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1. Introduction

The question of existence of framed manifolds of Kervaire invariant one has a
long history in differential and algebraic topology, and has played an important
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role in the classification of smooth structures on manifolds in dimension greater
than four and in the homotopy groups of spheres. It has been one of the oldest
open issues in algebraic topology. My aim in these lectures is to describe the
origins and history of this famous problem, and following recent result of Mike
Hill, myself, and Doug Ravenel [11].

Theorem 1. If M is a stably framed smooth, closed manifold of Kervaire in-
variant one, then the dimension of M is 2, 6, 14, 30, 62, or 126.

Framed manifolds of Kervaire invariant one are known to exist in dimension
2, 6, 14, 30, 62. Theorem 1 therefore resolves the Kervaire invariant one problem
in all dimensions except 126.

2. Pontryagin’s work of the 1930s

By the mid 1930s, the subject of algebraic topology had reached the state usu-
ally described at the beginning of a first year graduate course in the subject.
Homology and cohomology groups had been defined, and Brouwer had care-
fully defined the degree of a map and he and Hopf had proved the theorem that
two maps from an oriented n-manifold M to Sn are homotopic if and only if
they have the same degree. In the mid 1930s Pontryagin introduced a famous
generalization of Brouwer’s work and created a new link between homotopy
theory and geometry.

Following Hopf, Pontryagin undertook to study the maps

(2.1) f W SnCk �! Sn

in terms of the geometry of the inverse image of a regular value x 2 Sn. Since
x is a regular value, the space Mx D f �1.x/ is a closed, smooth manifold
of dimension k. Fixing a trivialization of the tangent bundle to Sn at x gives
a trivialization of the normal bundle to Mx in SnCk , making Mx into a stably
framed manifold.

If y 2 Sn is another regular value then My D f �1.y/ is another stably
framed manifold. As in Brouwer’s work on the degree, the manifolds Mx and
My can be related by choosing a path � W Œ0; 1� ! Sn which is transverse to
f , and with the property that �.0/ D x and �.1/ D y. The inverse image of
� is then a stably framed manifold N with “incoming” boundary equal to Mx

and “outgoing” boundary My . The manifold N is a framed cobordism between
Mx and My , and two stably framed manifolds are said to be framed cobordant
if there is a framed cobordism between them.

The relation “framed cobordant” is an equivalence relation, and Pontrya-
gin showed that the construction just described leads to a description of the
set �nCkSn of homotopy classes of maps (2.1) in terms of framed cobordism
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classes of manifolds. The statement takes on its simplest form when n becomes
very large. Write

� st
k S0 D lim

n!1 �nCkSn

for the kth stable homotopy group of spheres, and let �fr
k

be the set of cobor-
dism classes of stably framed k-manifolds. Pontryagin’s correspondence gives
an isomorphism of abelian groups

� st
k S0 � �fr

k

in which the set of cobordism classes of framed manifolds is made into a group
using disjoint union. This work established a very deep relationship between
homotopy theory and geometry; one that was destined to shape the subject over
the next 50 years.

Using the classification of manifolds, Pontryagin computed the homotopy
groups � st

k
S0 for k � 2. The case k D 0 reproduces the theorem of Brouwer

and Hopf that two maps from the n-sphere to itself of the same degree are homo-
topic. A compact 0-manifold is a finite set of points, and the framing attaches an
element GLn.R/ to each point. Elements of GLn.R/ in the same path compo-
nent correspond to cobordant manifolds, so the only information retained upon
passing to cobordism classes is the path component of the framing, which is
given by a sign ˙1. The boundary of the unit interval in any framing is the dis-
joint union of a positively framed point and a negatively framed point. It follows
from this that �nSn D Z.

Up to framed cobordism, there are two connected framed 1-manifolds, cor-
responding to the fact that for n > 2, the fundamental group of GLn.R/ is
cyclic of order 2. This leads to an isomorphism �nC1Sn D Z=2. In this case
Pontryagin’s ideas build on and slightly generalize Hopf’s discovery of the Hopf
invariant.

