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HOMOTOPICAL ADDITIVITY OF EQUIVARIANT LITTLE DISK OPERADS
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Abstract. Given a finite group G, a pair of orthogonal G-representations V and W , and a G-symmetric
monoidal ∞-category C⊗, we prove that the natural G-symmetric monoidal forgetful functor

Alg⊗EV⊕W
(C)→ Alg⊗EV

Alg⊗EW
(C)

is an equivalence, In fact, we define a proper equivariant version of EV with finite-index restriction and
transfers, and prove the we prove same property for finite-index proper EV⊕W -algebras.

Moreover, we extend these results to equivariant little disk operads with linear G-tangential structure.
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Foreword to this draft

This is an incomplete draft, made public so that I could reasonably speak on the results herein. These
results are intended to be mathematically complete, but I do not claim that they are well written or well-
proofread, and I do claim that they do not fulfill the full aspirations of this project; when finished, this article
will hopefully also prove additivity for a few stratified equivariant versions of En, including equivariant swiss
cheese and the evident “subrepresentation” analogue of En

BV⊗BiMod⊗. Additionally, I’m a bit stuck on the
nonlinear equivariant Kister-Mazur theorem– if I find a proof, the tangential structures will be given by
equivariant microbundles instead of equivariant vector bundles. As such, the reader should not expect many
readability-oriented updates until these parts are finished. The current goal is to finish this and revise for
arxiv submission by September of 2025.

Date: April 5, 2025.
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Introduction

In [May72], the study of homotopy-coherent algebraic structures crystallized into a definition of operads
and algebras, encapsulating Boardman-Vogt’s little cubes action on iterated loop spaces as a factorization

AlgEn(S∗)

S∗ S∗
U

Ωn

Moreover, the recognition principle of [May72] essentially proved that the restriction of Ωn to (n+1)-connected
pointed spaces is fully faithful with essential image the connected En-spaces. (see [HA] for this formulation).
This is evidently additive in n; indeed, after Stasheff’s E1 = A∞-recognition principle [Sta63], this formulation
of May’s recognition principle is easily seen to be equivalent to the fact that the forgetful functor

AlgEn+m
(S∗,≥1)

∼−−−→ AlgEnAlg⊗Em(S∗,≥1)

is an equivalence for all n,m ∈ N.
Naturally, one wonders about additivity for algebras in more general symmetric monoidal ∞-categories.

If we 1-categorically model E⊗n via the little cubes topological operad Cn ∈ AlgFun◦ (
∐
n∈NBΣn,Top), Boardman

and Vogt [BV73] constructed a point-set tensor product on topological operads with mapping property

Alg1−cat
O⊗P (C)

∼−−−→ Alg1−cat
O Alg1−cat,⊗

P (C)

for a pointwise symmetric monoidal structure on AlgP (C). The evident operadic conjecture then demands an
equivalence Cn ⊗Cm ≃ Cn+m; this was supplied by Dunn [Dun88].

Unfortunately, in making the corresponding additivity statement for algebras homotpical, we encounter
difficulty; the point-set Boardman-Vogt tensor product is not known to admit a left derived functor, let
alone satisfy a derived mapping property. One potential remedy in the 1-categorical setting (due to [FV13])
begins by verifying by hand that ⊗ is homotopical on weak equivalences between cofibrant operads which are
additionally equivalent to Ck , but to the authors knowledge, further headway has not been made.

Instead, Lurie defined a manifestly homotopical tensor product
BV⊗ on the ∞-category of operads Op

directly in terms of its mapping property, then constructed equivalences E⊗n
BV⊗E⊗m ≃ E⊗n+m and

AlgEn+m
(C)

∼−−−→ AlgEnAlg⊗Em(C),

the latter natural in the symmetric monoidal ∞-category C. We’ll call this result Dunn-Lurie additivity.
In the years since, Dunn-Lurie additivity has become a basic tool of homotopy theory and algebraic

K-theory; for instance, it underlies the En−1-monoidal structure on left modules over an En-algebra, as well
as the En−1-structure on the value of various E1-invariants on En-algebras, such as topological Hochschild
homology, algebraic K-theory, and various approximations therebetween. Crucially, Dunn-Lurie additivity is
an indispensable tool in studying En-algebras, as it often inductively reduces questions about E⊗n ≃ E⊗n1 to
questions about E⊗1 , whose algebras are simply presented as associative algebra objects.1

We are interested in an equivariant version of this result; the definition of E⊗n naturally extends to a
little V -disks G-operad E⊗V for any orthogonal G-representation V , which satisfy an approximation theorem
and recognition principle for SV -loop spaces [GM11; RS00; SW03]. Dunn’s result has been lifted to G-operads
in [Szc24] for a tensor product of operads in sSetG with no known homotopical properties.

Moreover, Lurie’s theory of ∞-operads and Boardman-Vogt tensor products was extended to G-operads
in [Ste25b; Ste25d], whose notation we adopt. Our main theorem shows that E⊗V is additive in V under the
(homotopical) Boardman-Vogt tensor product.

Theorem A. The natural G-operad maps E⊗V ,E
⊗
W → E⊗V⊕W extend to an equivalence

E⊗V
BV⊗E⊗W

∼−−−→ E⊗V⊕W ;

in particular, for all G-symmetric monoidal ∞-categories C, the forgetful functor yields an equivalence

AlgEV⊕W (C)
∼−−−→ AlgEV Alg⊗

EW
(C).

1 This can be interpreted ∞-categorically or via Schwede-Shipley’s right-transferred model structure on strict associative algebra
structures; see e.g. [HA, Thm 4.1.8.4].



ROUGH DRAFT OF EQUIVARIANT DUNN ADDITIVITY 3

For instance, by results of [Ste25d], this constructs an EV -algebra structure on the Real topological
Hochschild homology of an EV⊕σ -algebra and a natural EV -monoidal structure on right-modules over an
EV⊕1-algebra, as well as verifying that this is the universal such structure.

In general, when G = C2, this reduces questions about EV -algebras into questions about E1-algebras
and Eσ -algebras, which are relatively well understood [Hil22], as their structure spaces are discrete (indeed,
when V is 0-dimensional, its S-ary structure space is either empty or an AutH S-torsor [Ste25c]).

Now, we describe a variation of Theorem A in the following setting.
Definition. Let BGTop(n) the classifying G-space for equivariant (orthogonal) vector bundles. A linear
G-tangential structure is a G-space X with a distinguished map T : X→ BGO(n). ◁

Given a linear G-tangential structure X, we define a G-operad E⊗X of X-framed little disk embeddings.
Example. If V is an orthogonal G-representation, a V -framed smooth G-manifold M comes equipped with a
map M

TM−−−−−→ BGO(dimV ); in particular, V with its tautological self-framing yields a G-tangential structure.
The resulting G-operad is E⊗V . ◁

Using this example, we construct a natural equivalence

Alg
EX

(C)
∼−−−−−→ limx∈XAlg

ETx
(C).

which we use to show the following.

Corollary B. Given a pair of linear G-tangential structures X → BGO(k) and Y → BGTop(k′), the natural
G-operad maps E⊗X ,E

⊗
Y → E⊗X×Y extend to an equivalence

E⊗X
BV⊗E⊗Y

∼−−−→ E⊗X×Y .

In Section 3.3 we relate this to Dwyer-Hess-Knudsen’s conjecture on skew little cubes operads [DHK18,
Conj 4.18] and interpret our results in terms of Horev-Miladinovic’s G-∞-categories of B-framed G-disks.

For another application, in [DHLSW25] the (nonequivariant) equivalence E⊗BU (1)
BV⊗En ≃ E⊗BU (1)+n was

explicitly used to construct a natural En-S1-equivariant map THH(A)→ A when A is an EBU(1)+n-algebra,
which was contributed to Horev; the author expects their techniques and Corollary B to lift mutatis mutandis
to a construction of a (Borel) twisted T-equivariant EV -map THR(A)→ A whenever A is an EV×BGTσ -algebra.2

We leave this open for clarity’s sake.

The strategy. Our strategy is strongly related to that of [Har] when G = ∗. The heart of this strategy reduces
to the case of prefactorization algebras: we define a (multi-colored) G-0-operad P⊗V whose algebras are a
genuine equivariant version of prefactoriation algebras for the Weiss cover of disjoint unions of (affinely)∐

[G/H]D
(
ResGH V

)
-shaped invariant subspaces. We define a comparison map αV : P⊗V → E⊗V corepresenting an

underlying V -prefacotrization algebra functor. In Proposition 2.29, we show that αV is a weak approximation,
i.e. it fully faithfully embeds EV -algebras as locally constant V -prefactorization algebras.

From here, we’re forced to use model-specific strategies; writing POpG B CatBackwards−cocart
/ Span(FG) for the

∞-category of G-preoperads, we have a collection of functors:

Cat OpG POpG AlgPatt Cat
Mon(−)(S)

LOpG

Tot Seg(−)(S)⊣

In [Ste25d] we constructed a natural equivalence MonLOpGO
(S) ≃ SegTotO⊗(S); since Mon(−)(S) detects LOpG -

equivalences [Ste25b], a map of G-preoperads is an LOpG -equivalence if and only if its map of patterns is a
Morita equivalence, which can be verified using traditional higher category theory.

2 The only structural aspect of factorization homology which is missing to replicate this argument in the equivariant setting is the
trivial interval Fubini property

∫
M (−) ≃

∫
M×(0,1)(−). But indeed this follows in the relevant case M = ρC2 − {0} by ⊗-excision for the

“thickening” of the usual C2-collar decomposition Sσ ≃D1 ⊔
Ind

C2
e D1 D

1:∫
ρC2−{0}

A ≃
∫
I×D1

A⊗∫
I×Ind

C2
e A

∫
I×D1

A ≃ A⊗
N
C2
e A

A ≃ THR(A).
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What’s left is to construct a convenient G-preoperad model for the Boardman-Vogt tensor product,
construct a Dunn map, and verify that it is a Morita equivalence. For the former, we define a wreath product
G-preoperad connected by a string of natural Morita equivalences O⊗ BV⊗P⊗←O⊗ ×P⊗→O⊗ ≀ P⊗; this has
the crucially convenient property that O⊗ ≀ P⊗ has n-truncated structure spaces whenever O⊗ and P⊗ do.

Using this description, we explicitly construct Dunn maps ϕP : P⊗V ≀P
⊗
W → P⊗V⊕W and ϕE : E⊗V ≀E

⊗
W →

E⊗V⊕W , the former admitting a canonical factorization through a sub-G-preoperad of decomposed little cube
embeddings P⊗V |W , yielding a commutative diagram of G-preoperads

(1)

P⊗V
BV⊗P⊗W P⊗V ×P

⊗
W P⊗V ≀P

⊗
W P⊗V |W P⊗V⊕W

E⊗V
BV⊗E⊗W E⊗V ×E

⊗
W E⊗V ≀E

⊗
W E⊗V⊕W E⊗V⊕W

αV ⊗αW

LP MP

αV ×αW

ϕ̃P

αV ≀αW αV |W αV⊕W

LE ME ϕE

It suffices to verify that ϕE ◦ME is a Morita equivalence. We begin by using the 1-category theory of
wreath products together with a specialization of Harpaz’ theory of strong approximations [Har] to verify
that ϕ̃P is a Morita equivalence; moreover, using an equivariant analog of the topological strategy of [Dun88]
we verify that αV |W is itself a weak approximation.3 Under this, we find that pullback along ϕE ◦ME is an
inclusion of full subcategories

MonEV⊕W (S) ⊂MonEV ×EW (S) ⊂MonPV |W (S),

each characterized by a local constancy condition. Some simple bookkeeping shows that these conditions
agree for E⊗V⊕W and E⊗V ×E

⊗
W , yielding Theorem A.

We prove Corollary B by reduction to Theorem A using the tensor product disintegration theorem of
[Ste25d]; indeed, we construct a G-natural transformation

SG,/BGO(k) ×SG,/BGO(k′) Op
G
×Op

G

SG,/BGO(k+k′) Op
G

E⊗(−)×E
⊗
(−)

× ϕ BV⊗

E⊗(−)

which, on a pair of orbits [G/H]→ BGO(k) and [G/H]→ BGO(k′) classifying representations V ,W , specializes
to the Dunn map ϕ : E⊗V

BV⊗E⊗W → E⊗V⊕W . We use Horev-Miladinovic’s equivariant Kister-Mazur theorem to
verify that UEX ≃ X and that functoriality of E×(−) induces, for a point x ∈ X, an equivalence with the reduced
endomorphism stab(x)-operad

E⊗TxX
∼−−−→ Endred

x E⊗X ;

the tensor disintegration theorem of [Ste25d] then implies that ϕ is an equivalence.

Relationship to surrounding literature. This paper is the sixth installment in a series of papers [Ste24; Ste25a;
Ste25b; Ste25c; Ste25d] which are intended to extend the parameterize and equivariant higher algebra of
[BDGNS16; NS22] for use in equivariant homotopy theory and K-theory. As such, it is closely related to
similar work in both different foundations and in the non-equivariant case. Moreover, the author intends to
use it foundationally in further work concerning obstruction theory of EV -algebras.

As mentioned before, the strategy of the proof of Theorem A is not essentially new in the case G = e, as
the ideas in that case are strongly present in [Har]. Moreover, it follows by unwinding definitions that the
wreath product model is related to Lurie’s wreath product [HA, § 2.4.4] by the comparison functor of [BHS22].
Additionally, the deduction of Corollary B from Theorem A is similar to that of Lurie [HA] assuming the
statement of the disintegration and assembly theorem, though the proof of this theorem is quite different
between [Ste25d] and [HA].

3 On the level of prefactorization algebras we may view this as saying that, absent a local constancy or cosheaf condition, additivity
for V -disk prefactorization algebras may fail, as the prefactorization Dunn map only surjects onto the basis of decomposable elements
of the Weiss cover corresponding with EV⊕W ; Dunn’s argument [Dun88] essentially boils down to verifying that this basis is coinitial
in the usual one, so the disparity disappears in presence of local constancy, and Berry’s argument [Ber21] uses this to show that the
disparity also disappears in presence of a cosheaf condition.
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It is worthwhile to note that the result that strong approximations are Morita equivalences is almost a
special case of Barkan’s recognition result for Morita equivalences of algebraic patterns [Bar23]; the discrepancy
lies in Condition (WA-a), where Barkan’s result requires that the homotopy fibers have contractible cores.

In the equivariant case, the reader ought consider a comparison between our results and Sczczesny’s
point-set version [Szc24] to be a difficult open problem; indeed, to the author’s knowledge, it is still an open
problem whether the relevant tensor products are comparable in the nonequivariant case (c.f. [FV13]).

