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ON CONNECTIVITY OF SPACES OF EQUIVARIANT CONFIGURATIONS

NATALIE STEWART

Abstract. We provide conditions on a locally smooth G-manifold under which its nonempty spaces of
equivariant configurations ConfGS (X) are d-connected for all finite G-sets S. We use this to show that
EdV -algebras in a G-symmetric monoidal (d − 1)-category canonically lift to E∞V -algebras.

Throughout this paper, we fix G a Lie group.
Definition 1. If H ⊂ G is a closed subgroup and S ∈ FH a finite H-set, we let

ConfHS (X) ⊂MapH (S,X)

be the (topological) subspace of H-equivariant embeddings S ↪→M. ◁

Nonequivariantly, the homotopy type of configurations spaces in X is a rich source of homeomorphism-
invariants of X. In this paper, we study some rudiments of an equivariant lift of this in the smooth setting.
Namely, in Section 1, we supply sufficient conditions for a smooth G-manifold M such that its nonempty
configurations spaces ConfGS (M) are all d-connected.

We have a particular application in mind; the structure spaces of the little V -disks operad are con-
figuration spaces in smooth G-manifolds, and connectivity statements of G-operads translate to structural
statements about their algebras (see [Ste24a]). For instance, in Section 2, we prove a sharp strengthening of
the following theorem.

Theorem 2. Suppose G is finite. If C is a G-symmetric monoidal (d − 1)-category and V a real orthogonal
G-representation, then the forgetful functor

AlgE∞V
(C)→ AlgEdV

(C)

is an equivalence of (d − 1)-categories.

In particular, E∞V is a weak N∞-operad, so [Ste24a] and Theorem 2 provide a homotopical incomplete
Mackey functor model for EdV -algebras in Cartesian G-symmetric monoidal (d − 1)-categories and [Cno+24,
Thm B] provides a bi-incomplete Tambara functor model for EdV -rings in the setting of homotopical incomplete
Mackey functors valued in a (d − 1)-category.

1. Configuration spaces in locally smooth G-manifolds

Definition 3 ([Bre72, § IV]). If M is a smooth manifold with a continuous G-action, we say that the action
is locally smooth if, for each point x ∈M, there exists a real orthogonal stabG(x)-representation Vx and a
trivializing open neighborhood

x ∈
∐

G/stabG(x)
Vx M,o

where for a topological H-space X, we write
∐

G/stabG(x)
X := G ×H X as a topological G-space. In this case, we

say that M with its action is a locally smooth G-manifold. ◁

Smooth actions on manifolds admit well-behaved tubular neighborhoods; for example, [Bre72, Cor V.2.4]
proves that smooth actions are locally smooth. On the other hand, if M is a locally smooth G-manifold, then
the inclusion M(H) ↪→M of points with orbit isomorphic to G/H is a locally closed topological submanifold
[Bre72, Thm IV.3.3], which is smooth if M is smooth [Bre72, Cor VI.2.5].

We begin this section in Section 1.1 by proving the following.
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Theorem 4 (equivariant Fadell-Neuwirth fibration). Fix M a locally smooth G-manifold, S,T ∈ FG a pair of
finite G-sets, and ι : S ↪→M a G-equivariant configuration. The following is a homotopy-Cartesian square:

ConfGT (M − ι(S)) ConfGS⊔T (M)

{ι} ConfGS (M)

⌟
U

Thus the long exact sequence in homotopy for T = G/H yields means for computing homotopy groups
of ConfGS (M) inductively on the cardinality of the orbit set |SG |, with inductive step hinging on homotopy of

ConfGG/H (M − ι(S)) ≃ (M − ι(S))(H) .

We denote by [OG] the subconjugacy lattice of closed subgroups of G, and we let

Istrp(M) = {stabx(G) | x ∈M} ⊂ [OG]

be the full subposet spanned by conjugacy classes (H) for which M(H) is nonempty. We are inspired to make
the following definition.
Definition 5. A locally smooth G-manifold M is

• ≥ d-dimensional at each orbit type if M(H) is ≥ d-dimensional for each (H) ∈ Istrp(M);
• (d − 2)-connected at each orbit type if M(H) is (d − 2)-connected for each (H) ∈ Istrp(M). ◁

In Section 1.2, we use Theorem 4 to prove the following.

