartesian lifts for inert morphisms of B,
(2) (Segal condition for colors) For every active morphism ω : V0→ V1 in B, the functor

OV0
→ lim

α∈Bel
V1/

Oωα,!V1

induced by cocartesian transport along ωα is an equivalence, where ω(−) : Bel
Y / →Bint

X/ is the inert
morphism appearing in the inert-active factorization of α ◦ω, and

(3) (Segal condition for multimorphisms) for every active morphism ω : V0→ V1 in B and all pairs of
objects Xi ∈OBVi

, the commutative square

MapO(X0,X1) limα∈Bel
V1/

MapO(X0,ωα,!X1)

MapB(V0,V1) limα∈Bel
V1/

MapB(V0,ωα,!V1)

is cartesian.
We denote by Fbrs(B) ⊂ Catint−cocart

/B the full subcategory spanned by the fibrous B-patterns, where the latter
category has objects the functors to B possessing cocartesian lifts over inert morphisms and morphisms the
functors preserving such cocartesian lifts. ◁
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Remark 2.18. As noted in [BHS22, Rmk 4.1.8], in the presence of condition (3) above, condition (2) may
be weakened to assert that the functor OV0

→ limα∈Bel
V1/

Oωα,!V1
is a π0-surjection without changing the

resulting notion. To match [BHS22, Prop 4.1.6], we may even take the intermediate assumption that this
functor induces an equivalence on cores. ◁

Example 2.19. Fibrous F∗-patterns are equivalent to∞-operads (c.f. [HA]), and in Appendix A.1 we will extend
a proof due to [BHS22] (in the case T = OG) that fibrous FT ,∗-patterns are equivalent to the T -∞-operads of
[NS22]. ◁

A fibrous pattern π : O→B inherits a structure of an algebraic pattern whose inert morphisms consist
of π-cocartesian lifts of inert morphisms in B, whose active morphisms are arbitrary lifts of active morphisms
in B, and whose elementary objects are spanned by lifts of elementary objects. This is canonical:

Proposition 2.20 ([BHS22, Cor 4.1.7]). Fibrous patterns are closed under composition for the above pattern
structure, inducing an equivalence

Fbrs(O) ≃ Fbrs(B)/O.

Furthermore, the fully faithful functor U : Fbrs(B)→ AlgPatt/B is well behaved.

Proposition 2.21 ([BHS22, Cor 4.2.3]). The fully faithful functor U participates in an adjunction

Fbrs(B) AlgPatt/B

U

LFbrs

⊣

We construct many Segal morphisms in Appendix A.3. Many more are constructed in the following.

Proposition 2.22 ([BHS22, Obs 4.1.14]). Fibrous patterns are strong Segal morphisms.

2.1.2. The Segal envelope. In [BHS22, Lem 4.2.4] it was verified that a fibrous O-pattern is a cocartesian
fibration if and only if it’s the straightening of a Segal O-category under the condition of soundness; this
lifts the fact that an operad C⊗ is a symmetric monoidal ∞-category if and only if the corresponding functor
C⊗→ F∗ is a cocartesian fibration. We would like to describe adjunctions relating fibrous patterns to Segal
objects, but to do so, we need a few constructions.
Definition 2.23. Given O→B a map of algebraic patterns, the Segal envelope of O over B is the horizontal
composite

EnvBO Aract(B) B

O B

⌟

t

s

Where Aract(B) ⊂ Ar(B) = Fun(∆1,B) is the full subcategory spanned by active arrows and s, t are the source
and target functors. We denote the envelope of the terminal B-pattern as

AB := Aract(B)
t−→B. ◁

Let O be an algebraic pattern and ω : X→ Y an active map. Define the pullback square

Oel(ω) Ar(Oint
X/ )

Oel
Y / ×O

el
X/ Oint

X/ ×O
int
X/

⌟
(s,t)

(ω(−),id)

where ω(−) : Oel
Y / →Oint

X/ sends α : Y → E to the inert map ωa of the inert-active factorization of X
ω−→ Y

a−→ E.

Definition 2.24. O is sound if, for all ω : X→ Y active, the associated map Oel(ω)→Oel
X/ is initial. A sound

pattern O is soundly extendable if AO is a Segal O-∞-category. ◁

Soundness as a condition allows one to simplify Segal conditions, yielding functoriality results for the
categories of Segal objects and fibrous patterns; sound extendibility reduces many instances of relative Segal
objects in the sense [BHS22, Def 3.1.8] to a morphism with Segal domain by [BHS22, Obs 3.1.9]. To that end,
we prove the following in Proposition A.11, extending [BHS22, Lem 4.1.19].
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Proposition 2.25. Suppose f : P→O is a Segal morphism and either O is soundly extendable or f is strong
Segal. Then, the pullback functor f ∗ : Cat/P→ Cat/O preserves fibrous patterns; furthermore, the functor

f ∗ : Fbrs(O)→ Fbrs(P)

has a left adjoint given by LFbrsf!.

Example 2.26. We verify in Lemma A.7 that Span(FT ) is soundly extendable; hence Example 2.13 and Propo-
sition 2.25 together yield a functor

OpT → Span(FT );

we review a proof that this is an equivalence (originally due to [BHS22] when T = OG) in Corollary A.8. ◁

Given f : P→O a Segal morphism between algebraic patterns, we then define the composite functor

f ⊛ : Seg/AO

O

f ∗

−−→ Seg/f
∗AO

O

q∗

−−→ Seg
/AP

O

where q is the map fitting into the following diagram:

AP

f ∗AO AO

P O

Af

p
p

f

q

⌟

This participates in the following theorem, which was proved under a strong Segal assumption which is
rendered unnecessary by Proposition 2.25.

Theorem 2.27 ([BHS22, Prop 4.2.1, Prop 4.2.5, Thm 4.2.6, Rem 4.2.8]). Let O be a soundly extendable
pattern. Then, EnvO is the left adjoint in an adjoint pair

Fbrs(O) SegO(Cat)

EnvO

Un

⊣

By taking slice categories, this induces an adjunction

Fbrs(O) SegO(Cat)

Env
/AO
O

⊣

whose left adjoint is fully faithful. Furthermore, if f : O→ P is a Segal morphism between soundly extendable
patterns, the following diagram commutes:

SegO(Cat∞) Fbrs(O) SegO(Cat∞)/AO
Fbrs(O)

SegP(Cat∞) Fbrs(P) SegP(Cat∞)/AP
Fbrs(P)

f ∗ f ∗

Un

Un

Env
/AO
O

Env
/AP

P

f ⊛

Un

Un

f ∗

We will make frequent use of product patterns, so we observe their interaction with Segal envelopes.
Observation 2.28. If O,P are fibrous B-patterns, then their Segal envelopes satisfy

EnvB×B(O ×P) ≃ (O ×P)×B×B Aract(B×B)

≃ (O ×B Aract(B))× (P×B Aract(B))

≃ EnvB(O)×EnvB(P) ◁
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Observation 2.29. Suppose B, B′ are soundly extendable algebraic patterns. Unwinding definitions, the
projection p : B×B′→B is a flat inner fibration and a Segal morphism; in particular, this yields a functor

p∗ : Fbrs(B×B′) Cat/B×B′ Cat/B Fbrs(B)U p∗ CFbrs

which is right adjoint to p∗ : Fbrs(B)→ Fbrs(B×B′) by definition. ◁

2.2. T -operads and I-operads. We’re finally ready to specialize to equivariant operads.
Definition 2.30. The ∞-category of T -operads is

OpT := Fbrs(Span(FT )).

More generally, when I ⊂ FT is a weak indexing category, the ∞-category of I-operads is

OpI := Fbrs(SpanI (FT )). ◁

By Proposition 2.20, if O⊗ is an I-operad, then it has a natural pattern structure s.t. O⊗→ SpanI (FT )
is a morphism of patterns; the inert morphisms are cocartesian lifts of backwards maps, and the active maps
are arbitrary lifts of forwards maps.
Definition 2.31. The ∞-category of O-monoidal ∞-categories is

Cat⊗O,I B SegO⊗(Cat). ◁

When O⊗ ∈OpI is terminal, we write Cat⊗I := Cat⊗O,I ; Corollary A.6 yields an equivalence

Cat⊗I ≃ CMonI (Cat).

when I is clear from context, we will simply write Cat⊗O for Cat⊗O,I .

Definition 2.32. If O⊗,P⊗ are I-operads, then an O-algebra in P is a map of I-operads O⊗ → P⊗; the
∞-category of O-algebras in P is written

AlgO(P )B Funint−cocart
/ SpanI (FT )(O

⊗,P⊗). ◁

For us, the appropriate degree of generality for I will be that for which the pushforward functor
Op⊗I →Op⊗T is simply given by postcomposition along the canonical functor ιTI : SpanI (FT )→ Span(FT ); this
turns out to be a familiar setting (c.f. [NS22, Ex 2.4.7]).

Proposition 2.33. Let I ⊂ FT be a core-full, pullback-stable subcategory. Then, the functor

N ⊗I∞ B
(
SpanI (FT )

πI−−→ Span(FT )
)

is presents a T -operad if and only if I is a weak indexing category in the sense of Definition 1.42.10

We will delay the proof of this until Page 31. If O⊗ ≃N ⊗I∞ arises from Proposition 2.33, we say that O⊗
is a weak N∞ T -operad, and if I is an indexing category, then we say that N ⊗I∞ is an N∞-operad ; in either
case, we write

CAlgI (C)B AlgNI∞(C)

for the ∞-category of I-commutative algebras in C. This fits nicely into the theory of I-operads:

Corollary 2.34. There exists a canonical equivalence of categories OpI ≃OpT ,/N ⊗I∞ .

Proof. Unwinding definitions, this is Proposition 2.20 applied with OBN ⊗I∞. □

In forthcoming work [Ste24a], we will show that the morphism N ⊗I∞→ Comm⊗T is monic, so pushforward
OpI →OpT is fully faithful. Until then, we will largely consider OpI and OpT separately.

10 The conditions that I ⊂ FT is core-full and pullback-stable are necessary to define the ∞-category SpanI (FT ) in the first place;
this is the most general this result can reasonably be made to be.
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Example 2.35. The terminal T -operad is presented by Comm⊗T =
(
Span(FT )

id−−→ Span(FT )
)
, and hence it is a

weak N∞-operad; we write CAlgT (C)B CAlgFT (C), and call these T -commutative algebras. For any T -operad
O⊗, pullback along the unique map O⊗→ Comm⊗T determines a unique natural transformation

CAlgT (C)→ AlgO(C),

so we view T -commutative algebras as a universal T -equivariant algebraic structure. ◁

Fix I a weak indexing category. If C,D ∈ Cat⊗I are I-symmetric monoidal ∞-categories, we say that a
lax I-symmetric monoidal functor C⊗→D⊗ is a map of their underlying T -operads; this is an I-symmetric
monoidal functor if and only if it lands in Cat⊗I , i.e. if and only if it preserves cocartesian lifts for arbitrary
maps in SpanI (FT ).

2.2.1. The structure of T -operads. The Segal conditions for fibrous Span(FT )-patterns were characterized
in [BHS22] in the case T = OG; we generalize this to weak indexing systems over general atomic orbital
∞-categories in Lemma A.5, and summarize the results here.
Construction 2.36. Given πO : O⊗→ SpanI (FT ) an I-operad and S ∈ FT a finite T -set, we define

OS := π−1
O (S).

Then, inert cocartesian lifts endow on (OV )V ∈T the structure of a T -∞-category, formally given by the
pullback

U (O⊗) O⊗

T op Span(FT )

⌟

We call this the underlying T -∞-category of O⊗, and refer to it as O when this won’t cause confusion. ◁

Proposition 2.37. A functor π : O⊗→ SpanI (FT ) is an I-operad if and only if the following are satisfied:
(a) O⊗ has π-cocartesian lifts for backwards maps in SpanI (FT );
(b) (Segal condition for colors) for every S ∈ FT , cocartesian transport along the π-cocartesian lifts lying

over the inclusions (S←U =U |U ∈Orb(S)) together induce an equivalence

OS ≃
∏

U∈Orb(S)

OU ;

(c) (Segal condition for multimorphisms) for every map of orbits T → S in I and pair of objects
(C,D) ∈ OT × OU , postcomposition with the π-cocartesian lifts D→ DU lying over the inclusions
(S←U =U |U ∈Orb(S)) induces an equivalence

MapT→SO⊗ (C,D) ≃
∏

U∈Orb(S)

MapT←TU→UO⊗ (C,DU ).

where TU B T ×S U .
Furthermore, a cocartesian fibration π : O⊗ → SpanI (FT ) is an I-operad if and only if its unstraightening
SpanI (FT )→ Cat is an I-symmetric monoidal category.

