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Abstract

For V a fixed Bénabou cosmos, we review the construction of the VCat-enriched categories VCat ⊂
VProf of small V-enriched categories and functors or profunctors, respectively. For C a V-category, we
go on to define the Cauchy completion C ⊂ VProf(I, C) to be the full V-subcategory of V-profunctors
admitting a right adjoint. For V = ([0,∞] ,≥,+), this recovers the Cauchy completion of Lawvere metric
spaces, and after symmetrization, this recovers the Cauchy completion of ordinary metric spaces.

We define a type of weighted colimit, called an absolute colimit, which categorifies the property that
all short maps preserve limits of Cauchy sequences. We state a universal property realizing the Cauchy
completion as the absolute cocompletion, recovering the traditional definition of Cauchy complete metric
spaces and the traditional universal property satisfied by the Cauchy completion of a metric space.

Time-permitting, we go on to characterize the Cauchy completion of categories, which is computed by
the idempotent-splitting completion. We further go on to characterize the Cauchy completion of a ring as
a preadditive category, which is computed by the category of finitely generated projective modules.

1 Metric spaces and Cauchy completion

The primary reference for this section of the talk is [2], though the structure of the talk is meant to
diverge heavily from this reference, and contain perspectives not described therein. We begin with some
motivation for a convenient category of metric spaces.

One disadvantage of the category Met of metric spaces and short maps is that it fails to have even
weak coproducts; for M,N nonempty metric spaces, there are many metrics on M ⊔N restricting to the
given metrics on M and N , but for any such metric, there exists a metric space P and a pair of short
maps M,N → P such that the disjoint-union map M ⊔N → P is not short;1 no matter what metric you
choose, M and N will have points which are “too close to each other!” To rectify this, we have to allow
points of M and N to have infinite distance from each other.

Another disadvantage is given simply by the fact that some situations are naturally viewed as distance,
but are not symmetric; one prominent example is travel time. We can rectify this by relaxing the symmetry
requirement of a metric.

A third is that all metric spaces are Hausdorff, but we sometimes encounter topological spaces which
themselves are not Hausdorff, and hence they can’t possibly be metrizable; this is ubiquitous in algebraic
geometry. We can rectify this by relaxing the requirement that x, y ∈ M distinct must be separated by
nonzero distance.

We first define the convenient category of metric spaces alluded to above, called Lawvere metric spaces.
We go on to define Cauchy completeness in this setting, and construct a left adjoint to the inclusion of
Cauchy complete Lawvere metric spaces into Lawvere metric spaces, called Cauchy completion. After
this, we define the VCat-enriched categories VCat ⊂ VProf of V-functors and V-profunctors. Then, we
define weighted colimits and absolute colimits, and state the universal property of the Cauchy completion
of a category.

1.1 Lawvere metric spaces

Let R := [0,∞] be the extended nonnegative reals.

Definition 1.1. A Lawvere metric space is a set X together with a function d : X ×X → R such that

1. (identity) for all x ∈ X,
d(x, x) = 0,

and

1To construct this, pick points m ∈ M,n ∈ N . Then, we construct the metric space 2 = {∗m, ∗n} with d(∗m, ∗n) = 2d(m,n).
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2. (triangle inequality) for all x, y, z ∈ X,

d(y, z) + d(x, y) ≤ d(x, z).

If (X, dX) and (Y, dY ) are Lawvere metric spaces, then a map f : X → Y is called a short map if for all
x, y ∈ X,

dX(x, y) ≥ dY (f(x), f(y)).

A Lawvere metric space is a quasimetric space if, in addition, it satisfies the following conditions:

3. (finite distance)
d(X,X) ⊂ [0,∞),

and

4. (separation) for all distinct points x, y ∈ X,

d(x, y) > 0.

A quasimetric space is an ordinary metric space if, in addition, it satisfies the following condition:

5. (symmetry) for all x, y ∈ X,
d(x, y) = d(y, x).

For reasons that will become clear later, let RCat denote the category of Lawvere metric spaces
and short maps. Let Met, qMet ⊂ RCat denote the full subcategory of ordinary metric spaces and
quasimetric spaces, respectively. Note that an isomorphism in RCat is precisely an isometry, i.e. a
distance-preserving bijection.

