AN ECKMANN-HILTON ARGUMENT IN EQUIVARIANT HIGHER ALGEBRA

NATALIE STEWART

ABsTRACT. Let O® and P® be k- and {-connected unital G-operads subject to the condition for all S that

O(S) = @ if and only if P(S) = @. We show that the Boardman-Vogt tensor product O® BBY P® is (k++2)-
connected; equivalently, O ® P-monoids in any (k + € + 3)-category lift uniquely to incomplete semi-Mackey
functors. In particular, under no connectivity assumptions, discrete O ® P-monoids lift uniquely to incomplete
semi-Mackey functors, recovering an Eckmann-Hilton argument for “Cp-unital magmas.” As a consequence,
we show that the smashing localizations on unital G-operads correspond precisely with unital N-operads,
and hence the (finite) poset of unital weak indexing systems.

Along the way we characterize ¢-connectivity of a unital G-operad O® equivalently as é-connectivity of
O-admissible Wirthmiiller maps of O-monoid spaces.

INTRODUCTION

The classical Eckmann-Hilton argument shows that, given a set with two unital multiplications (M, *,-)

satisfying the interchange law
(axb)-(c+d)=(a-c)=(b-d),

the unital magmas (M,*) and (M,-) are isomorphic to each other and are commutative monoids. We will
study equivariant variations of this result, beginning with a weakening of Dress’ Mackey functors [Dre71].
Definition 1. Let C be a 1-category with finite products and C, the cyclic group of prime order p. A C,-unital
magma in C is a unital magma M* with a C, action by unital magma homomorphisms, a unital magma M Cp
(with trivial Cp—action), and C,-equivariant restriction and transfer homomorphisms

re M% — M¢, t: M€ — MSr
subject to the condition that r o t is multiplication by p. A homomorphism M — N is a pair of unital magma
homomorphisms F¢: M¢ — N€¢ and F%: M® = M¢ such that F? ot =t o F® and Féor =ro F%. <
Example 2. The (A + 1)st homotopy coeflicient system of a C,-space attains a functorial C,-unital magma
structure underthe evident analog of Lewis’ unstable Mackey structure [Lew92].! <
In this article, we prove and vastly generalize the following theorem.
Theorem A. Suppose (M, M’) is a pair of Cp-unital magma structures on the same coefficient system satisfying

suitable interchange relations. Then, M ~ M’ and each underlie a semi-Mackey functor; in particular, if the
multiplications on M¢ and MS are invertible, then M and M’ are isomorphic Mackey functors.

To prove this, we embed it in the theory of algebras over G-operads in the sense of [NS22]; in particular,
we show in Section 3 that Cy-unital magmas are algebras over a particular Cy-operad A?C in Cp-coefficient
Cp

systems valued in C, and spell out the correct interchange relations there.

BV
Crucially, in [Ste25a] we associated to a pair of G-operads O%®, P® a tensor product O® ® P®, whose
algebras are interchanging O- and P-algebras:

Algpgp(D) = AlgoAlg? (D).
BV
In particular, pairs of interchanging C,-unital magma structures correspond with A?,Cp ® A?Cp—algebras.

Date: February 20, 2025.

1 Explicitly, by V-Mackey functor, we mean a functor (V) — Ab sending disjoint unions to direct sums, where Zg(V) is Lewis’
V-Burnside category; the transfer map Ef’l*cp - ):g‘_+1 [Cp/e] is constructed by the usual Sg-duality construction along an embedding
[Cp/e]l == A (see t{Wir75]). A refers to any nontrivial 2-dimensional Cp-representation, though the same facts are true for the (o +1)st

homotopy coefficient system when p = 2.
1
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Now, G-operads are co-categorical gadgets; thankfully, O-algebras in a G-symmetric monoidal n-category
are canonically equivalent to algebras over the homotopy n-operad h,O®, whose structure spaces are the
(n—1)-truncations of the structure spaces of O® [Ste25a]. In particular, if the structure spaces of O% are
n-connected, then h,O® is canonically equivalent to a (weak) N -operad in the sense of [BH15; Ste25a], so
its algebras in the (cartesian) G-symmetric monoidal n-category of coeflicient systems in an n-category D are
precisely incomplete semi-Mackey functors valued in D [Ste25b].

BV
From this, we identify Theorem A with the statement that A? c, ® A%’ c, is connected together with
the observation that the “arity support” weak indexing category

Ahyc, =[T > | V[G/H]CS, My, (T xs[G/H]) = o) CFe,

satisfies AAZCP = ]Fcp (so the corresponding incomplete Mackey functors have all transfers). Our main
homotopy-coherent lift of Theorem A is the following generalization of [SY19, Thm 1.0.1].