Moreover, to the author’s knowledge, it is an open problem (in progress by other authors) to compare the
∞-categories of EV algebras herein with the ∞-categories presented by the right-transferred model structure
of e.g. [Hil22]. These are seen to be plausibly equivalent by the similarity between their associated monads
(c.f. [GM17; Ste25b]).

The infinitary cases of Theorem A were already known by previous work of the author [Ste25d].

Notation and conventions. We broadly adopt the terminology of higher category theory from [HTT], equi-
variant higher category theory from [Sha22; Sha23], algebraic patterns from [CH21], and equivariant operads
from [Ste25b; Ste25d]. When it will not cause confusion, we abusively refer to the total ∞-category of a
G-preoperad O⊗ simply as O⊗, and we will abusively refer to the pushforward G-preoperad ∧! (O⊗ ×P⊗)
simply as O⊗ ×P⊗; the reader should be warned that that this is not the categorical product in G-preoperads,
but instead it is the algebraic operation on G-preoperads induced by the cartesian product of ∞-categories
under the smash symmetric monoidal structure on Span(FG), i.e. it is the usual (G-)preoperadic model for
the Boardman-Vogt tensor product.

Throughout this article, the notion of homotopical categories will match [DHKS04]. In particular, when
a 1-category admits a “conventional” model structure C, we will implicitly refer to C and its full subcategories
of (co)fibrant objects as homotopical categories under the associated weak equivalences.

Moreover, “topological space” will always mean compactly generated weakly-Hausdorff topological space,
and Top to the category of such topological spaces; all model-categorical aspects of Top will be defined with
respect to the Quillen model structure. The word “space” will be reserved for objects in the ∞-category
S ≃ Top

[
WEQ−1

]
, or equivalently, objects in hoTop. If X,Y are topological spaces, Map(X,Y ) will be denote

the internal hom in Top, i.e. the compact-open topology.
Lastly, “enriched category” will refer to the 1-categorical notion, CatV will refer to the 1-category of

V -categories, and when V is a homotopical category, a Dwyer-Kan equivalence of V -categories will refer
to a V -functor which is fully faithful and whose hom mmorphisms Map(X,Y )→ Map(ϕX,ϕY ) are weak
equivalences.

Acknowledgements. I would like to thank Thomas Blom, Mike Hopkins, and Jan Steinebrunner for helpful
conversations on this topic. Additionally, I would be remiss to not mention the work which inspired this
paper: I learned the main strategy for this paper by analogy to the beautiful proof of Yonatan Harpaz in
[Har], and the combinatorics only became tractable after the work of Shaul Barkan, Rune Haugseng, and Jan
Steinebrunner in [BHS22] on fibrous patterns. Additionally, I’m thankful to Maxime Ramzi for disabusing me
of an early fatally flawed strategy for the proof of Theorem A.

While developing this material, the author was supported by the NSF Grant No. DGE 2140743.

1. Wreath products and weak approximations

The theory developed in this section is of independent interest, so we temporarily replace G with an
arbitrary atomic orbital ∞-category T . The reader is encouraged to replace T with OG (or simply G) and
elements of T with homogeneous G-sets. We adopt the notation POpT B Catint−cocart

/ Span(FT ) for the ∞-category
of T -preoperads. Recall that T -preoperads have functorial underlying algebraic patterns; explicitly, given
a T -preoperad O⊗, the total ∞-category TotO⊗ has a factorization system whose inert maps consist of
cocartesian lifts of backwards maps in Span(FT ) and whose active maps consist of arbitrary lifts of forward
maps. We designate the corresponding wide subcategories as Oint,Oact ⊂ TotO⊗; moreover, we designate the
full subcategory Oel ⊂ Oint of elementary objects as those objects lying over finite T -sets of a single orbit. We
will study T -preoperads via their underlying patterns.
Definition 1.1. A morphism of T -preoperads ϕ : O⊗→P⊗ is called a weak approximation if:
(WA-a) For every O ∈ O⊗, the homotopy fibers of Oact

/O →P
act
/ϕO are weakly contractible, and

(WA-b) The T -functor Uϕ : UO→UP attains a fully faithful T -right adjoint.
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We say that ϕ is a strong approximation if it is a weak approximation and Uϕ is an equivalence. ◁

In this section, we construct a wreath product model for the Boardman-Vogt tensor product together
with a map of T -preoperads O⊗ ×P⊗→O⊗ ≀ O⊗, culminating in the following procedure for pushing forward
Boardman-Vogt tensor product computations along weak approximations.

Theorem 1.2. Suppose we have maps of T -preoperads αi and ϕO ,ϕP making the following diagram commute

O⊗1 ≀ O
⊗
2 O⊗3

P⊗1 ≀ P
⊗
2 P⊗3

ϕO

α1≀α2 α3

ϕP

and satisfying the following conditions:
(BK-a) Each αi is a weak approximation;
(BK-b) ϕO is a strong approximation; and
(BK-c) the induced T -functor UϕP : UP1 ×UP2→UP3 is an equivalence.
Then, the composite map P⊗1 ×P

⊗
2 →P

⊗
1 ≀ P

⊗
2 →P

⊗
3 is an LOpT -equivalence, yielding an equivalence

LOpT P
⊗
1

BV⊗LOpT P
⊗
2 ≃ LOpT P

⊗
3 .

1.1. Terminology surrounding the combinatorics of equivariant mutli-arity. We center the following.
Definition 1.3. A T -multi-arity is a morphism T → S in FT ; a T -arity is a multi-arity T → V where V ∈ T ,
or equivalently, an element of the ∞-category TotFT . ◁

These are the types one inputs to an operation in the algebraic theory described by a one-color T -operad ;
unfortunately, the main strategy of this paper shifts the data of a T -operad into a complicated T -∞-category
of colors, so we take careful account of the types involved in the multi-colored theory. We will use the
language of multi-profiles associated with a coefficient system.
Definition 1.4. Let C be an ∞-category. A T -coefficient system in C is a functor T op→C.

Given a T -coefficient system of sets C• : T op→ Set and a T -equivariant multi-arity ψ : T → S, the set
of C-multi-profiles lying over ψ is

Prfψ
C
B

∏
V ∈S
CTV ×CV ,

where TV B T ×S V . We refer to a C-multi-profile as a C-profile if its underlying T -multi-arity is a T -arity.
We will denote a generic C-multi-profile by (C;D) and a generic C-profile as (C;D). ◁

Construction 1.5. Let T
ψ
−→ S

ϕ
−→ R be composable morphisms. By “forgetting the middle arity,” we acquire an

operation ◦ fitting into the following diagram:

Prfϕ
C
×CS Prfψ

C
Prfψ◦ϕ

C

◦

Moreover, given a pullback diagram

f ∗T T

Q S

f ′

ϕ′
⌟

ϕ

f

we define a pullback operation f ∗ : Prfϕ
C
→ Prff

∗ϕ
C

by setting

f ∗ ((CU ); (DU ))B
((
Cf ′(W ) |W ∈Orb(f ∗T )

)
;
(
Df (W ) |W ∈Orb(Q)

))
;

In particular, when Q =W and S = V are orbits, we write this as
(
ResWV C;ResWV D

)
. ◁

Now, this allows for convenient description of C-symmetric sequences and the corresponding theory
of C-colored genuine T -operads. To describe this, we need the C-colored version of Σ, beginning with the
following notion.
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Definition 1.6. Given (C;D) an S-ary C-profile, the group of C-colored automorphisms of S is the subgroup

AutV (C) ⊂ AutV (S)

consisting of automorphisms σ of S ∈ FV such that, for all U ∈Orb(S), CU = CσU . ◁

In [Ste25b] we found a cocartesian fibration of T -groupoids F : ΣC→ ΣT B F≃T with V -value groupoid

ΣC,V =
∐
S∈FV

(C;D)∈CS×CV

BAutV (C),

with restriction maps given by applying B to the evident maps AutV (C)→ AutU (ResVU C) and with F given
by applying B to the defining maps AutV (C)→ AutV (S).
Definition 1.7. Given V an ∞-category, the ∞-category of C-symmetric sequences in V is Fun(TotΣC,V ).
Given a C-multi-profile (C;D) lying over multi-arity ψ : T → S and a C-symmetric sequence O, we define the
V -object of (C;D) multi-operations to be

MulψO(C;D)B
∏

U∈Orb(S)

O(CU ;DU ). ◁

Definition 1.8 ([NS22, Def 2.5.4]). Let V be a symmetric monoidal 1-category. A C-colored genuine T -operad
O in V is the data of

(1) A C-symmetric sequence O;
(2) For every color C ∈C, an identity operation

1C : 1V →Mulid
O (C;C)

(3) For every composable pair of multi-profiles (B;C;D), a composition map

γ : MulfO(C;D)⊗MulgO(B;C) −→Mulg◦fO (B;D)

subject to the following conditions:
(OP-a) (unitality) for every C-profile (B;C), the following commutes

MulfO(B;C) MulfO(B;C)⊗Mulid
O (B;B)

Mulid
O (C;C)⊗MulfO(B;C) MulfO(B;C)

id×{1}

{1}×id γ

γ

(OP-b) (associativity) for every composable triple of C-multi-profiles (A;B;C;D), the following commutes

MulfO(C;D)⊗MulgO(B;C)⊗MulhO(A;B) Mulg◦fO (B;D)⊗MulhO(A;B)

MulfO(C;D)⊗Mulh◦gO (A;C) Mulh◦g◦fO (A;D)

(OP-c) (restriction and units) The restriction map O(C;C)→O(ResVU C;ResVU C) takes 1C to 1ResVU C
.

(OP-d) (restriction and composition) For every composable pair of C-multi-profile (B;C;D) living over an
arity f : IndGHT IndGHS→ V and orbit map U → V , the following diagram commutes

MulfO (C;D)⊗MulgO(B;C) Mulg◦fO (B;D)

Mul
ResVU f
O

(
ResVU C;ResVU D

)
⊗Mul

ResVU g
O

(
ResVU B;ResVU C

)
Mul

ResVU g◦f
O

(
ResVU B;ResVU D

)
γ

Res Res

γ

(OP-e) (AutH S-equivariance) suppose (C;B;A) is a composable multi-profile and profile living over the
multi-arities f : IndTV T → IndTV S→ V . Then, γ is Borel AutV (B)×

∏
U∈Orb(S)

AutU (CU )-equivariant.
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A morphism of C-colored genuine T -operads in V is a morphism ϕ : O→ P of C-symmetric sequences such
that ϕ(1C) = 1ϕ(c) and such that the following diagram commutes.

O(C;D)×MulgO(B;C) P (ϕC;ϕD)×MulϕgP (ϕB;ϕC)

O(B;D) P (ϕB;ϕD)

ϕ×ϕ

γ γ

ϕ

In the situation that V is a homotopical category, i.e. we’ve supplied a wide subcategory VWEQ ⊂ V of
“weak equivalences” satisfying two-out-of-six, a weak equivalence of C-colored genuine T -operads in V is
a morphism O→ P whose values O(C;D)→ P (ϕC;ϕD) are each weak equivalences. In particular, when
V = Top, a weak equivalence of topological genuine T -operads is a weak equivalence with respect to pointwise
π∗-isomorphisms. ◁

Construction 1.9. Given f : C→D a morphism of coefficient systems of sets, we acquire a T -functor ΣC→ ΣD,
and therefore a pullback functor

f ∗ : Fun(TotΣD,V )→ Fun(TotΣC,V );

given O⊗ ∈ gOpC
T (V ), we define the pullback C-colored genuine T -operad f ∗O to have underlying C-symmetric

sequence f ∗O, unit given by the map 1C : 1V →O(ϕC;ϕC) ≃ f ∗O(C;C). The composition map is defined
similarly. ◁

Definition 1.10. A morphism of genuine T -operads in V from a C-colored genuine T -operad P to a D-colored
genuine T -operad O is a morphism of T -coefficient systems ϕc : C→D together with a morphism of C-colored
T -operads ϕ : O⊗→ ϕ∗cP . ◁

In the case that T = OG is the orbit category of a finite group and V = sSet under the Quillen homotopical
structure, this agrees with the definition employed in [Bon19]. We will generally prefer the topological setting,
but the distinction is easy to ignore in the locally fibrant setting by the following easy proposition, whose
proof we omit.

Proposition 1.11. Suppose V → V ′ is a functor of homotopical categories which reflects weak equivalences.
Then, the corresponding functor gOpT (V )→ gOpT (V ′) reflects weak equivalences.

1.2. Recollections on T -operads.

1.2.1. The basic definitions. Let Span(FT ) be the effective Burnside 2-category, e.g. as in [HHLN23].
Definition 1.12. A T -preoperad is a functor π : O⊗→ Span(FT ) satisfying the following condition.

(a) O⊗ has π-cocartesian lifts for backwards maps in Span(FT ).
A T -operad is a T -preoperad satisfying the following additional conditions.

(b) (Segal condition for colors) for every S ∈ FT , cocartesian transport along the π-cocartesian lifts lying
over the inclusions (S←U =U |U ∈Orb(S)) together induce an equivalence

OS ≃
∏

U∈Orb(S)

OU ;

(c) (Segal condition for multimorphisms) for every map of orbits T → S in I and pair of objects
(C,D) ∈ OT ×OU , postcomposition with the π-cocartesian lifts D→ DU lying over the inclusions
(S←U =U |U ∈Orb(S)) induces an equivalence

MapT→SO⊗ (C,D) ≃
∏

U∈Orb(S)

MapT←TU→UO⊗ (C,DU ).

where TU B T ×S U .
We the ∞-category of T -preoperads and functors over Span(FT ) preserving backwards-cocartesian arrows,
together with the full subcategory of T -operads, as

OpT ⊂ POpT B CatBackwards−cocart
/ Span(FT ) .
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We will refer to a morphism of T -preoperads O⊗→P⊗ as a O-algebra in P , and we let

AlgO(P )B FunBackwards−cocart
/ Span(FT ) (O⊗,P⊗) ⊂ Fun/ Span(FT )(O⊗,P⊗)

be the full subcategory spanned by O-algebras in P . ◁

Now, these fit into an algebraic pattern framework:
Definition 1.13. An algebraic pattern is an ∞-category B together with a factorization system (Bint,Bact)
and a full subcategory Bel ⊂Bint; given C an ∞-category, a segal B-object in C is a functor B→ C whose
restricted functor Bint→C is right Kan-extended along the inclusion Bel ↪→Bint. ◁

Example 1.14. The effective Burnside algebraic pattern is Span(FT ), together with the backwards-forwards
factorization system Fop

T ,FT ⊂ Span(FT ) of [HHLN23, Prop 4.9] and elementary objects T op ⊂ Fop
T .