Proof. Each of our conditions nearly matches with that of Definition 2.17, with the exception being that we
evaluate the limits on the sub-diagram Orb(S) ⊂ SpanI (FT )el

S/ ; we show in Lemma A.2 that this is an initial
subcategory, proving the proposition. □

Remark 2.38. Cocartesian lifts over backwards maps furnish an equivalence

MapT←TU→UO⊗ (C,DU ) ≃MapTU→UO⊗ (CTU ,DU ),

where CTU ∈ OTU is the TU -tuple of colors underlying C. Hence in the presence of Conditions (a) and (b),
Condition (c) may equivalently stipulate that the map

MapT→SO⊗ (C,D)→
∏

U∈Orb(S)

MapTU→UO⊗ (CTU ,DU )
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is an equivalence. We will generally prefer this version, as the data of a T -operad is most naturally viewed as
living over the active (i.e. forward) maps. ◁

Remark 2.39. Practicioners of [HA, Def 2.1.10] should note that, by Remark 2.18, we may weaken Condition (b)
to assert only that cocartesian transport induces a π0-surjection OS →

∏
U∈Orb(S)

OU ; with this modification,

Proposition 2.37 recovers Lurie’s definition of ∞-operads when T = ∗. ◁

We’re finally ready to prove Proposition 2.33

Proof of Proposition 2.33. Note that Conditions (IC-a) and (IC-c) of Definition 1.42 are true by assumption
(they were forced on us in order to make SpanI (FT ) definable). We verify the conditions of Proposition 2.37
for T -operads.

Note that SpanI (FT ) has unique lifts for backwards maps, so condition (a) follows always. Furthermore,
SpanI (FT ) always satisfies condition (b) by construction. Lastly, by unwiding definitions and noting that
there exists a map of spaces X→ Y ×∅ = ∅ if and only if X is empty, Observation 1.43 implies that (c) is
equivalent to Condition (IC-b). □

Using Proposition 2.37, we gain access to the structure spaces of T -operads.
Construction 2.40. Let O⊗ be a T -operad. When C,D ∈ O⊗ are objects, define

MulO(C,D) :=
∐

ψ:π(C)→π(D)
active

MapψπO (C,D).

In the case D ∈ O⊗V , S ∈ FV , and C ∈ O⊗
IndTV S

, we write

O(C;D)BMap
IndTV S→V
O (C;D).

Similarly, given S ∈ FV , we write

O(S) :=
∐

(C,D)∈O
IndTV S

×OV

O(C;D);

we refer to this is the space of S-ary operations in O. ◁

We use this to define a litany of useful full subcategories of OpT .
Definition 2.41. A T -operad O⊗ is:

• at most one-colored if OV ∈ {∅,∗} for all V ∈ T , i.e. O(∗V ) ∈ {∅,∗} for all V ∈ T ,
• at least one-colored if OV ,∅ for all V ∈ T , i.e. O(∗V ) ,∅ for all V ∈ T ,
• one-colored if O⊗ is at least one-colored and at-most one colored,
• almost essentially unital (or aE-unital) if O(∅V ) = ∗ whenever there exists some S , ∗V ∈ FV such

that O(S) ,∅.
• unital if O(∅V ) = ∗ for all V ∈ T m
• almost essentially reduced (or aE-reduced) if O⊗ is almost-E-unital and at-most one colored,
• reduced if O⊗ is unital and one-colored. ◁

We denote the associated full subcategories by

Opuni
T Op≥oc

T

Opred
T Opoc

T OpaEuni
T OpT

OpaE red
T Op≤oc

T

Warning 2.42. An almost essentially unital T -operad with at least one object need not be unital (and likewise
for reducedness); they satisfy the more general notion of almost unitality following [Ste24b], but we suppress
this notion for the time being. ◁
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Construction 2.43. Given O⊗ a one-colored T -operad, V ∈ T an orbit, and S ∈ FV a finite V -set, we write
OS ≃ {iS}. For any T ← IndTV S, we have an equivalence

O(S) ≃Map
T←IndTV S→V
πO (iS; iV )

due to the existence of cocartesian lifts for inert morphisms. Given a map U → V in T and a finite V -set
S ∈ FV , composition of the cospan IndTV S→ V ←U in Span(FT ) induces a restriction map

(6)

O(S) O(ResVU S)

Map
IndTV S→V
πO (iS; iV ) Map

IndTV S←IndTV S×VU→U
πO (iResVU S; iU )

≃

ResVU

≃
Furthermore, given a map of V -sets ϕT S : T → S, write TU ≃ TU ×S U → U for the pullback, and write
ϕT V : IndTV T → V for the structure map of T . Composition in O⊗ restricts to a map

(7)

O(S)×
∏

U∈Orb(S)

O(TU ) O(T )

MapϕSVO⊗ (iS; iV )×MapϕT SπO (iT , iS) MapϕT VO⊗ (iT ; iV )

γ

≃ ≃

Lastly, note that every V -equivariant automorphism of S yields an automorphism of IndTV S over V , which
are backwards maps by definition; cocartesian transport then yields an action

(8) ρS : AutV (S)×O(S) −→O(S).

We refer to ResVU as restriction, γ as the composition, and ρS as Σ-action. ◁

Example 2.44. Let I be a weak indexing category. Recall the example N ⊗I∞ = (SpanI (FT )→ Span(FT )) of
Proposition 2.33, and write

c(I)B {V ∈ T | V ∈ I}
as in [Ste24b]. Then, it follows by definition that UN ⊗I∞ ≃ ∗c(I); that is, NI∞ always has at most one color,
and it has one color if and only if I has one color in the sense of [Ste24b].

Moreover, we have

NI∞(S) ≃

∗ S ∈ FI,V ;
∅ S < FI,V .

Thus we see that N ⊗I∞ is almost essentially unital (hence almost essentially reduced) if and only if I is almost
essentially unital in the sense of [Ste24b]; likewise, N ⊗I∞ is unital (hence reduced) if and only if I is unital.
Unwinding definitions, each of the maps ResVU ,γ,ρS are canonical, as they have codomain either ∗ or ∅. ◁

Observation 2.45. The structures of Eqs. (6) to (8) are compatible in the following ways:
(1) The restriction maps are Borel equivariant, i.e. the following commutes:

{cocart lifts of AutV (S)} ×MapϕSVO⊗ (iS, iV ) MapϕSVO⊗ (iS, iV )

AutV (S)×O(S) O(S)

AutW (ResVW S)×O(ResVW S) O(ResVW S)

{
cocart lifts of AutW (ResVW S)

}
×MapϕSVO⊗ (iResVW S, iW ) MapϕSVO⊗ (iResVW S, iW )

◦

ResVW ResVW

ρ

ResVW ResVW
ρ

◦
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(2) The composition maps are Borel AutV (S)×
∏

U∈OrbS
AutU (TU )-equivariant in an analogous way.

(3) The identity map on ∗V yields an element 1V ∈ ∗V which is taken to 1V by ResVU .
(4) The map γ is unital, i.e. the following commutes.

MapϕSVO⊗ (iS, iV ) MapϕSVO⊗ (iS, iV )×Mapid
O⊗(iS, iS)

O(S) O(S)⊗
⊗

U∈Orb(S)
O(∗U )

O(∗V )⊗O(S) O(S)

Mapid
O⊗(iV , iV )×MapϕSVO⊗ (iS, iV ) MapϕSVO⊗ (iS, iV )

(id,{id})

({id},id) ◦

(id,({1U }))

({1V },id)
γ

γ

◦

(5) The map γ is compatible with restriction, i.e. given a composable pair of morphisms

IndTV S

IndTV T V ,

ϕSVϕT S

ϕT V

and W → V a map in T , the following diagram commutes.

MapϕSVO⊗ (iS, iV )×MapϕT SO⊗ (iT , iS) MapϕT VO⊗ (iT , iV )

O(S)×
∏

U∈Orb(S)
O(TU ) O(T )

O
(
ResVW S

)
×

∏
U ′∈Orb(ResVW S)

O(TU ′ ) O
(
ResVW T

)

Map
ResVW ϕSV
O⊗

(
iResVW S, iW

)
×Map

ResVW ϕT S
O⊗ (iResVW T , iResVW S) Map

ResVW ϕT V
O⊗ (iResVW T , iW )

◦

ResVW ResVW

γ

ResWV
ResWV

γ

◦

(6) The map γ is associative, i.e. given a collection of maps and composites

IndTVR IndTV T IndTV S V ,ϕRT

ϕRS

ϕRV

ϕT S

ϕT V

ϕSV



34 NATALIE STEWART

the following commutes:

MapϕSVO⊗ (iS, iV )×MapϕT SO⊗ (iT , iS)×MapϕRTO⊗ (iR, iT ) MapϕT VO⊗ (iT , iV )×MapϕRTO⊗ (iR, iT )

O(S)×
∏

U∈Orb(S)
O(TU )

× ∏
U∈Orb(S)

W∈Orb(TU )

O(RW ) O(T )×
∏

W∈Orb(T )
O(RW )

O(S)×
∏

U∈Orb(S)

O(TU )×
∏

W∈Orb(TU )
O(RW )

 O
(
T∐
W
RW

)

O(S)×
∏

U∈Orb(S)
O

(
TU∐
W
RW

)
O (R)

MapϕSVO⊗ (iS, iV )×MapϕRSO⊗ (iR, iS) MapϕRVO⊗ (iR, iV )

◦

◦ ◦

γ

γ

γ

γ

◦

Thus, passing to the homotopy category, the data of a T -operad supplies a discrete genuine T -operad in hoS
in the sense of Definition 2.79. ◁

Remark 2.46. The assumption that O⊗ has one color is not strictly necessary in Construction 2.43 and Obser-
vation 2.45; for instance, in general we may choose a V -color B, a S-color C = (CU ), and for every U ∈Orb(S)
a TU -color DU . Then, writing D for associated T -color associated with (DU ), composition in O⊗ yields an
analogous map

γ : O(C;B)×
∏

U∈Orb(S)

O(DU ;CU ) −→O(D;B),

which is associative in an analogous way to Observation 2.45. In particular, if O⊗ merely has at most one
color, then all statements in Construction 2.43 and Observation 2.45 apply whenever O⊗ has colors over the
appropriate orbits. We do not explore this further here, as it is not necessary for our present purposes. ◁

2.2.2. The T -∞-category of T -operads. Recall the map of algebraic patterns ϕ : TotFT ,∗ → Span(FT ) of
Eq. (5). In Proposition A.1 and Corollary A.8, we prove the following generalization of the contents of
[BHS22, §5.2], which identifies our T -operads with those of [NS22].

Proposition 2.47. Suppose T is an atomic orbital ∞-category. Then, pullback along ϕ : TotFT ,∗→ Span(FT )
implements equivalences of categories

CatT ≃ SegTotFT ,∗
(C) ;

OpT ≃ Fbrs
(
TotFT ,∗

)
,

and Fbrs
(
TotFT ,

)
is equivalent to the ∞-category of T -∞-categories of [NS22].

Remark 2.48. The functor TotFT ,∗→ Span(FT ) is natural in T ; in particular, applying this for T/V →T , we
acquire a commutative diagram

TotFV ,∗ Span(FV )

TotFT ,∗ Span(FT )

Functoriality of pullbacks witnesses the fact that ResTV : OpT → OpV is implemented by pullback along
TotFV ,∗→ TotFT ,∗. ◁
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By assumption, if O⊗ is a fibrous TotFT ,∗-pattern, it possesses cocartesian lifts over all morphisms in
the composite O⊗→ TotFT ,∗→T op. Thus, fibrous FT ,∗-patterns possess total T -∞-categories; we refer to
the associated functor as

TotT : OpT → CatT .

Definition 2.49. Let O⊗,P⊗ be T -operads, Then, the T -∞-category of O-algebras in P is the full subcategory

Alg
O

(P )B Funint−cocart
T ,/FT ,∗

(
TotT O⊗,TotT P⊗

)
⊂ FunT ,/FT ,∗

(
TotT O⊗,TotT P⊗

)
with V -values spanned by the V -functors ResTV TotT O⊗→ ResTV TotT P⊗ preserving cocartesian lifts over inert
arrows in FV ,∗. ◁

We lift OpT to a T -∞-category by the following.