Theorem B. If O%® and P® are k and {-connected almost essentially unital G-operads with AO = AP, then
O®@P® is (k+ €+ 2)-connected.

For instance, Theorem B, lax G-symmetric monoidality of 7t,: Spg - Mackg(Ab), and the results of

[Cha24| together construct a natural AO-Tambara structure on the Oth homotopy groups of O }g O-ring
G-spectra;® this and a forthcoming equivariant Dunn additivity result will construct a natural AV-Tambara
structure on the Oth homotopy Mackey functors of E,y-ring G-spectra.

We may remove the assumption AO = AP in Theorem B, but we will need a more refined notion of
connectivity. In general, given a weak indexing category I, we say that O%® is k-connected at I if, for all
elements of the corresponding weak indexing system

TeFry:={S €Fy | IndfjS — [G/H] €1},

the structure space O(T) is k-connected.

Given a subgroup H C G and a finite H-set S € Fy, there is a minimal unital H-weak indexing system
F;, ¢ Fy containing S, consisting of summands of restrictions of iterated indexed coproducts of S [Ste24].
We say that O® is k-connected at S if it’s k-connected at Ig. We define the connectivity function

COI’IHOI ]_[ T[O]FH — ZU {OO}
(H)cG

by the formula Connp(S) := min{k | O® is k-connected at S}. Now, (ZU {c><>})]-[(”)CG ™0FH forms a commutative
monoid under pointwise addition and a poset by pointwise comparison
f<g < VS, f(S)<g(S).
An index-by-index version of Theorem B is the following.
Theorem C. Given O®,P® a pair of almost-unital G-operads, the following inequality holds:
Conngp + Connp + 2 < Connpgp.

The key to our strategy for Theorems B and C is the following precise relationship between Wirthmiiller
map connectivity and connectivity at I, which the author believes to be of independent interest.

Theorem D. Let P® be a G-operad and I an almost essentially unital weak indexing category. Then, the
following conditions are equivalent:

(a) P® is {-connected at I.

2 To construct this lax symmetric monoidality, first note that Sp% >0 C Sp% is closed under tensor products, so the localization
G-functor SpG — Spg >0 is given a lax G-symmetric monoidal structure by Proposition 36. Moreover, to construct a lax G-symmetric
monoidal structure on irso =T SpG 50~ SpG7 in light of [NS22] we need only note that ® takes my-equivalences to 7p-equivalences

and that the resulting structure agrees with the usual one on Mackey functors; the former follows by the same fact applied to geometric
fixed points combined with induction up the poset of families using the isotropy separation sequence.
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(b) For all n-toposes C (with n < o), I-admissible H-sets S € Fy i, and S-indezed tuples of P-monoids
(Xk) € n[H/K]EOrb yMong,, GP(C), the S-indexed P-monoid Wirthmiller map

S S
WS,(XK): ]_IXK —> ]_[XK
K K
1s {-connected.

(¢) For allI-admissible H-sets S € F| i and S-indexed tuples of P-G-spaces (Xk) € [{r/x1€0rb(s) MonReSgp(S),
the S-indexed P-G-space Wirthmiiller map

S S
WS,(XK): ]_IXK —> ]_IXK
K K

is €-connected.

For Theorem D, a morphism g: X — Y in an oco-category C is {-truncated if, for all Z € C, the map of
spaces Map(Z,X) — Map(Z,Y) is {-truncated, and f: A — B is {-connected if, for all diagrams

A——X
fl h - lg
B Y
such that g is {-truncated, the space of lifts h is contractible.

Remark 3. In the case that C is an n-topos for some 0 < n < co, the above definitions are equivalent to
C-truncatedness and (€ —1)-connectiveness in the sense of [HTT, Def 6.5.1.10] by [SY19, Lem 4.2.6] and [HTT,
Prop 6.5.1.12, Prop 6.5.1.19]. <

Additionally, the S-indexed Wirthmiiller map in a G-oco-category is defined to be the S-indexed semiad-
ditive norm map as in [CLL24; Nar16]; that is, the [H/K]-indexed Wirthmiiller map Wjg/k)x: Inng —
CoIndIIgX is adjunct to the map

X — ResK CoIndHX ~ I_l Colndf . Rest!