In [Ste25b] we verified that the argument of [BHS22] extends to show that Segal Span(FT )-objects in C
are precisely product-preserving functors Span(FT )→C, i.e. T -commutative monoids in C. ◁

Now, [BHS22] developed a convenient framework of fibrous patterns (slightly modifying the earlier weak
Segal fibrations of [CH21], which are higher categorical analogs of the fibrant objects in the model structure
of [HA, § B] and generalize the weak ∞-operads of [Har]); we verified in [Ste25b] that their argument extends
to show that T -operads are precisely fibrous Span(FT )-patterns; it then follow from general category theory
that the inclusion OpT ⊂ POpT admits a left adjoint LOpT : POpT →OpT [BHS22], which we call T -operadic
localization.

1.2.2. The total T -∞-category. Unfortunately, in this paper we must occasionally use another equivalent
model for T -operads, which we will refer to as the Γ -space model.
Construction 1.15 ([NS22]). Consider the ∞-category TotFT ,∗ ≃ Spans.i.,tdeg (F∨T ), with its factorization system
whose left arrows are backwards and right arrows are forwards [HHLN23]. This lifts to an algebraic pattern
TotFT ,∗ with elementary objects T op. ◁

Proposition 1.16 ([BHS22; Ste25b]). Pullback along the canonical map TotFT ,∗→ Span(FT ) is an equivalence

OpT ≃ Fbrs(Span(FT ))
∼−−−−−→ Fbrs(TotFT ,∗)

This Γ -space model recasts a version of T -preoperad theory in the setting of T -∞-category theory, which
is occasionally useful; for instance, it allows for an underlying T -∞-category as follows.
Construction 1.17. Given O⊗ a T -preoperad, we define its total T -∞-category to have unstraightening the
vertical composition

TotTotT O⊗ O⊗

TotFT ,∗ Span(FT )

T op

⌟

t

That is, TotT O⊗ B StT opTotTotT O⊗. ◁

Proposition 1.18 ([Ste25b]). The forgetful functors Tot : PreOpT → Cat and TotT : PreOpT → CatT are
conservative.

1.2.3. The underlying T -symmetric sequence. Given O⊗ a T -preoperad and (C;D) a π0UO-multi-profile
lying over the multi-arity ψ, we define

MulψO(C;D) : BMapψTotO(C,D).

In particular, when ψ is an arity, so D BD is a color, we define

O(C;D)BMulψO(C;D).

In particular, when O⊗ has at most one color, we write O(S)B O(S;V ).
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Proposition 1.19 ([Ste25b]). There is a monadic (and in particular, conservative) functor

sseq: Op≤ocT → FunT (ΣT ,S)

so that sseqO(S) ≃ O(S).

1.2.4. (Co)cartesian structures, O-comonoids. If C is a T -∞-category then it admits a canonical coccartesian
T -operad structure CT −⊔, which is an I-symmetric monoidal ∞-category precisely when C admits indexed
coproducts. This was initially constructed by Nardin-Shah [NS22], and it was subsequently shown to be
uniquely determined by the property that its indexed tensor products are indexed coproducts in [Ste25d].
Dually, when C admits indexed products, it admits an essentially unique T -symmetric monoidal structure
CT −× whose indexed tensor products are indexed products.

For concreteness, we recall the following construction of [LLP25].
Construction 1.20 ([LLP25, Def 2.15]). Since FT is the finite-coproduct closure of T , a T -∞-category
C : T op→ Cat corresponds with a unique product-preserving functor C̃ : Fop

T → Cat. Let Uncart
(
C̃
)
→ FT be

the cartesian unstraightening of C̃. Then, we define the functor

CT −⊔ : Spancart,all

(
Uncart (FT )

)
→ Span(FT ). ◁

This was confirmed to agree with the other notions in [Ste25d]. Regardless, cocartesian structures take
on a universal role characterized by the triviality of algebra structures:

Proposition 1.21 ([Ste25d]). A unital T -operad C⊗ is cocartesian if and only if, for all O⊗ ∈ Opuni
T , the

forgetful functor
AlgO(C)→ FunT (UO,UC)

is an equivalence; in particular, the formation of cocartesian structures yields a right adjoint

Opuni
T CatT

U

(−)T −⊔

⊣

We will need combinatorial control of the T -preoperad underlying CI−⊔ throughout this article, which
can be achieved by using an explicit Γ -T -preoperad model generalizing [HA] as in [Ste25d]. However, to keep
this article grounded in T -preoperads, we will instead give some independent analysis using the universal
property. For this, we must use the left adjoint to U .

Proposition 1.22 ([Ste25b]). The T -∞-category of colors functor additionally attains a left adjoint:

OpT CatT

U

triv(−)⊗

⊣

Moreover, the value triv⊗T B triv(∗T )⊗ is presented by the T -preoperad Spaniso(FT ) ↪→ Span(FT ).

1.2.5. O-monoids, Morita equivalences. We now center a definition.
Definition 1.23. Let O,P be algebraic patterns and f : O→ P a functor between their underlying∞-categories.
We say that f is compatible with Segal objects if the pullback functor restricts to Segal objects:

Fun(P,C) Fun(O,C)

SegP(C) SegO(C)

f ∗

f ∗Seg

We additionally say that f is a Morita equivalence if f ∗Seg is an equivalence. ◁
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Now, given B an algebraic pattern and O→B a functor admitting cocartesian lifts over inert morphisms,
O admits a canonical algebraic pattern structure whose inert morphisms are cocartesian lifts of inert arrows,
whose active arrows are are arbitrary lifts of active arrows, and whose elementary objects are arbitrary lifts
of elementary objects. In particular, given O⊗ → Span(FT ) a T -preoperad, there is a canonical algebraic
pattern structure on O⊗.
Definition 1.24. Given C an ∞-category and O⊗ a T -preoperad, an O-monoid in C is a Segal O⊗-object in C;
we refer to the associated full subcategory as

MonO(C)B SegO⊗(C) ⊂ Fun(O⊗,C). ◁

Now, in [Ste25d] given a T -∞-category D with finite indexed products, we characterized a Cartesian
T -symmetric monoidal structure DT −× which is characterized by the property that ⊗S ≃

∏S , and characterized
its algebras by the following.

Proposition 1.25 ([Ste25d]). Given O⊗ a T -preoperad The forgetful functor

AlgO
(
CoeffT CT −×

)
→ Fun(O⊗,C)

is fully faithful with image the O-monoids.

In particular, the atomic orbital counterpart to Elmendorf’s theorem defines ST B CoeffT S , so this
characterizes Segal O-spaces as O-algebras in T -spaces. Now, by examining the free O-T -space monad we
have the following convenient property.

Proposition 1.26 ([Ste25b]). Suppose ϕ : O⊗→P⊗ is a morphism of T -operads which induces equivalences

MonP (S)
∼−−−→MonO(S)

and UO ∼−−−→UP ; then, ϕ is an equivalence.

Corollary 1.27 ([Ste25d]). If ϕ : O⊗→P⊗ is a morphism of T -preoperads inducing an equivalence ULOpT O
⊗→

ULOpT P
⊗, then ϕ is an LOpT -equivalence if and only if it’s a Morita equivalence.

1.2.6. The Boardman-Vogt tensor product. in [Ste25b], we used this to define the Boardman-Vogt tensor
product, which in the case that T has a terminal object is computed by the T -operadic localization

O⊗ BV⊗P⊗ ≃ LOpT

(
O⊗ ×P⊗ π−−−→ Span(FT )× Span(FT )

∧−−−→ Span(FT )
)
.

We verified in [Ste25d] that this endows OpT with the structure of a presentably symmetric monoidal
T -∞-category, i.e. we may use it to lift OpT to a functor

Op⊗
T

: T op→ CAlg
(
PrL

)
.

In particular, this yields a distributivity property for
BV⊗ in terms of T -colimits.

1.2.7. T -operadic disintegration and assembly. In [Ste25d], given a unital T -operad O⊗ and a V -object
X ∈ OV , we defined the reduced endomorphism V -operad

Endred
X (O⊗) ResTV O

⊗

Comm⊗V
(
ResTV UO

)V−⊔
⌟

{X}

where {X} classifies X under Proposition 1.21. We will use the following terminology.
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Definition 1.28. Given P⊗ a reduced T -operad, O⊗ a unital T -operad, and A : P⊗→O⊗ an O-algebra in P⊗
with underlying T -object x ∈ Γ T UO, the reduction of A is the algebra Ã defined as

P⊗

Endred
x (O⊗) O⊗

Comm⊗T UOT −⊔

Ã

A

!
⌟

{x}

This underlies an adjunction between pointed unital T -operads and reduced T -operads [Ste25a]. ◁

Now, the main result we use concerning this is the following.

Proposition 1.29 ([Ste25d]). Suppose O⊗ is a unital T -operad such that UO is a T -space. Then, the maps
Endred

X (O⊗)→ ResTV O
⊗ assemble to a T -colimit diagram

colimX∈UO Endred
X (O⊗)

∼−−−−−→O⊗.

Corollary 1.30. Suppose ϕ : O⊗ BV⊗P⊗→Q⊗ is a morphism of T -operads inducing equivalences

UO ×UP ∼−−−−−→UQ

Endred
X (O⊗)

BV⊗ Endred
Y (P⊗)

∼−−−−−→ Endred
(X,Y )(Q

⊗).

Then, ϕ is an equivalence.

1.2.8. Remarks on topological categories. The following proposition may be familiar.

Proposition 1.31 ([HTT, Rem A.3.2.11, Thm 2.2.5.1]). There is a zigzag of Quillen equivalences

sSetJoyal CatsSetQuillen
CatTopQuillen

C[−]

N

|·|∗

Sing(−)∗

⊣ ⊣

between the Joyal model structure on simplicial sets and the Dwyer-Kan model structure on topological(ly
enriched) categories with respect to the Quillen (monoidal) model structure on topological spaces.

In particular, the Hammock localization of CatTop at the collection of essentially surjective and homotopy-
fully faithful functors presents the ∞-category Cat of small ∞-categories. This allows us license to do evil,
the first such deed being the following definition.
Definition 1.32. A topological functor F : C →D is point-set monic if it is injective on objects and for each
(X,Y ) ∈Ob(C) of hom-topological spaces Hom(X,Y )→Hom(FX,FY ) is injective. ◁

Evil is relatively common, per the following corollary of the axiom of choice.

Lemma 1.33. Suppose F : C → D is essentially injective and each morphism of hom-topological spaces
Hom(X,Y )→Hom(FX,FY ) is injective. Then, there exists a diagram of topological functors

C′ D′

C D

F′

β β′

F

such that F′ is point-set monic and β,β′ are Dwyer-Kan equivalences.

Proof. Choose C′ ,D′ to be the full topological categories spanned by skeleta for the underlying categories
of C and D, and note that F′ has injective hom functions by cancellation and is injective on objects by
skeletality. □

Now, this was designed for the sake of the following proposition.
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Proposition 1.34. Suppose we have a diagram in CatTop,/ Span(FT ) specifying the solid arrows of

O⊗ P⊗

Q⊗ R⊗
ι

ϕ

ι′

ψ

where ι′ is point-set monic and every indicated functor presents a morphism of T -preoperads. Then, there
exists at most one functor ϕ filling in the dashed arrow such that the diagram commutes up to homotopy, in
which case ϕ presents a morphism of T -preoperads. This filler exists if and only if the following conditions
are satisfied:

(a) For all C ∈ O⊗, ψι(C) is in the image of ι′.
(b) For all multi-operations µ ∈MulfO(C;D), the element ιψ(µ) is in the image of ι′.

In this case, ϕ(C) = ι′−1ψι(C) and ϕ(µ) = ι′−1ψι(µ).

Proof. Since ι′ is point-set monoic, if ϕ exists, then it is compatible with inert-cocartesian lifts, i.e. it’s a
morphism of T -preoperads. Now, note that (a) and (b) are satisfied is ϕ exists, so instead assume that (a)
and (b) are satisfied; then, we define the object function of ϕ by ϕ(C)B ι′−1ψι(C), which is well-defined and
unique by assumption, and the morphism-function by ϕ(µ) = ι′−1ψι(µ). The fact that this is functorial follows
by the fact that the composite ι′ ◦ϕ = ψ ◦ ι is functorial and ι′ is point-set monic. □

Remark 1.35. In the nonequivariant case, [HA, Rmk 5.4.2.14] left implicit the construction of a lift

E⊗BTop(k) ×E
⊗
BTop(k′) E⊗BTop(k+k′)

BTop(k)⊔ ×BTop(k′)⊔ BTop(k + k′)⊔

ϕ

ϖ∗

where we’ve set the notation E⊗BTop(k) B BTop(k)⊗, the vertical arrows classify the equivalence UEBTop(k) ≃
BTop(k) of [HA, Thm 5.4.1.5], and the bottom arrow is induced by a homeomorphism ϖ : Rk ⊕Rk′ ≃ Rk+k′ . In
Section 3.2, we carefully construct point-set monic models for the vertical arrows and observe that such a lift
exists on the level of topological functors, which presents a morphism of e-preoperads by Proposition 1.34. ◁

1.2.9. The T -operadic nerve. Given O a C-colored genuine topological T -operad, we can define a topological
category N⊗O over Span(FT ) to have objects

Obπ−1({S})BCS ,

and morphism space lying over S
g
←− R

f
−→ T by

MapS
g
←−R

f
−→T

N⊗O (C;D)BMulfO(g∗C;D),

with identity arrows and composition functions determined by 1• and γ.

Proposition 1.36 ([NS22; Ste25b]). N⊗O is a T -operad with π0UN
⊗O ≃C and structure spaces

MulfN⊗O(C;D) ≃MulfO(C;D).

1.3. Weak approximations of T -preoperads, reflective quotients.

1.3.1. Weak approximations. We derive the following from [Har] in Appendix A.1.

Proposition 1.37 (c.f. [HA, Thm 2.3.3.22]). If ϕ : O⊗→P⊗ is a weak approximation of T -preoperads and C a
complete ∞-category, the pullback functor

MonP(C)→MonO(C)

is fully faithful and its essential image consists of those O-monoids O⊗ → C whose restriction admits a
factorization

UO⊗→UP⊗→C;
in particular, every strong approximation is an LOpT -equivalence.
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We will often check for weak approximations using the following variation of [HA, Cor 2.3.3.16], which
we also verify in Appendix A.1.

