ON CONNECTIVITY OF SPACES OF EQUIVARIANT CONFIGURATIONS

NATALIE STEWART

ABsTrACT. We provide conditions on a locally smooth G-manifold under which its nonempty spaces of
equivariant configurations Confg;(X) are d-connected for all finite G-sets S. We use this to show that
E;y-algebras in a G-symmetric monoidal (d —1)-category canonically lift to E,y-algebras.

Throughout this paper, we fix G a Lie group.
Definition 1. If H C G is a closed subgroup and S € Fy a finite H-set, we let

Conf# (X) c Map®!($, X)
be the (topological) subspace of H-equivariant embeddings S <> M. <

Nonequivariantly, the homotopy type of configurations spaces in X is a rich source of homeomorphism-
invariants of X. In this paper, we study some rudiments of an equivariant lift of this in the smooth setting.
Namely, in Section 1, we supply sufficient conditions for a smooth G-manifold M such that its nonempty
configurations spaces Conf ?(M ) are all d-connected.

We have a particular application in mind; the structure spaces of the little V-disks operad are con-
figuration spaces in smooth G-manifolds, and connectivity statements of G-operads translate to structural
statements about their algebras (see [Ste24al). For instance, in Section 2, we prove a sharp strengthening of
the following theorem.

Theorem 2. Suppose G is finite. If C is a G-symmetric monoidal (d —1)-category and V a real orthogonal
G-representation, then the forgetful functor

Alge (C) — Algg, (C)
is an equivalence of (d —1)-categories.

In particular, Egy-is a weak N-operad, so [Ste24a] and Theorem 2 provide a homotopical incomplete
Mackey functor model for Ezy-algebras in Cartesian G-symmetric monoidal (d — 1)-categories and [Cno-+24,
Thm B] provides a bi-incomplete Tambara functor model for E;y-rings in the setting of homotopical incomplete
Mackey functors valued in a (d — 1)-category:

1. CONFIGURATION SPACES IN LOCALLY SMOOTH G-MANIFOLDS

Definition 3 ([Bre72, § IV]). If M is a smooth manifold with a continuous G-action, we say that the action
is locally smooth if, for each point x € M, there exists a real orthogonal stabg(x)-representation V, and a
trivializing open neighborhood

xe I Vy<—e—> M,

G/stabg(x)

where for a topological H-space X, we write I X:=GxpygX as a topological G-space. In this case, we
G/stabg(x)

say that M with its action is a locally smooth G-manifold. <

Smooth actions on manifolds admit well-behaved tubular neighborhoods; for example, [Bre72, Cor V.2.4]
proves that smooth actions are locally smooth. On the other hand, if M is a locally smooth G-manifold, then
the inclusion M(z) <> M of points with orbit isomorphic to G/H is a locally closed topological submanifold
[Bre72, Thm IV.3.3], which is smooth if M is smooth [Bre72, Cor VI.2.5].

We begin this section in Section 1.1 by proving the following.
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Theorem 4 (equivariant Fadell-Neuwirth fibration). Fiz M a locally smooth G-manifold, S, T € Fg a pair of
finite G-sets, and 1: S — M a G-equivariant configuration. The following is a homotopy-Cartesian square:

Conf$(M —i(S)) — Conf§ (M)
| lv
{f} = Conf§ (M)

Thus the long exact sequence in homotopy for T = G/H yields means for computing homotopy groups
of Conf ?(M ) inductively on the cardinality of the orbit set |Sg|, with inductive step hinging on homotopy of

Conf &, (M —1(S)) = (M = 1(S)) )
We denote by [Og] the subconjugacy lattice of closed subgroups of G, and we let

Istrp(M) = {stab,(G) | x € M} C [Og]
be the full subposet spanned by conjugacy classes (H) for which My is nonempty. We are inspired to make
the following definition.

Definition 5. A locally smooth G-manifold M is

e >d-dimensional at each orbit type if My is > d-dimensional for each (H) € Istrp(M);
o (d—2)-connected at each orbit type if My is (d — 2)-connected for each (H) € Istrp(M). <

In Section 1.2, we use Theorem 4 to prove the following.