HNgKg~ X
g€[K\H/K]

HNgKg~!

whose projection onto the factor indexed by the identity double coset is the identity and whose other
projections are zero. The | [;[H/K; -]-indexed Wirthmiiller map

LI [H/K;1(X L[X I_IIndKX —>]_[C01ndKX HX

is classified by the diagonal matrix Whose ith entry is Wip/k,) x;

Remark 4. In the course of proving Theorem D, we will verify that Condition (b) is further equivalent to
the condition that the Coeff’ C-map underlying Ws (x,) is pointwise £-connected; moreover, Condition (c)
is equivalent to the condition that the underlying H-space map is {-connected, i.e. its associated maps on
J-fixed point spaces are surjective on path components with ¢-connected fiber for each ] C H. <

The rest of this paper replaces the orbit category Og with an arbitrary atomic orbital co-category 7 ; we
will prove Theorems B to D in that level of generality. We encourage the reader to either globally specialize
to T = Og or familiarize themself with the atomic orbital setting via [Ste25a).

Structural implications. The specialization of Theorem B to infinite tensor powers is the following.

Corollary 5. Suppose O® is an almost-reduced T -operad. Then, the following conditions are equivalent.
(a) O% is an almost-unital weak N, -operad.
(b) (O®-EHA) the unique map trivy — O® yields an equivalence

id®can

BV
0% ~0%® @ trivy ——— 0 8 0°.

(c) (abstract ®-idempotence) there exists an equivalence 0®'® 0° ~ 0P,
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Proof. The implication (a) = (b) is one of the main results of [Ste25b], and is also implied by Theorem B.
The implication (b) = (c) is obvious. To see the implication (¢c) = (a), note that Theorem B implies
that O® is co-connected, i.e. all of its nonempty structure spaces are contractible. The result follows by the
identification of such almost-reduced 7 -operads with almost-unital weak N,-operads [Ste25a]. O

To see why we may view Condition (b) as an Eckmann-Hilton argument, note that it is equivalent to the

BV
condition that O® possesses a unital magma structure in Op?i whose multiplication map u: O® ® O® — 0%
is an equivalence; unitality of u is precisely the condition that the associated diagonal natural transformation

o: Alg,(C) — Alg,Alg®(C)

is split by restriction to either O-algebra structure, and the fact that p is an equivalence is precisely the
condition that o0 is a natural equivalence, i.e. pairs of interchanging O-algebra structures agree, and there is
one such pair for all O-algebra structures.

On the other hand, Condition (b) is equivalent to the assertion that O® admits a (unique) structure as

an idempotent algebra in Op;—uni’@’; taking modules yields a bijective monotone correspondence between these

and the smashing localizations on Op“Tuni’® (see [GGN15, § 3] and [CSY20, § 5.1]).

Corollary 5 classifies smashing localizations on Op“Tu“i; define the full subcategory

Opé_—Wirth — {O®

S S
vVSel, Cc® e Cat?, ® ~ U in Alg (C)} c Opajuni-

In [Ste25b| we showed that this is the smashing localization for N 1620 in order to compute tensor products of
auni

N-operads. We also showed that idempotent algebras in Op7*™ are almost-reduced, yielding the following.

Corollary E. The construction I — OpIT_Wirth yields an isomorphism of posets

wlndex3*™ — {Smashing localizations of Opglmi under reverse inclusion}

A striking corollary of this is that there are finitely many smashing localizations on Op“Tuni [Ste24].

Consequences in algebraic topology. Let I be an indexing category and Sp; be the co-category presented
by Blumberg-Hill’s stable model category of I-spectra [BH21]. We say that an [-spectrum E is connected
if 7, (E)~0 for all n <0, i.e. it is the suspension of a connective I-spectrum. We see that any loop space
theory with arity support I reaches connected I-spectra after infinite iteration.

Corollary 6. If O® is a reduced G-operad with O(2-x¢) # 0 and X is a connected G-space with infinitely many
interchanging O-algebra structures, then X is the 0th G-space of an essentially unique connected AO-spectrum
compatibly with its O®* -structure.

BV
Proof. Note that O® := colim,,_,,,0®" is abstractly ®-idempotent, so O®>® ~ Nfo by Corollary 5, i.e.

n-fold
e e

(1) CAlg? (C) — lim Alg®---Alg?(C).

n—oo

Moreover, given a model P® € Op (sSetpg) for Nfo, [Ste25b] and [Mar24] yield equivalences
CAlg0(SE21) = CMonyo (Ss1) = Algp (Top -1 ) [WEQ-I]

over Sg>1, the right hand side denoting the Hammock localization inverting the class of (point-set) P-
algebra morphisms whose underlying function of topological G-spaces is a G-weak equivalence.® The defining
equivalence Sp 4 5 = Alg%rpllke (TopG) [WEQ_1] then embeds Alg, (TopGr21 ) [WEQ_1] as those AO-spectra
whose 0th G-space is connected; it follows by unwinding definitions that this is precisely Sp4p 51, so Eq. (1)

restricts to an equivalence
n-fold
—_——

Spy>1 = lim  Algy---Alg?(S,»1)

3 Here, sSetg := sSetBC and Topg = TopBG are the 1-categories of simplicial sets and topological spaces with G-action.
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over Sg»1- g

To construct an infinite loop space theory for I-spectra, one is left with the following question.

