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Abstract. We introduce the category of �-Mackey functors along with a functor Σ∞
�

: ��(C) → ℳ�(C) from
coefficient systems from Mackey functors. Using isotropy separation, we construct an equivalence(

Σ∞� -
)�
'

∏
�∈Conj(�)

Σ∞-�
ℎ,��

and derive as a corollary the classical computation

�(�) ' ��0 (S),
where �(�) ' Z [Conj(�)] is the Burnside ring, strengthening the Segal conjecture.

Our goal in this talk¹ is to develop some of the techniques central to stable equivariant homotopy theory,
naturally generalizing along the way from �-spectra to more general categories of Mackey functors, as in
[Bar14; Bar+16; Gla17; Gla18; NS22]. We are interested in proving the Tom Dieck splitting, originally proved
for homotopy groups in [Die75].

Theorem A. Let C be a stable ∞-category and let ℱ be a family of subgroups. Then, the free functor Σ∞
�,+ :

Fun(ℱ op , C) → Fun×(Span(Fℱ ),CMon(C)) satisfies the splitting(
Σ∞�,+-

)�
'

∏
(�)∈ℱ '

Σ∞-�
ℎ,ℱ �

We will derive the following well-known corollary for finite groups:

Corollary B. The 0th genuine stable homotopy group is the Burnside ring

�(�) ' Z[Conj.classesof�] ∼−→ ��0 (S).

Much of the contents of this paper are original only as synthesis of old thought and new technology.
The old thought (i.e. the content of our proof of the tom Dieck splitting) can be sourced at [Deb17, § 2.7], and
the new technology can be sourced at [Gla17].

1. Mackey functors, Coefficient systems, and equivariant homotopy theory

1.1. Unstable equivariant homotopy theory. We begin with some motivational content:

Definition 1.1. Let � be a finite group, and let -,. be topological spaces with �-action.
(1) a �-homotopy equivalence is a �-equivariant map 5 : - → . possessing a �-equivariant map . → -

and �-equivariant homotopies 1- ' 6 5 and 1. ' 5 6.
(2) a �-weak homotopy equivalence is a �-equivariant map 5 : - → . whose point-set fixed points

-� → .� is a weak equivalence for every subgroup � ⊂ �.
(3) a naive �-weak equivalence is a �-equivariant map 5 : - → . whose underlying - 4 → .4 is a weak

equivalence.

We’d like to repeat all of classical homotopy theory in this setting. To do so, let’s define CW complexes:
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Definition 1.2. Let � be a finite group, and let Set� be the category of sets with �-action. Then, a �-CW
complex is a sequence -−1 = ∅, -0 , -1 , . . . together with pushout squares

)= × (=−1 )= × �=

-=−1 -=

ù

of topological �-spaces, where )= ∈ Set� and � acts on (=−1 and �= trivially.

These notions satisfy a large collection of generalizations of the classical theorems of unstable homotopy
theory, which we list here:

• Every compactly generated and weakly Hausdorff�-space is�-weakly equivalent to a�-CW complex
[May96, Thm 3.6].
• Every compact smooth �-manifold is �-weakly equivalent to a finite �-CW complex [Ill83].
• Continuous maps between (relative) �-CW complexes are homotopic to cellular maps [May96,

Thm 3.4].
• A map between�-CW complexes is a�-weak equivalence if and only if it’s a�-homotopy equivalence

[May96, Cor 3.3].
For our purposes, we collect these together with some other results into an Omnibus theorem. Define the∞-
categoryS� as the homotopy-coherent nerve of the topological category whose objects are CGWH topological
spaces with �-action and whose mapping spaces are Map(-,.)�, i.e. the space of �-equivariant maps.

The orbit category is the subcategory O� ⊂ S� spanned by the homogeneous �-spaces �/� for � ⊂ �
ranging over the subgroups. The co-yoneda embedding restricted to O� yields a functor

� : S� → Fun(Oop
�
,S).