Things got interesting in dimension 2, and in his first announcement [22,23]
Pontryagin made a famous error, concluding that � st

2 S0 D 0. The group was
later proved by George Whitehead [31], and by Pontryagin himself [24] to be
cyclic of order 2. Pontryagin’s error was subtle, and the both geometric maneu-
vers he introduced, and the algebraic method for correcting his error proved to
be of lasting importance.

Here is how the argument went. Let † be a stably framed 2-manifold, such
as the one drawn in Fig. 1. In the figure, the arrow indicates the trivialization of
the normal bundle. Suppose first (unlike in Fig. 1) that the genus of † is zero, or
in other words that † is the two-sphere S2. Since S2 is the boundary of a ball,
there is some stable framing on † which represents 0. But any other framing
differs from this one by an element of �2 GLn.R/ which is 0. It follows that any
stably framed 2-sphere bounds a ball, and so represents 0.

Pontryagin then introduced a technique for replacing a framed 2-manifold of
genus g > 0 with one of smaller genus. It is depicted in Fig. 2. You choose an
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Fig. 1. A stably framed 2-manifold

Fig. 2. Framed surgery

embedded circle on the surface, transverse to a handle. Then cut out the circle
and glue in two disks. This maneuver, known as framed surgery lowers the genus
by one, and it’s not difficult to check that it leaves the framed cobordism class
of † fixed. But there is a condition. In order to perform framed surgery on an
embedded circle one needs to check that the framing it inherits from † can be
extended to a framing of a disk. In other words, the choice of embedded circle
defines an element of �fr

1 D Z=2, and one can only do framed surgery on the
elements representing 0.

In turns out that the element of �fr
1 attached to an embedded circle depends

only on the mod 2 homology class represented by the circle in †. The stable
framing of † therefore defines a map

� W H1.†IZ=2/ �! Z=2:

Pontryagin argued that since the dimension of H1.†IZ=2/ is even, there must
always be an element in the kernel of �. One can then perform framed surgery
on this cycle, and lower the genus until it is zero. This proves that the group
� st

2 S0 is trivial.
Pontryagin’s error was that the map � is not linear. It is quadratic, with un-

derlying bilinear form

�.x C y/ � �.x/ � �.y/ D I.x; y/
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Fig. 3. A non-zero element of �fr
2

the intersection form. The Arf invariant of � (which works out to be 1 if � takes
the value 1 more often than the value 0 and 0 otherwise) is then a cobordism
invariant, and gives an isomorphism

�fr
2 �! Z=2:

A picture of the non-trivial element of �fr
2 is shown in Fig. 3. It represents an

immersion of the torus into R
3 and a trivialization of the normal bundle whose

associated quadratic function � has Arf invariant 1.
Around 30 years later these ideas of Pontryagin were picked up and ex-

tended by Thom, Milnor, Kervaire and others, leading to triumphant advances
in the classification of manifolds in high dimension. Looking back, an important
question has it’s origin in Pontryagin’s argument that �fr

2 D 0.

Question 2.2. In which dimensions is every framed manifold cobordant to a ho-
motopy sphere?

Theorem 1 gives a nearly complete answer to this question. It shows that in
all but the six dimensions listed, every framed manifold is framed cobordant to a
topological sphere. As we will see later, in dimensions 2, 6, 14, 30, and 62 there
are framed manifolds which are not framed cobordant to a homotopy sphere.
The situation in dimension 126 is still open.

3. Topology around 1960: smooth structures

In his 1956 paper [19], Milnor announced the amazing result that there are man-
ifolds homeomorphic, but not diffeomorphic to the 7-sphere. He followed this
with [20] in which he introduced and applied the technique of “surgery” on
manifolds. Milnor’s ideas greatly generalized the construction of Pontryagin,
and soon became the fundamental tools for investigating classification problems
in differential topology.