Question 7. Given an indexing category I, does there exist a reduced G-operad O® with AO =1 and a space
ST such that O-monoid structures on a connected G-space X are equivalent to S'-loop space structures? <
Remark 8. We chose to specialize to the connected setting for convenience; one could instead assume that
there exists some y € O(2 ) whose action on one of the O-structures on X induces an invertible magma
structure on the coefficient system 7, X, in which case the corresponding AO-commutative algebra has an
underlying grouplike commutative monoid structure; the variation of Corollary 6 follows mutatis mutandis. <

Additionally, we acquire QY -spectrum structures in a wide variety of circumstances.

Corollary 9. Fiz V an orthogonal G-representation. If O® is an almost-reduced G-operad with O(S) # @
whenever there exists an embedding S — Resg V and X is a connected G-space admitting infinitely many
interchanging O-algebra structures, then X admits the structure of a V -infinite loop space.

Proof. The V-infinite loop space structure corresponds with the E_/-structure pulled back along the unique
map E® , ~ NP, — 1?0 ~ O® under the recognition principle of [GM17; RS00]. O

Sharpness. Theorems B and C are not sharp for all examples. One reason is the discrepancy between unions
and joins of weak indexing systems.

Example 10. Given I an almost-unital weak indexing category, let N, 18;0 € Opg be the corresponding weak
N -operad as in [Ste25a]. Unwinding definitions, we find that

co SeF
Conn S)= =
Nieo(S) {—2 otherwise.
BV
Moreover, we found in [Ste25b| that N2, ® NP =~ '/V.I%/]oo' This demonstrates a failure of sharpness in
Theorem C; indeed, generically, we have
1 1
(Conny;_ +Conny, +2)  (co) =F, UF; CF, VE, = Conn}} oy, (o) <

Another issue is topological; in forthcoming work, given V an orthogonal G-representation, we will show
that the little V-disks G-operad ]E?} is ¢-connected at S if and only if the following conditions are satisfied:

(a) For all orbits [H/K] C S and intermediate inclusions K c J ¢ H, we have dim V/ > dim VK +£+2, and
(b) if |S*] > 2, then dim VH > £+2.

Moreover, we will show that Ey is additive under tensor products, i.e. IE}G} %@Y E%’V ~ IE%@W.
Example 11. Let G := C,, with sign representation o. Then, we have fixed point dimensions
dim(a+bo)’ =a+b; dim(a+bo)? =a.
In particular, the connectivity function has
Conng,_, (kx)=a+b-2
a-2 d=0
Conng,, (c*c, +d[Cy/e])) ={b-2 c<2
min(a,b) -2 otherwise.

Conng_, (c*c, +d[Cy/e]) is as non-additive as is possible in the last case; indeed, the examples 1 +bo and
a’ + o have the same arity-support, but when a’,b > 1, we have

Conny (2%, +[Ca/e]) + Conng, o (2+¢, +[Ca/e]) =2 =0
<min(a’,b)-1
= Conngy11(p+1)0(2*c, +[Co/e]). h
Nevertheless, equality is sometimes attained.
Example 12. For all orthogonal G-representations V, it follows from the above description that

Conng, gk, = Conng,,, = 2Conng,, — 2. <
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The strategy. First, the tautological symmetric monoidal equivalence
Op% =~ lim Op,
Pr = YPy

detects connectivity at an index, so we may assume without loss of generality that 7 has a terminal object
(and, in particular, it is a 1-category). Second, we have the following.

Lemma 13. The following theorems imply each other:

(a) Theorem B in all cases.
(b) Theorem B in the case AO ~F, for some finite W-set S € Fyy, where W is the terminal object of T .
(¢) Theorem C.

Proof. The implication (a) = (b) is obvious. The implication (b) = (c) follows by noting that, when
S € F 0, the condition Connp(S) > k is precisely the condition that the arity-Borelification Bor%sOg’ is
k-connected. The implication (¢) = (a) follows by monotonicity the function
min f(S): (ZU {ooh)lver ™Fv _ 7.4 (co). 0
Sef40

We're left with proving Theorem B in the almost-unital case. We will perform a similar reduction
to [SY19]; namely, by examining the free O-algebra monad, we reduce this to (k + 1)-connectivity of the
reduced endomorphism AQ-operad in MP(C)I‘X in the case C is the 7 -co-category of coefficient systems in
a presheaf co-topos.