Note that
Map(�/�, -)� ' -� ,

so � recovers precisely the homotopy types of the fixed points as well as the restriction maps between them.
The following combines Elmendorf’s theorem and the equivariant Whitehead’s theorem

Theorem 1.3 ([Elm83; May96]). � along with the functors G − CW→ Top� and G − CW→ Fun(Oop
�
,S) induce

equivalences
S� ' Fun(Oop

�
,S) ' G − CW[G −WEQ−1] ' Top�[G − EQ−1]

Remark. There is an unstraightening functor
Fun(Oop

�
,S) → Scocart

/Oop
�

landing in cocartesian fibrations to Oop
�

with fibers which are spaces; the total space of this cocartesian
fibration is called the underlying space. Elmendorf’s theorem endows this space with the structure of a genuine
�-action.

As a corollary, we acquire a conservative functor

�∗ : S� → ��(Set)N ,
where ��(Set) := Fun(Oop

�
, Set) is the category of �-coefficient systems valued in Set. One might refer to these

as the coefficient system homotopy groups; it’s not too hard to see that �= naturally lifts to functors Oop
�
→ Grp

when = ≥ 1 and Oop
�
→ Ab when = ≥ 2.

1.2. Stable equivariant homotopy. Let + be a real orthogonal �-representation. Then, we may form the
one-point compactification �-space (+ by taking the unit disk �(+) ⊂ + and taking the quotient by the unit
sphere

(+ := �(+)/((+)
This, for instance, satisfies

(
(+

)� ' (+� . When - is a based �-space, we denote the smash product and
mapping based �-space as

Σ+- := (+-, Ω+- := Map∗((+ , -)
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As in motivic homotopy theory, we may consider the stabilization under these functors, or equivalently,
under Ω� or Σ+ , where � is the regular representation. An early indication of what one might acquire was
the Wirthmüller isomorphism. In order to state it, temporarily define the extended Spanier-Whitehead category

SW� := colim
(
· · · → S�,∗

Σ�

−−→ S�,∗ → · · ·
)

Theorem 1.4 (Wirthmüller isomorphism). For + � 0, there is a based transfer map � : (+ → (+ ∧ �/�+ and
restriction map A : (+ ∧ �/�+ → (+ which together witness �/�+ as self-dual in SW�. If SWO� ⊂ SW�

denotes the full subcategory spanned by orbits, then the restriction and transfer maps yield an equivalence

SWO� ' Span(O�).

In particular, if we form the category

Sp� := lim
(
· · · ← S�,∗

Ω�

←−− S�,∗ ← · · ·
)

then similar to Elmendorf’s theorem, mapping spectra out of the unreduced suspension spectra of finite
�-sets together with restriction and transfer maps yield a functor

� : Sp� → Fun×(Span(F�), Sp),

where F� denotes the category of finite �-sets. The stable version of Elmendorf’s theorem states that this is
an equivalence:

Theorem 1.5 ([GM11; Nar16]). The functor � : Sp� → Fun×(Span(F�), Sp) is an equivalence.

It is further established in [Nar16] that Sp� may be computed intrinsically as the �-stabilization of S�,
i.e. the universal stable category out of S� for which indexed products and coproducts agree. This theorem
immediately constructs for us a conservative functor

�∗ : Sp� →ℳ�(Ab)

where
ℳ�(C) := Fun×(Span(F�), C).

These are called the Mackey functor stable homotopy groups. Before developing more of equivariant stable
homotopy theory, we take a brief diversion into some of the combinatorics of coefficient systems and Mackey
functors.

1.3. Coefficient systems. We take this opportunity to depart from the setting of equivariant homotopy
theory in our first way: we take the � out of genuine.

Definition 1.6. A category T is orbital if the finite coproduct completion FT := T
∐

has all pullbacks. An
orbital category T is atomic if every map attaining a section is an equivalence.

If ℱ ⊂ O� is an initial subcategory of the orbit category of a profinite group (i.e. a collection of
subgroups closed under subcojugation), then ℱ op is an atomic orbital∞-category. In order to avoid annoying
details while talking about profiniteness or families of subgroups, we simply work in the setting of atomic
orbital∞-categories.

Example 1.7:
Let � = �? . Then, the orbit category of � is given by[

�?/4
] [

�?/�?
]

�?

where [�/�] denotes the homogeneous �-space.

Inspired by this, we make the following structural statement:
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Proposition 1.8. Fix � a group. Let C� be the category whose objects are the subgroups � ⊂ � and whose morphism
objects Hom(�, �′) are given by the morphisms � → �′ computed by conjugation by an element of �, i.e.

HomC� (�, �′) :=
{
6 | 6�6−1 ⊂ �′

}
/��(�).