Corollary 1.38. Suppose ϕ : O⊗→P⊗ is a map of T -preoperads over CT −⊔ such that UP → C is a cocartesian
fibration whose fibers are spaces. Then, Condition (WA-a) of Definition 1.1 is equivalent to the condition
that, for all O ∈ O and active CT −⊔-maps f : D→ πOO, the induced map of spaces

ϕ̃ : B
(
Oact
/O ×CT −⊔,act

/πOO
{f }

)
→P act

/ϕO ×C/πOO {f }

is an equivalence. In particular, if P⊗ is a T -operad, then the above map has the form

ϕ̃ : B
(
Oact
/O ×TotT P

T −⊔,act
/ϕO

{f }
)
→P (P ;ϕO)

1.3.2. Reflective quotients.
Definition 1.39. Given P⊗ a T -operad and L : UP → C a reflective G-subcategory with reflective , we define
the corresponding reflective quotient by

Refl⊗C (P )B P⊗ ⊔triv(UP ) triv(C). ◁

The following proposition follows by unwinding definitions.

Proposition 1.40. Pullback along the structure map P⊗→ Refl⊗C (P ) yields a filly faithful embedding

AlgReflC(P )(Q)→ AlgP (Q)

with essential image spanned by those P -algebras whose underlying T -funcor UP →UQ factors through L.

Corollary 1.41. If P⊗ → O⊗ is a weak approximation such that P⊗ is a T -operad, then the induced map
ϕ : Refl⊗UOP →O

⊗ is an LOpT -equivalence; in particular, for all T -operads Q, the pullback functor

AlgO(Q) −→ AlgP (Q)

is fully faithful with essential image the P -algebras whose color T -functor factors as UP →UO→UQ.

Proof. Choosing QB ST −×T , we acquire a diagram

MonO(S) MonP (S)

MonReflUO(P )(S)

so that the pullback functor MonO(S)→MonReflUO(P )(S) is fully faithful by two-out-of-three. In fact, by
Propositions 1.37 and 1.40 we find that it is essentially surjective, so Corollary 1.27 implies that ϕ is an
LOpT -equivalence. □

1.4. The T -preoperadic image. For the duration of this subsection, let O⊗,Q⊗ be T -preoperads and ϕ : O⊗ ≀
P⊗→Q⊗ an essentially surjective map of T -preoperads.
Definition 1.42. The T -preoperadic image of ϕ is the wide subcategory imϕ⊗ ⊂ Q⊗ containing an arrow f if
and only if there are some arrows (g) in O⊗ such that f is homotopic to ϕ(g). ◁

Lemma 1.43. imϕ⊗ admits a (unique) T -preoperad structure such that each of the functors

O⊗→ imϕ⊗
ι−→Q⊗→ Span(FT )

are T -preoperads maps.

Proof. By construction, the T -preoperad structure must just be the composite imϕ⊗→ Span(FT ), handling
uniqueness. Note that imϕ⊗ contains every inert-cocartesian arrow of Q⊗ by the essential surjectivity
assumption; it will suffice to verify that inert-cocartesian arrows of Q⊗ are ι-cocartesian and apply [HTT,
HTT 2.4.1.3.(3)].
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Fix some cocartesian arrow f : X → Y in Q⊗; we are tasked with verifying that the map ψ in the
following diagram is an equivalence.

Mapimϕ⊗(X,Z)

F Mapimϕ⊗(Y ,Z)

MapQ⊗(X,Z) MapQ⊗(Y ,Z)

g
f ∗

⌟

f ∗

Note that F and Mapimϕ⊗(X,Y ) embed as summands of MapQ⊗(X,Y ), so it suffices to verify that whenever a

Q⊗-map h : X→ Y lies in F, it is in the image of ϕ. Indeed, such an h admits a factorization X
f
−→ Y

ϕg
−−→ Z

for some morphism g in O⊗, and essential surjectivity ensures that f ∼ ϕf̃ for some f̃ in O⊗, so h ∼ ϕ
(
g ◦ f̃

)
.

such that □

1.5. Wreath products.

1.5.1. What are wreath products?
Construction 1.44. Given P⊗ a T -preoperad, in [Ste25d] we used the structure functor on TotT P⊗ to construct
an alternative structure functor ρ : (TotT P⊗)T −⊔→ Span(FT );

O⊗ ≀ P⊗ B O⊗ ×Span(FT ),π

(
TotT P⊗

)T −⊔ ρ
−−−→ Span(FT ).

We verified in [Ste25d] that the localization functor for Span(FT )×TotT P⊗ restricts to a “diagonal” functor
γ : Span(FV )×TotT P⊗→ (TotT P⊗)T −⊔ making the following diagram of ∞-categories commute

O⊗ ×P⊗ Span(FT )×P⊗ Span(FT )× Span(FT )

O⊗ ≀ P⊗ (TotT P⊗)T −⊔ Span(FT )

O⊗ Span(FT )

πO

M

pr1

πP

γ ∧

⌟

ρ

π

πO

In particular, we acquire a natural morphism of T -preoperads M : O⊗ ×P⊗→O⊗ ≀ P⊗. ◁

We defer the proof of following central theorem to Appendix A.2; unfortunately, it is unenlightening.

Theorem 1.45. If O⊗,P⊗ are T -operads, then O⊗ ×P⊗→O⊗ ≀ P⊗ is a Morita equivalence; in particular L◦M
factors through a unique equivalence

O⊗ ×P⊗ O⊗ ≀ P⊗

O⊗ BV⊗P⊗ LOpT O
⊗ ≀ P⊗

M

L L

∼

The following proposition is obvious.

Proposition 1.46. Let O⊗,P⊗ be T -operads. Then, the fiber ∞-categories of O⊗ ≀ P⊗ are given by(
O⊗ ≀ P⊗

)
T
≃

∐
T→S
OS ×PT .

Moreover, given a multi-arity g : T ′→ T , the multimorphism spaces of O⊗ ≀ P⊗ over g are

MulgO≀P (h′ : T ′→ S ′ ,C′ ,D′ ; h : T → S,C,D) ≃
∐

f : S′→S
f h=h′g

MulfO (C′ ;C)×MulgP (D′ ;D) .
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1.5.2. How do we use wreath products? The wreath product construction is of a nontrivial combinatorial
nature; for simplicity’s sake, we pre-macerate these combinatorics, yielding recognition results which will
provide our interface for working with wreath products going forward. First, we describe how to compute
wreath products of T -operads with contractible structure spaces.

Proposition 1.47. Suppose O⊗,P⊗,Q⊗ are topologically enriched categories over Span(FT ) which present
T -operads and Q has contractible structure spaces. Then, a T -preoperad map O⊗ ≀ P⊗ → Q⊗ is uniquely
specified by a map of coefficient systems of sets

ϕ :

∐
T→S

π0OS

×π0PT → π0QT

such that for all data

T ′ T

S ′ V

g

; ((C′ ;C), (B′ ;B)) ∈ OS ′ ×OV ×PT ′ ×PT .

such that O(C′ ;C)×MulgP (B′ ;B) ,∅, we have MulhQ(B′ ;B) ,∅.
Moreover, if O⊗,P⊗ also have contractible structure spaces, to verify Condition (WA-a) for the resulting

map to the preoperadic image ϕ̃ : O⊗ ≀ P⊗→ im(ϕ), it suffices to verify that for all data as above, the induced
map of posets ∐

S ′→S
Oact
/C ×FT ,/T

{
T ′

}
×P act

/B ×FT ,/S
{
S ′

}
−→Qact

/T ×FT ,/T
{
T ′

}
is injective.

Proof. First note that ϕ is a map Ob(O⊗ ≀ P⊗)T →QT ; to specify a topological functor O⊗ ≀ P⊗→Q⊗ over
Span(FT ) it then suffices to define the data on mapping spaces. Indeed, we determine this canonically via
the factorization

MapO⊗≀P⊗ ((C′ ,B′), (B′ ,B)) MapQ⊗ (ϕ(C′ ,B′ ,ϕ(B′ ;B))

MulfO⊗≀P⊗ ((C′ ,B′); (C,B)) MulfQ⊗ (ϕ(C′ ,B′);ϕ(B′ ,B))

There exists an essentially unique filler as in the dashed arrow since whenever the domain is nonempty, the
codomain is contractible by assumption. To verify functoriality, we must verify a that a collection of diagrams
among products of multimorphism spaces of Q⊗ commute; however, since Q⊗ has contractible nonempty
structure spaces, all terms in such diagrams are either empty or contractible, so all such diagrams commute.

Having proved the first statement, we now verify the remaining condition. Now, fix some (C,B) ∈ O⊗ ≀P⊗
and some h ∈ Qact

/ϕ(C,B). Let T ′→ T be the multi-arity under h. We may form the diagram

F′
∐

S ′→S
Oact
/C ×FT ,/T {T

′} × P act
/B ×FT ,/S {S

′}

F (O⊗ ≀ P⊗)act
/(C,B) ×FT ,/T {T

′} (O⊗ ≀ P⊗)act
/(C,B)

{h} Qact
/ϕ(C,B) ×FT ,/T {T

′} Qact
/ϕ(C,B)

{T ′} FT ,/T

ψ′

⌟

ψ

⌟

ϕ̃
⌟

⌟

Now, note the following facts:
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(1) By assumption, Qact
/ϕ(C,B)×FT ,/S {T } is a poset, as is the contractible category {h}. In particular, under the

assumption that O⊗ and P⊗ also have contractible nonempty structure spaces, (O⊗ ≀ P⊗)act
/(C,B)×FT ,/S {T }

and
∐

S ′→S
Oact
/C ×FT ,/T {T

′} × P act
/B ×FT ,/S {S

′} are posets.

(2) Since the inclusion Poset ⊂ Cat attains a left adjoint, posets are closed under pullback, so in particular
F and F′ are presented by the pullback of the associated diagrams in the category of posets, i.e. by
preimages.

(3) By assumption, F′ ∈ {∅,∗}.
(4) ψ is bijective, so ψ′ is also bijective.

By combining these facts, we find that F ∈ {∅,∗}. Now, instead fix some h ∈ im(ϕ)act
/ϕ(C,B) and draw the diagram

F (O⊗ ≀ P⊗)act
/(C,B) (O⊗ ≀ P⊗)act

/(C,B)

{h} im(ϕ)act
/ϕ(C,B) Qact

/ϕ(C,B)

⌟
⌟

By definition of im(ϕ) we know that F is nonempty, so the above argument shows that it consists of a single
point, hence it is weakly contractible. □

Now, we cover the case of maps to one-color T -operads.

Corollary 1.48. Suppose O⊗,P⊗,Q⊗ are the topologically enriched nerves of topological genuine T -operads
such that Q⊗ has one color. A T -preoperad map O⊗ ≀ P⊗ → Q⊗ is uniquely specified by the data of, for
each composable arities IndTV T → IndTV S→ V and compatible P and O (multi-)profiles (B′ ;B) and (C′ ;C), a
homotopy class of continuous map

ϕ : O(C′ ;C)×MulgP (B′ ;B)→Q(T ′)

sending ϕ1 = 1 and such that the following diagrams commute:

(2)

O (C′ ;C)×MulgP (B′ ;B) Q (T ′)

O
(
ResVU C′ ;ResVU C

)
×Mul

ResVU g
P

(
ResVU B′ ;ResVU B

)
Q

(
ResVU T

′
)

ϕ

Res Res

ϕ

(3)

(
O(C′ ;C)×MulhO (C′′ ;C′)

)
×
(
MulgP (B′ ;B)×MulfP (B′′ ;B′)

)
O (C′′ ;C)×Mulf ◦gP (B′′ ;B)

(
O (C′ ;C)×MulfP (B′ ;B)

)
×
(
MulhO (C′′ ;C′)×MulgP (B′′ ;B′)

)
Q (T ′)×Mulf ◦gQ (T ′′ ;T ′) Q (T ′′)

(γ,γ)

≃

ϕ

(ϕ,ϕ)
γ

The associated functor acts on active mapping spaces via ϕ.

Proof. Since Q⊗ → Span(FT ) is bijective on objects, there is exactly one map Ob(O⊗ ≀ P⊗)→ ObQ⊗ over
ObSpan(FT ): (C,B) 7→ T ′. To construct such a functor which is compatible with cocartesian arrows, we then
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must determine the data on mapping spaces, uniquely via the factorization

MapO⊗≀P⊗ ((C′ ,B′), (B′ ,B)) MapQ⊗ (T ′ ,T )

MulfO⊗≀P⊗ ((C′ ,B′); (C,B)) MulfQ⊗ (T ′ ,T )

O(C′K ;CK )×MulgP (B′K ;BK ) Q(T ′K )
ϕ

We’re left with functoriality; this follows by unwinding definitions. □

1.6. The bookkeeping theorem. We now prove the main bookkeeping theorem, Theorem 1.2.

Lemma 1.49. α1 ×α2 is a weak approximation.

Proof. Since α1 ×α2 ≃ α1 × id◦ id×α2, we may assume without loss of generality that α2 = id, in which case
each of the conditions are obvious. □

Proof of Theorem 1.2. In view of Theorem 1.45, applying Seg(−)(S) to the induced diagram

O⊗1 ×O
⊗
2 O⊗3

P⊗1 ×P
⊗
2 P⊗3

yields a diagram of fully faithful inclusions

SegO1
SegO2

(S) SegO3
(S)

SegP1
SegP2

(S) SegP3
(S);

≃

It suffices to verify that the images of (α1 ×α2)∗ and ϕ∗Oα
∗
3 agree. In fact, they correspond with Segal

O1 ×O2-monoids spaces attaining solutions to the inner and outer lifting problem, respectively:

UO1 ×UO2 S

UP1 ×UP2 UP3∼
UϕP

Indeed, UϕP is an equivalence by assumption, so the images agree. □

2. Little disks and prefactorization algebras

Let G be a Lie group and Of.i.
G ⊂ SG the non-full subcategory of G-spaces whose objects correspond

with homogeneous G-spaces [G/H] for H ⊂ G a compact closed subgroup and whose morphisms form the
subspace of maps [G/K]→ [G/H] homotopic to a quotient along a finite-index subgroup inclusion K ⊂H up
to conjugation. Of.i.

G is an atomic orbital ∞-category whose Of.i.
G -1-category FG has values

(
FG

)
H

= FH the

finite H-sets. For the remainder of this paper, we refer to Of.i.
G -equivariant objects as G-equivariant objects,

and will replace [G/H]-decorations with H-decorations.
Warning 2.1. Of.i.