There is an involution (−)op : RCat → RCat taking a Lawvere metric space L to the Lawvere metric
space Lop with the same underlying set as L, and with distances

dLop(x, y) := dL(y, x).

The category RCat is a monoidal closed category, with monoidal product ⊗ : RCat×RCat → RCat
where K ⊗ L has points K × L and distance

dK×L(k × ℓ, k′ × ℓ′) := dK(k, k′) + dL(ℓ, ℓ
′).

This has right adjoint RCat(L,M) = [L,M ] of short maps with distance given by the asymmetric
sup norm

d(φ, θ) = max

(
0, sup

x∈X
{θ(x)− φ(x)}

)

1.2 Cauchy completion

Lawvere metric spaces, like ordinary metric spaces, may have holes:

Definition 1.2. Let L be a Lawvere metric space. A Cauchy sequence in L is a map of sets p(−) : N → L
such that, for all ε, there exists some Nε ∈ N such that

d(pn, pm) < ε

whenever n,m > Nε. L is said to be Cauchy complete if every Cauchy sequence in L converges to a point
in L.

Remark. Let {pn} be a Cauchy sequence in L. Then, {pn} defines a pair of short maps hp : Lop → R
and hp : L → R computed by the formulas

hp(x) = lim
n

d(x, pn);

hp(x) = lim
n

d(pn, x).

These form the missing data in a Lawvere metric space L ∪ {p} where {pn} attains a limit at point p. In
particular, a map from L to a Cauchy complete metric space factors uniquely through L ∪ {p}.
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Let RCatCauchy ⊂ RCat be the full subcategory of Cauchy complete Lawvere metric spaces, and
similarly for qMetCauchy and MetCauchy. There is a commutative diagram of categories

MetCauchy qMetCauchy RCatCauchy

Met qMet RCat

A left adjoint to a vertical arrow in this diagram will be called Cauchy completion. Explicitly, if L is a
Lawvere metric space, then the Cauchy completion of L will be the Cauchy complete Lawvere metric
space L → L under L such that all maps L → C from L to a Cauchy complete Lawvere metric space C
factor uniquely through L:

L L

C

∃!

Let σ : qMet → Met be the symmetrization functor taking a quasimetric space Q to the metric
space σQ on the same space, with metric dσQ(x, y) = min(dQ(x, y), dQ(y, x)). The following more-or-less
classical theorem establishes existence of Cauchy completion.

Theorem 1.3.

1. The Cauchy completion (−) : RCat → RCatCauchy is given on objects by the subspace

L ⊂ RCat(Lop,R)

of short maps hp : Lop → R such that there exists a short map hp : L → R satisfying the properties

� (triangle inequality) hp(x) + hp(y) ≥ d(x, y).

� (existence of a Cauchy sequence) infx∈X hp(x) + hp(x) = 0.

2. The Cauchy completion on Lawvere metric spaces restricts to the Cauchy completion on quasimetric
spaces.

3. The Cauchy completion of Met is the symmetrization of Cauchy completion of qMet:

MetCauchy qMetCauchy

Met qMet

σ

Proof sketch. Part 1 should be viewed intuitively via the Enriched Yoneda lemma; there is an isometric
embedding h(−) : L ↪→ RCat(Lop,R) sending point p to the “representable function” hp(q) = d(q, p) and
RCat(Lop,R) is a Cauchy complete category. This factors through L, with the function hp is given by
hp(q) = d(p, q).

The space L is Cauchy complete by a simple argument reminiscent of the classical case; short maps
L → C to a Cauchy sequence factor uniquely through L as sketched by the above remark.

Part 2 follows by a simple argument: for Q ⊂ L a quasimetric subspace of a Lawvere metric space
satisfying separation, let Q ⊂ Q̃ ⊂ L be the subspace set of points of L which are finite distance from a
point of Q. This is itself a quasimetric space by the triangle inequality; further, any Cauchy sequence in
Q attaining a limit in L must have its limit contained in Q, as

d(x, L) = lim d(xn, L) < ∞

for x ∈ Q. In particular, for L = Q, this implies that Q̃ is Cauchy complete, so Q̃ = Q and Q is a
quasimetric space.