M.J. Hopkins

Using the new theory of surgery, Kervaire developed an important general-
ization of Pontryagin’s function �. In [15] he showed how one could associate
to every 4-connected combinatorial manifold M of dimension 10 a quadratic
function

� W H 2kC1.M IZ=2/ �! Z=2

refining the bilinear intersection form hxy; ŒM �i. He then showed that

ˆ.M / WD Arf invariant of �

is a cobordism invariant, which vanishes whenever M is a smooth manifold.
Finally, he constructed an example of a combinatorial manifold M of dimension
10 for which ˆ.M / D 1, in this way giving an example of a combinatorial
manifold which does not admit a smooth structure.

Subsequently, Kervaire was able to define a quadratic function

� W H2kC1.M IZ=2/ �! Z=2

for every smooth manifold M of dimension .4k C 2/ equipped with a stable
framing of the complement of a point in M (an “almost framing”). The Ker-
vaire invariant of M is the Arf invariant of �, and denoted ˆ.M /. It is one of
the fundamental invariants of differential topology. Kervaire’s work raised the
following question.

Question 3.1. In which dimensions is ˆ.M / zero for every smooth, stably framed
manifold M ?

Theorem 1 shows that, except in 6 possible dimensions, Kervaire’s invariant
is always zero for stably framed manifolds.

The Kervaire invariant and Question 3.1 play an important role in the clas-
sification theorems in differential topology in dimensions greater than 4. Both
came to prominence right away, in the classification of smooth structures on
spheres.

Shortly after Milnor’s introduction of his 7-spheres, Kervaire and Milnor
[21,16] announced a classification of smooth structures on spheres, up to h-
cobordism (which, by the h-cobordism theorem, is the same as the set of smooth
structures up to diffeomorphism in dimensions greater than 5). They introduced
the group ‚n of h-cobordism classes of n-manifolds homotopy equivalent to
Sn, with the group operation of connected sum. For n congruent to 0 or 3 mod
4 they were able to determine ‚n in terms of the homotopy groups of spheres.
For n congruent to 1 or 2 mod 4 they were unable to settle a factor of 2 in the
order of ‚n.

Kervaire and Milnor introduced an exact sequence

0 �! bPnC1 �! ‚n �! coker Jn
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in which coker Jn is the cokernel of the stable J -homomorphism J W �nO !
�nS0, and bPnC1 is the subgroup of ‚n consisting of manifolds which bound
a stably parallelizable .n C 1/-manifold. The group coker Jn can be interpreted
as the quotient of the group of stably framed n-manifolds by the subgroup con-
sisting of Sn in its possible stable framings. The rightmost map is constructed
by showing that every homotopy sphere † admits a stable framing, choosing
a framing F and sending † to the stably framed manifold † with framing F .
Kervaire and Milnor showed that the map

(3.2) ‚n �! coker Jn

is surjective unless n is of the form 4k C 2, and that there is an exact sequence

‚4kC2 �! coker Jn �! Z=2

in which the rightmost map is given by the Kervaire invariant. In geometric
terms, the surjectivity of (3.2) is equivalent to the assertion that every stably
framed n-manifold is framed cobordant to a homotopy sphere (Question 2.2).
Theorem 1 shows that this map is surjective in all dimensions except 2, 6, 14,
30, 62 and possibly 126. It is known not to be surjective in dimensions 2, 6, 14,
30 and 62.

