You can't make the borromean rings out of chainmaille

Natalie Stewart*

September 11, 2023

These notes are unfinished!

1 Phenomenon

1.1 Common-radius weaves

Construction 1.1. Let $U := \mathbb{RP}^2$ be the topological space of pointed planes in \mathbb{R}^3 . We refer to this as the space of *geometric unit circles in* \mathbb{R}^3 , as it possesses an embedding

 $c: U \times \mathbb{R} \hookrightarrow \text{Links}$

into the space of embeddings of S^1 into \mathbb{R}^3 by restricting to the circle of radius *r* around the point. Furthermore, define

$$\widetilde{\mathcal{W}}_n := \left\{ (r, (p_i)_{i \in [n]}) \mid \exists \varepsilon > 0, \ \forall i, j \ c(r, p_i) \cap c(r, p_j) > \varepsilon \right\} \subset \mathbb{R} \times U_{\operatorname{Aut}[n]}^{\times n}.$$

to be the space of tame configurations of *n* nonintersecting unit circles of the same radius in $\mathbb{R}^{3,1}$ Denote by $\widetilde{\mathcal{W}} := \coprod_{n \in \mathbb{N}} \widetilde{\mathcal{W}}$ the union across all *n*.

The space \widetilde{W}_n possesses an embedding into Links. The following proposition is physical motivation for our work:

Proposition 1.2. Let $\widetilde{W}_{n,\varepsilon}$ denote the topological space of component-wise scaled isometric embeddings of $n \cdot T_{\varepsilon}$, where T_{ε} is the metric space formed by taking the ball of radius ε around a standard unit circle in \mathbb{R}^3 . Then, whenever $\varepsilon \geq \varepsilon'$, there is an embedding $\widetilde{W}_{n,\varepsilon} \hookrightarrow \widetilde{W}_{n,\varepsilon'}$, and together these form a colimit diagram

$$\operatorname{colim}_{\varepsilon \to 0} \widetilde{\mathcal{W}}_{n,\varepsilon} \xrightarrow{\sim} \widetilde{\mathcal{W}}_n.$$

For the purpose of these notes, let G denote the group of isometries of \mathbb{R}^3 . We give $\widetilde{\mathcal{W}}_n$ a G-action in the following proposition:

Proposition 1.3. Endowing on S^1 a trivial G-action, there is an evident action of the group G on Links; this action preserves the image of the embedding

$$\widetilde{\mathcal{W}}_n \hookrightarrow \text{Links}$$

and hence it endows \widetilde{W}_n with a \mathbb{G} -action.

Proof. First note that a map $\mathbb{R}^2 \to \mathbb{R}^3$ is an affine transformation if and only if it is an embedding of a totally geodesic submanifold; the property of such an embedding being totally geodesic is invariant under the action of the isometry group of \mathbb{R}^3 , so *U* is preserved under the action of G on Links, hence so is $\mathbb{R} \times U^{\times n}$. Since isometries are injective, the locus $\widetilde{\mathcal{W}}_n$ is preserved as well.

We can now make a central construction.

^{*}Harvard university.

¹Here, the tameness assumption only comes into play when $n = \infty$.

Construction 1.4. Let *H* be a discrete group acting on \mathbb{R}^3 by isometries. Let $\mathbf{Set}_H^{\text{cbl}}$ be the category of at-most countable *H*-sets. The W(H) space $\coprod_{n \in \pi_0 \mathbf{Set}^{\text{cbl}}}^H$ TopEmb (S^1, \mathbb{R}^3) has a decomposition indexed by isomorphism classes of at-most countable \mathbb{G} -sets given by the induced \mathbb{G} -action on the set of componens; denote the pullback decomposition on \widetilde{W} by

$$\widetilde{\mathcal{W}}^H = \bigsqcup_{S \in \pi_0 \mathbf{Set}_H^{\mathrm{cbl}}} \widetilde{\mathcal{W}}_S^H.$$

Then, the set of S-indexed H-weaves is $W_S^H := \pi_0 \widetilde{W}_S^H$.

We note the following consequence of tameness here:

Proposition 1.5. Suppose $H \subset G$ is a closed subgroup which is not discrete. Then, W^H is contractible.

1.2 Unit-radius weaves

Let $W \subset W$ be the topological space of weaves with radius 1. This is our most physically intuitive space. We recover results about physical chainmaille in this section.

The positive $\mathbb{R}^+_{>0}$ acts on \mathbb{G} by conjugation in the group of scaled isometries of \mathbb{R}^3 , where \mathbb{G}_a acts on \mathbb{R}^3 by dilation about the origin. In fact, if τ_x is the translational symmetry taking the origin to $x \in \mathbb{R}^3$, we have $r \cdot \tau_x = \tau_{rx}$. We relate the genuine equivariant homotopy of \mathcal{W} and $\widetilde{\mathcal{W}}$ using this action, via the following easy proposition

Proposition 1.6. $\widetilde{\mathcal{W}}^H \simeq \bigcup_{r \in \mathbb{R}^+_{>0}} \mathcal{W}^{r \cdot H}$.