Part 3 follows by inspection; alternatively, noting that σ is left adjoint to the inclusion Met ↪→ qMet,
part 3 follows by composition of left adjoints.

This argument can be reframed as an elegant classical construction: if working directly with ordinary
metric spaces, we instead could have embedded M into the metric space

σRCat (Mop, [0,∞)) = σRCat (M, [0,∞)) = Met (M, [0,∞)) ,

i.e. the short maps M → [0,∞) under the sup norm; this is a complete metric space, and we could have
taken the Cauchy complete closure of M within it.
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2 Enriched categories and Cauchy completion

The notation RCat ought to have been suggestive: a Lawvere metric space is sort of like a category,
but with hom sets replaced with elements of R! This falls into the realm of Enriched category theory ; a
comprehensive reference for the basic theory can be found at [1].

2.1 Enriched categories

Definition 2.1. A Bénabou cosmos is a complete and cocomplete closed symmetric monoidal category.

Examples of this include any Grothendieck topos, (RMod,⊗, R), and (R,≤) under addition.

Definition 2.2. Fix V a Bénabou cosmos. A V-enriched category is the data of

� a class Ob C of objects,

� for each pair x, y ∈ Ob C, a hom object C(x, y) ∈ V,
� for each triple x, y, z ∈ Ob C, a composition morphism

◦ : C(y, z)× C(x, y) → C(x, z),

and

� for each object x ∈ Ob C, an identity arrow

idx : I → Ob C,

subject to associativity and unitality of composition up to coherent natural isomorphism.

We will fit these into a VCat-enriched category, called VCat.

Definition 2.3. Let C,D be V-categories A V-functor F : C → D is a function F : Ob C → ObD together
with morphisms F : C(x, y) → D(Fx, Fy) for each x, y ∈ Ob C, subject to unitality and compatibility with
composition. A V-natural transformation α : F =⇒ G is a class of morphisms {αc : 1 → D(Fc,Gc)}c∈C

such that αc′ ◦ Ff = Ff ◦ αc for all f : 1 → C(c, c′).
The notion of V-naturality generalizes ordinary naturality: when V = Set, this corresponds with the

commutative diagrams

Fx Gx

Fy GY

α

Ff Gf

α

for each f : x → y.
With these in mind, we can define the category VCat to have objects given by V-categories and

morphisms given by V-functors. Endow on this category the “hom-wise tensor product” monoidal structure
⊗ : VCat× VCat → VCat, where B ⊗ C has objects ObB ×Ob CD and morphisms

B ⊗ C(b× b′, c× c′) := B(b, b′)⊗ C(c, c′).

This has right adjoint VCat(C,D) = [C,D] whose objects are given by the V-functors, with hom-objects
given by the ends

V −Cat(F,G) : =

∫
c

D(Fc,Gc)

= eq

(∏
c∈C

D(Fc,Gc) ⇒
∏
c→c′

D(Fc,Gc′)

)
.

Where the equalizer arrows correspond with pre- and post-composition. This endows VCat with the
structure of a VCat-enriched category.

There is a lax monoidal functor called the underlying category, (−)0 : VCat → Cat sending C to the
category having objects Ob C and morphisms x → y given by arrows I → C(x, y) in V. Via change of
base, VCat enriched categories have underlying 2-categories, and (−)0 is 2-functorial.

The underlying 2-category of VCat has objects given by V-categories, morphisms given by V-functors,
and 2-cells given by V-natural transformations.
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2.2 Enriched profunctors

We’ve covered enriched categorical constructions generalizing the space of short maps, but we haven’t
considered the Yoneda perspective employed for metric spaces yet; to do so, we reframe this perspective a
bit. Given a point p : ∗ → L of a Lawvere metric space, we replace p with a propoint ∗ → RCat(Lop,R).
In order to describe the subspace of these maps that constitutes the Cauchy completion, we spend a bit
of time defining the generalization of these.