G -spaces are not synonymous with proper equivariant G-spaces if there exist infinite-index
compact closed subgroup inclusions K ⊂H ; this only becomes true when all compact closed subgroups of G
are discrete, such as when G is discrete. We advise the reader to take care to remember that the associated
theories are only proper equivariant with finite-index restrictions (and transfers). ◁

We encourage the reader to specialize to the finite case; the additional generality does not introduce
additional difficulty, as parameterized higher category theory obviates any group-specific bookkeeping.
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2.1. Fundamentals of little V -disks. Fix V and W a pair of orthogonal G-representations. This entire
subsection will need to be adapted to the multi-representation setting!

2.1.1. Little V -disks. Given H ⊂ G a compact closed subgroup and S ∈ FH a finite H-set, we let D(V ) ⊂ V
denote the unit disk in V and we let

S ·D(V )B
∐

[H/K]⊂S
IndHKD

(
ResGK V

)
denote the S-indexed coproduct of D(V ).
Definition 2.2. Given f : T → S a morphism of finite H-sets, and S ⊂ VectωR a subcategory containing V and
W , we define the topological space of H-equivariant S -structured little V -disk embeddings in W over f to be
the topological subspace

EmbH,Sf (T ·D(V ),S ·D(W )) ⊂MapH (T ·D(V ),S ·D(W ))

of H-equivariant maps ι whose induced map πH0 ι : π
H
0 (T ·D(V )) = T → S = πH0 (S ·D(W )) is f , which are

embeddings of topological H-spaces, and which satisfy the condition that for each orbit [H/K] ⊂ T , the mate
D

(
ResGK V

)
→D(ResGKW ) ≃ ResHK D(ResGHW ) to the restricted map ι[H/K] of

IndHKD
(
ResGK V

)
D

(
ResGHW

)
T ·D(V ) S ·D(W )

ι[H/K]

ι

is a sum of a constant map and a map lying in S . In the case S = ∗H is the terminal H-set, we simply write

EmbH,S (T ·D(V ),D(W ))B EmbH,S! (T ·D(V ), ∗H ·D(W )) . ◁

Example 2.3.
• In the case that S ⊂ Vectω,≃R ⊂ VectωR consists of the subgroup (0,1]× ⊂ GLn(Rn) of short positive

scalar multiples of the identity, these are almost the same thing as Guillou-May’s little V -disk
maps [GM17]. The corresponding embeddings are sometimes called “affine embeddings,” a piece of
terminology we squareley reject; we will instead call these equidiameter embeddings.

• In the case that S = R×dimV
>0 ⊂GL(V e) (corresponding with the positive-entry connected diagonal

matrices with respect to a fixed basis), we refer to these as rectilinear embeddings.
• In the case that S = VectωR, we refer to these as affine embeddings. ◁

For the time being fix S ⊂S ′ be a subcategory. First note that structured embeddings behave well
with restriction.
Observation 2.4. Let K ⊂H be a finite-index closed subgroup inclusion. Restriction factors uniquely:

EmbH,Sf (T ·D(V ),S ·D(V )) EmbH,S
′

f (T ·D(V ),S ·D(V )) MapH (T ·D(V ),S ·D(V ))

EmbKS
ResHK f

(T ·D(V ),S ·D(V )) EmbK,S
′

ResHK f
(T ·D(V ),S ·D(V )) MapK (T ·D(V ),S ·D(V ))

ResHK ResHK ResHK

Indeed uniqueness follows by noting that topological subspace embeddings are monic in Top. ◁

Next note that structured embeddings behave well with slicing over orbits.
Observation 2.5. In the case S = [H/K], T is canonically expressed as an induction T ≃ IndHK T . Moreover, by
unwinding definitions, we see that induction furnishes compatible homeomorphisms

EmbH,S
IndHK T→[H/K]

(
IndHK T ·D(V ), [H/K] ·D(V )

)
EmbK,S (T ·D(V ),D(V ))

EmbH,S
′

IndHK T→[H/K]

(
IndHK T ·D(V ), [H/K] ·D(V )

)
EmbK,S

′
(T ·D(V ),D(V ))

≃

≃

◁
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Last, we observe that structured embeddings satisfy a Segal condition.
Observation 2.6. Given a summand inclusion i : S ′ ⊂ S, pullback yields a diagram of forgetful maps

EmbH,Sf (T ·D(V ),S ·D(V )) EmbH,Si∗f (i∗T ·D(V ),S ′ ·D(V )) .

EmbH,S
′

f (T ·D(V ),S ·D(V )) EmbH,S
′

i∗f (i∗T ·D(V ),S ′ ·D(V )) .

i∗

i∗

Under this, we may choose the homeomorphism of Observation 2.5 by first restricting as in Observation 2.4
to K then pulling back aong the inclusion of the identity coset

∗K = [K/eKe−1] ⊂
∐

g∈[K\H/K]

[K/gKg−1] ≃ ResHK [H/K].

In particular, restriction and pullback along the orbit inclusions [H/K] ⊂ S yields a chain of homeomorphism

EmbHf (T ·D(V ),S ·D(V )) ≃
∏

[H/K]⊂S
EmbH

IndHK TK→[H/K]

(
IndHK TK ·D(V ), [H/K] ·D(V )

)
≃

∏
[H/K]⊂S

EmbK (TK ·D(V ),D(V )) ,

where we write IndHK TK for the canonical induction-expression for T ×S [H/K], compatibly with affineness. ◁

2.1.2. Composition. There are two essential maps on structured embedding spaces; first, composition.

Lemma 2.7. Composition of continuous maps restricts uniquely to operations

γ : EmbH,Sg (S ·D(V ),R ·D(W ))×EmbHf (T ·D(U ),S ·D(V )) −→ EmbH,Sg◦f (T ·D(U ),R ·D(W )) ,

compatible with inclusions of structures. Moreover, γ is compatible with restriction, i.e. the following diagram
commutes.

EmbH,Sg (S ·D(V ),R ·D(W ))×EmbHf (T ·D(U ),S ·D(V )) EmbH,Sg◦f (T ·D(U ),R ·D(W )) .

EmbK,Sg (S ·D(V ),R ·D(VW )×EmbKf (T ·D(U ),S ·D(V )) EmbK,Sg◦f (T ·D(U ),R ·D(W )) .

γ

ResHK ResHK

γ

Proof. Since πH0 is functorial, we’re tasked with verifying that S -structured embeddings are closed under
composition; unwinding definitions, this follows from the fact that S is closed under composition and the
composition of S with a constant map is a constant map. Restriction-compatibility follows from functoriality
of restriction. □

We will use this as an operadic composition map, so we must verify associativity.
Observation 2.8. Given V an orthogonal G-representation, the following diagram commutes.

MapH (R ·D(V ),D(V ))×MapH (S ·D(V ),R ·D(V ))×MapH (T ·D(V ),S ·D(V )) MapH (S ·D(V ),D(V ))×MapH (T ·D(V ),S ·D(V ))

EmbH,Sh (R ·D(V ),D(V ))×EmbH,Sg (S ·D(V ),R ·D(V ))×EmbH,Sf (T ·D(V ),S ·D(V )) EmbH,Sh◦g (S ·D(V ),D(V ))×EmbH,Sf (T ·D(V ),S ·D(V ))

EmbH,Sh (R ·D(V ),D(V ))×EmbH,Sg◦f (T ·D(V ),R ·D(V )) EmbH,Sh◦g◦f (T ·D(V ),D(V ))

MapH (R ·D(V ),D(V ))×MapH (T ·D(V ),R ·D(V )) MapH (T ·D(V ),D(V ))

◦

◦ ◦

γ

γ γ

γ

◦

Indeed, the commutativity of the inner diagram follows from commutativity of the outer diagram and the top
and bottom rectangles, together with the fact that subspace inclusions are monic in Top. ◁
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2.1.3. External products. Note that direct sums yields a faithful and conservative functor ⊕ : VectωR ×VectωR→
VectωR. Given two structures S ,S ′, we define the product structure

S ×S ′→ VectωR ×VectωR
⊕−−−→ VectωR .

The relevant closure property is the following.
Definition 2.9. S is product-closed if S ×S ⊂S . ◁

All of our examples are product-closed. We use this to construct the external product map.
Construction 2.10. Fix V ,W a pair of orthogonal G-representations, and once and for all fix a G-equivariant
diffeomorphism ϖ : D(V ) ×D(W ) ≃ D(V ⊕W ).4 Fix S a product-closed structure. We (uniquely) define
compatible external product maps

EmbH,Sg (S ·D(V ),R ·D(V ))×EmbH,Sf (T ·D(W ),S ·D(W )) EmbH,Sg◦f (T ·D(V ⊕W ),R ·D(V ⊕W ))

MapHg (S ·D(V ),R ·D(V ))×MapHf (T ·D(W ),S ·D(W )) MapHg◦f (T ·D(V ⊕W ),R ·D(V ⊕W ))

ϕ

ϕ

elementwise by the formula

(4)
T ·D(V ⊕W ) R ·D(V ⊕W )

D(V )× (T ·D(W )) D(V )× (S ·D(W )) S ·D(V )×D(W ) R ·D(V )×D(W )

ϕ(g̃;f̃ )

≃ ≃

(id,g̃)
≃

(f̃ ,id)

◁

We see that ϕ behaves well with respect to restriction and composition.
Observation 2.11. Eq. (4) is manifestly restriction-stable, i.e. the following diagram commutes

EmbH,Sg (S ·D(V ),R ·D(V ))×EmbH,Sf (T ·D(W ),S ·D(W )) EmbH,Sg◦f (T ·D(V ⊕W ),R ·D(V ⊕W )) .

EmbK,S
ResHK g

(S ·D(V ),R ·D(V ))×EmbK,S
ResHK f

(T ·D(W ),S ·D(W )) EmbK,S
ResHK g◦f

(T ·D(V ⊕W ),R ·D(V ⊕W )) .

ϕ

ResHK ResHK

ϕ

Moreover, it is compatible with composition of structured embeddings, i.e. the top horizontal composite

P ·D(V ⊕W ) T ·D(V ⊕W ) R ·D(V ⊕W ) Q ·D(V ⊕W )

D(V )× (P ·D(W )) D(V )× (T ·D(W )) D(V )× (S ·D(W ))

S ·D(V )×D(W ) R ·D(V )×D(W ) Q ·D(V )×D(W )

ϕ(h̃;id) ϕ(g̃;f̃ ) ϕ(id;j̃)

(id,h̃) (id,g̃)

(f̃ ,id) (j̃ ,id)

clearly agrees with ϕ
(
g̃ ◦ h̃; j̃ ◦ f̃

)
. Here, for visual clarity, we’ve denoted equivalences with two heads and

no other decorations Moreover, Eq. (4) is associative, in the sense that we may define an element ϕ(f ;g;h)

4 For concreteness, the reader may fix an equivariant diffeomorphism ϕV : V ≃ D(V ) (say, by ϕV (x) = 1
1+|x| · x) and use ϕV⊕W ◦

(ϕ−1
V ,ϕ−1

W ).
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making following diagram commute

T ·D(U ⊕V ⊕W ) P ·D(U ⊕V ⊕W )

D(U )× (T ·D(V ⊕W )) D(U )× (R ·D(V ⊕W ))

D(U )× S ·D(V )×D(W ) D(U )×R ·D(V )×D(W )

D(U )×D(V )× (T ·D(W )) D(U )×D(V )× S ·D(W ) R ·D(U )×D(V )×D(W ) P ·D(U )×D(V ) ·D(W )

S ·D(U ⊕V ) ·D(W ) P ·D(U ⊕V ) ·D(W )

ϕ(f ;g;h)

(id,ϕ(g;h))

(id,g,id))

(id,id,h)

(f ,id,id)

(ϕ(f ;g),id)

We see that “products with the identity self-embedding” yields a map

ι : EmbH,Sf (S ·D(V ),R ·D(V )) −→ EmbH,Sf (S ·D(U ⊕V ),R ·D(U ⊕V )) ,

which makes the following diagram commute

EmbH,Sg (S ·D(V ),R ·D(V ))×EmbH,Sf (T ·D(W ),S ·D(W )) EmbH,Sg◦f (T ·D(V ⊕W ),R ·D(V ⊕W ))

EmbH,Sg (S ·D(U ⊕V ),R ·D(U ⊕V ))×EmbH,Sf (T ·D(W ),S ·D(W )) EmbH,Sg◦f (T ·D(U ⊕V ⊕W ),R ·D(U ⊕V ⊕W ))

ϕ

(ι,id) ι

ϕ

Moreover, ι intertwines with restriction and composition in the obvious way. ◁

Lastly, the following property of ϕ will be key.

Proposition 2.12. Under the universal property for disjoint unions, ϕ yields an injective map∐
T

f
−→S

g
−→R

EmbH,Sg (S ·D(V ),R ·D(V ))×EmbH,Sf (T ·D(W ),S ·D(W ))

EmbH,Sg◦f (T ·D(V ⊕W ),R ·D(V ⊕W )) .
ϕ̃

Now, note that ϕ̃ is compatible with sub-structure inclusions, Aff is the universal structure, and
right-cancellation of injectives shows that it suffices to prove that ϕ̃ is injective in the affine case. We have a
center and underlying linear transformation map

(c, t) : EmbAff,H
g

(
[n] ·Dk+k′ ,Dk+k′

)
−→ Confn(Dk+k′ )×EndR

(
Rk+k′

)n
.

participating in the following diagram, whose dashed arrow we do not yet claim to exist.

(5)

∐
T→S

EmbAff,H (S ·D(V ),D(V ))×EmbAff,H
f (T ·D(W ),S ·D(W )) EmbAff,H (T ·D(V ⊕W ),D(V ⊕W ))

∐
f : [n]→[m]

EmbAff
(
m ·Dk ,Dk

)
×EmbAff

f

(
[n] ·Dk′ , [m] ·Dk′

)
EmbAff

(
[n] ·Dk+k′ ,Dk+k′

)

∐
f : [n]→[m]

ConfmDk ×EndR
(
Rk

)m
×
 ∏
ℓ∈[m]

(
Conff −1(ℓ)D

k′
)
×EndR

(
Rk′

)f −1(ℓ)
 Confn(Dk+k′ )×EndR

(
RK

)n

ϕ̃

ϕ̃e

(c,t) (c,t)

ϕ̃c,t

We omit the proof of the following nearly tautological lemma.

Lemma 2.13. (c, t) is injective.

The heart of our argument for Proposition 2.12 is the following lemma.
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Lemma 2.14. There exists an injective function ϕ̃c,t making the above diagram commute.