Definition 2.50. We show in Proposition A.13 that Span
(
IndVU

)
: Span(FU )→ Span(FV ) is a Segal morphism

for all maps U → V in T . We refer to the resulting T -∞-category

Op
T

: T op
Span(F(−))
−−−−−−−−−→ AlgPattSE,Seg,op Fbrs−−−−→ Cat.

as the T -∞-category of T -operads, where AlgPattSE,Seg ⊂ AlgPattSeg is the full subcategory spanned by
soundly extendable patterns. ◁

Observation 2.51. The V -value of Op
T

is OpV B OpT/V ; the restriction functor ResVU : OpV → OpU is
implemented by the pullback

ResVU O
⊗ O⊗

Span(FU ) Span(FV ).

⌟

with bottom functor is Span(IndVU ). ◁

Observation 2.52. Via Proposition 2.47, we find that Γ T Alg
O

(P ) ≃ AlgO(P ). Furthermore, we find that

Alg
O

(P )V ≃ Funint−cocart
/ Span(FV )(ResTV O

⊗,ResTV P
⊗) ≃ AlgResTV O

(ResTV O)

with restriction functors induced by functoriality of ResVU . ◁

2.2.3. Envelopes. In [NS22], a left adjoint to the inclusion CMonT Cat→OpT was constructed, called the
T -symmetric monoidal envelope. This was greatly generalized by Theorem 2.27 in view of Propositions 2.37
and 2.47. For convenience, we spell this out here.

Corollary 2.53. If P⊗→O⊗ is a map of T -operads, then the following diagram consists of maps of T -operads

EnvOP⊗ Aract (O⊗) O⊗

P⊗ O⊗
s

⌟

t

and the top horizontal composition is an O-monoidal ∞-category. The corresponding functor

EnvO : OpT ,/O⊗ → Cat⊗O

is left adjoint to the inclusion of O-monoidal ∞-categories into T -operads over O⊗, and the induced functor

Env/AOO : OpT ,/O⊗ → Cat⊗O,/AO

is fully faithful, with image spanned by equifibrations in the sense of [BHS22, Thm C].

We will simply write EnvI (−)B EnvNI∞(−) and Env(−)B EnvCommT (−).
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Example 2.54. Let I be a weak indexing category. Then, unwinding definitions, we find that

EnvIN ⊗I∞ ≃ FI−⊔I ,

where FI ⊂ FT is the full T -subcategory defined in Section 1.2, i.e. it is the I-symmetric monoidal subcategory
generated by {∗V | V ∈ c(I)}. ◁

Remark 2.55. Suppose F≃T ⊂ I ⊂ FT is a core-preserving wide subcategory which is not a weak indexing
category. We’ve already seen in Proposition 2.33 that SpanI (FT )→ Span(FT ) is not a T -operad, so we can’t
specialize from T -operads to a theory of I-operads; in fact, Example 2.54 is a prominent example where
I-operads would act quite differently. Indeed, since I does not satisfy Condition (IC-b), FI ⊂ FT is not closed
under I-indexed coproducts, so FI can not even be endowed with a generalization of the above I-symmetric
monoidal structure. ◁

We record a convenient property of EnvI (−) here, which follows by unwinding definitions.

Lemma 2.56 ([HA, Rmk 2.4.4.3]). If O⊗ ∈OpI and ψ : T → S is a map of V -sets, then there is an equivalence

MorψEnvI (O)V→FI,V
(EnvI (O)V ) ≃

∐
(C,D)∈OT ×OS

MapψO⊗→Span(FT )(C,D)

≃
∐

(C,D)∈OT ×OS

∏
U∈Orb(S)

O(CU ;DU )

In particular, if O⊗ has one color, then

MapψEnvI (O)V→FI,V
(iT ; iS) ≃

∏
U∈Orb(S)

O(TU ).

2.3. The underlying T -symmetric sequence. Set the notation ΣT := F≃T ,∗, where the latter is the T -space
core of Example 1.35. We refer to this as the T -symmetric T -category, and we refer to FunT (ΣT ,C) as the
∞-category of T -symmetric sequences in C; in the case C = ST , we refer to FunT (ΣT ,ST ) ≃ Fun(TotΣT ,S)
simply as the ∞-category of T -symmetric sequences.
Observation 2.57. For any adequate triple (X ,Xb,Xf ), the inclusion

X ↪→ Spanb,f (X )

induces an equivalence on cores. In particular, choosing (FT ,F
s.i.
T ,FT ), we find that the inclusion (−)+ : FT →

FT ,∗ induces an equivalence
F≃T ≃ F≃T ,∗ ≃ ΣT .

In particular, unwinding definitions, we have the computation

ΣV B ΣT ,V ≃ F≃V ≃
∐
S∈FV

BAutV S

and that the restriction map ΣV → ΣW is induced by the forgetful maps BAutV S→ BAutW S. ◁

Observation 2.58. Under the equivalence OpT ≃ Fbrs(TotFT ,∗), by Proposition 3.16, triv⊗T is modeled by the
inclusion ΣT ↪→ FT ,∗. Every morphism in the associated factorization system on ΣT is equivalent to an inert
morphism; hence there exist equivalences

Catint−cocart
T ,/TotΣT

≃ Fun(TotΣT ,Cat) ≃ FunT (ΣT ,CatT ). ◁

Construction 2.59. Given O⊗ ∈Opred
T , there is a structure map

EnvOtrivT ≃ triv⊗T ×Comm⊗T
Aract,/el(O)→ triv⊗T

which is an inert-cocartesian fibration by pullback-stability of inert-cocartesian fibrations [BHS22, Obs 2.1.7].
The underlying T -symmetric sequence of O⊗ is

O⊗sseq := UntrivT EnvOtrivT ∈ Fun(TotΣT ,Cat).
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Unwinding definitions, we find that there exists a cartesian square

O(S) EnvOtriv TotΣT ×FT Aract,/el(O)

∗ triv⊗ TotΣT

⌟

S

so that O⊗sseq is indeed a T -symmetric sequence. The associated functor is denoted

sseq : OpT → Fun(TotΣT ,S). ◁

We will often use the following to reduce questions about T -operads to T -symmetric sequences.

Proposition 2.60. Suppose a functor of T -operads ϕ : O⊗→P⊗ satisfies the following conditions:
(a) ϕ induces surjective maps π0OV → π0PV for all V ∈ T , and
(b) for all V ∈ T , all S ∈ FV , all C ∈ OS , and all D ∈ OV , the map ϕ induces equivalences ϕ : O(C;D)

∼−→
P (ϕC;ϕD).

Then ϕ is an equivalence of T -operads; in particular, the restricted functor

sseq : Opoc
T → Fun(TotΣT ,S)

is conservative.

To prove this, we proceed by reduction to the following observation.
Observation 2.61. If C →D is an equivalence of categories over E, then it preserves and reflects cocartesian
lifts of arrows in E; in particular, if ϕ : O⊗→P⊗ is a morphism of T -operads who induces an equivalence
Totϕ : O⊗→P⊗ between the total ∞-categories of the associated functors to Span(FT ), then its inverse is
also a morphism of T -operads. Said another way, we’ve observed that the functor U : OpT → Cat/ Span(FT ) is
an isofibration, so Tot : OpT → Cat is conservative.

Similar arguments show that U : OpT → CatT ,/FT ,∗ → Cat/TotFT ,∗ is an isofibration. ◁

Proof of Proposition 2.60. In view of Construction 2.59, the second statement follows immediately from the
first, since morphisms of reduced T -operads are automatically π0-isomorphisms by two-out-of-three. Fixing
ϕ satisfying (a) and (b), we will prove that ϕ is an equivalence of T -operads. Using Observation 2.61, it
suffices to prove that Totϕ is an equivalence of ∞-categories.

By the Segal condition for colors, we have an equivalence of arrows

π0OS
∏
V ∈Orb(S)π0OV

π0PS
∏
V ∈Orb(S)π0PV

ϕS

≃ ∏
ϕV

≃

Since π0O ≃
∐
S π0OS , (a) implies that ϕ is essentially surjective. Furthermore, the Segal condition for

multimorphisms yields isomorphisms of arrows

MapO⊗(C,D)
∐

f :πC→πD
MapfO(C;D)

∐
f

∏
V ∈Orb(π(D))

MapfVO (Cf −1
V

;DV )
∐
f

∏
V
O(Cf −1V ;DV )

MapP⊗(ϕC,ϕD)
∐

f :πC→πD
MapfP (ϕC;ϕD)

∐
f

∏
V ∈Orb(S)

Mapf
′

P (ϕCf −1V ,ϕDV )
∐
f

∏
V
P (ϕCf −1V ;ϕDV ).

ϕ

≃

∐
ϕ

≃

∐∏
ϕ

≃

∐∏
ϕ(TV )

≃ ≃ ≃

the right arrow is an equivalence by (b), so the leftmost arrow is an equivalence, hence ϕ is fully faithful. □

The author learned the U◦ portion of the following argument from Thomas Blom.

Corollary 2.62. The functor sseqT : OpocT → Fun(TotΣT ,S) is monadic and preserves sifted colimits.
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Proof. By [BHS22, Cor 4.2.2], Opred
T and Fun(TotΣT ,S) are presentable, so by Barr-Beck [HA, Thm 4.7.3.5]

and the adjoint functor theorem [HTT, Cor 5.5.2.9], it suffices to prove that sseq is conservative and preesrves
limits and sifted colimits. Conservativity is Proposition 2.60, and (co)limits in functor categories are computed
pointwise by [HTT, Prop 5.1.2.2], so it suffices to prove that O 7→ O(S) preseres limits and sifted colimits.
We separate this into manageable chunks via the following diagram:

Opoc
T S Sπ0 Map(IndTV S,V )

CatInt−cocart,core−iso
/ Span(FT ) Catcore−iso

/ Span(FT ) Fun
(
(Span(FT )≃)×2 ,S

)
O7→O(S)

USeg

π

Ucocart U◦

ev
IndTV S,V

π and evIndT S,VV
preserve (co)limits since they are evaluation of functor categories [HTT, Prop 5.1.2.2]. UCocart

preserves limits and sifted colimits by [BHS22, Cor 2.1.5]. USeg preserves limits and sifted colimits, as each
commute with finite products.

By [Hau20, Prop 3.12], U◦ is equivalent to the forgetful functor

Alg(S/ Span(FT )≃,Span(FT )≃ )→S/ Span(FT ),Span(FT ),

where S⊗/Y ,Y is a symmetric monoidal structure on S/Y ,Y ≃ SY×Y ≃ Fun(Y ×Y ,S). This functor preserves limits
and sifted colimits by [HA, Prop 3.2.3.1], completing the argument. □

In particular, this constructs a left adjoint

Fr : FunT (ΣT ,ST ) = Fun(TotΣT ,S)→Opoc
T

to sseq. We lift this to a T -adjunction in the following construction.
Construction 2.63. The functor sseq is associated with a T -functor sseq as in the following diagram

Aract,/el(O⊗)

O⊗ triv⊗T O⊗ triv⊗T O⊗

Opoc
T

Op
T ,triv⊗T /

FunT
(
InflTe Λ

2
2,OpT

)
×Op

T

{
triv⊗T

}

FunT
(
ΣT ,ST

)
OpT ,/triv⊗T

FunT
(
InflTe ∆

2
1,Op

T

)
×Op

T

{
triv⊗T

}

sseqO⊗ EnvOtriv EnvOtriv Aract,/el(O⊗)

triv⊗T triv⊗T O⊗

s

∈ ∈ ∈

sseq

U

∈ ∈ ∈

⌟
s

By [HA, Prop 7.3.2.1], the pointwise left adjoints Fr lifts to a T -adjunction

sseq : Opred
T
⇆ FunT (ΣT ,ST ) : Fr,

i.e. Fr is compatible with restriction. ◁

2.4. The monad for O-algebras. Fix O⊗ a one-object T -operad, fix C⊗ a distributive O-monoidal category in
the sense of [NS22] (e.g. it may be presentably O-monoidal) and let triv⊗T →C

⊗ be the functor of operads
associated with a T -object X ∈ Γ C. Denote by X⊗ : EnvOtriv⊗T →C

⊗ the associated O-symmetric monoidal
functor, and denote by

Osseq(X) : EnvOtrivT →C
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the underlying T -functor. Recall that

X⊗S ≃
⊗

V ∈Orb(S)

N TV XV ∈ Γ C.

Proposition 2.64 (“Equivariant [SY19, Lem 2.4.2]”). The forgetful T -functor U : Alg
O

(C)→ C is monadic,
and the associated monad TO acts on X ∈ C by the indexed colimit

TOX := colimOsseq(X).