Definition 2.4. Let C,D be V-categories. A V-profunctor F : C −7−→ D is a V-functor C → VCat(Dop,R),
or equivalently, a V-functor C ⊗ Dop → R. The VCat-category VProf has:

� Objects given by V-categories.
� Morphisms given by

VProf(C,D) = VCat(C ⊗ Dop),

and

� compositions of morphisms given on objects by the left Kan extension

D [Eop,R]

[Dop,R]

C

y

φ

Lany φ
η

θ

φ◦θ

where y refers to the enriched Yoneda embedding. In particular, it’s computed by the coend

φ ◦ θ(−,−) =

∫ d

φ(d,−)⊗ θ(−, d)

= coeq

( ∐
d→d′

φ(d,−)⊗ θ(−, d′) ⇒
∐
d∈D

φ(d,−)⊗ θ(−, d)

)

This may be motivated in the case that V = Ab and C,D, E are rings, in which case AbProf(C,D) is
the preadditive category C −Mod−D of (C,D)-bimodules, and composition corresponds with the tensor
product.

Now that we’ve categorified propoints, we can attempt to categorify propoints within the Cauchy
closure of L; the propoints

hp : ∗ → [Lop,R] = RProf(∗, L)
in L are precisely those with complimentary propoints

hp : ∗ → [L,R] = RProf(L, ∗)

satisfying some conditions:

1. (existence of a Cauchy sequence)

0 ≥ hp ◦ hp(∗) = inf
x

hp(x) + hp(x).

This is equivalent to existence of a V-natural transformation ∗

0

h∗(∗)

 =⇒


∗

infx hp(x) + hp(x)

hp◦hp(∗)
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This is precisely a unit map  ∗

∗

/

 =⇒



∗

L

∗

/
/


in the bicategory of profunctors.

2. (the triangle inequality) hp(x) + hp(y) ≥ d(x, y); this can be reformulated as the existence of a
V-natural transformation 

(x, y)

hp(x) + hp(y)

hp◦hp(x,y)

 =⇒


(x, y)

d(x, y)

y


This is precisely a counit map 

L

∗

L

/
/


=⇒

 L

L

/



in the bicategory of profunctors.

Together, these establish that the Cauchy completion L ⊂ RProf(∗, L) is precisely the subspace on

propoints who have a right adjoint in RProf(∗, L).2 This motivates the following definition:

Definition 2.5. Let C be a V-category. The Cauchy completion of C is the full V-subcategory

C ⊂ VProf(∗, L)

of V-profunctors which admit a right adjoint.

Now we’re in business! This behaves nicely:

Theorem 2.6. Let C be a V-category. Then,

[Cop,V] =
[
Cop

,V
]
.

We won’t prove this largely formal fact; it does immediately yield some useful corollaries. Following
the Australian terminology in viewing profunctors as modules, the latter corollary may be viewed as a
characterization of Morita equivalence:

Corollary 2.7. Fix V-categories C and D.

1. C = C.
2. [C,V] ≃ [D,V] if and only if C = D.

To continue with the unexplained metaphor, call a profunctor h ∈ VProf(∗, L) a small-projective if it
represents a functor which preserves small weighted colimits. The following is true, and will eventually
establish the Cauchy completion of a ring as the associated category of projective modules:

Theorem 2.8. The Cauchy completion C ⊂ VProf(∗, L) is the full V-subcategory consisting of small
projectives.

This is an incredibly useful tool in wrangling examples. But examples are lame; let’s discuss a universal
property first instead.

2We don’t need to address commuttativity as R is a poset, so all diagrams in R commute.
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2.3 Another universal property: limit points as weighted colimits

We recall the correct notion of enriched colimits:

Definition 2.9. Let C be a V-category and let F : J → C and W : Jop → V be V-functors. Then, a
colimit of F weighted by W is an object colimW F ∈ C together with a V-natural isomorphism

C(colimW F, c) ≃ [Jop,V] (W, C(F−, c)).

Say that a V-category is cocomplete if all small diagrams in it have colimits for all weights. Say that a
V-functor is cocontinuous if it preserves all small weighted colimits.

When V = Set and W = ∗ is the constant functor at the monoidal unit ∗, this is precisely the
statement that the cocones ∗ =⇒ C(F−, c) are in natural bijection with the morphisms colim∗ F → c,
i.e. we recover the notion of ordinary colimits. It’s known that all weighted colimits of ordinary categories
are computed by ordinary colimits, but this fails to be true in the enriched case.

