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These notes are unfinished!

1 Phenomenon

1.1 Common-radius weaves
Construction 1.1. Let 𝑈 ∶= ℝℙ2 be the topological space of pointed planes in ℝ3. We refer to this as the
space of geometric unit circles in ℝ3, as it possesses an embedding

𝑐 ∶ 𝑈 × ℝ ↪ Links

into the space of embeddings of 𝑆1 intoℝ3 by restricting to the circle of radius 𝑟 around the point. Furthermore,
define

�̃�𝑛 ∶= {(𝑟, (𝑝𝑖)𝑖∈[𝑛]) ∣ ∃𝜀 > 0, ∀ 𝑖, 𝑗 𝑐(𝑟, 𝑝𝑖) ∩ 𝑐(𝑟, 𝑝𝑗) > 𝜀} ⊂ ℝ × 𝑈×𝑛
Aut [𝑛].

to be the space of tame configurations of 𝑛 nonintersecting unit circles of the same radius in ℝ3.¹ Denote by
�̃� ∶= ∐𝑛∈ℕ �̃� the union across all 𝑛.

The space �̃�𝑛 possesses an embedding into Links. The following proposition is physical motivation for
our work:

Proposition 1.2. Let �̃�𝑛,𝜀 denote the topological space of component-wise scaled isometric embeddings of 𝑛 ⋅ 𝑇𝜀,
where 𝑇𝜀 is the metric space formed by taking the ball of radius 𝜀 around a standard unit circle in ℝ3. Then,
whenever 𝜀 ≥ 𝜀′, there is an embedding �̃�𝑛,𝜀 ↪ �̃�𝑛,𝜀′, and together these form a colimit diagram

colim𝜀→0 �̃�𝑛,𝜀
∼−→ �̃�𝑛.

For the purpose of these notes, let 𝔾 denote the group of isometries of ℝ3. We give �̃�𝑛 a 𝔾-action in
the following proposition:

Proposition 1.3. Endowing on 𝑆1 a trivial 𝔾-action, there is an evident action of the group 𝔾 on Links; this action
preserves the image of the embedding

�̃�𝑛 ↪ Links,

and hence it endows �̃�𝑛 with a 𝔾-action.

Proof. First note that a map ℝ2 → ℝ3 is an affine transformation if and only if it is an embedding of a totally
geodeisc submanifold; the property of such an embedding being totally geodesic is invariant under the
action of the isometry group of ℝ3, so 𝑈 is preserved under the action of 𝔾 on Links, hence so is ℝ × 𝑈×𝑛.
Since isometries are injective, the locus �̃�𝑛 is preserved as well.

We can now make a central construction.
*Harvard university.
¹Here, the tameness assumption only comes into play when 𝑛 = ∞.
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Construction 1.4. Let 𝐻 be a discrete group acting on ℝ3 by isometries. Let Setcbl𝐻 be the category of at-most
countable 𝐻-sets. The 𝑊(𝐻) space ∐𝐻

𝑛∈𝜋0Setcbl
TopEmb(𝑆1, ℝ3) has a decomposition indexed by isomorphism

classes of at-most countable 𝔾-sets given by the induced 𝔾-action on the set of componens; denote the
pullback decomposition on �̃� by

�̃�𝐻 = ∐
𝑆∈𝜋0Setcbl𝐻

�̃�𝐻
𝑆 .

Then, the set of 𝑆-indexed 𝐻-weaves is 𝑊𝐻
𝑆 ∶= 𝜋0�̃�𝐻

𝑆 .

We note the following consequence of tameness here:

Proposition 1.5. Suppose 𝐻 ⊂ 𝐺 is a closed subgroup which is not discrete. Then, 𝒲𝐻 is contractible.

1.2 Unit-radius weaves
Let𝒲 ⊂ �̃� be the topological space of weaves with radius 1. This is our most physically intuitive space.

We recover results about physical chainmaille in this section.
The positive ℝ+

>0 acts on 𝔾 by conjugation in the group of scaled isometries of ℝ3, where 𝔾𝑎 acts on ℝ3

by dilation about the origin. In fact, if 𝜏𝑥 is the translational symmetry taking the origin to 𝑥 ∈ ℝ3, we have
𝑟 ⋅ 𝜏𝑥 = 𝜏𝑟𝑥. We relate the genuine equivariant homotopy of𝒲 and �̃� using this action, via the following easy
proposition

Proposition 1.6. �̃�𝐻 ≃ ∪𝑟∈ℝ+
>0
𝒲𝑟⋅𝐻.

There’s more we can say about this, but let’s let that be for now.

2 Formalism

2.1 𝐺-spaces
The main object of study is 𝑊𝐻

𝑆 , which occurs as a canonical decomposition of the 0th homotopy group
of the 𝐻-fixed points of a topological 𝔾-space. A natural way to throwing away some information of a
topological space without throwing away 𝜋0 is through homotopy theory; when there’s a group action floating
around, we use something called genuine equivariant homotopy theory.