Then, the functor which sends � to the homogeneous space �/� yields an equivalence

C�
∼−→ Oop

�
.

In particular, O� is atomic orbital, and we may view it as a glued together version of the various
conjugacy classes of subgroups of �, with endomorphism monoids recording the Weyl groups of the various
subgroups of �. To see this in action, we write down a less trivial example:

Example 1.9:
Let � = �6. We illustrate several orbital subcategories of O�:

[�/�2]

[�/4] [�/�]

[�/�3]

[�/�2]

[�/4] [�/�]

[�/�3]

[�/�2]

[�/4] [�/�]

[�/�3]

8ℱ : ℱ ↩→ O� ,
8� : O� ↩→ O� ,
9ℱ ⊥ : ℱ ⊥ ↩→ O� .

As illustrated here, if � ⊂ � is a subgroup, the subgroups of � yield a family ℱ�⊂� ⊂ O�, and when
� ⊂ � is normal, ℱ�⊂� ',�� × O� ; any family possesses a right +-semiorthogonal complement

ℱ ⊥ := {+ ∈ O� | ∀* ∈ ℱ ,Map(+,*) = ∅} .
and when � ⊂ � is normal, ℱ ⊥

�⊂� ' O�/� . We will use the inclusion 9�/� : O�/� ↩→ O� to construct fixed
points soon.

Additionally, for any subgroup � ⊂ �, there is a (non-full) subcategory 8� : O� → O� spanned by
orbits �/�′ for �′ ⊂ � with morphisms which are computed by conjugation by elements of �.
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Before moving on to a construction, we write down one more example:

Example 1.10:
Let - be a space. Then, - is atomic orbital by construction, since -

∐
is a groupoid. The category

S- := Fun(-,S) is the category of parameterized spaces over � from e.g. [ABGHR].

If C is an∞-category and T is an atomic orbital∞-category, let �T (C) := Fun(T , C) denote the category
of coefficient systems valued in C. Then, whenever ! : T ′→ T is a functor between atomic orbital∞-categories,
pullback together with left and right Kan extension yield a double adjunction

�T (C) �T ′(C)!∗

!!

!∗

a
a

Using these, we define the following change of universe data:

S��(C)

��/�(C) S�(C)

S�(C)

Bor=8∗
��

ℎ�

ℎ�

Res�
�
=8∗

�

Ind�
�

CoInd�
�

triv

��=9∗
�/�

We can similarly replace Bor with pullback to an arbitrary family and �� with pullback to the right-
complement of an arbitrary family.

1.4. Mackey functors and the isotropy separation sequence. In [GR17], the construction of a category of
correspondences was sketched, which was latter fully carried out in [Bar14], there called the effective Burnside
category. When C is a category with pullbacks, we refer to this as Span(C). This is constructed initially as a
complete Segal space whose =-simplices can be epitimized by the case = = 3:

-14

-13 -24

-12 -23 -34

-1 -2 -3 -4

ù

ù ù

Here, -8 and -8 9 are objects in C, all arrows are morphisms in C, and all squares are Cartesian.This recovers
the traditional category of spans when C is a 1-category. In general, when T is an orbital∞-category, FT has
pullbacks, so we may make define the category of T -Mackey functors valued in C:

ℳT (C) := Fun×(Span(FT ), C).
When T = Oop

�
, we write ℳ�(C) := ℳOop

�
(C).

This has a description which may be familiar to representation theorists (see [Deb17]):

Theorem 1.11. A �-Mackey functor valued in C is equiivalent to the data of two functors
' :F� → C ,
) :Fop

�
→ C ,

subject to the following conditions:
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(i) there is an (unnatural) equivalence '(() = )(() for all finite �-sets (;
(ii) for every pair of finite �-sets (, ), the canonical map '(-) × '(.) → '(- t .) is an equivalence; and
(iii) for every pullback square ∐

G∈[�\�/ ] �/(� ∩ G G−1) �/�

�/ �/�




� �

�

there is an identity '(�))(
) = )(�)'(�), i.e. the double coset formula holds:

'
�

 
)
�

�
=

∏
G∈ \�/�

) 
 ∩G�G−1 2G,�'

�
�∩G−1 G

where 2G,� : �/� → �/(G�G−1) is the conjugation action.

For instance, this theorem immediately allows one to construct a functor
Rep�(') →ℳ�(' −Mod).