Proof. First define the function ϕc : ConfmDk ×
∏

ℓ∈[m]
Conff −1(ℓ)D

k′ −→ ConfnDk+k′ by the external product

ϕc (a;b1, . . . , bm) (i) = ϖ
(
a(f (i)),bf (i)(i)

)
,

where ϖ : Dk ×Dk′ ∼−−−→Dk+k′ is the distinguished diffeomorphism. Next, we define the function

ϕt : EndR
(
Rk

)m
×

∏
ℓ∈[m]

EndR
(
Rk
′ )f −1(ℓ)

→ EndR
(
Rk+k′

)
by

ϕt (F;G1, · · · ,Gm)i = Fi ×Gf (i).

This yields a diagram

∐
f : [n]→[m]

ConfmDk ×EndR
(
Rk

)m
×
 ∏
ℓ∈[m]

(
Conff −1(ℓ)D

k′
)
×EndR

(
Rk′

)f −1(ℓ)


∐
f : [n]→[m]

ConfmDk ×
∏

ℓ∈[m]
Conff −1(ℓ)D

k′
× EndR

(
Rk

)m
×

∏
ℓ∈[m]

EndR
(
Rk′

)f −1(ℓ)
 Confn(Dk+k′ )×EndR

(
RK

)n
ConfmDk ×

∏
ℓ∈[m]

Conff −1(ℓ)D
k′
× EndR

(
Rk

)m
×

∏
ℓ∈[m]

EndR
(
Rk′

)f −1(ℓ)


≃

ϕ̃c,t

ϕc×ϕt

It follows by unwinding definitions that this makes the above diagram commute. We’re left with injectivity,
so we’ll define a section for ϕ̃c,t. To begin, given a configuration ι : [n] ↪→Dk+k′ , we may define the diagram

f −1
ι (ℓ) [n] Dk+k′ Dk′

{ℓ} [mι]B im(πkι) Dk

sk′ ,ℓ(ι)

⌟
ι

fι

πk
πk

sk(ι)

In particular, we acquire a map sc : ConfnDk+k′ −→
∐

f : [n]→[m]
ConfmDk ×

∏
ℓ∈[m]

Conff −1(ℓ)D
k′ lying over the

assignment ι 7→ fι. We define the map sc,t with opposite domain and codomain to ϕ̃c,t by taking a pair
(ι, (F1, . . . ,Fn)) to the configuration data scι as well as the maps(

sF1, . . . , sFmι ; (sGi)f −1(1), . . . , (sGi)f −1(mι)

)
∈ EndR

(
Rk

)[mι] ×
∏
ℓ∈[mι]

EndR
(
Rk
′ )f −1

ι (ℓ)

with data defined by the compositions

Rk′ Rk+k′ Rk

fι(j) = i

Rk′ Rk+k′ Rk

sGj Fj sFi

Unwinding definitions, we see sc,t is a section of ϕ̃c,t, so the latter is injective, as desired. □

Proof of Proposition 2.12. Note that the vertical arrows in Eq. (5) are injective by Lemma 2.13; the diagonal
composite is then injective by Lemma 2.14. by right-cancellation of injections, this implies that ϕ̃ is
injective. □
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2.1.4. Configurations. We now verify the following folklore extension of [May72, Thm 4.8].

Lemma 2.15. Suppose (0,1]n ⊂ S is a substructure such that each space in S is closed under linear
combinations with positive coefficients and W ⊂ V is a subrepresentation. Then, evaluation at centers

c : EmbH,S (S ·D(W ),D(V ))→ ConfHS (V )

is an AutH S-homotopy equivalence.

Proof. We define the maximal equidiameter embedding function s : Confn(V e)→ Emb(n ·D(W e),D(V e)) by

sx1,...,xn(w) = (x1, . . . ,xn) +
mini,j d(xi ,xj )

2
·w.

Now, note that s is continuous and restricts uniquely to an AutH S-equivariant map

ConfHS (W ) EmbH,S (S ·D(V ),D(V ))

Conf|S |(W e) EmbS (|S | ·D(V e),D(V e))

s

s

Moreover, s is a section of c, so for the proposition it suffices to construct an AutH S-equivariant deformation
retract of EmbH,S (S ·D(W ),D(V )) onto ims. Indeed, we may do so linearly via the homotopy

ht,ι(w) = t · sc(ι)(w) + (1− t) · ι(w). □

We saw in [Ste25c] that ConfHS (V ) has an elementwise-contractible basis of trivializing neighborhoods

PHS (V )B
{
U ⊂D(V )|S |

∣∣∣ ∃H-equivariant disjoint rectilinear embedding ι : S ·D(V )→D(V ) s.t. U = im(ι)
}

⊂O
(
ConfHS (V )

)
.

We may make an arbitrary choice of rerpresentative for each V , under which such embeddings are necessarily
unique. Hypercovering theory allows us to recover the homotopy type of ConfHS (V ) from the classifying space
of the poset of basis elements under inclusion via the following result.

Proposition 2.16 ([DI04], e.g. as in [Knu18]). If P is an elementwise contractible basis for a topological space
X (considered as a poset), then the canonical map BP → X is a weak equivalence.

In particular, taking centers yields a commutative diagram

BPHS (V ) EmbH,S (S ·D(V ),D(V )) ConfHS (V )α

c′

c

such that c and c′ are weak equivalences; α is a weak equivalence by two out of three. That is, we’ve proved
the following.

Proposition 2.17. Under the assumptions of Lemma 2.15, α : BPHS (V )→ EmbH,S (S ·D(V ),D(V )) is a weak
equivalence.

This will form the heart of our weak approximation, but first we introduce the main topological idea.

2.1.5. Decomposable little disks. Let ι : PHS (V |W ) ↪→PHS (V ⊕W ) be the embedded sub-poset image of ϕ.

Proposition 2.18 (G-preoperadic [Dun88, Prop 2.3]). ι induces weak equivalences

BPHS (V |W )
∼−−−→ BPHS (V ⊕W )

∼−−−→ EV⊕W (S).

Proof. Let PH,equi
S (V ⊕W ) ⊂ PHS (V ⊕W ) be the equidiameter embeddings. We consider the intersection (i.e.

pullback) diagram

PH,equi
S (V |W ) PH,equi

S (V ⊕W )

PHS (V |W ) PHS (V ⊕W )

ιequi

iV |W
⌟

iV⊕W

ι
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By two out of three, it suffices to verify that ιequi, iV |W , and iV⊕W are B-equivalences; we use the well-known
facts that adjoints are B-equivalences.

First note that ιequi has right adjoint taking an equidiameter little disk embedding f to the equidiameter
little disk embedding Rf centered on c(f ) with diameter

1
2

min
(

max
πV (xi ),πV (xj )

d(πV (xi),πV (xj )), max
i,j

d(xi ,xj )
)

Next note that iV⊕W has a left adjoint taking a little disk embedding f to the equidiameter little disk
embedding Lf centered on c(f ) with diameter given by the minimum diameter of the components of f ; last,
note that L restricts to a left adjoint to iV |W . □

2.2. Little V -disk algebras.

2.2.1. The G-operad EV .
Construction 2.19. We define the topological G-symmetric sequence

EtV ,S (S)B EmbH,S (S ·D(V ),D(V )).

with AutH S acting by precomposition and restriction as in Observation 2.4; note that restriction is Borel
AutH S-equivariant by Lemma 2.7. ◁

Note that the Segal condition of Observation 2.6 characterizes EtV -multioperations:

MulfEtV ,S
(T ;S) ≃ EmbH,Sf (T ·D(V ),S ·D(V )) .

In particular, the composition map γ yields a composition operation

γ : MulgEtV
(S;R)×MulfEtV

(T ;S) −→Mulg◦fEtV
(T ;R).

Proposition 2.20. (EtV ,S , (idD(V )),γ) is a genuine topological G-operad.

Proof. We’re tasked with verifying Conditions (OP-a) to (OP-e). To start, note that Conditions (OP-a)
and (OP-c) (i.e. unitality and restriction-stability of units) are obvious. Moreover, Condition (OP-b) is
simply Observation 2.8 and Condition (OP-d) is verified in the second statement of Lemma 2.7. Lastly,
equivariance of γ follows from the same property for composition of equivariant maps. □

Definition 2.21. The S -structured little V -disks G-operad is E⊗V ,S BN⊗EtV . The little V -disks G-operad is
E⊗V B E⊗V ,Rect. ◁

Remark 2.22. When G is finite, E⊗V ,equi is synonymous with the G-operad given the same name in [Hor19]. ◁

Observation 2.23. When S is product-closed, Observation 2.11 constructs a map EtV ,S → EtV⊕W,S ; given a
sub-representation inclusion U ⊂ V , choosing an orthogonal complement to U and taking nerves yields a
map E⊗U → E⊗V . ◁

2.2.2. The Dunn map. The following constructs a Dunn map ϕE : E⊗V ,S ≀E
⊗
W,S → E⊗V⊕W,S .

Proposition 2.24. The maps ϕ : EtV ,S (S)×MulT→SEtW ,S
(T ;S)→ EtV⊕W,S (T ) of Construction 2.10 satisfy Corol-

lary 1.48.

Proof. The first and second diagram of Observation 2.11 correspond with Eq. (2) and Eq. (3), respectively. □

Of course, composition yields a diagram of G-preoperads

E⊗V ,S ×E
⊗
W,S → E⊗V ,S ≀E

⊗
W,S → E⊗V⊕W,S ,

which corresponds canonically with a map of G-operads ϕ : E⊗V ,S
BV⊗E⊗W,S → E⊗V⊕W,S . The precise form of

Theorem A is that ϕ is an equivalence for S = Rect together with the following observation.
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Observation 2.25. Observation 2.11 demonstrates that the right square of the following commutes:

E⊗V
BV⊗E⊗W E⊗U ×E

⊗
W E⊗U ≀E

⊗
W E⊗U⊕W

E⊗V
BV⊗E⊗W E⊗V ×E

⊗
W E⊗V ≀E

⊗
W E⊗V⊕W

We’ve already verified that the rest of the inner diagram commutes, so in particular, the outer square
commutes; that is, the Dunn map is natural with respect to summand inclusions in each factor. In particular,
taking U = 0 implies that the composite map

E⊗W ≃ E⊗0
BV⊗E⊗W

(ι,id)
−−−−−→ E⊗V

BV⊗E⊗W
ϕ
−−−→ E⊗V⊕W

is ι; we interpret this as showing that “ϕ extends ι.” ◁

2.3. Additivity for V -disk prefactorization algebras. Define the G-coefficient system of sets

π0PV ,H B PH∗H (V ),

with evident functoriality. This becomes a G-poset under inclusions, which we denote PV ,•. Moreover, we
define a PV ,•-symmetric sequence by indexed rectilinear embeddings

PV ((MK )S ;M) =

∗ ∃ disjoint factorization
∐S
KMK ↪→M ↪→D(VH );

∅ otherwise.

By “disjoint factorization,” we mean that
∐S
KMK ↪→M itself is an embedding. Note that the factorization is

unique, if it exists.

Proposition 2.26. There exists an essentially unique PV ,•-colored G-0-operad with PV ,•-symmetric sequence
PV (−;−).

Proof. Since PV (−;−) has 0-truncated structure spaces, there is at most one choice of 1C and of γ, and if
they exist, the associativity, unitality, equivariance, and restriction-stability diagrams all commute. Thus it
suffices to verify that there exist maps ∗ → PV (N ;N ) and

PV ((MK )S ;N )×
∏

K∈Orb(S)

PV
((
LJ

)
TK

;MK

)
→ PV

((
LJ

)
T

;N
)

when
∐S
KM → D(VH ) factors through an H-equivariant embedding into N and

∐TK
J TK → D(VK ) factors

through a K-equivariant embedding into MK . The first is implemented by the identity self-embedding of N
and the second by noting that the composite

T∐
J

LJ ≃
S∐
K

TK∐
J

LJ ↪→
S∐
K

MK ↪→N

is the desired embedding. □

We define the coefficient system map as the map underlying the T -poset equivalence

π0UϕP B ϕE|H : PH∗H (V )×PH∗H (W )→PH∗H (V ⊕W ).

Proposition 2.27. There is a unique map ϕP : P⊗V ≀P
⊗
W → P⊗V⊕W lying over π0UϕP, and the induced map to

the T -preoperadic image
ϕ̃P : P⊗V ≀P

⊗
W −→ P⊗V |W B im(ϕP)

is an LOpG -equivalence.
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Proof. To verify existence and uniqueness of ϕP, we must verify the composability condition of Proposition 1.47.
Unwinding definitions, this condition stipulates that, given equivariant rectilinear embeddings g : T ·D(W )→
S ·D(W ) and f : S ·D(V )→ D(V ), the composite ϕ(g;f ) is an equivariant rectilinear embedding, which is
obvious from the definition of ϕ.

Now, as already mentioned the T -poset maps

(PV ≀PW )el→ Pel
V |W → Pel

V⊕W

are equivalences, verifying the strong form of Condition (WA-b).
Moreover, by Proposition 1.47, to verify Condition (WA-a), it suffices to verify that the induced map

ϕ :
∐

f : T→S

PHS (V )×
∏

[H/K]⊂S
PKTK (W )

 −→ PHT (V ⊕W )

is injective; this is precisely Proposition 2.12. □

2.4. Locally constant V -disk prefactorization algebras and equivariant Dunn-Lurie additivity.
Construction 2.28. We will define a map α : PtV → EtV ; in order to do so, given an H-equivariant affine
embedding f : S ·D(V )→D(V ), we’re tasked with choosing a point

α(v) ∈ EtV = EmbH,Rect(S ·D(V ),D(V ));

we choose the tautological one. Restriction-and composition-stability are also tautological, as is the fact that
α ◦ϕE ≃ ϕP ◦α. ◁

Proposition 2.29. The maps P⊗V → E⊗V and P⊗V |W → E⊗V⊕W are weak approximations; that is, EV -algebras
embed fully faithfully into V -prefactorization algebras as the locally constant ones.

Proof. For Condition (WA-b), it suffices to note that
(
UPV |W

)
H

= (UPV⊕W )H have a terminal object given
by the identity self-embedding of D(V ⊕W ). For Condition (WA-a), in light of Corollary 1.38, we’re tasked
with verifying that the tautological maps

B
(
Pact
V |W ×FG,/H

{
IndGHS→ [G/H]

})
B
(
Pact
V⊕W ×FG,/H

{
IndGHS→ [G/H]

})
EV (S)

BPHS (V |W ) BPHS (V ⊕W ) EmbAff,H (S ·D(V ⊕W ),D(V ⊕W ))
≃

α

≃ ≃

are weak equivalences; this is Propositions 2.17 and 2.18. □

We’re now ready to conclude homotopical equivariant Dunn additivity.