We express the structure space Endy (MonO(C)I‘X)(S) as the spaces of lifts of A: X5 — X along
the S-indexed Wirthmiiller map Wy s: XHYS — X*5 which is directly related to truncatedness of X and
connectedness of Wy ¢ [SY19]; hence it suffices to prove Theorem D in the almost-unital case.

We finish by directly relating £-connectivity of Wy g in Mony(C) and Mong(7<,C), reducing Theorem D
to the fact that Monp(t<,C) is I-semiadditive when O is ¢-connected at I, which we verified in [Ste25b].

Acknowledgements. This article is greatly influenced by the work of Schlank-Yanovski [SY19], which recovers
almost all of the results and ideas in this article in the case that G is the trivial group, and has additionally
been influential to my thinking in the previous articles [Ste25a; Ste25b]. In general, I'd like to thank my
advisor Mike Hopkins for several helpful conversations on this material.

1. I-OPERADS

Throughout this article, we fix 7 an atomic orbital co-category in the sense of [NS22[; that is, we assume
that all retracts in 7 are equivalences and that the finite coproduct completion F7 := 7" has pullbacks.

We begin in Section 1.1 by recalling the simultaneous generalization and weakening of Blumberg-Hill’s
G-indexing systems and I-Mackey functors to 7 -weak indexing systems and I-commutative monoids. We go
on to Section 1.3 where we recall the relevant background from [NS22; Ste25a; Ste25b] on 7 -operads, as well
as establishing a few foundational results concerning the doctrinal adjunction and reduced endomorphism
I-operads.

1.1. Preliminaries on 7 -co-categories and weak indexing systems. Recall that a 7 -coefficient system is a
functor out of 7°P:

Coeff? (C) := Fun(7°P,C).
Generalizing Elmendorf’s theorem, we define d-truncated 7 -spaces and 7 -d-categories as coefficient systems:
Sr<i = CoeffT(Ssd); Caty 4= CoeffT(Catd).

We write Caty := Caty o, and S7 := S7 <. Given a T -co-category C, we write Cy for the value C(V) and
Resy: Cw — Cy for the functoriality under a map V — W. The oco-category of 7 -coefficient systems lifts to
a T -oco-category with V-value the 7,y -coefficient systems

Coeff” C)y = Coeffv (C);

the functoriality is given by restriction. We acquire 7 -co-categories S .; and Caty ; similarly.
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Example 14. We may define a 7 -co-category by F+ by values

Er)y =Fr,v=Fg,

with functoriality given by pullback. We write Fy := F7 ;. Note that this is a 7-1-category since 7y is a
1-category [NS22, Prop 2.5.1]. <

Example 15. Given C an arbitrary n-category, CoeffT(C) is a 7-n-category [HTT, Cor 2.3.4.8|. In particular, if
C is an oco-topos and 7<,_;C its n-topos of (n—1)-truncated objects, then CoeffT(TSn_IC) is a 7 -n-category. <

Example 16. The co-category of 7 -co-categories is Cartesian closed with internal hom characterized by values
Fun,(C,D)y =~ FunT/V (Resz,' C, Resg D),

where Res‘T,: Caty — Catg,,, is pullback and Funz(—,—) denotes the evident co-category of natural transfor-
mations [BDGNS16]. By unwinding definitions and applying [HTT, Cor 2.3.4.8], we find that whenever D is
a 7T -n-category, Fun,(C,D) is a 7 -n-category. <
Example 17. We refer to the adjunction between limits and constant diagrams as the inflation and fized point
adjunction

InﬂeT
Cat <+ Caty
Y~
I‘T

In the case that 7 has a terminal object V', the image of InﬂeT consists of the 7 -co-categories whose restriction
functors Res% are all equivalences. In any case, we may string together natural equivalences

Fun, (Infl] K, Coeff’ )  ~ Funy (Inﬂf/v K, MT/VC)
~ Fun (K, Fun ((Z)y),C))
~ Fun ((Zy)*?, Fun(K,C))
© Coot (¢,

to construct a 7-equivalence Fun, (InﬂeTK, CoeffTC) ~ Coeff” (CK); in particular, choosing C = K, 7-

coeflicient systems in presheaves of spaces on K can equivalently be realized as 7 -equivariant presheaves of
T -spaces on K with trivial 7 -equivariant structure. We henceforth write

SK _, = Coeff (8K,); 5K = Coeft” (5¥). )

Given V €T an orbit and S € Fy a finite V-set, we write @gy : Inng — V for the corresponding map
in F7, and we write

Cq = I_[ CU:FunT(Indgs,C).
UeOrb(S)

Pullback along the structure map @gy yields an indezed diagonal functor
AS: Cy —Cs;

its values are ASX = (Reng)UeOrb(S)- The S-indexed coproduct (if it exists) is the left adjoint 1°: Cs —Cy

to AS, and the S-indexed product ]_[5 : Cg — Cy is the right adjoint. These are the lir-examples of equivariantly
indexed operations, whose combinatorics we control using weak indezxing systems.