Kervaire and Milnor were also able to determine the group bPnC1. They
showed that bPnC1 D 0 if .n C 1/ is odd, and that bP4k is cyclic of order

ak 22k�2 .22k�1 � 1/ numerator.Bk=4k/;

where Bk is the kth Bernoulli number, and ak is 1 if k is even and 2 if k is odd.
Building on work of Adams, they produced the formula

j‚4m�1j D am j�4m�1S0j 22m�4.22m�1 � 1/Bm=m:

They were unable to determine the group bP4nC2, and could only show that it
is isomorphic to the cokernel of the Kervaire invariant map.

coker J4kC2 �! Z=2:

Theorem 1 shows that bP4kC2 D Z=2 except possibly when 4k C 2 is one of 2,
6, 14, 30, 62, and 126. As we will see below, it is known by the work of Barratt,
Jones and Mahowald that bP4kC2 D 0 in the first five of these six exceptional
cases. The situation of bP126 is still open.

In this way Theorem 1 completes the Kervaire–Milnor classification of ex-
otic spheres, except in dimensions 125 and 126. Roughly speaking, the conclu-
sion is that the groups ‚4kC2 and ‚4kC1 are twice as large as they might have
been.

At the time the Kervaire–Milnor paper was written the status of the Kervaire
invariant problem was far from certain. There were known to be framed mani-
folds of Kervaire invariant one in dimensions 2, 6 and 14, and there were known
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to be no framed manifolds of Kervaire invariant one in dimensions 10 and 18.
Kervaire and Milnor ended their paper [16] with a remark expressing the guess
that the Kervaire invariant of a framed manifold was zero in all dimensions ex-
cept 2, 6, and 14. As we will see in the next section, this guess looked to be
wrong shortly after. Theorem 1 shows that they were almost correct.

4. Browder’s work and the connection to homotopy theory

The previous section described in part the important role played by the Kervaire
invariant in the classification problems of differential topology. But in Pontrya-
gin’s work it originated in connection with the homotopy groups of spheres. In
the early 1960s the relationship of Kervaire’s invariant to the homotopy group of
spheres was unclear, and very little was known about the dimensions in which it
could be non-zero. It was known to be non-zero in dimensions 2, 6 and 14, and
it was known to always be zero in dimensions 10 and 18. It was the methods of
homotopy theory that unlocked the next piece of the puzzle. The first step was
taken by Brown and Peterson [7,8] who showed

Theorem 4.1 (Brown, Peterson). The Kervaire invariant ‚.M / is zero if the
dimension of M is of the form 8k C 2, with k > 0.

But the definitive result came in the 1969 paper [6] of Browder

Theorem 4.2 (Browder). The Kervaire invariant of a framed n-manifold is zero
unless n is of the form 2kC1 � 2, and in that case there is a framed manifold of
Kervaire invariant 1 if and only if there is an element �j 2 �2j C1�2 represented
at the E2-term of the classical Adams spectral sequence by the class h2

j .

For j > 0, the element hj represents a potential element of �2j �1S0 of
Hopf invariant one. Only the hj with j � 3 survive the spectral sequence. The
work of Barratt, Jones, Mahowald, and Tangora [18,5,4] showed that elements
�j exist for j � 5. Their method, roughly, amounts to computing all of the
homotopy groups �iS

0 for i � 62 using the Adams spectral sequence, and then
observing that the appropriate classes h2

j survive.

5. The homotopy groups of spheres

Part of what made the Kervaire invariant one problem so lasting was that it also
played an important role in the homotopy groups of spheres. Here is one way it
arises.

In the 1950s a remarkable inductive device was discovered by George White-
head [32] and Ioan James [12]. It was a long exact sequence, known as the EHP
sequence



The Kervaire invariant problem

in which the map P goes to �k�1Sn. The groups in question are to be localized
at the prime 2. The sequence raises the possibility that the homotopy groups
of spheres could be computed inductively, starting with the homotopy groups
of S1. In fact this procedure was carried out by Toda [29] who used it to de-
termine �nCkSn for k � 19. It’s interesting to focus on the point at which
the sphere S2nC1 first makes an appearance. The “degree” identifies the group
�2nC1S2nC1 with the group of integers, and the map P sends the map of degree
1 to the Whitehead square

Œ�n; �n� 2 �2n�1Sn:

Computing with the EHP sequence leads one to two fundamental questions.