One quickly arrives at several other algebraic examples, such as (Z[�]) (or more general equivariant algebraic
 -theory), group (co)homology, algebraic  theory of (intermediate extensions of) a Galois extension of
fields, etc. In this talk, we will squarely avoid such things, instead choosing to think in terms of the span
category description of ℳT (C). However, there is one example where thinking explicitly is quite easy. Let
� : T ↩→ Span(FT ) be the canonical inclusion.

Theorem 1.12. Let - be a space. Then, the functor
�∗ : ℳ-(C) → �-(CMon(C))

is an equivalence.
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In particular, when C = Sp, this establishes the fact that --equivariant stable homotopy theory is
precisely stable homotopy theory parameterized over -; setting - := ��, this establishes that ��-equivariant
stable homotopy theory is precisely Borel �-equivariant stable homotopy.

We’d like to use this to construct change of universe data. To do so, the following follows from lax limits
citation :

Theorem 1.13. Suppose ! : T ′→ T is a functor between atomic orbital∞-categories. Then, the functors !∗ , !∗ , !!
preserve the property of being Mackey functors; in particular, they supply a double adjunction

ℳT (C) ℳT ′(C)!∗

!!

!∗

a
a

Using this, we have change of universe data:

���(C) ℳ�(C)

ℳT (C)

ℳ�/�(C) ℳ�/�(C)

Φ�

��=9∗
�

triv�

Ξ�=A∗
�

Bor=8∗
��

ℎT

ℎT

Res=8∗
�

CoInd

Ind

Assume C has an initial object ∅ ∈ C, and letU ⊂ T be an upward-closed full subcategory. We say
that a T -Mackey functor " is supported onN if "(-) = ∅ for all G ∉ N> The following theorem was proved
in [Gla17].

Theorem 1.14. LetU ⊂ T be an upwardly closed subcategory of an atomic orbital∞-category. Then, the functor ΞU
is the inclusion of a localizing subcategory consisting of Mackey functors supported onU .

It is clear by inspection that, when ℒ ⊂ T is a downwardly-closed subcategory andU is its upwardly-
closed complement, the above theorem is equivalent to the statement that (ℎℒ ,ΞU ) presents a semiorthogonal
decomposition ofℳT (C). The theorem takes the following equivalent form.

Corollary 1.15 (The isotropy separation sequence). Let ℒ ⊂ T be a downwardly-closed subcategory of an atomic
orbital∞-category, letU be its upwardly-closed complement, and let C be a stable∞-category. Then, there is a cofiber
sequence ofℳT (C)-endofunctors

(1) ℎℒBorℒ → id→ ΞUΦU

Proof idea. First, the theory of nonabelian derived categories proves that

ℳT (C) ' Fun!(ℳT (CMon(S)), C).
Furthermore, ΦN is a localization onto the full subcategory consisting of functors � :ℳT (CMon(S), C) taking
ΦN -equivalences to equivalences; since C is stable, if we can prove the theorem in the case C ' CMon(S),
then we may conclude that a functor � :ℳT (CMon(S), C) takes ΦN -equivalences to equivalences if and
only if it takes Mackey functors concentrated away fromN to 0, i.e. the image of ΞU consists of the Mackey
functors supported onU .

To prove the corollary in the case that C = CMon(S), we use cocontinuity of all of the functors involved
in order to reduce to checking on corepresentable Mackey functors; there, we may check by hand, as in
[Gla17, § B]. �

In particular, if C is compactly generated, this establishes ΞΦ as a finite localization away from the class
of compact C-Mackey functors whose fixed points are concentrated at an object in ℒ. This comes with the
following corollary.
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Corollary 1.16. Let U ⊂ T be an upwardly-closed subcategory of an atomic orbital ∞-category and let C be a
compactly generated stable∞-category. Then, the comparison map

- ⊗ ΞU1C → ΞU-ΦU

is an equivalence for all - ∈ ℳT (C).

2. The tom-Dieck splitting

GivenU ⊂ T an upwardly-closed subcategory, theU-geometric and genuine fixed points interact.
One such way is compatibility with adjoints:

Proposition 2.1. There is a canonical natural equivalence �UΞU ' idℳU (C).