Theorem 6. If a locally smooth G-manifold M is ≥ d-dimensional and (d − 2)-connected at each orbit type,
then for all finite G-sets S ∈ FG, the configuration space ConfGS (M) is either empty or (d − 2)-connected.

In order to identify applications of this theorem, we give sufficient conditions for M to be (d−2)-connected
at each orbit type. Note by repeatedly applying [Bre72, Thm IV.3.1] that the subspace M≤(H) ⊂M of orbits
mapping to G/H is a closed submanifold. In Section 1.3, we use this to prove the following.

Proposition 7. Suppose that M is a smooth G-manifold satisfying the following conditions:
(a) M is ≥ d-dimensional at each orbit type.
(b) M≤(H) is (d − 2)-connected for each H.
(c) codim(M≤(K) ↪→M≤(H)) ≥ d for each (K) ≤ (H).
(d) Istrp(M) is finite (e.g. G compact and M finite type, c.f. [Bre72, Thm IV.10.5]).

Then M is (d − 2)-connected at each orbit type.

1.1. A Fadell-Neuwirth fibration for equivariant configurations. Our strategy for Theorem 4 mirrors that
of Knudsen in the notes [Knu18]. In particular, we would like to use Quillen’s theorem B [Qui73], which
requires us to construct ConfHS (M) as a classifying space. In fact, there is a general scheme to do this:

Lemma 8 ([DI04, Thm 2.1], via [Knu18, Thm 4.0.2]). If B is a topological basis for X such that all elements
of B are weakly contractible, then the canonical map

|B| = hocolimB∗ → X

is a weak equivalence, where on the left B is considered as a poset under inclusion.

To use this, define an elementwise-contractible basis for ConfGS (M) by

B̃GS (M) :=

(X,σ )

∣∣∣∣∣∣∣∣ ∃(Vx) ∈
∏

[x]∈OrbS

Reporth
R (stabG([x])), s.t.

S∐
[x]

Vx ≃ X ⊂M, σ : S
∼−→ π0(U )

 ,
where for all tuples (Yx) ∈

∏
[x]∈OrbS

TopstabG([x]), we write

S∐
[x]

Yx :=
∐

[x]∈Orb(S)

(
G ×stabG([x]) Yx

)
∈ TopG
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for the indexed disjoint union of Yx. We fix BGS (M) ⊂ B̃GS (M) the smaller basis consisting of open sets (X,σ )
possessing neighborhoods (X,σ ) ⊂ (X ′ ,σ ) such that the associated embeddings factor as

(1)

S∐
U
D(VU )◦

S∐
U
VU

V ′U M

≃

∃ X

X′

where D(VU )◦ denotes the open unit VU -disk; that is, open sets in BGS (M) consist of collections of configurations
possessing a fixed common neighborhood resembling disjoint unions of real orthogonal representations, subject
to the condition that there is “space on all sides” of the neighborhood. This is functorial in two ways:

• given a summand inclusion S ↪→ T ⊔ S, the forgetful map ConfGT⊔S (M)→ ConfGS (M) preserves basis
elements, inducing a map BGT⊔S (M)→BGS (M).

• any open embedding ι :M ↪→N induces a map ConfGT (M) ↪→ ConfGT (N ) preserving basis elements,
inducing a map BHS (M)→BHS (N ).

To summarize, we’ve observed the proof of following lemma.

Lemma 9. Given H ⊂ G and S,T ∈ FH , there is an equivalence of arrows∣∣∣BGT⊔S (M)
∣∣∣ ConfGT⊔S (M)

∣∣∣BGS (M)
∣∣∣ ConfGS (M)

≃

≃

Thus we can characterize the homotopy fiber of U using Quillen’s theorem B and the following.

Proposition 10. For (XS ,σS ) ≤ (X ′S ,σ
′
S ) ∈ B

G
S (M), and an S-configuration x ∈ XS , we have a diagram

BGT (M − x) BGT (M −XS ) BGT (M −X ′S )

((XS ,σS ) ↓U )
(
(X ′S ,σ

′
S ) ↓U

)ϕ

ϕ

≃ ≃

such that the maps ϕ induce weak equivalences on classifying spaces.