Definition 2.1. Let 𝐺 be a topological group, and let Top𝐺 denote the category of topological spaces² with
𝐺-actions. Then, the ∞-category of 𝐺-spaces is the simplicial localization

𝒮𝐺 ∶= Top[𝐺 − 𝐸𝑄−1]

where 𝐺−𝐸𝑄 is the class of homotopy equivalences 𝑓which are 𝐺-equivariant, and for which the homotopies
𝑓𝑓−1 ∼ id and 𝑓−1𝑓 ∼ id can be chosen to be 𝐺-equivariant at all times.

This recovers the homotopy types of the fixed points:

Proposition 2.2. Let 𝐻 ⊂ 𝐺 be a closed subgroup. Then, the orbit space 𝐺/𝐻 has a canonical 𝐺-action, and there
is a homotopy equivalence

Map(𝐺/𝐻,𝑋)𝐺 ≃ 𝑋𝐻.

In fact, we can do more:

Definition 2.3. The orbit category is the subcategory 𝒪𝐺 ⊂ Top𝐺 spanned by the homogeneous spaces 𝐺/𝐻.

This provides a functor 𝒮𝐺
𝑋(−)

−−−→ Fun(𝒪𝐺,𝒮). One of the most important foundational theorems of
genuine equivariant homotopy theory suggests that we can go the other way:

²Compactly generated, weakly hausdorff
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Theorem 2.4 (Elmendorf’s theorem). The fixed point functor 𝒮𝐺 → Fun(𝒪𝐺,𝒮) is an equivalence of∞-categories.

There’s a simple interpretation of this in terms of chainmail weaves; if 𝑋 is a 𝔾-set, then an 𝑋-valued
𝔾-invariant of weaves is a map of 𝔾-spaces �̃� → 𝑋. Elmendorff’s theorem says that 𝑋 is simply a functor
𝒪𝔾 → 𝒮, and an 𝑋-valued invariant is simply a collection of maps �̃�𝐻 → 𝑋𝐻 compatible with restriction
and conjugation.

In particular, the functor 𝒪𝐺 → 𝒮 whose value on 𝐺/𝐻 is Setcbl𝐻 corresponds with a unique 𝐺-space,
which we refer to as 𝜋0Set

cbl
𝔾 . We use this to define graded objects:

Definition 2.5. Let 𝐺 be a topological group. Then, the category of countably-graded 𝐺-spaces is the overcate-
gory

𝒮Gr cbl
𝐺 ∶= (𝒮𝐺)/𝜋0Set

cbl
𝔾
.

The decomposition �̃�𝐻 ≃ ∐𝑆∈𝜋0Setcbl𝐻
�̃�𝐻

𝑆 provides a countable grading on �̃�. A graded 𝔾-invariant of
weaves is a map of countably-graded 𝔾-spaces out of 𝒲. An archetypical example of this is the underlying
link, which is graded by the 𝔾-set of components.

2.2 𝐺-weak equivalences
Definition 2.6. An unstable Mackey functor valued in Set is a functor 𝒮𝐺 → Set. The unstable Mackey functor
homotopy groups of a 𝐺-space are

𝜋𝑛𝑋 ∶= Map(𝑆𝑛 × (−), 𝑋) ∶ 𝒮𝐺 → Set.

where 𝐺 acts trivially on 𝑆𝑛. A 𝐺-weak equivalence is a map of 𝐺-spaces inducing isomorphisms on 𝜋∗.

It’s not too hard to show that (𝜋𝑛𝑋) (𝐻) = 𝜋𝑛𝑋𝐻. For completeness, we’d like to state a version of
whitehead’s theorem using this, but first we need a version of the theory of CW complexes.

Definition 2.7. A𝐺-CW complex𝑋 is a𝐺-space with a distinguished decomposition𝑋 = colim𝑛 sk𝑛𝑋 together
with expressions of sk𝑛𝑋 as a pushout of sk𝑛−1𝑋 along 𝑆𝑛 × (𝑆𝑛−1 ↪ 𝐷𝑛), where 𝑆𝑛 is a 𝐺-set.

Theorem 2.8 (Equivariant skeletal approximation and whitehead). Every 𝐺-space 𝑋 is 𝐺-weakly equivalent to
a 𝐺-CW complex; furthermore, there is a canonical equivalence

𝒮𝐺 ≃ 𝐺 − CW[𝐺 −𝑊𝐸𝑄−1]

3 Application
Recall that Links is a 𝔾-space. We’d like to construct a graded invariant on this summarizing all of the

linking information.

Definition 3.1. The 𝔾-space Graphs is the space of equivalence classes of embedded graphs in ℝ3 with
evident 𝔾-action. This space is countably graded under the forgetful map to the underlying 𝔾-set of vertices.