Definition 18. A one-color weak indexing system is a full T-subcategory F; € F; which is closed under
F;-indexed coproducts and contains #y for all V e 7. A one-color weak indexing category is a pullback-stable
wide subcategory I C F7 subject to the condition that | [; (T; — S;) lies in I if and only if each map T; — S;
lies in I. <

Given I a one-color weak indexing category, we define the I-admissible V -sets as

F, = {S |Ind€8 - VEI}CET;



8 NATALIE STEWART

we verified in [Ste24] that E(*) furnishes an equivalence between one-color weak indexing systems and one-color
weak indexing categories, so we safely conflate these notions. For the following example, a full subcategory
F T is called a 7 -family if, whenever there exists a morphism V — W with W € F, we have V € F.

Example 19. The terminal one-color weak indexing system is F,. We define the following other examples,
where F C 7 is a fixed 7 -family:

(Etriv)v = {xy}
{Gv,»v} VeF
(Eo _7-') = .
et {*v} otherwise.
(Eo)y = -y |neN).
The corresponding one-color weak indexing categories are denoted Iy, Ip £, [oo- <

Construction 20. We write
o(l) = {v €T |2y € (Eﬂv} cT.

This is a 7 -family, called the unit family of I [Ste24]. <

We say that F; is almost-unital if, whenever {+y} C F;y, we have @y € Fy y; that is, F; is unital over
all orbits for which F; has nontrivial arities. We say F; is unital if @y € Fyy for all V.

1.2. Preliminaries on [-commutative monoids and I-symmetric monoidal co-categories. Let I be a one-color
weak indexing category. The pair (F7,I) is a span pair in the sense of [EH23| (i.e. (F7,I,1) is an adequate
triple in the sense of [Bar14]), so it yields a wide subcategory

Span;(Fy) < Span(F7)
of the effective Burnside oco-category whose morphisms are given by spans X < R i> Y with f €l. Given I a
one-color weak indexing category and C an co-category, we define the co-category of I-commutative monoids
in C as
CMon(C) := Fun*(Span,(F7),C).
We define the oco-category of small I-symmetric monoidal co-categories as
Cat? := CMon,(Cat).

We henceforth ignore size issues and omit the adjective “small.” Given an [-symmetric monoidal co-
category C and S € Fy y an [-admissible V-set, we denote the functoriality of C® under the structure map

Ind2 S =Ind% S — V by
S
®Z CS —)Cv.

If I is almost-unital, S € F; v is I-admissible, and 1; € Cy is initial whenever it exists, then given an S-indexed
tuple (X7) € Cg in an I-symmetric monoidal co-category with S-indexed coproducts, we define an S-indezxed

tensor Wirthmdiller map
S S
WS,(XU): I_[XU e ®XU
U U

by defining its composite map Ind%XW — ]_[f, Xy — ®SU Xy to be adjunct to the map

Res% S—spy (idn) RESK] S—spy S
id,y
Xw=Xpe X) 1u——Xwe X) Xy=Res}(X)Xu;
w U

intuitively, on the W’th factor, Ws x ) takes x to the simple tensor with x in the W’th place and units
elsewhere. Given ] C I, we say that C is J-cocartesian if W x ) is an equivalence for all S € IF; and (Xy) € Cs,
and we say that C is J-cartesian if its “vertical opposite”

c® op
Span;(Fy) — Cat — Cat

is a J-cocartesian I-symmetric monoidal co-category..
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In [Ste25b], given C a 7 -co-category with I-indexed (co)products, we constructed essentially unique
(co)cartesian I-symmetric monoidal structures on C and verified that C is I-semiadditive in the sense of
[CLL24] if and only if there exists an equivalence C!™ ~ C!= which can be chosen (uniquely) to lie over the
identity endofunctor.

1.3. Preliminaries on I-operads. In [NS22|, an co-category Opy of T -operads was introduced, and in [Ste25a;
Ste25b] it was given a symmetric monoidal closed T -co-category structure Op®. We review the relevant
formal properties here; in particular, outside of a small part of the verification of another formal property in
Proposition 36, we will only use formal properties of %?i, instead probing its objects via the various functors

sseq

Cat® « > Opr > Fun(TotX,,S)

U /L@(_)(C> Alg,(-)

Catr Caty Caty
In this way, this paper can be considered agnostic to the presentation of Op?i and the above functors.