Question 5.1. For which k is Œ�n; �n� in the image of Ek?

Question 5.2. For which n is Œ�n; �n� divisible by 2?

Answers to these questions have immediate computational impact on our
knowledge of the homotopy groups of spheres. But they are also equivalent to
other famous problems in topology. James showed in [13] that Œ�n; �n� is in the
image of Ek if an only if Sn admits k linearly independent vector fields. So
Question 5.1 is equivalent to the vector field problem, solved by Adams in the
early 1960s [2]. Question 5.2 breaks into two cases, depending on the parity
of n. When n is even, the class Œ�n; �n� has Hopf invariant 2, so Question 5.1 is
equivalent to a strong form of the Hopf invariant one problem, which was solved
by Adams [1] around 1960. When n is odd it is equivalent to the assertion that a
Kervaire invariant one class exists in �n�1S0 and has order 2. By Barratt, Jones,
Mahowald and Tangora this is the case when j � 5. By Theorem 1 it is not the
case when j > 6. So again, the only remaining open case is in dimension 126.

In the front piece to his book on Stiefel manifolds, James [14] gives an ele-
mentary formulation of the Kervaire invariant problem. Let Vn be the space of
pairs of points x; y 2 Sn with the property that x ¤ ˙y.

Question 5.3 (James [14]). For which n is the identity map of Vn homotopic to
the map which switches x and y.

The homotopy cannot exist if n is odd. When n is even, James [14, Theorem
1.13] shows that such a homotopy exists if and only if Œ�nC1; �nC1� is divisible
by 2.
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6. Brief sketch of the proof

Let me make a few brief comments on the proof of Theorem 1, given in [11].
The result proved is actually the following

Theorem 6.1. For j � 7 the class h2
j 2 Ext2;2j C1

A .Z=2;Z=2/ does not repre-
sent an element of the stable homotopy groups of spheres. In other words, the
Kervaire invariant elements �j do not exist for j � 7.

By Browder’s Theorem 4.2 this implies Theorem 1.
Our proof builds on the strategy used by Ravenel in [25] and on the homo-

topy theoretic refinement developed by the author and Haynes Miller (see [27]).
Let MUR be the Z=2-equivariant real bordism spectrum of Landweber [17] and
Fujii [10]. Roughly speaking one can think of MUR as describing the cobordism
theory of real manifolds, which are stably almost complex manifolds equipped
with a conjugate linear action of Z=2. Write

MU..4// D MUR ^ MUR ^ MUR ^ MUR

for the Z=8-equivariant spectrum gotten by smashing 4 copies of MUR together
and letting Z=8 act by

.a; b; c; d/ 7�! . Nd; a; b; c/:

Roughly speaking MU..4// can be thought of as the cobordism theory of sta-
bly almost manifolds equipped with a Z=8-action, with the property that the
restriction of the action to Z=2 � Z=8 determines a real structure. To get some-
where we need to invert an equivariant analogue of the Bott periodicity class
to form the Z=8-equivariant spectrum e� D D�1MU..4//. Finally, we define �

to be the homotopy fixed point spectrum of the Z=8-action on e�. The proof of
Theorem 6.1 is assembled from the following results.

Theorem 6.2 (The Detection Theorem). If �j exists, then it has a non-zero
image in �2j C1�2�.

Theorem 6.3 (The Periodicity Theorem). The groups ��� are periodic, with
period 256: ��� � ��C256�.

Theorem 6.4 (The Gap Theorem). The group ��2� is zero.