Theorem 6. If a locally smooth G-manifold M is > d-dimensional and (d — 2)-connected at each orbit type,
then for all finite G-sets S € Fg, the configuration space Conf?(M) is either empty or (d — 2)-connected.

In order to identify applications of this theorem, we give sufficient conditions for M to be (d—2)-connected
at each orbit type. Note by repeatedly applying [Bre72, Thm IV.3.1] that the subspace M) C M of orbits
mapping to G/H is a closed submanifold. In Section 1.3, we use this to prove the following.

Proposition 7. Suppose that M is a smooth G-manifold satisfying the following conditions:

(a) M is > d-dimensional at each orbit type.

(b) Mn) is (d - 2)-connected for each H.

(¢) codim(Mcg) > M) 2 d for each (K) < (H).

(d) Istrp(M) is finite (e.g. G compact and M finite type, c.f. [Bre72, Thm IV.10.5]).
Then M is (d — 2)-connected at each orbit type.
1.1. A Fadell-Neuwirth fibration for equivariant configurations. Our strategy for Theorem 4 mirrors that
of Knudsen in the notes [Knul8]. In particular, we would like to use Quillen’s theorem B [Qui73], which
requires us to construct Confls_l (M) as a classifying space. In fact, there is a general scheme to do this:

Lemma 8 ([DI04, Thm 2.1], via [Knul8, Thm 4.0.2]). If B is a topological basis for X such that all elements
of B are weakly contractible, then the canonical map
|B] = hocolimg* — X

is a weak equivalence, where on the left B is considered as a poset under inclusion.

To use this, define an elementwise-contractible basis for Conf E(M ) by

S
BS(M):={(X,0)|3(Vy) € ]_[ Rep2 ™ (stabg([x])), s.t. ]_[VX:XCM, 0:S S m(U),
[x]eOrbg [x]

where for all tuples (Y,)e T[] ToPgtan([x]): Ve Write
[x]eOrbg
S
Yx = ]_I (G Xstab(;([x]) Yx) € TOpG
[x] [x]€Orb(S)
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for the indexed disjoint union of Y,. We fix Bg(M) C gsc(M) the smaller basis consisting of open sets (X, o)
possessing neighborhoods (X, o) C (X’,0) such that the associated embeddings factor as

s s
LUD(Vy) = UHWy
U U

(1) al .

Vj—x—M

where D(V(;)° denotes the open unit Vi;-disk; that is, open sets in Bg(M ) consist of collections of configurations
possessing a fixed common neighborhood resembling disjoint unions of real orthogonal representations, subject
to the condition that there is “space on all sides” of the neighborhood. This is functorial in two ways:
e given a summand inclusion S < T S, the forgetful map Conf ?HS(M ) — Conf g(M ) preserves basis
elements, inducing a map B%_IS(M) — Bg(M)
e any open embedding 1 : M <> N induces a map Conf%(M) — Confg’(N) preserving basis elements,
inducing a map B?(M) — B?(N).

To summarize, we’ve observed the proof of following lemma.

Lemma 9. Given HC G and S, T € Fy, there is an equivalence of arrows

|B?us(M)) ~  Conff, (M)
|BS(M)| = Conf§(M)

Thus we can characterize the homotopy fiber of U using Quillen’s theorem B and the following.

Proposition 10. For (Xg,05) < (X§,04) € Bsc(M), and an S-configuration x € Xg, we have a diagram

(P\
BS(M —x) 5 B¢ (M -Xs) +—— BZ(M-X's)
1 1
((Xs,05) LU) — ((X¢,08) L U)

such that the maps @ induce weak equivalences on classifying spaces.

We will power this with the following observation:

Observation 11. Recall that an embedding of topological G-spaces f : Y < Z is a G-isotopy equivalence if
there exists another G-equivariant embedding ¢ : Z < Y and a pair of G-equivariant isotopies gf ~ idy,
fg~idy. If f:Y — Z is a G-isotopy equivalence, then postcomposition with f induces a G x X,-isotopy
equivalence Conf,(Y) < Conf,(Z); indeed, postcomposition with f and g induce G-equivariant embeddings,
and postcomposition with the isotopies gf ~idy, fg ~idy yields equivariant isotopies Conf,(g)o Conf,(f) ~
Conf ,(gf) ~ Conf,(idz) ~ idconf, (z) and similar for fg.