We will power this with the following observation:
Observation 11. Recall that an embedding of topological G-spaces f : Y ↪→ Z is a G-isotopy equivalence if
there exists another G-equivariant embedding g : Z ↪→ Y and a pair of G-equivariant isotopies gf ∼ idZ ,
f g ∼ idY . If f : Y → Z is a G-isotopy equivalence, then postcomposition with f induces a G ×Σn-isotopy
equivalence Confn(Y ) ↪→ Confn(Z); indeed, postcomposition with f and g induce G-equivariant embeddings,
and postcomposition with the isotopies gf ∼ idZ , f g ∼ idY yields equivariant isotopies Confn(g)◦Confn(f ) ∼
Confn(gf ) ∼ Confn(idZ ) ∼ idConfn(Z) and similar for f g.

In particular, the vertical arrows in the following diagram are isotopy equivalences

ConfHS (X) Conf |S |(X)ΓS MapG
(
G ×Σ|S |/ΓS ,Conf |S |(X)

)

ConfHS (Y ) Conf |S |(Y )ΓS MapG
(
G ×Σ|S |/ΓS ,Conf |S |(Y )

)
≃ ≃

≃ ≃

where ΓS =
{
(h,ρS (h)) | h ∈H

}
⊂ G ×Σ|S | is the graph subgroup corresponding with an H-set S with action

map ρS :H → Σ|S |. Hence f induces a homotopy equivalence ConfHS (X)
∼−→ ConfHS (Y ). ◁
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Proof of Proposition 10. The maps ϕ are each induced by the open inclusions M −XS ↪→ M − x, so the
top horizontal arrows commute. The equivalences BGT (M −XS ) ≃ ((XS ,σS ) ↓U ) simply follow by unwinding
definitions. Thus we’re left with proving that ϕ induces an equivalence on classifying spaces

ConfGT (M − x) ConfGT (M −Xs)∣∣∣BGT (M − x)∣∣∣ ∣∣∣BGT (M −Xs)
∣∣∣

≃ ≃

By Observation 11, it suffices to show that M −XS ↪→M −x is a G-isotopy equivalence. In fact, by Eq. (1), it
suffices to prove that the inclusion f : V −D(V ) ↪→ V −{0} is a G-isotopy equivalence. But this is easy; scaling
is equivariant, so we may define the G-equivariant embedding g : V − {0} → V −D(V ) by g(x) = 1+|x|

|x| ·x. Then,

each of the equivariant isotopies gf ∼ id, f g ∼ id can be taken as restrictions of h(t,x) = 1−t+|x|
|x| · x. □

We are ready to conclude our equivariant homotopical lift of [FN62, Thm 1].

Proof of Theorem 4. By the above analysis, we may replace our diagram with a homotopy equivalent diagram
given by the geometric realiztion of the following diagram of posets, and prove that it is homotopy Cartesian

BGT (M − ι(S)) BGT⊔S (M)

{ι} BGS (M)

By Quillen’s theorem B [Qui73, Thm B], it suffices to prove two statements:
• for all basis elements (XS ,σS ), The canonical map ((Xs,σs) ↓U ) → BGT (M − ι(S)) induces a weak

equivalence on classifying spaces, and
• for all inclusions of basis elements (XS ,σS ) ⊂ (X ′S ,σ

′
S ), the canonical map

(
(X ′S ,σ

′
S ) ↓U

)
→ ((XS ,σS ) ↓U )

induces a weak equivalence on classifying spaces.
In fact, both statements follow immediately from Proposition 10, with the second using two-out-of-three. □

1.2. Proof of the main theorem in topology. To prove Theorem 6, we begin with a lemma.

Lemma 12. If M is a locally smooth G-manifold which is at least d-dimensional and (d −2)-connected at each
orbit type and ι : G/H ↪→M an embedded orbit, then M−ι(G/H) is at least d-dimensional and (d−2)-connected
at each orbit type.

Proof. We have

(M − ι(G/H))(K) =

M(K) G/K , G/H

M(H) − ι(G/H) G/K = G/h,

so the only nontrivial case is H = K, in which case we’re tasked with verifying that the complement of a
discrete set of points in a d-dimensional (d −2)-connected manifold is (d −2)-connected. This is a well known
classical fact in algebraic topology which follows quickly from the Blakers-Massey theorem. □

Proof of Theorem 6. If d − 2 < 0, there is nothing to prove, so assume that d − 2 ≥ 0. We induct on |SG | with
base case 1, i.e. with S = G/H . In this case, ConfGG/H (M) =M(H) is (d − 2)-connected by assumption.