1.3.1. T -symmetric sequences and I-operads. Writing ¥+ for the composite 7 -co-category

on Er (=)=
TP — Cat —> S — Cat

and writing Tot: Caty ~ Cat(9%" — Cat for the total category functor, in [Ste25a] we defined a underlying

T -symmetric sequence functor
O(-): Opy — Fun(Tot¥;,S).
To characterize this, we need a definition.

Definition 21. We say that an I-operad O® has at least one color if O(xy) = & for all V € T and has one color
if O(xy) == forall VeT, <

Proposition 22 ([Ste25al). The functor O(-): Opy — Fun(TotX,,S) has a left adjoint Fr; in particular,
letting Frop(S) be the free T -operad on the left Kan extended T -symmetric sequence
{8} ——s
D
£ //Frz,s(*)
TotX,,

the adjunctions construct a natural equivalence
AlgFrop(S)(O) ~0(S).
Moreover, the restricted functor O(-): Opy — Fun(TotX;,S) is monadic.

In particular, identifying an object of TotY, with a pair (V,S) where V € 7 and § € Fy, 7 -operads are
identified conservatively by the functor
O ]_[0(5).
Vv.,S
®S

Intuitively, we view O(S) as the space of S-ary operations (Resz;X ) — Reng borne by an O-algebra X.
This technology allowed us to define the arity support functor

AO=]T -5 ]_[ O(T x5 U)= o\ cFr;
UeOrb(S)
which we verified in [Ste25a] to be a weak indexing category. In fact, we verified that the essential surjection
associated with A possesses a fully faithful right adjoint
A

—
(2) Ops + windexCatr;
—
A
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we refer to the T-operad N2, as the weak N, -operad associated with I. Now, we further verified in [Ste25a]
that, given a 7-operad O®, the unique map O® — Comm?i is a monomorphism if and only if the counit map
0® — Nf@ is an equivalence; in particular, we acquire an equality of full subcategories

Opr /a8 = A”!(wIndexCat7 <;) € Opy,

and a full subcategory of Opy has a terminal object if and only if it is of this form. We refer to Op; := Op , NE
as the co-category of I-operads; see [Ste25a] for an intrinsic characterization of Opy;.
Monomorphisms are right-cancellable, so all inclusions I C J induce monomorphisms L{: N I%o — N2 ;in

Joo
other words, the push-pull adjunction

E{:lﬁ

Op; =+ Opy

J_J*
Bor;=1;

BV
witnesses Op; C Op; as a colocalizing subcategory. Moreover, it behaves well with ® .

Proposition 23 (|Ste25a]). Suppose O®, P® have at least one color. Then, there is an equality
A(O®P)=AOV AP.
In particular, Op; C Opy is a symmetric monoidal full subcategory.
1.3.2. I-symmetric monoidal categories and O-algebras. [NS22] constructed a (non-full) subcategory inclusion
1: Cat? — Opy;
T -operad maps between I-symmetric monoidal categories are called lax I-symmetric monoidal functors, and
morphisms in the image of 1 are called I-symmetric monoidal functors.
Moreover, given O%,C® € Op, we define O-algebras in C® to be T-operad maps O® — C®, which

naturally fit into an co-category Alg,(C). These have a pointwise T -operad structure Alg®(C) given by the

BV
internal hom in a presentably symmetric monoidal structure on Ops, whose tensor product we write as ®

[Ste25a; Ste25b]. The unit for this symmetric monoidal structure is the 7-operad trivy := A, Iéiivoo [Ste25a],
i.e. there is a canonical equivalence

(3) Alg®  (0)=0®

trivy

Moreover, we verified in [Ste25a| that whenever C® is an [-symmetric monoidal co-category, A1g® (C) is

as well, and given a 7 -operad map O® — P® and an I-symmetric monoidal functor C® — D?®, the induced
lax I-symmetric monoidal functors

Alg(C) — Alg?(C); Alg8(C) - Algé (D)

are I-symmetric monoidal. In particular, when C® is an I-symmetric monoidal co-category and O®,P® are
I-operads, there are natural I-symmetric monoidal equivalence

® ® ~ ® ~ ® ®
@ AlgZAIgE(0) ~ Alg? (€)= Alg2Alg (C)

1.3.3. The underlying T -co-category. An I-operad O® has an underlying 7 -co-category UQO [NS22[; indeed,
T -operads are equivariantizations of the classical notions of colored operads, and UQO the oco-category of colors.