Proof of Theorem A. As telegraphed in the introduction, it suffices to verify that the square

P⊗V ≀P
⊗
W P⊗V |W

E⊗V ≀E
⊗
W E⊗V⊕W

ϕ̃P

αV ≀αW αV |W

ϕE

satisfies the conditions of our bookkeeping theorem, Theorem 1.2. Indeed, Condition (BK-a) is Proposition 2.29,
Condition (BK-b) is Proposition 2.27, and Condition (BK-c) follows simply by noting that all of the G-operads
involved have one color. □

3. Tangential structures

In this section, we study variations of the little disk G-operad where affineness is replaced with linear
G-tangential structure. This begins with definitions in Section 3.1, leading to a construction of the additivity
(natural) equivalence in Section 3.2. We go on in Section 3.3 to relate this to previous work of Szczesny on
this topic, and relate it to the motivating conjecture of Dwyer, Hess, and Knudsen.

3.1. Equivariant framed little disk algebras.
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3.1.1. The Kister-Mazur theorem for orthogonal representations.

Proposition 3.1. The inclusions AutH (V ) ⊂ EmbH,Aff
0 (D(V ),D(V )) ⊂ EmbH,Aff(D(V ),D(V )) are homotopy

equivalences; in particular, EmbH,Aff(V ,V ) is grouplike.

Proof. As noted in [Hor19], it is easily seen that the proof of the nonequivariant case in [Kup17] preserves the H-
equivariant subspaces. Moreover, we may explicitly construct a deformation retract of EmbH,Aff(D(V ),D(V ))
onto EmbH,Aff

0 (D(V ),D(V )) by
ht(ι) = (1− t)ι− t · c(ι). □

3.1.2. The G-operad EV .
Notation 3.2. The G-coefficient system of n-dimensional orthogonal representations is defined by

RepO(n)
G
B π0BGO(n);

in particular,
(
RepO(n)

G

)H
is the set of isomorphism classes of n-dimensional orthogonal H-representations

and the restriction map
(
RepO(n)

G

)H
→

(
RepO(n)

G

)K
is the usual restriction function. ◁

Construction 3.3. We define a RepO(n)
G -symmetric sequence EtBGO(n) by

EtBGO(n) ((UK );V )B EmbH,lin.isom
S

 S∐
K

UK ,V

 ;

the restriction action is the evident restriction. ◁

Proposition 3.4.
(
EtBGO(n), (id•) ,γ

)
is a genuine topological G-operad.

Proof. Identical to Proposition 2.20. □

Notation 3.5. The BGO(n)-framed little disks G-operad is E⊗BGO(n) BN⊗EtBGO(n). ◁

Lemma 3.6. The equivalence π0BGO(n) ≃ π0UEBGO(n) extends to an equivalence of G-spaces

f : BGO(n)
∼−−−−−→UEBGO(n).

Proof. Proposition 3.1 yields a filler equivalence for the bottom arrow of the following.

BGO(n)H UEBGO(n)

∐
R : H↷Rn

OH (R)
∐

R:H↷Rn
EmbH,lin.isom.(R,R)

f H

≃ ≃

The desired equivalence is classifed by (f H )H⊂G under Elmendorf’s theorem. □

In particular, f is adjunct to a map E⊗BGO(n)→ BGO(n)G−⊔.

Construction 3.7. If T : X→ BGO(n) is a linear G-tangential structure, the X-framed little disk G-operad is

E⊗X B LOpG

(
EBGO(n) ×BGO(n)G−⊔ X

G−⊔
)
. ◁

Note that E⊗X is functorial in X ∈ SG,/BGO(n); in particular, given a point x ∈ X with stabilizer H , we
acquire a map

fx : E⊗TxX → ResGH E⊗X .

Proposition 3.8. Given a linear G-tangential structure T : X→ BGO(n) and a point x ∈ X, the reduction of
the functoriality map fx : E⊗TxX → ResGstab(x)E

⊗
X is an equivalence

E⊗Tx
∼−−−→ Endred

x E⊗X
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Proof. Unwinding definitions, we’re tasked with proving that the back faces of the following is cartesian.

EmbAff(S ·D(V ),D(V )) EmbH,Rect(S ·D(V ),D(V ))

ConfGS (V ) GermG
S (V )

∗ EmbRect(D(V ),D(V ))S

∗ OS (V )

∼ ∼

∼

Equivalently, we may prove that the front face is cartesian; this follows from [Hor19, Prop 3.8.7]. □

Corollary 3.9. If T : X → BGO(n) is a linear G-tangential structure, then pullback along the functoriality
maps fx : E⊗Tx → ResGstab(x)E

⊗
X yields a natural G-limit presentation

Alg
EX

(C) ≃ limx∈XAlg
ETx

(C).

Proof. The disintegration and assembly procedure (as recalled in Proposition 1.29) provides a natural
G-colimit presentation

E⊗X ≃ colimx∈XE
⊗
Tx

;

since right G-adjoints turn G-colimits into G-limits, this yields a G-limit presentation of G-operads

Alg⊗
EX

(C) ≃ limx∈XAlg⊗
ETx

(C);

the result follows by noting that U : Op
G
→ CatG is a right G-adjoint (hence it preserves G-limits) and it

takes Alg⊗
O

(−) naturally to Alg
O

(−). □

3.2. Assembly and additivity with equivariant tangential structure.

Proposition 3.10. There exists a map of G-operads ϕ̃ : E⊗BGO(k)
BV⊗E⊗BGO(k′)→ E⊗BGO(k+k′) such that, for all orbits

(x,y) : [G/H]× [G/K]→ BGO(k)×BGO(k′), the associated diagram commutes

E⊗Tx
BV⊗E⊗Ty E⊗BGO(k)

BV⊗E⊗BGO(k′) BGO(k)G−⊔
BV⊗BGO(k′)G−⊔ (BGO(k)×BGO(k′))G−⊔

E⊗Tx⊕Ty E⊗BGO(k+k′) BGO(k + k′)G−⊔ BGO(k + k′)G−⊔

ϕ ϕ̃

≃

⊕⊔

where the middle horizontal arrows classify the equivalences of Lemma 3.6, the top right equivalence is
Corollary A.12, and the left horizontal arrows are induced by the functoriality of E⊗(−).

Proof. Since all elements of the bottom row are G-operads, it suffices to construct a commutative diagram of
topolgoical G-preoperads

E⊗Tx ×E
⊗
Ty

E⊗BGO(k) ×E
⊗
BGO(k′) BGO(k)G−⊔ ×BGO(k′)G−⊔

E⊗Tx⊕Ty E⊗BGO(k+k′) BGO(k + k′)G−⊔

ϕ ϕ̃

Now, note that the bottom left horizontal arrow has action maps classified by the subspace inclusions

EmbH
 S∐
U

RU ,R

 ↪→ S∏
U

EmbH (RU ,R)

and is essentially injective; moreover, the top arrow is an external product of two such arrows. In particular,
we can replace the desired right square (up to equivalence) with one whose horizontal arrows are point-set
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monic in the sense of Proposition 1.34 and verify the conditions there to consturct ϕ̃ such that the right
squhare commutes. Since the right horizontal arrows are U -equivalences by definition, condition (a) is
immediate. Moreover, condition (b) follows by unwinding definitions, as does commutativity of the outer
diagram;commutativity of the left diagram then follows by the fact that point-set monics are monomorphisms
in CatTop. □

Construction 3.11. Given T : X→ BGO(k) and T ′ : Y → BGO(k′) a pair of G-tangential structures, there is a
Dunn map of G-preoperads so that the following diagram commutes.

E⊗X ×E
⊗
Y XG−⊔ ×YG−⊔

E⊗X×Y (X ×Y )G−⊔

E⊗BGO(k) ×E
⊗
BGO(k′) BGO(k)G−⊔ ×BGO(k′)G−⊔

E⊗BGO(k+k′) BGO(k + k′)G−⊔

ϕ(X,Y )

ET ×ET ′

⌟

T⊕T ′G−⊔

ϕ̃ ⊕⊔

T G−⊔×T ′G−⊔

ET×T ′

In fact, the bottom and right face form a G-functor

SG,/BGO(k) ×SG,/BGO(k′) −→FunG
(
InflGe ∆

1 ×∆1,PreOp
G

)
×Fun

(
InflGe ∆1,PreOp

G

) FunG
(
InflGe ∆

1 ×∆1,PreOp
G

)
≃FunG

(
InflGe ∆

1 ×∆1 ⊔∆1 ∆1 ×∆1,PreOp
G

)
and the formation of pullbacks of the bottom and top cospan extends this to a G-functor

SG,/BGTop(k) ×SG,/BGTop(k′) −→ FunG

(
InflGe

(
∆1

)3
,PreOp

G

)
;

evaluation at the dashed arrow yields a commutative diagram of G-functors

SG,/BGTop(k)×BGO(k′) SG,/BGO(k) ×SG,/BGO(k′) PreOp
G
×PreOp

G

PreOp
G

FunG
(
InflGe ∆

1,PreOp
G

)
PreOp

G

E(−)

× (E(−),E(−))

ϕ ×

ev1 ev0

In other words, we’ve constructed a natural transformation of G-functors E⊗X ×E
⊗
Y → E⊗X×Y . ◁

Now, our precise form of Corollary B is the following.

Theorem 3.12. The map ϕ : E⊗X
BV⊗E⊗Y → E⊗X×Y is an equivalence.

Proof. It follows by two-out-of-three that ϕ always induces an equivalence UEX ×UEY →UEX×Y . Moreover,
for all pairs of orbits (x,y) ⊂ X ×Y , Propositions 3.8 and 3.10 and Construction 3.11 constructs an equivalence
of arrows

E⊗Tx
BV⊗E⊗Ty E⊗Tx⊕Ty

Endred
x (E⊗X )

BV⊗ Endred
y (E⊗Y ) Endred

(x,y)(E
⊗
X×Y )

ϕ

≃ ≃

ϕ

hence ϕ induces an equivalence of reduced endomorphism H-operads over pairs of orbtis, and the result
follows by Corollary 1.30. □

3.3. Skew little cubes, Szczesny additivity, and equivariant configurations. Let G be a compact Lie group.
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3.3.1. Homotopy theories for G-operads and Szczesny’s additivity theorem.
Observation 3.13. There are inclusions of G-spaces BGΣn ↪→ ΣG summing to an equivalence∐

n∈N
BGΣn

∼−−−−→ ΣG.

In particular, G-symmetric sequences are precisely sequences of genuine G-equivariant principal Σn-bundles. ◁

Now, every topological Σn ×G-space has an underlying genuine G-equivariant principal Σn-bundle
by family-restriction along the inclusion TotBGΣn ≃ OG×Σn,Γ ⊂ OG×Σn ; in particular, we get an underlying
topological G-symmetric sequence functor

sseq: Op(TopG) −→ Fun

∐
n∈N

BG ×BΣn, Top

 −→ Fun(TotΣG,Top).

Definition 3.14. A morphism O→ P of topological G-symmetric sequences is a weak equivalence if O(S)→P (S)
is a weak equivalence for all closed subgroups H ⊂ G and finite H-sets S ∈ FG. A morphism f in Op(TopG) is
a graph-weak equivalence if sseq(f ) is a weak equivalence. ◁

Warning 3.15. These are not the weak equivalences transferred along

Op
(
TopG

)
→ Fun

∐
n∈N

BΣn,TopG


for the projective structure on the codomain with respect to genuine G-equivalences; for that matter, this
is fails for F -equivalences for any family F ⊂ OG, such as F = BG. Indeed, for an arbitrary (topological)
category C, the Quillen equivalence

Fun

∐
n∈N

BΣn,TopC


proj.

≃ Fun

∐
n∈N

BΣn,Top

C
proj.

is compatible with the composition product on each side, furnishing a Quillen equivalence

Op(TopC)transf. proj. ≃Op(Top)Cproj..

Now, taking ∞-categories, specializing to C = F and applying Elmendorf’s theorem [DK84; Elm83], note that
E⊗∞ is taken to the constant functor F →Op valued on the terminal object E⊗∞, and hence it is terminal. On
the other hand, E⊗∞ ∈OpG is only terminal if G is nontrivial.

In essence, the transferred weak equivalences on Op(TopF ) do not respect spaces of transfers, so the
corresponding homotopy types can’t corepresent the equivariant loop space theory of [GM17; RS00], can’t
support the (multiplicative) Wirthmüller isomorphisms of [BH21; HHR16; Ste25d], etc. ◁

Construction 3.16 ([BP21, § 4.3] without finiteness). Given O ∈Op(TopG), we may define a genuine topological
G-operad ι!O with underlying G-symmetric sequence sseqO, with the same unit maps, and with composition
defined by O(|S |)×

∏
[H/K]∈S

O(|TK |)
ΓS×

∏
[H/K]⊂S

ΓTK

O(S)×
∏

[H/K]⊂S
O(TK ) O(T )

(
O(|S |)×

∏
x∈S
O(|Tx |)

)ΓS×∏
x∈S

ΓTx

O(|T |)
ΓS×

∏
x∈S

ΓTx O(|T |)ΓT

∆

≃
γ

≃

γ
ΓS×

∏
x∈S

ΓTx
Res

We use this only for illustration purposes, so we leave the verification of the conditions for genuine G-operads
as an exercise to the reader. ◁

Proposition 3.17 ([Ste25b]). The composite nerve functor N⊗ : Op(TopG) → sSetG/TotFG,∗
preserves fibrant

objects and preserves and reflects weak equivalences between fibrant objects; in particular, it possesses a
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conservative total right derived functor of ∞-categories

Op(TopG)
[
Γ -WEQ−1

]
→OpG.

Szczesny’s work then confirms that E⊗V is modelled by Dwyer-Hess-Knudsen.

Theorem 3.18 ([Szc24, Thm 5.6]). Given a dilation representation V : G→O(n), Dwyer-Hess-Knudsen’s skew
little cubes operad CGn and the little V -disks operad DV are connected by a zigzag of graph weak equivalences.

In particular, Szczesny affirmed the following genuine-equivariant version of Dwyer-Hess-Knudsen’s skew
cubes additivity conjecture [DHK18, Conj 4.18], where ⊗Γ is the TopG-enriched point-set Boardman-Vogt
tensor product.

Theorem 3.19 ([Szc24, Thm 1.1]). There is a natural graph weak equivalence DV ⊗Γ DW ≃DV⊕W .

In particular, this and Theorem A construct a family of examples where ⊗Γ and
BV⊗ agree: both satisfy

the genuine equivariant skew cubes additivity conjecture. Moreover, in sight of Warning 3.15, we may view
Corollary B as constructing partially genuine equivariant versions, where the base for Borel equivariance is
allowed to be a version of an E1-group with G-action.