For induction, fix some S ⊔G/H ∈ FG and inductively assume the theorem when |TG | ≤ |SG |. Then, note
that ConfGS (M) is (d − 2)-connected by assumption and M − ι(S) is ≥ d-dimensional and (d +2)-connected at
each orbit by Lemma 12, so ConfGG/H (M− ι(S)) (d−2)-connected by the inductive hypothesis. Thus Theorem 4
expresses ConfGS⊔G/H (M) as the total space of a homotopy fiber sequence with connected base and fiber, so it
is connected. Furthermore, examining the long exact sequence associated with Theorem 4, we find that

0 πkConf
G
S⊔G/H (M) 0

πkConf
G
G/H (M − ι(S)) πkConf

G
S (M)

≃ ≃

is exact for 0 < k ≤ d − 2; hence ConfGS⊔G/H (M) is (d − 2)-connected, completing the induction. □
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1.3. Some sufficient conditions for connectivity at each orbit. We begin with the following observation:
Observation 13. If M satisfies the conditions of Proposition 7, then M≤(H) does as well. ◁

We will strengthen Proposition 7. Pick an order on Istrp(M) = (G/H1, . . . ,G/Hn,G/G), and write

Mk =M −
⋃
i<k

M≤(Hi )

M̃k =M≤(Hk ) −
⋃
i<k

M≤(Hk ) ∩M≤(Hi )

=M≤(Hk ) −
⋃

(K)≤(Hk )∩(Hi )
i<k

M≤(K)

Lemma 14. For all k, the space Mk is (d − 2)-connected.

Proof. We induct in two ways:
• First, we inductively assume we have proved the lemma at full strength when G is replaced with any

proper subgroup H ⊊ G such that G/H ∈ Istrp(M); since Istrp(M) is finite, this begins with the base
case in which case there are no such proper subgroups.

• Second, we inductively assume that we have proved the lemma for all k′ < k; this begins with the base
case that k = 1, in which case we have M1 =M =M≤(G), which is (d − 2)-connected by assumption.

Under these assumptions, note that M̃k−1 ⊂Mk−1 is a (d − 2)-connected closed submanifold of codimension
≥ d in a (d−2)-connected smooth manifold with complement is Mk . Thus it possesses a tubular neighborhood
M̃k−1 ⊂ τ(M̃k−1) ⊂Mk−1, and “hemmed gluing” presents a homotopy pushout square

∂τM̃k−1 Mk

M̃k−1 Mk−1

ι̃
⌜

ι

The boundary ∂τ
(
M̃k−1

)
is the total space of a c-sphere bundle over a (d − 2)-connected space, where

c = codim(M≤(Hk ) ↪→M)− 1 > d − 2.

The long exact sequence in homotopy reads

π1(Sc) π1

(
∂τ

(
M̃k−1

))
π1

(
M̃k−1

)
0 π0

(
∂τ

(
M̃k−1

))
π0

(
M̃k−1

)
0

π0(Sc)

≃

so ∂τM̃k−1 is connected, and when d−2 ≥ 1, ∂τM̃k−1 is simply connected. Furthermore, at degree 0 < ℓ ≤ (d−2)
the Gysin sequence reads

0 Hℓ(∂τM̃k−1) 0

Hℓ(M̃k−1) Hℓ−c(M̃k−1)

≃ ≃

so ∂τM̃k−1 has vanishing cohomology in degrees 0 < ℓ ≤ d − 2. Hurewicz’ theorem then implies that ∂M̃k−1 is
(d − 2)-connected.

In particular, this together with (d − 3)-connectivity of the homotopy fiber Sc implies that ι̃ is a (d − 2)-
connected map, so its homotopy pushout ι is (d − 2)-connected. Since Mk−1 is a (d − 2)-connected space by
assumption, this implies that Mk is (d − 2)-connected, completing the induction. □

Proof of Proposition 7. By Observation 13 it suffices to prove that M(G) is (d−2)-connected. This is precisely
Lemma 14 when k = n+1. □
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Warning 15. Neither the conditions of Proposition 7 or of Theorem 6 are stable under restrictions; indeed, for
G = C2 and [C2] a C2-torsor, the example [C2] ·Dn satisfies the conditions of Proposition 7 for d = n, but its
underlying manifold does not satisfy the conditions of Theorem 6 for any d, as it is not connected. We will
rectify this in the setting of real orthogonal G-representation by introducing stronger sufficient conditions
which themselves are stable under restriction. ◁