In particular, we have

(9) (TOX)V ≃
∐
S∈FV

(
O(S) ·X⊗S

)
hAutV S

.

Proof. Monadicity is precisely [NS22, Cor 5.1.5], so it suffices to compute the associated monad.
By [NS22, Rem 4.3.6], the left adjoint Fr : C → AlgO(C) is computed on X by T -operadic left Kan

extension of the corresponding map triv⊗
X−→ C⊗ along the canonical inclusion triv⊗→O⊗, and the underlying

T -functor of this is computed by the T -left Kan extension

EnvOtriv ΣT ×FT Aract,/el(O) C

ΣT

O ∗T
TOX

X

T̃OX

T -left Kan extension diagrams to ∗T are T -colimit diagrams by definition (see [Sha23, Def 10.1] when D = ∗T ),
so the underlying T -object is

TOX ≃ colimOsseq(X).

More generally, the T -left Kan extension T̃OX has values

T̃OX(S) ≃ colim
{S}×FT Aract,/el(O)

X⊗

≃ colim
π−1
O (S)

X⊗S

≃ O(S) ·X⊗S .

By composition of left Kan extensions and [Sha23, Prop 5.5], we then have

(TOX)V ≃ colim
S∈F≃V

T̃OX
⊗S

≃ colim
S∈F≃V

O(S) ·X⊗S

≃
∐
S∈FV

(
O(S) ·X⊗S

)
hAutV S

. □

Remark 2.65. Let OG×Σn,Γn ⊂ OG×Σn be the full subcategory spanned by G ×Σn/ΓS for φS : H → Σn with
associated graph subgroup ΓS = {(h,φS (h)) | h ∈H} ⊂H ×Σ|S |. Then, a G-equivalence∐

n∈N
OG×Σn,Γn ≃ ΣG

was constructed in [NS22, Ex 4.3.7], and in particular, this provides a formula akin to Eq. (9) in the language
of graph families. ◁

By [NS22, Prop 3.2.5] (noting that all colimits involved are finite), the Cartesian T -symmetric monoidal
structure on CoeffT (C) is distributive whenever C is a cocomplete Cartesian closed category. We apply this
to ST B CoeffT S .
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Example 2.66. Fix CB CoeffT (S) with the Cartesian structure, and recall that C is distributive. The monad
formula of Proposition 2.64 says that the free O-algebra on a T -space XT has restriction

ResTV TOXT ≃
∐
S∈FV

(
O(S) ·

(
ResTV XT

)⊗S)
hAutV S

.

In particular, its genuine V -fixed points is the space

(TOXT )V ≃
∐
S∈FV

(
O(S) ·

(
XVT

)⊗S)
hAutV S

. ◁

Corollary 2.67. The functor Alg(−)(ST ) : Opoc
T → Cat is conservative.

Proof. Suppose ϕ : O → P induces an equivalence AlgP (ST )
∼−→ AlgO(ST ). Then ϕ induces a natural

equivalence TO =⇒ TP respecting the summand decomposition in Proposition 2.64. Choosing X = S ∈ FV ,
there is a natural coproduct decomposition(

O(S)× S×S
)
hAutV S

≃ (O(S)×AutV S)hAugV S
⊔ JO,S

≃ O(S)⊔ JO,S ,

for some JO,S ; hence the summand-preserving equivalence Tϕ : TOS =⇒ TPS implies that ϕ(S) : O(S)→P (S)
is an equivalence for all S, i.e. sseqϕ : sseqO → sseqP is an equivalence of T -symmetric sequences. Thus
Proposition 2.60 implies that ϕ is an equivalence. □

We also point out a straightforward consequence of the fact that the forgetful functor is a right T -adjoint.

Corollary 2.68. The I-indexed tensor products in Alg⊗
O

(
CI−×

)
are products.

Proof. The forgetful functor U : Alg⊗
O

(
CI−×

)
→ C is conservative, preserves T -limits, and preserves tensor

products; for all (XW ) ∈ Alg⊗
O

(
CI−×

)
S
, the canonical map

U

 S⊗
W

XW

 ≃ S⊗
W

U (XW )→
S∏
W

U (XW ) ≃U

 S∏
W

XW


is an equivalence, so

S⊗
W
XW →

S∏
W
XW . □

To finish the section, we repeat the above work without the one-color assumption.,
Observation 2.69. By either [NS22, Lem 2.4.4] or [CH21, Lem 2.9], we find that ΣT -fibrous patterns are right
Kan extended from their underlying T op-fibrous patterns. Unwinding definitions, this expresses

π0triv(O)V ≃ {(C,D) ∈ OS ×OV | S ∈ FV }
◁

Observation 2.70. Analogously to the above, for O⊗ an arbitrary T -operad, the operadic left kan extension
formula of [NS22, Rmk 4.3.6] expresses the values of the associated monad as the left Kan extension

EnvOtriv(O) Tottriv(O)⊗ ×O⊗ Aract,/el(O) C

Tottriv⊗( O)⊗

O O
TOX

X

T̃OX

The T -functor T̃O(X) sends

◁(10) (C,D) 7→

O (C;D)⊗
S⊗
U

XU


hAutV S
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Corollary 2.71 (“Equivariant [HM23, Thm 4.1.1]”). A map of T -operads ϕ : O⊗→P⊗ is an equivalence if
and only if it satisfies the following conditions:

(a) U (ϕ) : O→ P is T -essentially surjective, and
(b) the pullback functor ϕ∗ : AlgP (ST )→ AlgO(ST ) is an equivalence of ∞-categories.

Proof. The fact that ϕ being an equivalence implies the above conditions is obvious, so assume the above
conditions. The result follows by using an identical argument to Corollary 2.67, using Eq. (10) instead of
Eq. (9) to show that ϕ : O(C;D)→P (ϕC;ϕD) is an equivalence for all C, concluding the equivalence from
Proposition 2.60. □

2.5. O-algebras in I-symmetric monoidal d-categories. Recall that a space X is said to be d-truncated if
it is empty or πn(X,x) = ∗ for all x ∈ X and n > 0; in particular, X is (−1)-truncated precisely if it is either
empty or contractible. In Section 1.4, we applied this to mapping spaces to define T -symmetric monoidal
d-categories. In this section, we define a compatible notion of T -d-operads, centered on the following result.

Proposition 2.72. Let O⊗ be a T -operad and let d ≥ −1. Then, the following conditions are equivalent:
(a) O(S) is d-truncated for all S ∈ FV .
(b) The T -functor EnvO→ FT has d-truncated mapping fibers.

Proof. Let ψ : T → S be a map of T -sets over V . Then, by Lemma 2.56, we have an equivalence

MorψEnvO→FT
(EnvO) ≃

∐
C∈OT ,D∈OS

MapψEnvO→FT
(C,D)

≃
∐

C∈OT ,D∈OS

∏
U∈Orb(S)

MapψEnvO→FT
(CU ,DU )

≃
∐

C∈OT ,D∈OS

∏
U∈Orb(S)

O(CU ;DU )

(11)

First, in the case d = −1, note that conditions (a) and (b) both imply that O has at most one color, so
Eq. (11) specializes to

MorψEnvO→FT
(EnvO) ≃

∏
U∈Orb(S)

O(S).

Thus it suffices to note that a product is −1-truncated if and only if its factors are.
Next, in the case d ≥ 0, note that a coproduct of spaces is d-truncated if and only if its factors are;

hence Eq. (11) shows that (b) is equivalent to the condition that
∏
U∈Orb(S)O(CU ;DU ) is d-truncated for all

S,C,D. In fact, the equation
O(S) ≃

∐
(C,D)∈OS×OV

O(C;D)

shows that this (b) equivalent to the condition that O(S) is d-truncated for all S ∈ FV , as desired. □

We define the full subcategory of d-operads

ιd : OpT ,d ↪→OpT

to be spanned by T -operads satisfying the condition that O(S) is (d − 1)-truncated for all S ∈ FV as in
Proposition 2.72.

The following corollary immediately follows from Proposition 2.72 and the mapping fiber truncation
characterizations of Corollary 1.87.

Corollary 2.73. Let O⊗ be a T -operad and let d ≥ 1. The following conditions are equivalent:
(a) O is a d-operad, and
(b) EnvO⊗ is a T -symmetric monoidal d-category.

Furthermore, the following conditions are equivalent:
(a’) O is a 0-operad, and
(b’) the T -symmetric monoidal functor EnvO⊗→ FT −⊔T is a T -symmetric monoidal subcategory inclusion.
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Corollary 2.74. The inclusion OpT ,d ↪→OpT has a left adjoint hT ,d satisfying(
hT ,dO

)
(S) ≃ τ≤dO(S).

Furthermore, when d ≥ 1, this fits into the following diagram

OpT OpT ,d

Cat⊗T Cat⊗T ,d

hT ,d

hT ,d

In particular, when C⊗ is a T -symmetric monoidal d-category, the canonical map O⊗→ hT ,dO⊗ induces an
equivalence

AlgO(C) ≃ AlghT ,dO(C).

Proof. By [BHS22, Prop 4.2.1], the image of the fully faithful functor OpT ↪→ Cat⊗
T ,/FT −⊔T

is spanned by the

equifibered T -symmetric monoidal ∞-categories, i.e. C⊗ such that, given T → S a map of finite T -sets, the
associated diagram

CT CS

FT FS
is cartesian. We separately argue in the case d ≥ 1 and d = 0 that the image of this is closed under hT ,d ; this
will imply that hT ,dEnv/FT O⊗ corresponds with a T -d-operad hT ,dO⊗, which computes the left adjoint to
the inclusios OpT ,d ⊂OpT by fully faithfulness of Env/FT O⊗.

We first consider the case d ≥ 1. In this case, since hT ,d : Cat⊗T → Cat⊗T ,d is applied pointwise, it preserves
equifibrations, so hT ,dEnv/FT O⊗ corresponds with a d-operad hT ,dO⊗.

The case d = 0 is similar, except that we are tasked with replacing equifibered T -symmetric monoidal
functors with an equifibered subcategory. In fact, subcategories are precisely (−1)-truncated maps in Cat, so
we may do this by taking the pointwise (−1)-truncation functor and applying [HTT, Prop 5.5.6.5] to see that
the result is equifibered. □

Corollary 2.75. Let O⊗ be a T -d-operad.
(1) if d ≥ 1, then AlgO(P ) is a d-category; hence OpT ,d is a (d + 1)-category.
(2) if d = 0, then AlgO(P ) is either empty or contractible; hence OpT ,0 is a poset.

Proof. In each case, the second statement follows from the first by noting that the mapping spaces in OpT
are AlgO(P )≃. For the first statements, note that

AlgO(P ) ≃ AlghdO(P ) ≃ Fun⊗
T ,/FT −⊔T

(EnvhdO⊗,EnvP⊗);

if d ≥ 1, then this is a subcategory of a d-category, so it’s a d-category. If d = 0, then this category is either
empty or contractible since we verified that the map EnvO⊗→ FT −⊔T is monic. □

Corollary 2.76. If P⊗ is a T -0-operad, then it is a sub-terminal object of OpT .

Proof. The mapping space criterion of monomorphisms shows that this is equivalent to the condition that

Algh0O(P )≃ ≃ AlgO(P )≃→ AlgO(Comm⊗T )≃ ≃ ∗

is a monomorphism, i.e. Algh0O(P )≃ ∈ {∅,∗}; this follows from Corollary 2.75. □

Corollary 2.77. Let I ≤ J be related weak indexing categories. Then, the unslicing functor

OpI ≃OpJ,/N ⊗I∞ →OpJ

is fully faithful.
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Proof. Fully faithful functors satisfy two-out-of-three, so we may replace OpI → OpJ with the composite
unslicing functor OpI →OpJ →OpT , and assume I = FT . The corollary is then equivalent to the statement
that N ⊗I∞→ Comm⊗T is a monomorphism [HTT, § 5.5.6]. In fact, by Example 2.44, N ⊗I∞ is a T -0-operad, so
this follows from Corollary 2.76. □

We finish the subsection with a recognition result highly connected maps; we say that a map ϕ : O⊗→P⊗
is n-connected if any of the following equivalent conditions hold.

Proposition 2.78. Let ϕ : O⊗→P⊗ be a morphism of T -operads. Then, the following are equivalent:

(a) The underlying T -functor Uϕ : O→ P is fiberwise-essentially surjective and for all V ∈ T and S ∈ FT ,
the induced map O(S)→P (S) is n-connected.