There's more we can say about this, but let's let that be for now.

2 Formalism

2.1 G-spaces

The main object of study is W_S^H , which occurs as a canonical decomposition of the 0th homotopy group of the *H*-fixed points of a topological G-space. A natural way to throwing away some information of a topological space without throwing away π_0 is through *homotopy theory*; when there's a group action floating around, we use something called *genuine equivariant homotopy theory*.

Definition 2.1. Let *G* be a topological group, and let **Top**_{*G*} denote the category of topological spaces² with *G*-actions. Then, the ∞ -category of *G*-spaces is the simplicial localization

$$\mathcal{S}_G := \mathbf{Top}[G - EQ^{-1}]$$

where G - EQ is the class of homotopy equivalences f which are G-equivariant, and for which the homotopies $ff^{-1} \sim id$ and $f^{-1}f \sim id$ can be chosen to be G-equivariant at all times.

This recovers the homotopy types of the fixed points:

Proposition 2.2. Let $H \subset G$ be a closed subgroup. Then, the orbit space G/H has a canonical G-action, and there is a homotopy equivalence

$$\operatorname{Map}(G/H, X)^G \simeq X^H.$$

In fact, we can do more:

Definition 2.3. The *orbit category* is the subcategory $\mathcal{O}_G \subset \mathbf{Top}_G$ spanned by the homogeneous spaces G/H.

This provides a functor $\mathcal{S}_G \xrightarrow{X^{(-)}} \operatorname{Fun}(\mathcal{O}_G, \mathcal{S})$. One of the most important foundational theorems of genuine equivariant homotopy theory suggests that we can go the other way:

²Compactly generated, weakly hausdorff

Theorem 2.4 (Elmendorf's theorem). The fixed point functor $S_G \to Fun(\mathcal{O}_G, S)$ is an equivalence of ∞ -categories.

There's a simple interpretation of this in terms of chainmail weaves; if X is a G-set, then an X-valued G-invariant of weaves is a map of G-spaces $\widetilde{W} \to X$. Elmendorff's theorem says that X is simply a functor $\mathcal{O}_{\mathbb{G}} \to \mathcal{S}$, and an X-valued invariant is simply a collection of maps $\widetilde{W}^H \to X^H$ compatible with restriction and conjugation.

In particular, the functor $\mathcal{O}_G \to \mathcal{S}$ whose value on G/H is $\mathbf{Set}_H^{\mathrm{cbl}}$ corresponds with a unique *G*-space, which we refer to as $\underline{\pi}_0 \mathbf{Set}_G^{\mathrm{cbl}}$. We use this to define graded objects:

Definition 2.5. Let *G* be a topological group. Then, the *category of countably-graded G-spaces* is the overcate-gory

$$\mathcal{S}_G^{\operatorname{Gr}\operatorname{cbl}} := (\mathcal{S}_G)_{/\underline{\pi}_0}\operatorname{Set}_G^{\operatorname{cbl}}.$$

The decomposition $\widetilde{W}^H \simeq \coprod_{S \in \pi_0 \operatorname{Set}_H^{\operatorname{cbl}}} \widetilde{W}_S^H$ provides a countable grading on \widetilde{W} . A graded \mathbb{G} -invariant of weaves is a map of countably-graded \mathbb{G} -spaces out of \mathcal{W} . An archetypical example of this is the underlying link, which is graded by the \mathbb{G} -set of components.

2.2 *G*-weak equivalences

Definition 2.6. An unstable Mackey functor valued in **Set** is a functor $S_G \rightarrow$ **Set**. The unstable Mackey functor homotopy groups of a *G*-space are

$$\underline{\pi}_n X := \operatorname{Map}(S^n \times (-), X) : \mathcal{S}_G \to \mathbf{Set}.$$

where G acts trivially on Sⁿ. A G-weak equivalence is a map of G-spaces inducing isomorphisms on $\underline{\pi}_{\cdot}$.

It's not too hard to show that $(\underline{\pi}_n X)(H) = \pi_n X^H$. For completeness, we'd like to state a version of whitehead's theorem using this, but first we need a version of the theory of CW complexes.

Definition 2.7. A *G*-*CW* complex *X* is a *G*-space with a distinguished decomposition $X = \operatorname{colim}_n \operatorname{sk}_n X$ together with expressions of $\operatorname{sk}_n X$ as a pushout of $\operatorname{sk}_{n-1} X$ along $S_n \times (S^{n-1} \hookrightarrow D^n)$, where S_n is a *G*-set.

Theorem 2.8 (Equivariant skeletal approximation and whitehead). *Every G-space X is G-weakly equivalent to a G-CW complex; furthermore, there is a canonical equivalence*

$$\mathcal{S}_G \simeq G - \mathrm{CW}[G - WEQ^{-1}]$$

3 Application

Recall that Links is a G-space. We'd like to construct a graded invariant on this summarizing all of the linking information.

Definition 3.1. The G-space Graphs is the space of equivalence classes of embedded graphs in \mathbb{R}^3 with evident G-action. This space is countably graded under the forgetful map to the underlying G-set of vertices.