2. Representations, homotopy-coherent algebra, and configuration spaces

In homotopy-coherent algebra, a prominent role is played by the operads E1 =A∞ and E∞, whose algebras
are homotopy-coherently associative algebras and homotopy-coherently commutative algebras, respectively.
Dunn’s celebrated “additivity theorem” proved non-homotopically [Dun88] (later made homotopical by Lurie
[HA, Thm 5.1.2.2]) that an object possessing n-interchanging E1-structures may equivalently be presented as
an algebra over the En-operad, whose space of k-ary operations is weakly equivalent to the ordered configuration
space Confk(Rn). Thus, after Dunn and Lurie, a higher-categorical version of the Eckmann-Hilton argument
may be phrased as stating that En-algebras in (n− 1)-categories canonically lift to E∞-algebras ; Lurie showed
that this is equivalent to the statement that Confk(Rn) is (n − 2)-connected for all n,k [HA, Cor 5.1.1.7],
which was a half-century old fact of manifold topology due to [FN62].

We would like to lift this to equivariant higher algebra using the equivariant little disks G-operads EV ;
these appear in [Hor19], where they are shown to have S-ary operation space

EV (S) ≃ ConfHS (V )

for all S ∈ FH . Thus we are compelled to seek a representation theoretic context lifting the assumptions of
Proposition 7. We propose the following.
Definition 16. We say V has d-codimensional fixed points if

∣∣∣V H
∣∣∣ , ∣∣∣V K /V H

∣∣∣ ∈ {0}∪ [d,∞] for all K ⊂H ⊂ G. ◁

When G = e, this is equivalent to simply being d-dimensional.

Proposition 17. If a real orthogonal G-representation V has d-codimensional fixed points, then the smooth
G-manifold V − {0} is at least d-dimensional and (d − 2)-connected at each orbit type.

Proof. We may write V as a filtered (homotopy) colimit V =
⋃

i Vi with Vi a finite dimensional real orthogonal
G-representation with min(i,d)-codimensional fixed points; then, if Vi is (i − 2)-connected for each i, taking
a colimit, this implies that V is d-connected. Hence it suffices to prove this in the case we that V is finite
dimensional.

In this case, G acts smoothly on V , and we make the following observations:
(a) V(H) = V H −

⋃
K≤(H)V

K is either empty or
∣∣∣V H

∣∣∣ ≥ d-dimensional.
(b) V≤(H) = V H

G is contractible, hence it is (d − 2)-connected.
(c) codim(V≤(K) ↪→ V ∗≤(H)) =

∣∣∣V H
∣∣∣− ∣∣∣V K

∣∣∣ = ∣∣∣V H /V K
∣∣∣ ≥ d by assumption.

(d) Istrp(V ) is finite since V is finite dimensional.
Thus Proposition 7 applies, proving the proposition. □

Corollary 18. If V has d-codimensional fixed points, then for all closed subgroups H ⊂ G and finite H-sets
S ∈ FH , ConfHS (V ) is (d − 2)-connected or empty.

Proof. We begin by noting

ConfHS (V ) =

ConfHS−∗H (ResGH (V − {0})) SH , ∅,

ConfHS (Res
G
H (V − {0})) otherwise.

so it suffices to show ConfHS (Res
G
H (V − {0})) to be (d − 2)-connected or empty. Noting that the condition of

having d-codmimensional fixed points is restriction-stable, this follows by Theorem 6 and Proposition 17. □

In fact, we have a converse to this.

Proposition 19. If there exists a finite-index inclusion of subgroups K ⊂H such that V H ↪→ V K is a proper
inclusion of codimension < d, then there exists some H ′ such that ConfG[G/H ′](V ) = V(H ′) is not (d−2)-connected.
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Proof. This never occurs when V is 0-dimensional. If V G is 0 < c < d-dimensional, then we may directly see
ConfG2·∗G (V ) = Conf2(V G) = Sc−1 is not (d −2)-connected, as it has nontrivial πc−1. Thus we assume that V G

is ≥ d-dimensional, so that V H is ≥ d-dim for all H .
Fix c := minK⊂H∈Istrp(V ) codim(V H ↪→ V K ), and suppose that this minimum is implemented by the

inclusion K ⊂H . We may replace V with the real orthogonal G-representation V K = V(≥K) and assume that
V H ↪→ V is a proper inclusion of codimension < d. We’re left with proving that V(H) = V −