In particular, the vertical arrows in the following diagram are isotopy equivalences

Conf§(X) = Config(X)5s = MapG(GXE|S|/FS,Conf|5|(X))
Conf{{(y) = Confi5(¥)> = Map®(GxXjs/Ts,Conf(Y)

where I = {(h,ps(h)) | h € H} C G x ¥g) is the graph subgroup corresponding with an H-set S with action
map ps : H— X5. Hence f induces a homotopy equivalence CoanS_I(X) = Conflsq(Y). <
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Proof of Proposition 10. The maps ¢ are each induced by the open inclusions M - Xg <> M —x, so the
top horizontal arrows commute. The equivalences B?(M - Xg) = ((Xg,03) L U) simply follow by unwinding
definitions. Thus we're left with proving that ¢ induces an equivalence on classifying spaces

Conf?(M —X) —— Conf%(M -X,)
1R 14
|BZ(M —x)| +—— |[BE(M-X)|

By Observation 11, it suffices to show that M — Xg < M —x is a G-isotopy equivalence. In fact, by Eq. (1), it

suffices to prove that the inclusion f : V—-D(V) < V —{0} is a G-isotopy equivalence. But this is easy; scaling
is equivariant, so we may define the G-equivariant embedding g: V —{0} - V - D(V) by g(x) = 1|+T||x| -x. Then,
1—t+|x]|

—.x. O

each of the equivariant isotopies gf ~id, fg ~id can be taken as restrictions of h(t,x) = H

We are ready to conclude our equivariant homotopical lift of [FN62, Thm 1].

Proof of Theorem 4. By the above analysis, we may replace our diagram with a homotopy equivalent diagram
given by the geometric realiztion of the following diagram of posets, and prove that it is homotopy Cartesian

BE(M = 1(S)) — BE s(M)

| !

{ty —— BS(M)

By Quillen’s theorem B [Qui73, Thm B], it suffices to prove two statements:
e for all basis elements (Xg,05), The canonical map ((X,,05) | U) — B%(M —1(S)) induces a weak
equivalence on classifying spaces, and
e for all inclusions of basis elements (X5, 05) C (X§,0¢), the canonical map ((Xé, og) U) - ((Xg,04) | U)
induces a weak equivalence on classifying spaces.
In fact, both statements follow immediately from Proposition 10, with the second using two-out-of-three. [

1.2. Proof of the main theorem in topology. To prove Theorem 6, we begin with a lemma.

Lemma 12. If M is a locally smooth G-manifold which is at least d-dimensional and (d — 2)-connected at each
orbit type and 1 : G/H <> M an embedded orbit, then M —1(G/H) is at least d-dimensional and (d—2)-connected
at each orbit type.

Proof. We have

M(K) G/K = G/H

M(H) - l(G/H) G/K = G/h,

so the only nontrivial case is H = K, in which case we’re tasked with verifying that the complement of a

discrete set of points in a d-dimensional (d — 2)-connected manifold is (d — 2)-connected. This is a well known
classical fact in algebraic topology which follows quickly from the Blakers-Massey theorem. O

(M —uG/H)) k) = {

Proof of Theorem 6. If d —2 < 0, there is nothing to prove, so assume that d —2 > 0. We induct on |Sg| with
base case 1, i.e. with S = G/H. In this case, Confg/H(M) = Mg is (d - 2)-connected by assumption.

For induction, fix some S LI G/H € Fg and inductively assume the theorem when |Tg| < |Sg|- Then, note
that Conf E(M ) is (d — 2)-connected by assumption and M —(S) is > d-dimensional and (d + 2)-connected at
each orbit by Lemma 12, so Conf 8 /(M —1(S)) (d—2)-connected by the inductive hypothesis. Thus Theorem 4

expresses Conf SGuG /(M) as the total space of a homotopy fiber sequence with connected base and fiber, so it
is connected. Furthermore, examining the long exact sequence associated with Theorem 4, we find that

0 ———— mConf§ o/ (M) ———— 0
1R P — 1R
n; Conf &,y (M - 1(S)) 7, Conf § (M)

is exact for 0 < k <d —2; hence Confg;uG/H(M) is (d — 2)-connected, completing the induction. |
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1.3. Some sufficient conditions for connectivity at each orbit. We begin with the following observation:
Observation 13. If M satisfies the conditions of Proposition 7, then My does as well. <
We will strengthen Proposition 7. Pick an order on Istrp(M) = (G/Hy,...,G/H,, G/G), and write

i<k
My = Mgpyy = | Meqry 0 Meqar
i<k
=Meuy- | M
(K)<(Hg)N(H;)
i<k

Lemma 14. For all k, the space My is (d — 2)-connected.