3.3.2. Corollary B and Dwyer-Hess-Knudsen. Fix X→ BGO(n) a linear tangential structure. Let MfldX−fr,⊔
G

be Miladinovic’s G-symmetric monoidal ∞-category of X-framed G-manifolds and disjoint unions [Mil20]
(generalizing Horev [Hor19]). To demonstrate that Corollary B captures an equiavriantization of the aspirations
of [DHK18, Conj 4.18], We verify the following corollary, which was implied to be a corollary of [DHK18,
Conj 4.18] in the case G = e and X = BH ′ ,Y = BH .

Corollary 3.20. There is an equivalence of G-operads

EndRnX (MfldX−fr,⊔
G )⊗

BV⊗ EndRnY (MfldY−fr,⊔
G )⊗ ≃ EndRnX+nY (MfldX×Y−fr,⊔

G )⊗

Now, this directly follows from Corollary B and the following variation of [DHK18, Thm 4.14].

Proposition 3.21 (Tangential [Hor19, Prop 3.9.8]). There is an equivalence EndRn
(
MfldX−fr,⊔

G

)
≃ E⊗X .

Proof. It follows by unwinding definitions and applying Proposition 3.1 that

U EndRn

(
MfldX−fr,⊔

G

)
≃ X.

The identity map on X is then mate to a structure map of G-operads

EndRn

(
MfldX−fr,⊔

G

)
→ XG−⊔;

it follows by the adjunction that the back and bottom face of following diagram commutes, constructing the
left front face.

EndRn MfldY−fr,⊔
G

EndRn MfldX−fr,⊔
G E⊗Y YG−⊔

EndRn Mfld⊔G E⊗X XG−⊔

E⊗BGO(n) BGO(n)G−⊔

⌟

⌟

In particular, we’ve constructed a map ψ : EndRn MfldX−fr,⊔
G → E⊗X which is natural in maps of linear G-

tangential structures. Specializing to the case that Y ≃ ∗ shows that ψ is a map of X-families of G-operads
whose maps on fibers is the usual map ψV : RepV−fr,⊔

G
≃ EndRn MfldV−fr,⊔

G → E⊗V ; Disintegration and assembly
then reduces the proposition to checking that ψV is an equivalence, i.e. in the case that X is contractible.
The proof of [Hor19] applies verbatim to prove this case. □
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We have a few corollaries to this. One is the simple envelope corollary of Proposition 3.21 and [Hor19].

Corollary 3.22. The G-symmetric monoidal envelope yields an equivalence

AlgEX (C) ≃ Fun⊗G
(
DiskX−fr

G ,C
)
.

Moreover, Symmetric monoidality of EnvG then yields the following curious corollary about framed disk
embeddings, where ⊛ is the canonical tensor product of G-commutative monoids [Ste25b], i.e. it is the box
product of symmetric monoidal Mackey functors.

Corollary 3.23. There is an equivalence of G-symmetric monoidal ∞-categories

DiskX−fr,⊔
G ⊛DiskY−fr,⊔

G ≃DiskX×Y−fr,⊔
G .

To clarify the relationship between our results and the literature, we recover the following a analog of
[DHK18, Conj 4.18] in two ways.

Corollary 3.24. Let BG→ BO(n) and BH → BO(m) be the tangential structures specified by a pair of orthogonal
representations. Then, there is an equivalence of operads

E⊗BG
BV⊗E⊗BH ≃ E⊗BG×BH .

Proof of Corollary 3.24, Lurie style. Apply Corollary B for the trivial group. □

Proof of Corollary 3.24, Szczesny style. Given X be a space considered as an atomic orbital ∞-category,
there is a diagram of equivalences

OpX Op(TopX )
[
Ptws-WEQ−1

]
Op/X⊔

OpI∞(X) OpX

[Ste24]

[Ste25b]

3.15
[Ste25d]

Specializing to the case X = BG, we find

OpG OpBG Op/BG⊔ Op

E⊗V BorGBGE
⊗
V

(
E⊗BG→ BG⊔

)
E⊗BG

≃

∈ ∈ ∈ ∈

Taking inflations, we externalize the tensor product of the corresponding G-operads, acquiring a diagram

OpG ×OpH OpBG ×OpBH Op

OpG×H OpBG×BH Op

BorGBG×BorHBH

EG×HOG∨OH

colim

≃

BorG×HBG×BH colim

where every arrow intertwines with binary tensor products. Writing F for the bottom horizontal composite
(i.e. “underlying semidirect product operad”) and applying Theorem A, we acquire a chain of equivalences

E⊗BG
BV⊗E⊗BH ≃ F

(
E⊗

InflG×HG V

)
BV⊗F

(
E⊗

InflG×HH W

)
≃ F

(
E⊗

InflG×HG V

BV⊗E⊗
InflG×HH W

)
≃ F

(
E⊗

InflG×HG V⊕InflG×HH W

)
≃ E⊗BG×BH . □
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Appendix A. Deferred proofs

A.1. Weak approximations and monoids. We’re tasked with proving Proposition 1.37, which we will do
by reduction to Harpaz’s result, using the comparison to the setting of fibrous TotFT ,∗-patterns of [BHS22;
Ste25b]. We henceforth assume the reader is familiar with [Har, § 4.2] and [Ste25b, § A]. We begin by
recalling the following.

Proposition A.1 ([BHS22], generalized as [Ste25b]). The full subcategory of TotFel
T ,∗,S/ ≃ T ×FT FT ,/S consisting

of orbit inclusions U ↪→ S is initial.

Corollary A.2. If O⊗ is a T -preoperad, then TotTotT O⊗ is a weak ∞-operad; given a map of T -operads
O⊗→P⊗, the associated functor TotTotT O⊗→ TotTotT P⊗ is a functor of weak ∞-operads.

Lemma A.3. If ϕ : O⊗→P⊗ is weak approximation in the sense of T -preoperads, then TotTotT ϕ is a weak
approximation of weak ∞-operads.

Proof. Unwinding definitions, we have a diagram

F {h}

TotTotT Oact
/S TotTotT P act

/S TotFact
T ,∗,/S

TotOact
/S TotP act

/S Span(FT )act
/S

⌟

⌟ ⌟

□

Proof of Proposition 1.37. We’re left with verifying that an O-monoid TotTotT O⊗→S admits a factorization

TotTotT Oel TotTotT P el S

TotUO TotUP

if and only if the associated T -functor UO→ ST admits a factorization

UO UP ST ;

this follows by noting that the above functors are related by the adjunction Tot ⊣ CoeffT . □

Lemma A.4. In the situation of Corollary 1.38, the ∞-category P act
/ϕO ×C/πOO {f } is a space.

Proof. The assumptions guarantee that the source functor

P act
/ϕO ×CT −⊔,act

/πOO
{f } → PD

has codomain a space; moreover, unwinding definitions, the fibers are always spaces. Together these imply
that P act

/ϕO ×CT −⊔,act
/πOO

{f } is a space. □

Proof of Corollary 1.38. Fixing some f̃ ∈ P act
/ϕO with underlying CT −⊔-map f , we draw the diagram

F Oact
/O ×CT −⊔,act

/πO
{f } Oact

/O

{
f̃
}

P act
/ϕO ×CT −⊔,act

/πO
{f } P act

/ϕO

{f } CT −⊔,act
/πO

⌟
⌟

⌟
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We’re tasked with verifying that F is weakly contractible. But we may apply the adjunction between B and
S ↪→ Cat together with Lemma A.4 to construct a fiber square

BF B
(
Oact
/O ×CT −⊔,act

/πO
{f }

)
{
f̃
}

P act
/ϕO ×CT −⊔,act

/πO
{f }

⌟

In particular, weak contractibility of F for all
{
f̃
}

is equivalent to contractibility of the homotopy fibers of ϕ̃
for all f , which is equivalent to ϕ̃ being an equivalence for all f , as desired. □

A.2. Wreath products vs tensor products. Generalizing [Har, § 4.3], we begin with definitions.
Construction A.5. Define the algebraic pattern P c over Span(FV ) via the same ∞-category over Span(FV ),
but with all morphisms inert and all objects elementary. We define the mixed wreath product (O⊗ ≀ P⊗)mix

of O⊗ and P⊗ as the same ∞-category over Span(FV ) and inert arrows as O⊗ ≀ P⊗ and the same elementary
objects as O⊗ ≀ P c, so that

(6)
(
O⊗ ≀ P⊗

)el
= Oel ×Fop

T
P el ⊂ Oel ×Fop

T
P int =

(
O⊗ ≀ P⊗

)mix−el

◁

There is a commutative diagram

O⊗ ×P⊗ O⊗ ≀ P⊗

(O⊗ ≀ P⊗)mix

O⊗ ×P c O⊗ ≀ P c

ϕ

m

t

ϕcoarse

c

whose solid arrows are maps of patterns, and whose dotted arrows denote identity arrows on underlying
∞-categories. We want to verify that the top horizontal arrow is a Morita equivalence, which we will try to
deduce from the fact that the bottom is a Morita equivalence, which is the following lemma.

Lemma A.6. ϕcoarse is a strong approximation.

Proof. Since all active arrows in P c are equivalences, the inclusion of identities on the P c induces an equivalence
of arrows

(O⊗ ×P c)act
/(C;D) O⊗ ≀ P c

/(C;∆SD)

Oact
/C Oact

/C

≃ ≃

confirming condition (a). Moreover, the condition that O × TotP⊗ ≃ ϕ−1 (O⊗ ≀ P⊗)el → (O⊗ ≀ P⊗)el is an
equivalence follows by unwinding definitions. □

Now, to make comparisons along vertical arrows, we import the following lemma due to Harpaz.

Lemma A.7 ([Har, Lem 4.2.21]). Suppose (Q⊗,Qint,Qact,Qel) and (Q⊗,Qint′ ,Qact′ ,Qel′) are two weak ∞-operad
structures on the same ∞-category such that Qint ⊂ Qint′ and Qact′ ⊂ Qact.

(1) (Unnecessary change of factorization system) Suppose Qel =Qel′ and every path X
f
−→ Y

g
−→ Z with Z

elementary, g ◦ f in Oint, and f in Oint′, has Y elementary. Then, the identity arrow on Q⊗ lifts to
a Morita equivalence between the two weak ∞-operad structures.

(2) (Change of elementaries) Suppose Qint = Qint′ and Qact = Qact′, and additionally Qel ⊂ Qel′. Then,
F : Q⊗→C is a

(
Q⊗,Qint,Qact,Qel

)
-Segal object if and only if it satisfies the following conditions:
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(a) F is a
(
Q⊗,Qint′ ,Qact′ ,Qel′

)
-Segal object, and

(b) F|Qel′ is right Kan extended from F|Qel .

We separate out the unnecessary change of factorization system first.

Lemma A.8. c is a Morita equivalence.

Proof. By Lemma A.7, it suffices to verify that, for all inert arrows f : (C; (DU )S )→ (C′ ; (D′U ′ )S ′ ) in O⊗ ≀trivP⊗

and factorizations f : (C; (DU )S )
f ′

−−→ (C′′ ; (D′′U ′′ )S ′′ )→ (C′ ; (D′U ′ )S ′ ) with f ′ mixed-inert, (C′′ ; (D′′U ′′ )S ′′ ) is coarse-
elementary. Unwinding definitions, f ′ mixed-inert implies that C′′ lies over a transitive V -set, which ensures
that (C′′ ; (D′′U ′′ )S ′′ ) is coarse-elementary, as desired. □

Proof of Theorem 1.45. Lemmas A.6 to A.8 and two-out-of-three construct a commutative diagram of fully
faithful functors

SegOSegP (C) SegO×P (C) SegO⊗≀P⊗(C)

SegOFun(P ,C) Segcoarse
O×P (C) Segcoarse

O≀P (C) Segmix
O≀P (C)

ι×

≃

ι≀

≃ ≃ ≃

Thus it suffices to verify that, given a Segal O⊗-object in SegP (C), the corresponding Segal (O⊗ ≀ P⊗)mix-object
is a Segal O⊗ ≀ P⊗-object, i.e. the image of ι× is contained in the image of ϕcoarse∗ι≀. By Lemma A.7, the
image of ϕcoarseι≀ is those coarse Segal objects F : O⊗ ×P⊗→S such that

(a) F|(O⊗≀P⊗)mix−el is right Kan extended from F|(O⊗≀P⊗)el ,
and the image of ι× is those F such that

(b) for all O ∈ O⊗, the functor {O} × P⊗→S is a Segal space.
We’re tasked with verifying that Conditions (a) and (b) are equivalent. Now, in sight of Eq. (6), this compiles
down to verifying that a functor is right Kan extended along a base changed functor C ×D E → C ×D E ′ if and
only if, for all C ∈ C, the associated functor is right Kan extended along the functor {C} × E → {C} × E ′; but
this is obvious. □

A.3. Boardman-Vogt tensor products of commutative operads. For this subsection, let T be an atomic
orbital ∞-category. We will assume familiarity with the minutiae of [Ste25d], and in particular, we use the
following results.

Proposition A.9 ([Ste25d]). There is a unique equivalence N ⊗I∨J∞ ≃N
⊗
I∞

BV⊗N ⊗J∞.

Proposition A.10 ([Ste25d]). N ⊗I∞ ∈OpT is an idempotent algebra, and its modules are the T -operads whose
underlying I-operads are cocartesian.

Proposition A.11 ([Ste25d]). Let O⊗,P⊗ be almost-unital T -operads.

(1) There is an equivalence U
(
O BV⊗P

)
≃UO ×UP .

(2) A
(
O BV⊗P

)
= AO∨AP .

Corollary A.12. Let I, J be almost-unital weak indexing systems, and C,D a pair of T -∞-categories. Then,
there is a unique I ∨ J-operad equivalence CI−⊔ BV⊗DJ−⊔ ≃ (C ×D)I∨J−⊔.

Proof. Propositions A.9 and A.10 yield a string of equivalences

N ⊗I∨J
BV⊗CI−⊔ BV⊗CJ−⊔ ≃N ⊗I

BV⊗CI−⊔ BV⊗N ⊗J∞
BV⊗CJ−⊔

≃ triv⊗T
BV⊗CI−⊔ BV⊗ triv⊗T

BV⊗CJ−⊔

under triv⊗T
BV⊗CI−⊔ BV⊗ triv⊗T

BV⊗CJ−⊔; another application of Proposition A.10 implies that CI−⊔ BV⊗DJ−⊔ is has
cocartesian underlying I∨J-operad, so Proposition A.11 shows that CI−⊔ BV⊗DJ−⊔ is cocartesian with underlying
T -∞-category C ×D. The result is then an application of the cocartesian rigidity result of [Ste25d, § 1.4]. □
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