⋃
K⊊H V H is not

(d − 2)-connected. Pick an order (Hi)1≤i≤n on Istrp(V )− {K} so that H1 =H , and set the notation

Vℓ := V −
ℓ−1⋃
i=1

V Hi

Ṽℓ := V Hℓ −
ℓ−1⋃
i=1

V Hi∩Hℓ

so that V1 = V ≃ ∗ and Vn+1 = V(K). Furthermore, note that V2 = V −V H1 ≃ S (|V |)× S
(∣∣∣V H1

∣∣∣); in particular,
its reduced homology is

H̃m(V2) =

Z n ∈ {c − 1,dimV } ;
0 otherwise.

In the case c = 1, this is not connected; Vℓ is inductively the complement of a positive codimension submanifold
of a disconnected manifold, so it is disconnected. Hence Vn+1 = V(K) is disconnected in this case. As a
consequence, we may assume that codim(V H ⊂ V J ) ≥ 2 for all J ⊂H in Istrp(V ).

Now, we’re ready to induct in two ways:
(1) We inductively assume the statement has been proved for all inclusions K ′ ⊂ K ′′ where K ′′ ⊊ K ; this

has base case K = e, where V has trivial G-action, and follows from the nonequivariant case.
(2) We inductively assume that H̃m(Vℓ−1) = 0 when m < c − 1 and that H̃c−1(Vℓ−1) is nontrivial; this has

base case ℓ − 1 = 2 satisfied by the above computation.
The end of this induction implies the proposition, as Hurewicz’ theorem will imply that

πc−1(V(K))Ab = πc−1(Vn+1)Ab ≃ H̃c−1(Vn+1) , 0,

and 0 < c − 1 ≤ d − 2. Note that the normal bundle of V −V Hℓ ⊂ V is a trivial Dcℓ -bundle; this restricts to
the (trivial) normal bundle of Ṽℓ−1 ⊂ Vℓ, so the bounding Scℓ−1 sphere bundle ∂τṼℓ−1→ Vℓ is trivial. Thus
“hemmed gluing” presents a homotopy pushout square

Scℓ−1 × Ṽℓ−1 Vℓ

Ṽℓ−1 Vℓ−1

⌟

If cℓ > c, the left vertical arrow (hence the right vertical arrow) is a homology isomorphism in degrees ≤ c − 1,
proving the inductive step. Furthermore, if cℓ = c, then the vertical arrows are homology isomorphisms in
degrees ≤ 2c − 2 and the associated map H̃c(Sc−1 × Ṽℓ−1)→ H̃c(Ṽℓ−1) is an isomorphism. This implies that
Hm(Vℓ) = 0 when m < c − 1 and the Mayer-Vietoris sequence restricts to a short exact sequence

0 H̃c−1
(
Sc−1 × Ṽℓ−1

)
H̃c−1

(
Ṽℓ−1

)
⊕ H̃c−1 (Vℓ) H̃c−1 (Vℓ−1) 0

so that H̃c−1(Vℓ) , 0, as desired. □

To state a corollary, we define the weak indexing system

FAV =
{
S ∈ FH | ConfHS (V ) , ∅

}
.

as in [Ste24a; Ste24b]. Our main algebraic corollary uses this to marry real representation theory, algebraic
topology, homotopy theory, equivariant higher category theory, and equivariant higher algebra.

Theorem 2’. Let G be a finite group and V a real orthogonal G-representation. Then, the following conditions
are equivalent:
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(a) V has d-codimensional fixed points.
(b) For all subgroups H ⊂ G and finite H-sets S, the space ConfHS (V ) is empty or (d − 2)-connected.
(c) The G-operad E⊗V is (d − 2)-connected.1

(d) The forgetful functor
U : CMonAV (S)→MonEV

(S)
is an equivalence of (d − 1)-categories.

(e) For all G-symmetric monoidal (d − 1)-categories, the forgetful functor

U : CAlgAV (C)→ AlgEV
(C)

is an equivalence of (d − 1)-categories.