These correspond with something concrete in the R-enriched case:

Example 2.10:

Let L be a Lawvere metric space, p ∈ L a point, and f : L → M a short map. Then, the profunctor
hp : Lop → V together with the short map f correspond with a diagram in M together with a weight;
if pn → p is a sequence witnessing p as an element of the Cauchy completion of L, then f(pn) is a
Cauchy sequence, which attains a limit if and only if f attains a hp-weighted colimit, in which case the
two coincide. Furthermore, if p ∈ L, then colimhp f = f(p).

Choosing f = id, this illustrates that limits of Cauchy sequences occur as instances of weighted
colimits, which happen to be preserved by every R-functor.

Remark. We continue to emphasize the space [Lop,R], at the expense of requiring some translation
between [N, L] and [Lop,R]; alternatively, a sequence p(−) : N → L is Cauchy if and only if there exist
weights witnessing it as a Cauchy sequence in a “forward” and “backwards” way, in which case the limit
and colimit weighted by these limits both correspond with the traditional limit of p(−); see [3].

With this in mind, we can cite the following theorem:

Theorem 2.11 (The yoneda functor is the free cocompletion). Suppose C is a small V-category. Then, for
every V-functor C → D into a cocomplete category, there is a cocontinuous V-functor [Cop,V] → D, unique
up to V-natural isomorphism, causing the following diagram to commute up to V-natural isomorphism:

C [Cop,V]

D

∃!

This sledgehammer is capable of proving that [Lop,R] is Cauchy complete! We may take a subspace
consisting only of those colimits which correspond with limits of Cauchy sequences, i.e. those colimits
that are preserved by every short map, motivating the following definition:

Definition 2.12. A colimit diagram is absolute if it is preserved by every V-functor. A functor W : J → V
is an absolute weight if every W -weighted colimit is absolute. A V-category C is absolutely cocomplete if
all diagrams in C together with absolute weights attain colimits.

The following theorem is a general fact:

Theorem 2.13. Let F : C −7−→ D be a V-profunctor. The following are equivalent:

1. F is a weight for absolute colimits.

2. F has a right adjoint in VProf .

Applying this for C = I and shuffling things around, we obtain the following universal property:

Corollary 2.14 (The Cauchy completion is the absolute cocompletion). Suppose C is a small V-
category. Then, for every V-functor C → D into an absolutely cocomplete category, there is a V-functor
C → D, unique up to V-natural isomorphism, causing the following diagram to commute up to V-natural
isomorphism:

C C

D

∃!
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2.4 Some examples

Theorem 2.15. Let C be a small ordinary category. Then, the Cauchy completion of C is the idempotent
completion of C.

Proof sketch. The idempotent completion is computed by the subcategory of [Cop,Set] consisting of
retracts of representables. Representables are small-projective since the contravariant hom is cocontinuous,
and retracts of cocontinuous functors are cocontinuous, so the idempotent completion is contained in C.

The converse proceeds by Yoneda trickery: for W : Cop → Set a small-projective presheaf, we have

[Cop,Set] (W,W ) = [Cop,Set] (W, colimW y) = colimW [Cop,Set] (W, y);

the identity must correspond with some map

I → colimW [Cop,Set] (W, y).

In particular, since colimits in Set are computed by quotients of disjoint unions, this must correspond
with some map of presheaves W → hx for some object x; naturality then implies that this is a section of
the coprojection hx → W , so W is a retract of a representable.

According to nLab, this holds whenever V is a cartesian cosmos where the terminal object is small-
projective.

Theorem 2.16. Let C be an Ab-category. Then, the Cauchy completion of C is the idempotent and finite
direct-sum cocompletion of C.

Proof sketch. First note that finite direct sums and idempotent splittings are absolute colimits, so the
described cocompletion is contained in C. As in the strategy over Set, we write the expression

[Cop,Ab] (W,W ) = [Cop,Ab] (W, colimW y) = colimW [Cop,Ab] (W, y);

colimits over Ab are quotients of direct sums, so there are finitely many objects x1, . . . , xn such that this
expresses W as a retract of

⊕
i hxi , as desired.

In particular, for R a ring, R is the category of finitely generated projective R-modules.
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