Proof. We induct in two ways:

e First, we inductively assume we have proved the lemma at full strength when G is replaced with any
proper subgroup H C G such that G/H € Istrp(M); since Istrp(M) is finite, this begins with the base
case in which case there are no such proper subgroups.

e Second, we inductively assume that we have proved the lemma for all k” < k; this begins with the base
case that k =1, in which case we have M| = M = M), which is (d — 2)-connected by assumption.

Under these assumptions, note that My_; € Mj_; is a (d — 2)-connected closed submanifold of codimension
>d in a (d —2)-connected smooth manifold with complement is M. Thus it possesses a tubular neighborhood
M1 Ct(Mj_1) C Mi_1, and “hemmed gluing” presents a homotopy pushout square

81Mk_1 —_— Mk
L
-
My —— My
The boundary dt (Mk,l) is the total space of a c-sphere bundle over a (d — 2)-connected space, where
¢ =codim(Mgp,) > M)-1>d-2.

The long exact sequence in homotopy reads

7(1(SC) — T (81(2\711(,1)) — T (Mkfl) > 0 > 7(0(81(1\7&(,1)) — T (Mkfl) — 0
9
Tt

SO arﬁk_l is connected, and when d—2 > 1, dtM;_; is simply connected. Furthermore, at degree 0 < £ < (d—2)
the Gysin sequence reads

0 — HY(9tM_;) ———— 0

4 ’l‘z' / \ {—c R"'
HYM;_,) H*(Mj_1)

s0 dTM_; has vanishing cohomology in degrees 0 < £ < d —2. Hurewicz’ theorem then implies that dM;_; is
(d — 2)-connected.

In particular, this together with (d — 3)-connectivity of the homotopy fiber S¢ implies that T'is a (d — 2)-
connected map, so its homotopy pushout ¢ is (d — 2)-connected. Since My_; is a (d — 2)-connected space by
assumption, this implies that My is (d — 2)-connected, completing the induction. O

Proof of Proposition 7. By Observation 13 it suffices to prove that M(g) is (d —2)-connected. This is precisely
Lemma 14 when k=n+1. O
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Warning 15. Neither the conditions of Proposition 7 or of Theorem 6 are stable under restrictions; indeed, for
G = C? and [C,] a Cy-torsor, the example [C,]- D" satisfies the conditions of Proposition 7 for d = n, but its
underlying manifold does not satisfy the conditions of Theorem 6 for any d, as it is not connected. We will
rectify this in the setting of real orthogonal G-representation by introducing stronger sufficient conditions
which themselves are stable under restriction. <

2. REPRESENTATIONS, HOMOTOPY-COHERENT ALGEBRA, AND CONFIGURATION SPACES

In homotopy-coherent algebra, a prominent role is played by the operads E; = A, and E,,, whose algebras
are homotopy-coherently associative algebras and homotopy-coherently commutative algebras, respectively.
Dunn’s celebrated “additivity theorem” proved non-homotopically [Dun88] (later made homotopical by Lurie
[HA, Thm 5.1.2.2]) that an object possessing n-interchanging E;-structures may equivalently be presented as
an algebra over the E, -operad, whose space of k-ary operations is weakly equivalent to the ordered configuration
space Confy(R"). Thus, after Dunn and Lurie, a higher-categorical version of the Eckmann-Hilton argument
may be phrased as stating that E,-algebras in (n —1)-categories canonically lift to E.,-algebras; Lurie showed
that this is equivalent to the statement that Conf(R") is (n — 2)-connected for all n,k [HA, Cor 5.1.1.7],
which was a half-century old fact of manifold topology due to [FN62].