Construction 3.2. Let *L* be a countable link. Then, the *Linking graph of L* is the graph embedded in \mathbb{R}^3 whose underlying set of vertices consists of the centers of the components of *L*, with straight lines drawn between two vertices precisely when their corresponding link components have nonzero linking number.

Proposition 3.3. The linking graph G : Links \rightarrow Graphs is G-equivariant and countably graded.

Define the pullback countably graded G-space

The main theorem of this talk is as follows. We say that a *G*-space *X* is *G*-connected if $\underline{\pi}_0 X$ is the constant unstable Mackey functor on *, and we say that a (countably) graded *G*-space *degreewise G*-connected if each graded piece is *G*-connected.

Theorem 3.4. The countably graded \mathbb{G} -space $\widetilde{\mathcal{W}}^{triv}$ is degreewise \mathbb{G} -connected.

We prove this theorem in several parts. Let $r : \widetilde{W} \to \mathbb{R}_{>0}$ be projection onto the radius and let $f : \widetilde{W} \to \mathbb{R}_{>0}$ be the infemum distance between the centers of components of a weave; both of these are G-equivariant for the trivial G-action on $\mathbb{R}_{>0}$. Define $\widetilde{W}_{\varepsilon}$ to be the pullback G-space

consisting of dilations of trivial linking weaves whose components are at separated by distance at least 1 while having radius at most ε . The main geometric content of the theorem is the following proposition:

Proposition 3.5. The inclusion $\widetilde{\mathcal{W}}_{\varepsilon}^{\operatorname{triv}} \hookrightarrow \widetilde{\mathcal{W}}^{\operatorname{triv}}$ is an equivalence.

Proof. Fix the isometric embedding $\iota : \mathbb{R}^3 \simeq \partial \mathbb{H}^4 \hookrightarrow \mathbb{H}^4$, where \mathbb{H}^4 is the half-plane model of hyperbolic 4-space, with boundary. By the classification of totally geodesic (TG) submanifolds in \mathbb{H}^4 , for every configuration of geometric circles in \mathbb{R}^3 , there exist unique totally geodesic properly embedded hemispheres in \mathbb{H}^4 whose boundary circles make the weave. This provides a continuous map from \widetilde{W} from configurations of tg hemispheres in \mathbb{H}^4 such that the "vertical cross sections" map

$$\varphi: \widetilde{\mathcal{W}} \to \bigsqcup_{n} \mathrm{TG}(n \cdot H^{2}, \mathbb{H}^{4}) \to \bigsqcup_{n} \mathbb{R}_{\geq 0} \times \mathrm{Map}(n \cdot S^{1}, \mathbb{R}^{3})$$

is evidently G-equivariant. It was essentially claimed by Freedman and Skora that φ provides a (nonequivariant) deformation retract of $\widetilde{W}^{\text{triv}}$ onto \widetilde{W} ; we prove this statement, and note that the deformation retract is manifestly G-equivariant.

To prove this, we have a few things to check:

- 1. The associated map $\varphi(t) : \widetilde{W} \to \mathbb{H}^4 \to \{t\} \times \operatorname{Map}(n \cdot S^1, \mathbb{R}^3)$ has image contained in \widetilde{W} when $t \neq r$.
- 2. there exists a "stopping time" function $s: \widetilde{\mathcal{W}} \to \mathbb{R}_{\geq 0}$ such that the map

$$\varphi_s(w)(t) = \varphi(w)(\min(s(w), t))$$

- 3. $\varphi(w)(s(w)) \in \widetilde{W}_{\varepsilon}^{\text{triv}}$.
- 4. φ_{s} restricts to the identity on $\widetilde{W}_{\varepsilon}^{\text{triv}}$.

The first one is the only interesting point, so it is the only one we'll check. We may do this by extremely handson intersection theory: it suffices to prove that the hemisphere configurations associated with trivial-linking weaves are all nonintersecting.

Fix $w \in \widetilde{W}$ a weave, and suppose the associated hemisphere configuration has intersections. Such intersections can't be transverse; transverse intersections would be geodesic, and all compact geodesics of \mathbb{H}^4 , intersect the boundary, which would yield intersection of the components of w.

Non-transverse intersections hit a single point; such intersections correspond with "crossing switch" singularities in the space of singular links. These turn non-linked pairs into linked pairs; since all of the links in $\mathcal{W}_{\varepsilon}^{\text{triv}}$ and $\mathcal{W}^{\text{triv}}$ are pairwise unlinked, this can't occur. This is horribly written!

Proposition 3.6. There is an equivalence $\left(\widetilde{\mathcal{W}}_{\varepsilon}^{\mathrm{triv}}\right)_{S}^{H} \simeq \left(\mathbb{RP}^{2}\right)^{S_{H}} \times \left(\mathbb{R}_{3}\right)_{H}$.

Corollary 3.7. There is a single S-indexed H-weave with no linking; in particular, every H-weave with no linking is equivalent to one with trivial underlying H-link.

Corollary 3.8. No nontrival H-link with trivial linking graph is in the image of \widetilde{W} .