Proof. The equivalence (a) ⇐⇒ (b) is Corollary 18 and Proposition 19. By [Hor19], the structure spaces
EV (S) is ConfHS (V ), so (b) ⇐⇒ (c) by definition. The equivalences (c) ⇐⇒ (d) ⇐⇒ (e) are recorded in
[Ste24a]. □

In particular, note that
∣∣∣k ·V H

∣∣∣ = k
∣∣∣V H

∣∣∣ and
∣∣∣k ·V K /k ·V H

∣∣∣ = k ·
∣∣∣V K /V H

∣∣∣; hence if V has d-codmensional
fixed points, kV has kd-codimensional fixed points. All representations have 1-codimensional fixed points, so
dV has d-codimensional fixed points; hence Theorem 2’ specializes to Theorem 2.
Remark 20. Theorem 2’ is significantly stronger than Theorem 2; indeed, we may choose G = Cp, fix a
generator x ∈ Cp, and let λi denote the irreducible 2-dimensional real orthogonal Cp-representation on whom

x acts by rotation at an angle of 2πi
p . Then, when d ≤ p/2, the (nontrivial) representation V = d ⊕

⊕d
1=i λi

has d-codimensional fixed points, but it contains only one copy of each of its nontrivial summands, so it can’t
be expressed as a direct sum of two copies of a nontrivial representation. ◁

Nevertheless, we specialize the following corollaries to dV for readability. The first yields a natural
RO(G)-graded AV -Tambara structure on the homotopy groups of an E2V -ring spectrum, and it follows from
Theorem 2 in combination with [Cno+24, Thm 4.3.6].2

Corollary 21. If V is a real orthogonal G-representation, then there are factorizations

TambI,AV
(
AbRO(G)

)
TambI,AV

(
AbZ

)

CAlgAV
(
AbRO(G)

)
CAlgAV

(
AbZ

)

AlgE2V

(
Sp

G

)
MackI (Ab)RO(G) MackI (Ab)Z

≃ ≃

U U

π⋆

π∗

Finally, we acquire incomplete Mackey structures on E(n+2)V -monoidal n-categories.

Corollary 22. E(n+2)V -monoidal n-categories canonically lift to AV -symmetric monoidal n categories, i.e.

U : Cat⊗AV ,n→ Cat⊗E(n+2)V ,n

is an equivalence of (n+1)-categories. In particular, when V = ρ, the forgetful functor

U : Cat⊗G,n→ Cat⊗E(n+2)ρ ,n

is an equivalence of 2-categories.
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1 Recall from [Ste24a] that a G-operad O⊗ is (d − 2)-connected if its nonempty structure spaces O(S) are (d − 2)-connected.
2 In the case VG , 0, AV is an indexing category, so we could simply reference the earlier work of [Cha24; San23].



REFERENCES 9

References

[Bre72] Glen E. Bredon. Introduction to compact transformation groups. Vol. 46. Pure and Applied
Mathematics. Academic Press, New York-London, 1972, pp. xiii+459. url: https://jfdmath.
sitehost.iu.edu/seminar/Bredon,Introduction_to_Compact_Transformation_Groups.
pdf (cit. on pp. 1, 2).

[Cha24] David Chan. “Bi-incomplete Tambara functors as O-commutative monoids”. In: Tunisian Journal
of Mathematics 6.1 (Jan. 2024), pp. 1–47. issn: 2576-7658. doi: 10.2140/tunis.2024.6.1. url:
http://dx.doi.org/10.2140/tunis.2024.6.1 (cit. on p. 8).

[Cno+24] Bastiaan Cnossen et al. Normed equivariant ring spectra and higher Tambara functors. 2024.
arXiv: 2407.08399 [math.AT]. url: https://arxiv.org/abs/2407.08399 (cit. on p. 8).

[DI04] Daniel Dugger and Daniel C. Isaksen. “Topological hypercovers and A1-realizations”. In: Math. Z.
246.4 (2004), pp. 667–689. issn: 0025-5874,1432-1823. doi: 10.1007/s00209-003-0607-y. url:
https://people.math.rochester.edu/faculty/doug/otherpapers/dugger-hypercover.
pdf (cit. on p. 2).

[Dun88] Gerald Dunn. “Tensor product of operads and iterated loop spaces”. In: J. Pure Appl. Algebra 50.3
(1988), pp. 237–258. issn: 0022-4049,1873-1376. doi: 10.1016/0022-4049(88)90103-X. url:
https://people.math.rochester.edu/faculty/doug/otherpapers/Dunn.pdf (cit. on p. 6).