We would like to lift this to equivariant higher algebra using the equivariant little disks G-operads Ey;
these appear in [Hor19|, where they are shown to have S-ary operation space

Ev(S) ~ Conff (V)

for all S € Fy. Thus we are compelled to seek a representation theoretic context lifting the assumptions of
Proposition 7. We propose the following.

Uld,c0]foral KcHCG. <

When G = e, this is equivalent to simply being d-dimensional.

Proposition 17. If a real orthogonal G-representation V has d-codimensional fized points, then the smooth
G-manifold V —{0} is at least d-dimensional and (d —2)-connected at each orbit type.

Proof. We may write V as a filtered (homotopy) colimit V = J; V; with V; a finite dimensional real orthogonal
G-representation with min(i, d)-codimensional fixed points; then, if V; is (i — 2)-connected for each i, taking
a colimit, this implies that V is d-connected. Hence it suffices to prove this in the case we that V is finite
dimensional.

In this case, G acts smoothly on V, and we make the following observations:

(a ) ~Uxk<n is either empty or (VH | > d-dimensional.
b VH is contractlble hence it is (d — 2)-connected.
G
(c) COdlm (Vewy = Vg |VH| - |VK) |VH/VK| >d by assumption.

(d) Istrp(V) is finite smce V is finite dimensional.

Thus Proposition 7 applies, proving the proposition. ]

Corollary 18. If V has d-codimensional fixed points, then for all closed subgroups H C G and finite H-sets
S eFy, Conf?(V) is (d — 2)-connected or empty.

Proof. We begin by noting

H G _ H
Conf?(V):{ConfS*H(ResH(V {0})) s" =0,

Conf?(Resg(V —{0})) otherwise.

so it suffices to show Confgl(ResIG{(V —{0})) to be (d — 2)-connected or empty. Noting that the condition of
having d-codmimensional fixed points is restriction-stable, this follows by Theorem 6 and Proposition 17. O

In fact, we have a converse to this.

Proposition 19. If there exists a finite-index inclusion of subgroups K ¢ H such that VI < VK is o proper
inclusion of codimension < d, then there exists some H’ such that Conf[%/H,](V) = Vim) 1s not (d—2)-connected.
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Proof. This never occurs when V is O-dimensional. If VC is 0 < ¢ < d-dimensional, then we may directly see
Confg*G(V) = Conf,(VC) =51 is not (d — 2)-connected, as it has nontrivial 7r,_;. Thus we assume that V©
is > d-dimensional, so that VH is > d-dim for all H.

Fix ¢ := mianHelstrP(V)codim(VH < VK), and suppose that this minimum is implemented by the
inclusion K ¢ H. We may replace V with the real orthogonal G-representation VK = V(>k) and assume that
VH <5 V is a proper inclusion of codimension < d. We're left with proving that Viy =V -Uxkcu VH is not
(d —2)-connected. Pick an order (H;)i<j<, on Istrp(V)—{K} so that H; = H, and set the notation

-1
V=V - U vHi
i=1

-1
% = VH( _ U VHiﬂH[
i=1
so that Vi =V ~» and V,,; = V(). Furthermore, note that V, =V — VH ~S(|V])x S (|VH1 |)7 in particular,
its reduced homology is

H,(V2) =

~ Z nef{c-1,dimV};
0 otherwise.

In the case ¢ = 1, this is not connected; V; is inductively the complement of a positive codimension submanifold
of a disconnected manifold, so it is disconnected. Hence V,,,; = V(k) is disconnected in this case. As a
consequence, we may assume that codim(VH c V/)> 2 for all ] ¢ H in Istrp(V).
Now, we’re ready to induct in two ways:
(1) We inductively assume the statement has been proved for all inclusions K’ € K” where K” C K; this
has base case K = e, where V has trivial G-action, and follows from the nonequivariant case.
(2) We inductively assume that H,,(V;_;) =0 when m < c—1 and that H,_;(V,_;) is nontrivial; this has
base case £ — 1 = 2 satisfied by the above computation.