(b) ϕ is an hT ,n+1-equivalence.
(c) For all T -symmetric monoidal (n+ 1)-categories C, the pullback T -symmetric monoidal functor

Alg⊗
P

(C)→ Alg⊗
O

(C)

is an equivalence.
(d) The pullback functor

AlgP (S≤n+1)→ AlgO(S≤n+1)

is an equivalence.

Proof. Suppose (a); in view of Proposition 2.60, to prove (b), we’re tasked with proving that the maps
hT ,n+1O(C;D)→ hT ,n+1P (C;D) are equivalences. But by the natural equivalence

O(S) ≃
∐

(C,D)∈OS×OV

O(C;D),

it suffices to verify that hT ,n+1O(S)→ hT ,n+1P (S) is an equivalence for each S. This follows from (a) by
Corollary 2.74.

Suppose (b); by the factorization

Cat⊗T ,n+1 ↪→OpT ,n+1 ↪→OpT

of Corollary 2.74, given C ∈ Cat⊗T ,n+1, the top map in the following is an equivalence

AlghT ,n+1P (C) AlghT ,n+1O(C)

AlgP (C) AlgO(C)

∼

≃ ≃

the bottom arrow is an equivalence from two-out-of-three, and (c) follows from Corollary 2.9. Furthermore,
(c) implies (d) by setting C⊗ B ST −×T ,≥n+1.

Finally, suppose (d). Note that O(S) · 1 ≃ τ≤n+1O(S), so using the same argument as Proposition 2.64,
we naturally split off the map

τ≤n+1ϕ(S) : τ≤n+1O(S)→ τ≤n+1P (S)

from the map TϕS between monads over ST ,≤n+1. By assumption, TϕS is an equivalence so τ≤n+1ϕ(S) is an
equivalence, implying (a). □

This suggests a notion of n-connected T -operads, who satisfy the property that the truncation unit O⊗→
hT ,0O⊗ is n-connected. In forthcoming work [Ste24a], we will classify T -0-operads, and gain characterization
of n-connected T -operads as a corollary.

2.6. The genuine operadic nerve.
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2.6.1. The 1-categorical nerve. [BP21] introduced a variant of the following.
Definition 2.79. A one-color genuine T -operad in a symmetric monoidal 1-category V the data of:

(1) a T -symmetric sequence O(−) : TotΣT →V ,
(2) for all V ∈ T , a distinguished “identity” element 1V ∈ O(∗V ), and
(3) for all S ∈ FV and U ∈ FS , a Borel ΣS ×

∏
U∈Orb(S)ΣTU -equivariant “composition” map

γ : O(S)⊗
⊗

U∈Orb(S)

(TU )→O

 S∐
U

TU


subject to the following compatibilities for all :

(a) (restriction-stability of the identity) for all U → V , the map ResVU : O(∗V )→O(∗U ) sends 1V to 1U ;
(b) (restriction-stability of composition) for all U → V , the following commutes

O(S)×
∏

U∈Orb(s)
O(TU ) O(T )

O
(
ResVW S

)
×

∏
U ′∈Orb(S)

O(TU ′ ) O
(
ResVW S

)
γ

ResWV
ResWV

γ

(c) (unitality) for all S ∈ FV , the following diagram commutes

O(S) O(S)⊗
⊗

U∈Orb(S)
O(∗U )

O(∗V )⊗O(S) O(S)

(id,({1U }))

(1V ,id)
γ

γ

(d) (associativity) For all S ∈ FV , (TU ) ∈ FS writing T B
S∐
U
TU , and (RW ) ∈ FT writing RB

T∐
W
RW , the

following diagram commutesO(S)⊗
⊗

U∈Orb(SU )
O(TU )

⊗ ⊗
U∈Orb(S)

W∈Orb(TU )

O(TU ) O(T )⊗
⊗

W∈Orb(T )
O(RW )

O(S)⊗
⊗

U∈Orb(S)

O(TU )⊗
⊗

W∈Orb(TU )
O(RU )

 O
(
T∐
W
RW

)

O(S)⊗
⊗

U∈Orb(S)
O

(
TU∐
W
RW

)
O (R)

γ

γ

γ

γ

A morphism of one-color discrete T -operads in V is a map of T -symmetric sequences in V preserving 1V and
intertwining γ; we refer to the resulting 1-category as gOpoc

T (V ). ◁

We write sOpoc
T B gOpoc

T (sSet). In [BP21], a many-colors variant gOpT (V ) was introduced, and a model
structure was given to sOpG B gOpT (sSet); this was later shown to be Quillen equivalent to several other
model categorical variations on G-operads (e.g. [BP20, Tab 1]). This was used in [Bon19] to construct a
genuine operadic nerve functor of 1-categories

N⊗ : gOpG(sSet)→ sSet+
/(TotFG,∗,Ne)

whose restriction gOpG(Kan) lands in fibrant objects in Nardin-Shah’s model structure [NS22, § 2.6], and
hence presents G-operads.
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Moreover, gOpoc
T (Kan) agrees with the fibrant simplicial colored T -operads of [NS22, Def 2.5.4] subject

to the condition that the underlying T -set of colors is contractible; thus Nardin-Shah construct an analogous
nerve functor

N⊗ : gOpT (Kan)→ sSet+
/(TotFT ,∗),NE

whose specialization to T = OG agrees with the one-color version of Bonventre’s nerve.
These nerves can be understood as taking O ∈ gOpT (Kan) with underlying T -coefficient system C to

the Kan-enriched category over TotFT ,∗ with ObOS = CS and with mapping space

MapO⊗(C,D) ≃
∐

πOC→πOD

∏
U∈Orb(πO(D))

O(CU ;DU )

mapping down to MapFT ,∗(πOC,πOD) via the evident forgetful map.

2.6.2. Restriction and the nerve. N⊗ interacts with restrictions.
Construction 2.80. Let W ∈ T be a distinguished object. Then, the restriciton functor

ResTW : gOpT (V )→ gOpW (V )B gOpT/W (V )

acts on underlying T -symmetric sequences via pullback along the map TotΣW → TotΣT , with the data 1V
and γ defined in ResTW O

⊗ by restriction from O⊗. ◁

We define restriction ResTW : CatsSet,/TotFT ,∗ → CatsSet,/TotFW,∗
by pullback along TotFW,∗→ TotFT ,∗.

Proposition 2.81. There is a natural isomorphism of simplicial categories N⊗ResTW ≃ ResTW N
⊗ over TotFT ,∗.

Proof. Let O⊗ be a one-color simplicial genuine T -operad. We may construct a functor N⊗ResTW O
⊗→N⊗O⊗

sending the object over a (V →W )-set SV→W to it underlying V -set S and acting on mapping spaces by
taking coproducts of the equivalence ResTW O(SV→W ) ≃ O(SV ). This constructs a natural diagram

TotT N⊗ResTW O
⊗

TotT ResTW N
⊗O⊗ TotT N⊗O⊗

TotFW,∗ TotFT ,∗

F

since πN⊗ResTW O⊗
and πResTW N⊗O⊗ are both π0-isomorphisms, F is as well; hence F is essentially surjective. It

follows by unwinding definitions that F is fully faithful, and hence an equivalence of simplicial categories over
TotFT ,∗, as desired. □

Pullback along TotFW,∗ ⊂ TotFT ,∗ implements restriction of T -operads Remark 2.48, yielding the
following.

Corollary 2.82. There is a natural equivalence of W -operads ResTW N
⊗O⊗ ≃N⊗ResTW O

⊗.

The main reason we went to this trouble is for the following example.
Example 2.83. Let G be a finite group and V be a real orthogonal G-representation. Let DV be a genuine
G-operad which is equivalent to the little V -disks operad (see [Hor19, § 3.9]). Then, given K ⊂H ⊂ G, and
S ∈ FK , we have a tautological equivalence

ResGH DV (S) ≃ ConfKS (ResGK V ) ≃ ConfKS (ResHK ResGH V ) ≃DResGH V
(S)

which intertwines with the composition rule in DV ; writing E⊗V BN⊗DV , we acquire an equivalence

ResGH E⊗V ≃ E⊗
ResGH V

◁.
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2.6.3. The conservative ∞-categorical lift. N⊗ has homotopical structure.

Proposition 2.84. N⊗ preserves and reflects weak equivalences between one-color locally fibrant genuine
equivariant G-operads.

Proof. By [BP21, Thm II, Prop 4.31], the functor U : sOpoc
G → Fun(ΣG,sSet) is monadic and sOpoc

G possesses
the (right-)transferred model structure from the projective model structure on Fun

(
ΣG,sSetQuillen

)
; in

particular, U preserves and reflects weak equivalences.
It is not hard to see that sseq may be presented as total right-derived from a functor

ssseq : sSet+,oc
/(FT ,Ne)

→ Fun
(
TotΣG,sSetQuillen

)
Proj

setting Osseq(S) := π−1
O (IndGHS → G/H); by Proposition 2.60 sseq is conservative, so ssseq preserves and

reflects weak equivalences between fibrant objects. Hence it suffices unwind definitions and note that the
following diagram commutes

sOpoc
G sSet+,oc

/(FG ,Ne)

Fun(TotΣG,sSet)

N⊗

U
ssseq

□

In fact, the one-color assumption was not necessary.

Proposition 2.85. N⊗ preserves and reflects weak equivalences between arbitrary locally fibrant genuine
equivariant G-operads.

Proof. It is not too hard to see that N⊗ preserves and reflects the property of inducing bijections on
sets of colors, so we may fix a coefficient system of sets of colors C. Then, we are tasked with prov-
ing that N⊗

C
: sOpG,C → OpG,C B (π0U )−1 (C) preserves and reflects weak equivalences between fibrant

objects. Thankfully, we have the same tools as in the one-color case; writing TotΣC for the 1-category
of [BP22, Def 3.1], sOpG,C possesses the right-transferred model structure from along a monadic functor
U : sOpG,C→ Fun

(
TotΣC, sSetQuillen

)
by [BP22, § 5.2]. Furthermore, Proposition 2.60 constructs a functor

s sseq : sSet+,C
/(FT ,Ne)

→ Fun
(
TotΣC,sSetQuillen

)
which preserves and reflects weak equivalences between fibrant

objects, and such that N⊗ is a functor over Fun
(
TotΣC,sSetQuillen

)
; by two-out-of-three for weak equivalences,

N⊗ preserves and reflects weak equivalences between fibrant objects. □

The theory of total right derived functors (e.g. [Rie14, § 2]) then immediately yields Corollary B.

2.6.4. The discrete genuine nerve is an equivalence. Recall that whenever O⊗ is a T -operad and C⊗ is a
T -1-category, there is an equivalence of T -1-categories

AlgO(C) ≃ Algh1O(C);

because of this, for the rest of this subsection, we assume all T -operads are T -1-operads.
Note that the (fully faithful) inclusion of discrete simplicial sets Set ↪→ sSet is product-preserving, so it

induces a fully faithful functor gOpT (Set) ↪→ gOpT (sSet). We refer to these as discrete genuine T -operads.
We’re concerned with relating this to T -1-categories, beginning with the following.
Observation 2.86. For all O ∈ gOpT (Set), N⊗O is a T -1-operad. ◁

Conversely, from the data of a T -1-operad O, the data of a discrete genuine T -operad O(−) is supplied
by Observation 2.45.

Proposition 2.87. N⊗ descends to a functor gOpT (Set)→Opoc
T ,1 with quasi-inverse O(−).

Proof. By Observation 2.86, N⊗ restricts as above. Thus it suffices to prove that the compositions
gOpT (Set)→ gOpT (Set) and Opoc

T ,1→Opoc
T ,1 are homotopic to the identity; this follows immediately after

unwinding definitions. □
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Now having an explicit combinatorial model for T -1-operads, we focus on algebras. We need the
following.
Construction 2.88. Let O⊗ be a T -operad and P ⊂ O a full T -subcategory. Then, we define the full subcategory
P⊗ ⊂ O⊗ to be spanned by the tuples C ∈ OS such that, for each U ∈Orb(S), CU ∈ P . P⊗ is a T -operad and
P⊗→O⊗ a map of T -operads [NS22, § 2.9].

In particular, if X ∈ Γ T O is a T -object in O, we define the endomorphism T -operad End⊗X ⊂ C
⊗ of X to

be the full T -operad of O⊗ spanned by {X}. ◁

Observation 2.89. Suppose C⊗ is an I-symmetric monoidal ∞-category and X ∈ Γ T C. Then, EndX has
underlying T -symmetric sequence EndX(S) ≃ Map(X⊗SV ,XV ) for S ∈ FI , identity element 1V = idXV , and
composition map given by composition of maps

γ(µS ; (µTU )) : X⊗TV ≃
S⊗
U

X⊗TUU

⊗S
U µTU−−−−−−−−→ X⊗SV

µS−−→ XV . ◁

In general, an O-algebra in C⊗ may be viewed as the information of its underlying object X together
with the factored map O⊗→ End⊗X ↪→C

⊗. The following proposition follows by unwinding definitions.