[FN62] Edward Fadell and Lee Neuwirth. “Configuration spaces”. In: Math. Scand. 10 (1962), pp. 111–118.
issn: 0025-5521,1903-1807. doi: 10.7146/math.scand.a-10517. url: https://www.mscand.dk/
article/download/10517/8538 (cit. on pp. 4, 6).

[Hor19] Asaf Horev. Genuine equivariant factorization homology. 2019. arXiv: 1910.07226 [math.AT]
(cit. on pp. 6, 8).

[Knu18] Ben Knudsen. Configuration spaces in algebraic topology. 2018. arXiv: 1803.11165 [math.AT].
url: https://arxiv.org/abs/1803.11165 (cit. on p. 2).

[HA] Jacob Lurie. Higher Algebra. 2017. url: https://www.math.ias.edu/~lurie/papers/HA.pdf
(cit. on p. 6).

[Qui73] Daniel Quillen. “Higher algebraic K-theory. I”. In: Algebraic K-theory, I: Higher K-theories (Proc.
Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Vol. Vol. 341. Lecture Notes in Math.
Springer, Berlin-New York, 1973, pp. 85–147. url: https://sma.epfl.ch/~hessbell/topo_
alg/Quillen.pdf (cit. on pp. 2, 4).

[San23] Ivo de los Santos Vekemans. Bi-Incomplete Tambara Functors As Coherent Monoids. 2023. url:
https://openresearch-repository.anu.edu.au/server/api/core/bitstreams/4aa63fb4-
8f4a-45e6-93fc-165529f326d1/content (cit. on p. 8).

[Ste24a] Natalie Stewart. On tensor products of equivariant commutative operads. 2024. url: https:
//nataliesstewart.github.io/files/Ninfty_draft.pdf (cit. on pp. 1, 7, 8).

[Ste24b] Natalie Stewart. Orbital categories and weak indexing systems. 2024. url: https://nataliesstewart.
github.io/files/windex_draft.pdf (cit. on p. 7).

https://jfdmath.sitehost.iu.edu/seminar/Bredon,Introduction_to_Compact_Transformation_Groups.pdf
https://jfdmath.sitehost.iu.edu/seminar/Bredon,Introduction_to_Compact_Transformation_Groups.pdf
https://jfdmath.sitehost.iu.edu/seminar/Bredon,Introduction_to_Compact_Transformation_Groups.pdf
https://doi.org/10.2140/tunis.2024.6.1
http://dx.doi.org/10.2140/tunis.2024.6.1
https://arxiv.org/abs/2407.08399
https://arxiv.org/abs/2407.08399
https://doi.org/10.1007/s00209-003-0607-y
https://people.math.rochester.edu/faculty/doug/otherpapers/dugger-hypercover.pdf
https://people.math.rochester.edu/faculty/doug/otherpapers/dugger-hypercover.pdf
https://doi.org/10.1016/0022-4049(88)90103-X
https://people.math.rochester.edu/faculty/doug/otherpapers/Dunn.pdf
https://doi.org/10.7146/math.scand.a-10517
https://www.mscand.dk/article/download/10517/8538
https://www.mscand.dk/article/download/10517/8538
https://arxiv.org/abs/1910.07226
https://arxiv.org/abs/1803.11165
https://arxiv.org/abs/1803.11165
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://sma.epfl.ch/~hessbell/topo_alg/Quillen.pdf
https://sma.epfl.ch/~hessbell/topo_alg/Quillen.pdf
https://openresearch-repository.anu.edu.au/server/api/core/bitstreams/4aa63fb4-8f4a-45e6-93fc-165529f326d1/content
https://openresearch-repository.anu.edu.au/server/api/core/bitstreams/4aa63fb4-8f4a-45e6-93fc-165529f326d1/content
https://nataliesstewart.github.io/files/Ninfty_draft.pdf
https://nataliesstewart.github.io/files/Ninfty_draft.pdf
https://nataliesstewart.github.io/files/windex_draft.pdf
https://nataliesstewart.github.io/files/windex_draft.pdf

	1. Configuration spaces in locally smooth G-manifolds
	1.1. A Fadell-Neuwirth fibration for equivariant configurations
	1.2. Proof of the main theorem in topology
	1.3. Some sufficient conditions for connectivity at each orbit

	2. Representations, homotopy-coherent algebra, and configuration spaces
	Acknowledgements
	References