The reader can easily check that these three results imply Theorem 6.1.
The proof of the Detection Theorem is a straightforward check through

the inventory of possible representatives for h2
j in the E2-term of the Adams–

Novikov spectral sequence, as can be found in Shimomura [28] or Ravenel [26].
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The spectrum MU..4// and the class D are chosen so that the Detection Theorem
holds. The other two results exploit relatively simple fact that the map

e�Z=8 �! e�hZ=8

from the fixed point spectrum to the homotopy fixed point spectrum is a homo-
topy equivalence. The Periodicity Theorem is proved for the homotopy fixed
point spectrum, while the Gap Theorem for the actual fixed point spectrum.
Both proofs involve the slice filtration which is a novel equivariant refinement
of the Postnikov tower. It is analogous to the slice filtration in motivic homotopy
theory [30] and generalizes the filtration described by Dugger in [9], and builds
on the unpublished work of the author and Fabien Morel.

7. Open questions

Here are a few questions raised by this work.
The possibility that smooth manifolds of Kervaire invariant one exist in in-

finitely many dimensions left no clear suggestion as to how one might construct
them. But the fact that they exist in only five or six dimensions brings to mind
“special” constructions as opposed to systematic ones. When this work was an-
nounced Atiyah asked whether or not the five or six Kervaire invariant one man-
ifolds were related to other exceptional phenomena in mathematics, such as the
projective planes of exceptional Jordan algebras.

Question 7.1. Can “exceptional phenomena” in mathematics be used to con-
struct smooth manifolds of Kervaire invariant one?

The proof of Theorem 1 loses connection with geometry, and so does not
point to geometric structures which may have been overlooked in surgery theory.
This is because of the Detection Theorem, which requires detailed knowledge
of

Ext2;2j

MU�MU.MU�; MU�/

(the “Adams–Novikov 2-line”).

Question 7.2. Can the Detection Theorem be proved without reference to the
Adams–Novikov spectral sequence?

Even though the proof of Theorem 1 is not geometric, the main computa-
tion can be described in geometric terms. Suppose that X is a space with a
Z=2-action. Recall from [3] that a real vector bundle on X is a complex vec-
tor bundle V ! X equipped with a compatible, conjugate linear Z=2-action.
A real manifold is a manifold M equipped with an action of Z=2, a real vec-
tor bundle V on M , and equivariant isomorphism TM ˚ V � M � C

N . This
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condition forces the dimension of M to be even and the dimension of the fixed
point submanifold to be one half of the dimension of M . A cobordism of real
manifolds is a cobordism N equipped with real vector bundle W extending the
given one on the boundary, and an isomorphism

TN ˚ V � N � R � C
N

compatible with the given structures on the boundary.

Question 7.3. Suppose that M is a real manifold of dimension 2n whose fixed
point space Z bounds an unoriented manifold. Can one describe a cobordism
invariant of M which in the case in which Z is empty isZ

M=.Z=2/

w2d
1

where w1 is the first Stiefel–Whitney class of the double cover M ! M=Z=2?

There is an analogue of the problem in which Z=2 is replaced by Z=2n. The
proof of Theorem 1 makes use of the case n D 3.

The homotopy theoretic formulation of the Kervaire invariant problem has
an analogue at odd primes. For primes greater than 3 it was solved by Ravenel,
whose paper [25] was part of the inspiration for the present work. The situation
at the prime 3 is still open. The methods of [11] do not apply because of the lack
of an analogue of real bordism for primes p > 2. What one actually needs is
an analogue of “real” BP-theory BPR. This should be a Z=p-equivariant spec-
trum BP ..Z=p// whose underlying, non-equivariant spectrum has the homotopy
type of the .p � 1/-fold smash product BP.p�1/ of BP with itself. Write 	 for
a generator of Z=p and let V D Z.p/ŒZ=p�=.1 C 	 C � � � C 	p�1/ be the re-
duced regular representation. Write V Œn� for the graded representation of Z=p

consisting of V in degree n and 0 everywhere else. As an algebra with an action
of Z=p, the ring ��BP.p�1/ should be isomorphic to the symmetric algebra onM

k�0

Sym V Œ2pk � 2�:

Question 7.4. For each prime p can one construct the “p-analogue” of BPR de-
scribed above?
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