The end of this induction implies the proposition, as Hurewicz’ theorem will imply that

Te—1(Vik))ab = -1 (Vi) ab = He1 (Vis1) 2 0,

and 0 <c—1<d-2. Note that the normal bundle of V — VHe ¢ V is a trivial D%-bundle; this restricts to
the (trivial) normal bundle of V,_; C V, so the bounding S%~! sphere bundle dtV;_; — Vj is trivial. Thus
“hemmed gluing” presents a homotopy pushout square

See-1 x Vg_l —
Ve ——— Ve

If ¢, > ¢, the left vertical arrow (hence the right vertical arrow) is a homology isomorphism in degrees <c—1,
proving the inductive step. Furthermore, if ¢, = ¢, then the vertical arrows are homology isomorphisms in
degrees < 2¢ — 2 and the associated map H,(S¢! x V,_;) = H.(V,_1) is an isomorphism. This implies that
H,,(Vy) =0 when m < c—1 and the Mayer-Vietoris sequence restricts to a short exact sequence

0 — ﬁc—l(sc_l X ‘75—1) — H, (V€—1)®ﬁc—l (Vo) — Hey (Vo) —— 0

so that H._1(V;) =0, as desired. |
To state a corollary, we define the weak indexing system
Fav ={S € Fyy | Conf{ (V) = 2}.

as in [Ste24a; Ste24b]. Our main algebraic corollary uses this to marry real representation theory, algebraic
topology, homotopy theory, equivariant higher category theory, and equivariant higher algebra.

Theorem 2°. Let G be a finite group and V a real orthogonal G-representation. Then, the following conditions
are equivalent:
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(a) V has d-codimensional fized points.
b) For all subgroups H C G and finite H-sets S, the space ConfH(V) is empty or (d —2)-connected.
S
(¢) The G-operad E?} is (d —2)-connected.*
(d) The forgetful functor
U : CMony(S) — Mong,, (S)
s an equivalence of (d —1)-categories.
(e) For all G-symmetric monoidal (d —1)-categories, the forgetful functor
U:CAlg,,(C) — AlgEv(C)
is an equivalence of (d —1)-categories.

Proof. The equivalence (a) <= (b) is Corollary 18 and Proposition 19. By [Hor19], the structure spaces
Ey(S) is Conf?(V), so (b) & (c) by definition. The equivalences (¢) & (d) < (e) are recorded in
[Ste24a]. O

In particular, note that |k . VH| =k |VH| and |k -VE/k.- VH) = k~|VK/VH|; hence if V has d-codmensional
fixed points, kV has kd-codimensional fixed points. All representations have 1-codimensional fixed points, so
dV has d-codimensional fixed points; hence Theorem 2’ specializes to Theorem 2.

Remark 20. Theorem 2’ is significantly stronger than Theorem 2; indeed, we may choose G = Cp, fix a
generator x € C,, and let A; denote the irreducible 2-dimensional real orthogonal Cj-representation on whom

x acts by rotation at an angle of 277“. Then, when d < p/2, the (nontrivial) representation V =d & @f:i A
has d-codimensional fixed points, but it contains only one copy of each of its nontrivial summands, so it can’t
be expressed as a direct sum of two copies of a nontrivial representation. <

Nevertheless, we specialize the following corollaries to dV for readability. The first yields a natural
RO(G)-graded AV-Tambara structure on the homotopy groups of an E,y-ring spectrum, and it follows from
Theorem 2 in combination with [Cno-+24, Thm 4.3.6].2

Corollary 21. If V is a real orthogonal G-representation, then there are factorizations
TambLAV (AbRO(G)) — TarnbLAV (Abz)
1 1

CAlg,y, (AbRO®)) — CAlg,, (Ab?)

b o]

AlgEzv (SpG) i} MackI(Abb Mack;(Ab)?
T TTT——

A

Finally, we acquire incomplete Mackey structures on E, ,)y-monoidal n-categories.
Corollary 22. E(,,,)y-monoidal n-categories canonically lift to AV -symmetric monoidal n categories, i.e.

. ® ®
U: CatAV,n - CatE(n.,.Q)V,Vl

is an equivalence of (n+ 1)-categories. In particular, when V = p, the forgetful functor

® ®
.
U:Catg, —Catg

is an equivalence of 2-categories.
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