Proposition 2.90. If C⊗ is a T -1-category and X,Y are O-algebras in C⊗, then the hom set HomAlgO(C)(X,Y ) ⊂
HomC(X,Y ) consists of those maps such that the following diagram of operads commutes:

End⊗X

O⊗

End⊗Y

For the sake of comparison, we will propose one more model for discrete I-commutative algebras.
Definition 2.91. Let I be a one-color weak indexing category. Then, a strict I-commutative algebra in C is the
data of a T -object X together with AutV S-equivariant maps µS : X⊗SV → XV for all S ∈ FI,V subject to the
following conditions:

(1) (restriction-stability) The functor ResVU takes µS to µResVU S
.

(2) (unitality) for all maps S ⊔ ∗V ∈ FI,V , the following diagram commutes:

X⊗S⊔∗VV

XV XV

(3) (associativity) for all S-tuples (TU ) ∈ FI,S , writing T =
S∐
U
TU , the following diagram commutes:

S⊗
U
X⊗TUU X⊗SV

X⊗TV XV

(µTU )

≃ µS

µT

◁

Proposition 2.92. If C⊗ is a T -symmetric monoidal 1-category, then the categories of I-commutative algebras
and strict I-commutative algebras in C agree.

Proof. This follows from Observation 2.89, noting that Map(N ⊗I∞,End⊗X ) ≃Map(N ⊗I∞,BorTI End⊗X ) and un-
winding definitions using Proposition 2.87. □

Let X,Y be I-commutative algebras and f : X → Y a morphism between their underlying T -objects.
For the rest of this subsection, we assume familiarity with the techniques of [Ste24b]. We will say that f
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intertwines at S ∈ FI,V if the following diagram commutes:

X⊗SV XV

Y ⊗SV YV

Define the collection Ft(f ) ⊂ FI by

Ft(f ),V B {S | f intertwines at S} ⊂ FI,V

The fact that f is a map of T -objects implies that Ft(f ) is restriction stable. Hence Ft(F) ⊂ FI is a full
T -subcategory.

Proposition 2.93. Ft(f ) is a weak indexing system.

Proof. It follows by unwinding definitions that c(t(f )) = c(I), so we’re left with proving that Ft(f ) is closed
under self-indexed coproducts. To that end, fix S ∈ Ft(f ),V and T ∈ Ft(f ),S . By the associativity condition,
we’re tasked with proving that the outer rectangle of the following diagram commutes

X⊗TV
⊗S

U X
TU
U X⊗SV XV

Y ⊗TV
⊗S

U Y
TU
U Y ⊗SV YV

≃

≃

The left inner rectangle is commutative by definition; the right inner rectangle is commutative by the
assumption S ∈ Ft(f ),V ; the middle inner rectangle is commutative by taking a (pointwise) S-indexed tensor
product of the commutativity diagrams for each TU . □

Recall that a sparse V -set is a V -set of the form

ϵ · ∗V ⊔W1 ⊔ · · · ⊔Wn

where ϵ ∈ {0,1} and there exist no maps Wi →Wj over V for i , j.

Corollary 2.94. Let I be an almost essentially unital weak indexing system. Then,

(1) f is a map of I-commutative algebras if and only if it intertwines at all sparse I-admissible V -sets.
(2) If I is an indexing system, then f is a map of I-commutative algebras if and only if it intertwines at

2 · ∗V and at all I-admissible transitive V -sets for all V ∈ T .

Proof. In each case, it suffices to show that the applicable V -sets generate FI as a weak indexing category.
Case (1) is shown in [Ste24b] and case (2) follows by noting that every V -set is an n · ∗V -indexed coproduct of
transitive V -sets for some n ∈ N, and n · ∗V is generated by 2 · ∗V under 2 · ∗V -indexed coproducts. □

Corollary 2.95. If C is a G-symmetric monoidal 1-category and I is an indexing system, then I-commutative
algebras in C are equivalent to [Cha24, Def 5.6]’s “I-commutative monoids” over C.

Proof. This follows by matching Corollary 2.94 with [Cha24, Def 5.6]. □

3. Equivariant Boardman-Vogt tensor products

Using the language of fibrous patterns, in Section 3.1 we define the Boardman Vogt tensor product,
and we show that it’s closed and compatible with the Segal envelope in Propositions 3.6 and 3.9. Following
this, in Section 3.2 we specialize this to OpT . Then, in Section 3.3, we characterize the

BV
⊗ -unit of OpI and

leverage this to compute the T -∞-categories underlying operads of algebras in the unital case. Finally, in
Section 3.4, we define the inflation adjunction InflTe : OpT ⇄Op: Γ T and characterize its relationship with
the Boardman-Vogt tensor product.
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3.1. Boardman-Vogt tensor products of fibrous patterns. If C is an ∞-category, we refer to the data of an
object M ∈ C and a map M ×M →M as a magma in C. We refer to magmas in the nonfull subcategory
AlgPattSeg,se ⊂ AlgPatt of soundly extendable patterns and Segal morphisms as magmatic patterns.
Construction 3.1. Let (B,∧) be a magmatic pattern. Then, the B-Boardman-Vogt tensor product is the

bifunctor −
BV
⊗ − : Fbrs(B)×Fbrs(B)→ Fbrs(B) defined by

O
BV
⊗ PB LFbrs

(
O ×P→B×B ∧−→B

)
. ◁

We defined this in order to have a mapping out property with respect to the following construction.
Definition 3.2. Let (B,∧) be a magmatic pattern and O,P,Q fibrous B-patterns. Then, a bifunctor of fibrous
B patterns O ×P→Q is a commutative diagram in AlgPatt

O ×P Q

B×B B
∧

where O ×P→B×B is induced by the structure maps of O and P. ◁

The collection of bifunctors fits into a full subcategory

BiFunB(O,P;Q) ⊂ Fun(∆1 ×∆1,AlgPatt)

Example 3.3. Let O,P be fibrous B-patterns, and consider B to be a fibrous B-pattern via the identity.
Then, the ∞-category of bifunctors O × P → B is contractible, as it is equivalent to composite arrows
O ×P→B×B→B. ◁

Observation 3.4. There are natural equivalences

BiFunB(O,P;Q) ≃ Funint−cocart
/B×B (O ×P,∧∗Q)

≃ Funint−cocart
/B (∧!(O ×P),Q)

≃ Funint−cocart
/B (O

BV
⊗ P,Q). ◁

Following in the tradition started by the namesake [BV73, § 2.3], in forthcoming work [Ste24a] we will
interpret BiFunB(O,P;Q) in the context of T -1-operads as interchanging O and P-algebra structures; as in
[BV73, Prop 2.19] and the variety of recontextualizations of their ideas (e.g. [HA; Wei11], we additionally

recognize this as O-algebras in P-algebras, making
BV
⊗ into a closed tensor product.

Construction 3.5. Fix (B,∧) a magmatic pattern, let F : O×P→Q be a bifunctor of fibrous B-patterns, and
let C be a fibrous Q-pattern. We have a diagram

O
p
←−O ×P F−→Q;

admitting push-pull adjunctions p∗ ⊣ p∗ and LFbrsF! ⊣ F∗ on fibrous patterns, with compatible adjunctions on
Segal objects by Propositions 2.20 and 2.22 and Observation 2.29. We define the pattern

Alg⊗
P/Q

(C) := p∗F
∗C ∈ Fbrs(O);

this is the fibrous O-pattern of P-algebras in C over Q. In most cases, we will have Q = O = B, in which
case the information of a bifunctor B×P→B is simply that of a fibrous B-pattern P by Example 3.3. In
this case, we simply write

Alg⊗
P

(C) := Alg⊗
P/B

(C) ∈ Fbrs(B);

this is the fibrous B-pattern of P-algebras in C. ◁

In the case Q = O = B, the above diagram refines to

B
p
←−B×P id×π−−−−→B×B ∧−→B,
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so the functor P 7→ Alg⊗
P

(C) has a left adjoint computed by LFbrs∧! (id×π)!p
∗; explicitly, this is computed on

P′ by the fibrous localization of the diagonal composite

P′ ×P π∗P′

B×P

B×B B

πQ×id

πQ×πP

≃

id×πP

∧

By definition, this is precisely P′ ⊗BV P, so we’ve proved the following.

Proposition 3.6. The functor (−)
BV
⊗ O : Fbrs(B)→ Fbrs(B) is left adjoint to Alg⊗

O
(−).

We additionally spell out a few useful characteristics of
BV
⊗ here. First, we describe functoriality.

Observation 3.7. Fix the fibrous B-pattern Q. Suppose we have bifunctors of fibrous B-patterns

F : O ×P→Q←O ×P′ : G

together with a morphism of fibrous B-patterns ϕ : P→ P′ making the following diagram commute:

O ×P

O Q

O ×P′

π
F

G

π′

The left triangle possesses a Beck-Chevalley transformation

π∗ϕ! =⇒ id!π
′∗ = π′∗,

which possesses a mate natural transformation π′∗ =⇒ π∗ϕ
∗; precomposing with G∗, this yields a “pullback”

natural transformation
Alg⊗

P′ /Q(−) =⇒ Alg⊗
P/Q(−). ◁

.We observe that, in all of the work above, we may have instead assumed that C ∈ SegB(Cat), in which
case all of our constructions land in SegB(Cat). Spelled out, this yields the following.

Proposition 3.8. Fix O,P,Q,C as in Construction 3.5. Then
(1) if C is a Segal Q-∞-category, then Alg⊗

P/Q
(C) is a Segal O-∞-category;

(2) if C→D is a morphism of Segal Q-∞-categories, then the induced map Alg⊗
P/Q

(C)→ Alg⊗
P/Q

(D) is
a morphism of Segal O-∞-categories; and

(3) if P→ P′ is a morphism of fibrous B-patterns and C is a Segal Q-∞-category, then the induced map
of fibrous patterns

Alg⊗
P′ /Q

(C)→ Alg⊗
P/Q

(C)

is a functor of Segal O-∞-categories, i.e. it preserves cocartesian lifts for inert morphisms.

Finally, in analogy to [BS24a] we show that this tensor product is compatible with Segal envelopes.

Proposition 3.9. The following diagram commutes

Fbrs(B)2 Fbrs(B)

Fun(B,Cat)2 Fun(B,Cat) SegB(Cat)

BV
⊗

Env Env

⊛ LSeg



EQUIVARIANT OPERADS, SYMMETRIC SEQUENCES, AND BOARDMAN-VOGT TENSOR PRODUCTS 51

Proof. Fix C a Segal B-∞-category. Then, there are natural equivalences

FunSegB(Cat)

(
Env

(
O

BV
⊗ P

)
,C

)
≃ Funint−cocart

/B×B (O ×P,∧∗C)

≃ Funcocart
/B×B (EnvB×B(O ×P),∧∗C)

≃ Funcocart
/B×B (EnvB(O)×EnvB(P),∧∗C)(12)

≃ Funcocart
/B

(
LSeg ∧! (EnvB (O)×EnvB(P)) ,C

)
≃ FunSegB(Cat)

(
LSeg (EnvB(O)⊛EnvB(P)) ,C

)
(13)

Equivalence Eq. (12) is Observation 2.28; Eq. (13) follows by symmetric monoidality of the Grothendieck
construction [Ram22, Thm B]. The result then follows by Yoneda’s lemma. □

3.2. Boardman-Vogt tensor products of T -operads. Recall that OpT ≃ Fbrs(Span(FT ). We specialize the
results of Section 3.1 to this case.
Construction 3.10. We show in Proposition A.15 that the Cartesian product in FT endows Span(FT ) with
the structure of a magmatic pattern in the sense of Section 3.1 via the smash product

∧B Span(×) : Span(FT )× Span(FT )→ Span(FT );

we refer to the resulting bifunctor as the Boardman-Vogt tensor product

O⊗
BV
⊗ P⊗ B LFbrs

(
O⊗ ×P⊗→ Span(FT )× Span(FT )

∧−→ Span(FT )
)
. ◁

The T -operad of O-algebras in P is given by the right adjoint Alg⊗
O

(C) ∈OpT to the Boardman-Vogt tensor
product constructed in Proposition 3.6.

Proposition 3.8 immediately implies the following.