Proof. By ref , the map 9 :U → T is a section of A : T → U . The functoriality of star pullback then provides
natural equivalences

�UΞU = 9∗A∗

' (A ◦ 9)∗

= (id∗)
' id

�

Using this, we define a comparison natural transformation

�U : -�U
��U(Φ,Ξ)−−−−→

(
ΞU-ΦU

)�U
' -ΦU .

In this section, we characterize precisely the failure of �U to be an equivalence on equivariant suspension
spectra. We will define the notion of inductive atomic orbital∞-categories and prove the following theorem.

Theorem 2.2. Suppose T is an inductive atomic orbital∞-category and C is an∞-category. Write Σ∞� : CT (C) →
ℳT (SpC). Then, there is a natural equivalence

Σ∞� - '
∏
+∈T

Σ∞-+
ℎAutT +

We say that an atomic orbital∞-category T is inductive if there exists a well-ordered ordinal $ and an
$-indexed filtration Fil∗T of T by downward-closed subcategories such that
?A=Fil8T ⊥ ⊂

(
Fil8+1T

)
is a connected groupoid for all 8 ∈ T and colim8∈� Fil8T ' Filsup �T for all totally

ordered chains � ⊂ $; that is, T is inductive if it is constructed under transfinite induction by adding in upwardly-
closed objects, i.e. it is inductive if we can induct up the collection of downwardly-closed subcategories using
the isotropy separation sequence. Examples of this include every family of subgroups of a profinite group.

For the remainder of this section, let (ℒ ,U) be complementary downward and upward closed subcate-
gories of T and let X be a final subspace of ℒ. Let Ũ :=U ∪X and let ℒ̃ := ℒ −X. We have a comparison
map

#U
-

: Σ∞�
(
-�U

)
→

(
Σ∞� -

)�U �
−→

(
Σ∞� -

)ΦU
Lemma 2.3. Suppose . = ℎℒ/. Then, there are equivalences making the following diagram commute:

Σ∞� .
�Ũ

(
Σ∞� .

)ΦŨ
ℎℒΣ∞� /

�X ℎℒ
(
Σ∞� /

)ΦX
ΨŨ
.

∼ ∼

ℎℒΨ
X
/

Prove this
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Proposition 2.4. When . ' ℎℒ/ for some / ∈ Sℒ , the comparison map #Ũ
.

is an equivalence; in particular, for all
objects + ∈ T , we have

Σ∞�

(
-+

)
'
(
Σ∞� -

)Φ+
.

Proof. By lemma 2.3, it suffices to prove this in the case that ℒ = T , so that Ũ ' X. In fact, we have
#X
.
'
⊕

+∈X #
+
.

, so it suffices to prove that

#+. : Σ∞� .+ →
(
Σ∞� .

)Φ+
when+ is a weakly terminal object. Since everything involved is compatible with colimits, it suffices to prove
this in the case that . is representable, i.e. . = ) ∈ T .

We compute on the left side and use universal properties on the right side; on the left, we have

)+ '
{

End()) ) = +,

∅ otherwise,

so that

Σ∞)+ '
{
Σ∞ End()) ) = +,

∗ otherwise.
On the right, note that by smashing ref and Wirthmüler ref , we have an equivalence

Ξ+ (Σ∞))Φ+ ' Σ∞) ⊗ Ξ+S,

' map(),Ξ+S);
in particular, we have

(Σ∞))Φ+ '
(
Ξ+ (Σ∞))Φ+

)+
' map(),Ξ+S)+

'
(
Ξ+S

)+×)
'
{
Σ∞ End()) ) = +,

∗ otherwise.
�

In particular, ref provides a splitting of the following sequence, which is theU-fixed points of (1)(
ℎℒ̃Borℒ̃Σ∞"

)U (
ℎℒBorℒΣ∞"

)U (
ℎℒBorℒΣ∞� "

)ΦU
(
ℎℒBorℒΣ∞� "U

)∼

By the pointwise formula for left Kan extension, we additionally find that(
(Σ∞ℎℒ")ΦŨ

)T
'
⊕
+∈X

Σ∞"+
ℎEnd(+) ,

Altogether, these facts prove the following proposition.

Proposition 2.5. There is an equivalence(
Σ∞ℎℒBorℒ"

)T
'
(
Σ∞ℎℒ̃Borℒ̃"

)T
⊕
⊕
+∈-

Σ∞"+
ℎAut(+).
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