Construction 3.2. Let 𝐿 be a countable link. Then, the Linking graph of 𝐿 is the graph embedded in ℝ3 whose
underlying set of vertices consists of the centers of the components of 𝐿, with straight lines drawn between
two vertices precisely when their corresponding link components have nonzero linking number.

Proposition 3.3. The linking graph 𝐺 ∶ Links → Graphs is 𝔾-equivariant and countably graded.

Define the pullback countably graded 𝔾-space

�̃�triv 𝜋0Set𝔾

�̃� Links Graphs

⌟
discrete

𝐺
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The main theorem of this talk is as follows. We say that a 𝐺-space 𝑋 is 𝐺-connected if 𝜋0𝑋 is the constant
unstable Mackey functor on ∗, and we say that a (countably) graded 𝐺-space degreewise 𝐺-connected if each
graded piece is 𝐺-connected.

Theorem 3.4. The countably graded 𝔾-space �̃�triv is degreewise 𝔾-connected.

We prove this theorem in several parts. Let 𝑟 ∶ �̃� → ℝ>0 be projection onto the radius and let
𝑓 ∶ �̃� → ℝ>0 be the infemum distance between the centers of components of a weave; both of these are
𝔾-equivariant for the trivial 𝔾-action on ℝ>0. Define �̃�𝜀 to be the pullback 𝔾-space

�̃�triv
𝜀 �̃�triv

(0, 𝜀] ℝ>0

⌟
𝑟/𝑓

consisting of dilations of trivial linking weaves whose components are at separated by distance at least 1
while having radius at most 𝜀. The main geometric content of the theorem is the following proposition:

Proposition 3.5. The inclusion �̃�triv
𝜀 ↪ �̃�triv is an equivalence.

Proof. Fix the isometric embedding 𝜄 ∶ ℝ3 ≃ 𝜕ℍ4 ↪ ℍ4, where ℍ4 is the half-plane model of hyperbolic
4-space, with boundary. By the classification of totally geodesic (TG) submanifolds in ℍ4, for every configu-
raiton of geometric circles in ℝ3, there exist unique totally geodesic properly embedded hemispheres in ℍ4

whose boundary circles make the weave. This provides a continuous map from �̃� from configurations of tg
hemispheres in ℍ4 such that the “vertical cross sections” map

𝜑 ∶ �̃� → ∐
𝑛

TG(𝑛 ⋅ 𝐻2,ℍ4) → ∐
𝑛

ℝ≥0 ×Map(𝑛 ⋅ 𝑆1, ℝ3)

is evidently 𝔾-equivariant. It was essentially claimed by Freedman and Skora that 𝜑 provides a (nonequiv-
ariant) deformation retract of �̃�triv onto �̃�; we prove this statement, and note that the deformation retract
is manifestly 𝔾-equivariant.

To prove this, we have a few things to check:

1. The associated map 𝜑(𝑡) ∶ �̃� → ℍ4 → {𝑡} ×Map(𝑛 ⋅ 𝑆1, ℝ3) has image contained in �̃� when 𝑡 ≠ 𝑟.

2. there exists a “stopping time” function 𝑠 ∶ �̃� → ℝ≥0 such that the map

𝜑𝑠(𝑤)(𝑡) = 𝜑(𝑤)(min(𝑠(𝑤), 𝑡))

3. 𝜑(𝑤)(𝑠(𝑤)) ∈ �̃�triv
𝜀 .

4. 𝜑𝑠 restricts to the identity on �̃�triv
𝜀 .

The first one is the only interesting point, so it is the only one we’ll check. Wemay do this by extremely hands-
on intersecction theory: it suffices to prove that the hemisphere configurations associated with trivial-linking
weaves are all nonintersecting.

Fix 𝑤 ∈ �̃� a weave, and suppose the associated hemisphere configuration has intersections. Such
intersections can’t be transverse; transverse intersections would be geodesic, and all compact geodesics of
ℍ4, intersect the boundary, which would yield intersection of the components of 𝑤.

Non-transverse intersections hit a single point; such intersections correspond with “crossing switch”
singularities in the space of singular links. These turn non-linked pairs into linked pairs; since all of the
links in 𝒲triv

𝜀 and 𝒲triv are pairwise unlinked, this can’t occur. This is horribly written!

Proposition 3.6. There is an equivalence (�̃�triv
𝜀 )

𝐻

𝑆
≃ (ℝℙ2)

𝑆𝐻 × (ℝ3)𝐻.

Corollary 3.7. There is a single 𝑆-indexed 𝐻-weave with no linking; in particular, every 𝐻-weave with no linking
is equivalent to one with trivial underlying 𝐻-link.

Corollary 3.8. No nontrival 𝐻-link with trivial linking graph is in the image of �̃�.
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