Corollary 3.11. Fix O⊗→P⊗ a map of T -operads and C⊗→D⊗ a map of T -symmetric monoidal ∞-categories.
Then, Alg⊗

O
(C) is a T -symmetric monoidal category, and the canonical lax T -symmetric monoidal functors

Alg⊗
P

(C)→ Alg⊗
O

(C), Alg⊗
O

(C)→ Alg⊗
O

(D)

are T -symmetric monoidal.

Proposition 3.9 specializes to the following.

Corollary 3.12. The T -symmetric monoidal envelope intertwines with the mode structure:

Env
(
O⊗

BV
⊗ P⊗

)
≃ Env

(
O⊗

)
⊗Mode Env

(
P⊗

)
.

In particular, [BS24a, Thm E] shows that this property identifies the Boardman-Vogt tensor product,
so we acquire the following.

Corollary 3.13. When T ≃ ∗,
BV
⊗ is naturally equivalent to the Boardman-Vogt tensor product of [BS24a;

HM23; HA].

In forthcoming work [Ste24a], we will use a variant of Barkan-Steinebrunner’s strategy to lift
BV
⊗ to a

canonical symmetric monoidal structure.

3.3. T -∞-categories underlying T -operads of algebras. Recall the underlying T -∞-category functor

U : OpT → CatT

of Construction 2.36. In this subsection, we characterize the relationship of U with Alg⊗
−

(−). One significant
reason to study the underlying T -∞-category is the following.
Observation 3.14. In the case C⊗ is an I-symmetric monoidal category, C⊗ is a Segal SpanI (FT )-pattern and
U (C⊗) its underlying SpanI (FT )el-pattern. Hence the composite functor

Cat⊗I →OpI → CatT
is conservative by Proposition 2.8. ◁
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Warning 3.15. The functor U is not conservative on OpT ; indeed, users of T -operads will find that they are
often describing distinct algebraic theories as corepresented by one-object T -operads, yet every map between
one-object T -operads is a U -equivalence. ◁

Let triv⊗T :=N ⊗F≃T ∞. Nardin-Shah showed the following.

Proposition 3.16 ([NS22, Cor 2.4.5]). U induces an equivalence

OpT ,/triv⊗T
≃ CatT ;

writing triv⊗(C)BU−1
/triv⊗(C), these are identified by the property

Alg
triv⊗(C)

(P ) ≃ FunT (C,U (P⊗));

in particular, triv⊗(−) : CatT →OpT is a fully faithful left adjoint to the underlying T -category.

These are weak N∞-operads T -operads if and only if C has at most one V -object for each V , i.e.
C = ∗F ⊂ ∗T for a T -family F . In this case, we write

triv⊗F := triv⊗(∗F ) ≃N ⊗F≃F ∞
under the evident embedding F≃F ⊂ FT ≃ ⊂ FT .
Observation 3.17. Proposition 3.16 directly implies that

triv⊗(C) ≃ LFbrs (C → T op ↪→ Span(FT )) ;

furthermore, if T posseses a terminal object V , then we have

triv⊗T ≃ LFbrs ({V } ↪→ Span(FT )) . ◁

An important property of triv⊗T is that it is the
BV
⊗ -unit.

Proposition 3.18. For all O⊗ ∈OpT , we have O⊗ ≃ O⊗
BV
⊗ triv⊗T ; hence there exists a natural equivalence

Alg⊗
trivT

(O)→O⊗.

Proof. The first statement implies the second by the usual folklore argument:

Map(O⊗,Alg⊗
trivT

(P )) ≃Map
(
O⊗

BV
⊗ triv⊗T ,P

⊗
)
,

≃Map(O⊗,P⊗),

so Yoneda’s lemma yields a natural equivalence Alg⊗
trivT

(P ) ≃ P⊗. The same argument in reverse shows that
the second statement implies the first. Furthermore, in view of Observation 2.52, it suffices to verify the
second statement (hence the first) over the base T/V , so we may assume that T has a terminal object.

In the case that T has a terminal object, by Observation 3.17, bifunctors triv⊗T ×O → P correspond
canonically with functors of T -operads O→ P ; put another way, using the bifunctor presentation for algebras
of Observation 3.4, this demonstrates that the forgetful natural transformation

AlgO⊗BVtriv(P )→ AlgO(P )

is a natural equivalence; Yoneda’s lemma then demonstrates that O⊗
BV
⊗ triv⊗T ≃ O

⊗. □

Using this, we have a sequence of natural equivalences

UAlg⊗
O

(P ) ≃ Alg
trivT

Alg⊗
O

(P )

≃ Alg
O⊗trivT

(P )

≃ Alg
O

(P );

in particular, we’ve proved the following corollary.

Corollary 3.19. There exists a natural equivalence

UAlg⊗
O

(P ) ≃ Alg
O

(P ).



EQUIVARIANT OPERADS, SYMMETRIC SEQUENCES, AND BOARDMAN-VOGT TENSOR PRODUCTS 53

We’ve shown in Proposition 3.9 that Env intertwines
BV
⊗ with ⊛, and we’ve now seen that triv⊗T is the

BV
⊗ -unit. In fact, Env intertwines units.

Proposition 3.20. EnvI (trivT ) is the ⊛-unit in CMonI (Cat)⊛.

Proof. Recall from Observation 1.77 that, when C× is cartesian, the free object FrI (∗) ∈ CMonI (C) is the unit;
thus

Fun⊗I (EnvI (trivT )⊗,D⊗) ≃ AlgtrivT
(D⊗) 2.53

≃ D 3.16

≃ Fun⊗I (FrI ∗,D⊗)

≃ Fun⊗I
(
1⊛,D⊗

)
,

so the result follows from Yoneda’s lemma. □

3.4. Inflation and the Boardman-Vogt tensor product. Recall that the T -fixed points of a T -category Γ T are
right adjoint to inflation. We briefly discuss an operadic version of this and relate it to

BV
⊗ .

Construction 3.21. Given O⊗ a T -operad, and V ∈ T , we form the V -value operad

Γ VO⊗ B i∗VO
⊗,

where iV : Span(F) ↪→ Span(FT ) is the map of patterns extending the coproduct preserving functor F ↪→ FT
sending ∗ 7→ ∗V . Using this, we may set

Γ T O⊗ B lim
V ∈T
O⊗,

noting that this recovers Γ V if V is terminal in T . ◁

Remark 3.22. In the case that C⊗ is a T -symmetric monoidal ∞-category, the structure map of the operad
Γ V C is the pullback of a cocartesian fibration, so it is a cocartesian fibration, i.e. it presents a symmetric
monoidal ∞-category; unwinding definitions, this agrees with the construction Γ V C of Construction 1.64.
Since the forgetful functor Cat→Op is a right adjoint, it preserves limits, so the two constructions of Γ T C
also agree. ◁

Unwinding definitions, we find that Corollary 1.56 implies that the map of patterns T op × Span(F)→
SpanI∞(FT ) induces equivalences on Segal objects, hence on fibrous patterns. Further unwinding definitions,
this yields an equivalence

OpI∞ ≃ Fun(T op,Op).

In particular, this yields the following.

Proposition 3.23. The functor Γ T : OpI∞ → Op has a fully faithful left adjoint InflT : Op→ OpI∞ whose
image is spanned by the I∞-operads whose corresponding functors T op→Op are constant.

In particular, we find that E⊗∞ ≃ InflT E⊗∞. The map of patterns iV induces a push-pull adjunction
ETI∞ : OpI∞ ⇄OpT : BorTI∞ , and we will write InflT : Op⇄OpT : Γ T for the composite adjunction as well.
Example 3.24. Let G be a finite group and nG the trivial n-dimensional real orthogonal G-representation.
Note that the bottom map

EnG (m · ∗H ) EnG (m · ∗K )

ConfHm·∗H (nG) ConfHm·∗H (nG)

≃ ≃

∼

is an equivalence for all K ⊂H ⊂ G, as it intertwines the tautological identification of each side with Confm(Rn).
In particular, the map E⊗nG → E⊗∞G ≃ E⊗∞ witnesses EnG as an I∞-operad in the image of InflGe ; unwinding
definitions, we have an equivalence InflGe E⊗n ≃ EnG . ◁

In general, we define the T -operad E⊗n B InflTe E⊗n . We will explore such adjunctions at greater length in
forthcoming work [Ste24a], but for now, we concern ourselves with Boardman-Vogt tensor products.
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Proposition 3.25. There exists a natural equivalence InflTe O⊗
BV
⊗ InflTe P⊗ ≃ InflTe

(
O⊗

BV
⊗ P⊗

)
.

Proof. We can verify that InflTe is product-preserving, so we acquire a zigzag of maps

InflTe O⊗
BV
⊗ InflTe P⊗

ηOpT←−−−−−−−− ∧!

(
InflTe O⊗ × InflTe P⊗

)
≃ ∧! InflTe

(
O⊗ ×P⊗

)
≃ InflTe ∧!

(
O⊗ ×P⊗

)
InflTe ηOp
−−−−−−−−−−−→ InflTe

(
O⊗

BV
⊗ P⊗

)
,

with ηOpT an LOpT -equivalence. We’re tasked with proving that ηOp is an LOpT -equivalence; then, the desired
equivalence can be gotten by applying LOpT and inverting arrows as needed. In fact, if Q⊗ is a T -operad,
then pullback along ηOp furnishes an equivalence

Funint−cocart
/ Span(FT )

(
InflTe

(
O⊗

BV
⊗ P⊗

)
,Q⊗

)
≃ Funint−cocart

/ Span(F)

(
O⊗

BV
⊗ P⊗,Γ T Q⊗

)
≃ Funint−cocart

/ Span(F)

(
∧!

(
O⊗ ×P⊗

)
,Γ T Q⊗

)
≃ Funint−cocart

/ Span(F)

(
InflTe ∧!

(
O⊗ ×P⊗

)
,Q⊗

)
so InflTe ηOp is an LOpT -equivalence, yielding the desired natural equivalence. □

Corollary 3.26 (Trivially eqivariant Dunn additivity). There is an equivalence E⊗n
BV
⊗ E⊗m ≃ E⊗n+m.

Proof. By Corollary 3.13 and Proposition 3.25, it suffices to construct an equivalence of operads E⊗n
BV
⊗ E⊗m ≃

E⊗n+m; this is nonequivariant Dunn additivity [HA, Thm 5.1.2.2]. □

Corollary 3.27. There exists a natural equivalence of operads

Γ T Alg⊗
InflTe O

(C) ≃ Alg⊗O(Γ T C)

Proof. Once more, there is a string of natural equivalences

AlgP Γ
T Alg⊗

InflTe O
(C) ≃ AlgInflTe P

Alg⊗
InflTe O

(C)

≃ AlgInflTe P⊗InflTe O
(C)

≃ AlgInflTe (P⊗O)(C)

≃ Alg(P⊗O)(Γ
T C)

≃ AlgPAlg⊗O(Γ T C),

so the result follows by Yoneda’s lemma. □

A similar statement to Proposition 3.25 for triv⊗ follows by either symbol pushing or examining the
various localizations; we take the former approach, constructing a string of natural equivalences

AlgInflTe trivC
(O) ≃ AlgtrivC

(Γ T O)

≃ Fun(C,Γ T O)

≃ FunT (InflTe C,O)

≃ Algtriv
InflTe C

(O).

That is, we’ve proved the following.

Proposition 3.28. Let C be an ∞-category. Then, there is a canonical natural equivalence

InflTe triv⊗C ≃ triv⊗
InflTe

.
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Appendix A. Burnside algebraic patterns: the atomic orbital case

The following appendices are not written to be particularly original; most of their contents appear as
straightforward technical extensions of beloved works in higher algebra, and they are included for the sake of
mathematical completeness.

A.1. I-operads as fibrous patterns. This subsection deviates only slightly from [BHS22, § 5.2], so we suggest
that the reader first read their work. We’re interested in proving Proposition 2.47, so we freely use its
notation.

A.1.1. The pattern FT ,∗. Our first step is to prove the following proposition.

Proposition A.1. There are equivalences of categories

SegFT ,∗(C) ≃ CMonT (C),

Fbrs(FT ,∗) ≃OpT ,∞,

the latter denoting Nardin-Shah [NS22]’s ∞-category of T -∞-categories.

To prove this, we must understand the associated Segal conditions. The following lemma characterizes
their indexing category.

Lemma A.2 ([BHS22, Obs 5.2.9]). Fix [S→U ] an object in FT ,∗. Then, there are equivalences((
FT ,∗

)el

[S→U ]/

)op
≃ T ×FT F

si
T ,∗,/[S→U ](14)

≃ T ×FT FT ,∗,/[S→U ].(15)

Furthermore, the full subcategory of T ×T FT ,∗,/[S→U ] consisting of morphisms f : T → S such that f is a
summand inclusion is an initial subcategory equivalent to the set Orb(S).

Proof. (14) follows by definition. For (15), this follows by noting that whenever [U =U ]→ [S→ V ] is a
morphism in FT out of an orbit, the associated morphism U → S ×V U is a summand inclusion, as it’s split
by the projection S ×V U →U .

For the remaining statement, the inclusion Orb(S) ↪→ T ×T FT ,∗,/[S→U ] has a right adjoint sending
f : T → S to f (T )→ S, so it is initial. □

Lemma A.3 ([BHS22, Footnote 6]). The pattern FT ,∗ is sound.

Proof. We verify the conditions of [BHS22, Prop 3.3.23]. First, we must verify that
(
FsiT

)
/S
↪→ FT ,/S is fully

faithful, i.e. if there is a diagram

S2 S1 S0

U2 U1 U0

such that the associated maps S2 → S0 ×U0
U2 and S1 → S0 ×U0

U1 are summand inclusions, the map
S2→ S1 ×U1

U2 is a summand inclusion. In fact, the associated map S2→ S0 ×U0
U2 may be decomposed as

S2→ S1 ×U1
U2→ S0 ×U0

U1 ×U1
U2 ≃ S0 ×U0

U2.

The composition and second map are each summand inclusions, or equivalently, split monomorphisms; this
implies that the first map is a split monomorphism, so S→ S1 ×U1

U2 must be a summand inclusion as well,
i.e.

(
FsiT

)
/S
↪→ FT ,/S is fully faithful.

Last, we must verify that

Fsi,el
T ,/[S→U ] ↪→ Fel

T ,/[S→U ]

is final for all [S→U ] ∈ FT ; in fact, it is an equivalence by Lemma A.2. □
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Proof of Proposition A.1. For the first statement, note by Lemma A.2 that a Segal FT ,∗-object in C is
equivalent to a functor

M : FT ,∗→C
satisfying M(

∏
iUi) ≃

∏
iM(Ui); this is precisely the condition that M is product preserving, i.e. it is a

T -commutative monoid object.
For the second statement, Lemma A.3 together with [BHS22, Prop 4.1.7] reduce the Segal conditions of

a fibrous pattern to precisely the conditions of [NS22, Def 2.1.7]. □

We now turn to the remaining statements of Proposition 2.47 making use of the following theorem:

Theorem A.4 ([BHS22, Prop 3.1.16, Thm 5.1.1]). Suppose O→ P is a strong Segal morphism of algebraic
patterns such that the following conditions hold:

(1) f el : Oel→P el is an equivalence, and
(2) for every O ∈ O, the functor

(
Oact
/O

)≃
→

(
P act
/f (O)

)≃
is an equivalence.

Then, the functor f ∗ : SegP (C)→ SegO(C) is an equivalence. Furthermore, if P is soundly extendable, then
f ∗ : Fbrs(P )→ Fbrs(O) is an equivalence.

For posterity, we temporarily increase in generality.

A.1.2. Global effective burnside patterns. Let T be an ∞-category and I ⊂ FPT ⊂ FT a one-object weak
indexing category of an atomic orbital subcategory of T in the sense of [CLL24]; write

SpanI (FT )B Spanall,I (FT ;T op)

for the resulting pattern. There is a span pattern analog to Lemma A.2 which is proved identically.

Lemma A.5. For T an arbitrary ∞-category, the full subcategory of
(
SpanI (FT )el

/S

)op
≃ T ×FT FT ,/S consisting

of morphisms f : T → S such that f is a summand inclusion is an initial subcategory equivalent to the set
Orb(S).

Unwinding definitions, this demonstrates the following.

Corollary A.6. The forgetful functor

SegSpanI (FT )(C)→ Fun(SpanI (FT ),C)

is fully faithful with image spanned by the product preserving functors.

Global effective Burnside patterns are generally well behaved:

Lemma A.7. The pattern SpanI (FT ) is soundly extendable.

Proof. It is sound by [BHS22, Cor 3.3.24]. To see that Span(FT ) is extendable, it is equivalent to prove that
ASpan(FT ) is a Segal SpanI (FT )-∞-category, i.e. for every S ∈ SpanI (FT ), the associated functor ϕ of

SpanI (FT )act
/S I/S

∏
V ∈Orb(S)

I/V

lim
V ∈Span(FT )el

S/

Span(FT )act
/V lim

V ∈T ×FT FT ,/S
I/V

∼ ∼

ϕ

∼

is an equivalence. In fact, it is an equivalence by Lemma A.5. □

A.1.3. The equivalence. We resume our original assumption that T is atomic orbital.

Corollary A.8. The source functor s : FT ,∗ ↪→ Span(FT ) induces equivalences of categories

SegSpan(FT )(C) ≃ SegFT ,∗(C);

Fbrs(Span(FT )) ≃ Fbrs(FT ,∗).
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Proof. It is clear that s is a morphism of algebraic patterns, as it is induced by a morphism of quadruples.
The pattern Span(FT ) is soundly extendable by Lemma A.7. In order to verify that s is a strong Segal
morphism, we must verify that sel

[S→V ]/ is initial. In fact, by the following diagram,

Fel
F ,∗,[S→V ]/

(
F ×FF FsiF ,/[S→V ]

)op ∏
U∈Orb(S)

(BAutF (U ))op

Span(FT ;F )el
S/

(
F ×FT FT ,/S

)op ∏
U∈Orb(S)

(F/U )op

ιel
[S→V ]/

∼ ∼

ϕ

∼

it suffices to verify that the functor ϕ is final. Indeed, since T is atomic, the subcategory BAutT (U ) ↪→T/U
is downwards closed, i.e. initial. This implies ϕ is a product of opposites of initial functors, hence it is final.

It remains to check that s satisfies the conditions of Theorem A.4. We check this in parts. Condition 1
follows immediately by construction. Condition 2 follows by noting that the following diagram commutes:

Fact
T ,∗,/[S→V ] FT ,/[S→V ] FV ,/S

∏
U∈Orb(S)

V /U

Span(FT ;F )act
/S FT ,/S FT ,/S

∏
U∈Orb(S)

T/U

∼ ∼ ∼

ϕ

∼ ∼

and by noting that ϕ is an equivalence, since V ⊂ T is a full subcategory containing any element attaining a
map to V , and there exists a map U → S→ V . □

In fact, we may say something more general; define the pullback pattern

FI,∗ FT ,∗

SpanI (FT ) Span(FT )

⌟

so that FI,V ,∗ corresponds with pointed I-admissible V -sets.

Observation A.9. By Lemma A.2, FI,∗-Segal objects in C are precisely I-semiadditive functors FI,∗→ CoeffT C.
◁

The conditions of Theorem A.4 follow from the case I = T , so we have the following.

Corollary A.10. If I is a weak indexing category, then pullback along the map FI,∗ ≃ SpanI (FT ) induces an
equivalence

OpI ≃ Fbrs(SpanI (FT )) ≃ Fbrs(FI,∗)

A.2. Pullback of fibrous patterns along Segal morphisms and sound extendability.

Proposition A.11. Suppose ϕ : O→ P is morphism of algebraic patterns and P is soundly extendable. Then,
(1) If the precomposition functor

ϕ∗ : Fun(P,Cat)→ Fun(O,Cat)

preserves Segal objects, then the pullback functor

ϕ∗ : Cat/P→ Cat/O
preserves fibrous patterns.

(2) If ϕ is an inert-cocartesian fibration and the left Kan extension functor

ϕ! : Fun(O,Cat)→ Fun(P ,Cat)

preserves Segal objects, then postcomposition

ϕ! : Cat/O→ Cat/P
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preserves fibrous patterns.

In particular, if ϕ is an inert-cocartesian Segal morphism between soundly extendable patterns whose left Kan
extension preserves Segal categories, then pullback and postcomposition restrict to an adjunction on fibrous
patterns

ϕ! : Fbrs(O)⇄ Fbrs(P) : ϕ∗

Proof. Our argument mirrors that of [BHS22, Lem 4.1.19]. In either case, the property of being an inert-
cocartesian fibration is always preserved, either by assumption or by [BHS22, Obs 2.2.6].

We prove (1) first. Fixing F ∈ Fbrs(P), by [BHS22, Obs 4.1.3], it suffices to prove that the left vertical
arrow in the following pullback diagram is a relative Segal O-∞-category.

Stint
O

(ϕ∗F ) ϕ∗Stint
P

F

AO ϕ∗AP

By [BHS22, Lem 3.1.10], relative Segal O-∞-categories are pullback-stable, so it suffices to prove that the
right vertical arrow is a relative Segal O-∞-category. By sound extendability AP is a Segal P-∞-category,
and since ϕ∗ preserves Segal ∞-categories, ϕ∗AP is a Segal O-∞-category; by [BHS22, Obs 3.1.8] it then
suffices to prove that ϕ∗Stint

P
F is a Segal O-∞-category. Since ϕ∗ preserves Segal ∞-categories, it suffices to

prove that Stint
P

F is a Segal P-category, which follows by the assumption that F is a fibrous pattern.
(2) is similar; this time, by taking left adjoints to the commutative square of [BHS22, Prop 4.2.5], it

suffices to prove that the composition

ϕ!Stint
O F → ϕ!AO→AP

is relative Segal; since P is soundly extendable, [BHS22, Obs 3.1.8] again reduces this to verifying that ϕ!Stint
O

F
is Segal; this follows from the facts that F is a fibrous pattern and ϕ! preserves Segal ∞-categories. □

A.3. Segal morphisms between effective Burnside patterns. In this section, we fill our grab bag full of a wide
variety of Segal morphisms between effective Burnside patterns.

Proposition A.12. Suppose F ⊂ F′ ⊂ FT are wide subcategories. Then, the inclusion

ι : SpanF(FT )→ SpanF′ (FT )

is a Segal morphism.

Proof. We are tasked with verifying that precomposition with ι preserves product-preserving functors, i.e.
that ι is a product-preserving functor. In fact, this is immediate, since a functor SpanF(FT )→C is product-
preserving if and only if the backwards maps (S←U )U∈Orb(S) together map to a product diagram, which is
obviously true of ι. □

Proposition A.13. Suppose ϕ : V → W is a morphism in T . Then, the associated functor Span(IndWV ) :
Span(FV )→ Span(FW ) is a Segal morphism.

Proof. We’re tasked with proving that precomposition along Span(IndWV ) preserves product-preserving
functors, i.e. it is a product-preserving functor. Since Span(FV ) and Span(FW ) are semiadditive, it is
equivalent to prove that Span(IndWV ) is coproduct-preserving; since coproducts in Span(FV ) are computed in
FV , it’s equivalent to prove that IndWV : FV → FW is coproduct-preserving, which follows from the fact that
it’s a left adjoint. □

Proposition A.14. If f : T ′ → T is a functor of atomic orbital ∞-categories, then the associated functor
Span(FT ′ )→ Span(FT ) is a Segal morphism.
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Proof. By [CH21, Rem 4.3], it suffices to verify that f el
X/ induces an equivalence on the left vertical arrow

lim
Span(T )el

f (X)/

F
∏

U∈Orb(f (X))

F(U )

lim
Span(T ′)el

X/

F ◦ f el
∏

V ∈Orb(X)

Ff (V )

∼

∼

whenever F is restricted from a Segal Span(FT ) space. This follows by noting that the horizontal arrows are
equivalences by construction, and Span(f ) sends the set of orbits of X bijectively onto the set of orbits of
f (X). □

Proposition A.15. The map Span(FT )× Span(FT )
∧−→ Span(FT ) is a Segal morphism.

Proof. By [CH21, Ex 5.7], a functor Span(FT )× Span(FT )→ C is a Segal object if and only if it preserves
products separately in each variable. Hence we’re tasked with verifying that ∧∗F preserves products separately
in each variable whenever F preserves products. In fact, this follows by distributivity of products and
coproducs in FT ; indeed, we have

∧∗F ((X+ ⊕Z+,Y+)) ≃ F ((X ⊔X ′)×Y )+

≃ F ((X ×Y )⊔ (X ′ ×Y ))+

≃ F ((X+ ∧Y+)⊕ (X ′+ ∧Y+))

≃ F (X+ ∧Y+)⊕F (X ′+ ∧Y+)

≃ ∧∗F (X+,Y+)⊕∧∗F (X ′+,Y+) . □
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