U
Moreover, the composite functor Cat‘}9 — Op; — Caty is the usual underlying T -co-category functor.
U behaves well with respect to Alg®; indeed, we verified in [Ste25a] that the underlying 7 -co-category
has values o

~ T
U(Alg5(C)),, = Algpe7 o (Resi C),
where Resgz Op; — Opy, is a restriction functor, and furthermore

17 ®
Algy(C) =TT UAIgE (0)
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U
It was observed in [NS22| that the composite functor Op;uwiv € Op; — Caty is an equivalence, and that U

Bor}'.fg’

factors as Op; ——— Opjuiv = Caty. We write triv(—)® for the composite functor

. Ut
triv(—)®: Caty —— Opje <> Op7;
unwinding definitions, we find that there is a natural equivalence

Alg, ;. ¢)(©) = Eung (C, UO);

that is, triv(C) algebras are simply C-indexed diagrams of objects.
1.3.4. T -operadic inflation and fized points. In [Ste25a] we constructed an equivalence
¢: Opy — CoeffTOp

exhibiting natural equivalences Oy (n) ~ O(n-*y). Limits and constant diagrams yields an inflation and
fixed point adjunction

Inﬂz E17;o

c c A
Op + Op;, + Opgp;

M (&)

7 Borz—m

we refer to the composite adjunction Op 2 Op also as Inﬂz 4T7. For instance we have

moreover, we can identify the image of InﬂeT easily: they are the I,-operads O® whose underlying 7 -co-
category is inflated and whose restriction maps

O(C;D) — O(Res{, C;Res}; D)

are all equivalences.
Example 24. The above description yields a natural equivalence InﬂT(triV(C)®) ~ triV(InﬂTC)® <

Example 25. The T-operads E® := N, ®T and E® = N ® are inflated from operads of the same names; in
particular, unwinding definitions, we may identify Eg- algebras by the formula

A_lgEo(C)v ~Cv,1y/

If 1y is terminal for all V € T, then this is the 7 -category of pointed objects C,. <

1.3.5. Unital I-operads. Assume that I is an almost unital weak indexing category. In [Ste25b] we introduced
the following gamut of definitions, each of which will be useful.

Definition 26. We say that an I-operad O%®

e is almost unital if it has at least one color and whenever there exists some S € Fy, such that O(S) = @,
we have O(Qy ) =

e is unital if it has at least one color and O(Dy ) =~ Njoo(Dy) for all V € T, and

e is almost reduced if it is almost unital and has one color, and

e is reduced if it is unital and has one color. <

A T -operad is almost unital if and only if it’s a unital I-operad for some almost-unital weak indexing
category I. For this reason, we’ll usually focus on either unital I-operads or almost-unital 7 -operads. It will
be important to keep the I-symmetric monoidal case in mind.

Example 27. We verified in [Ste25b] that an I-symmetric monoidal co-category C® is a unital I-operad if and
only if, for all V € v( ), the unit object 1y, € Cy is initial. <

Write IE® = N ® . We will largely use the following result of [Ste25b]| to access unital I-operads.
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Proposition 28 ([Ste25b]). The full subcategory Op}lni C Op; of unital I-operads is both a localizing and
colocalizing subcategory, i.e. the inclusion participates in a double adjunction

In particular, if O® and C® are unital, then there are natural equivalences
® () ~ ® .
A_lgP(C) N A_lgP@)]EOlU(” ©);

Alg®(D) ~ Ale® Ale® D).
Alg, (D)= Alg,Alg, (D)

: Iy o(1y—Wirth

We accomplished this in part by recognizing an equality of full subcategories Opj™ = OpIO' o= ;
that is, an I-operad is unital if and only if its [-symmetric monoidal co-categories of algebras have V-units
which are initial for each V € v(I), which is true if and only if they are unital by Example 27. Moreover, since

BV
the ®-unit triv? is initial among one color I-operads, this yields the following easy corollary.
Corollary 29. E?U(I) is initial among reduced I-operads.

red

Op;*® has initial unit object; interestingly, it has absorptive terminal object.

Proposition 30 ([Ste25b]). If O® is a unital [-operad, then the map ]E%’U(I) — 0% induces a (unique) equivalence

Nl?;o = NI%O %V Eg’,uu) — NIQZO %V 0°.

1.3.6. Cartesian and cocartesian I-symmetric monoidal co-categories. In [Ste25b], given C a T -co-category
with I-indexed (co)products, we defined cocartesian and cartesian I-symmetric monoidal co-categories C'™
and C'™, which are determined by the properties that their I-indexed tensor products are canonically
equivalent to indexed (co)products. We gave algebras in cartesian I-symmetric monoidal co-categories an
explicit presentation generalizing the O-monoids of [HA| (as 7 -functors satisfying “Segal conditions”) which

we will not mention explicitly here; as a relic of this, we will simply use the notation
. I—x\. . I-
(6) Mon,,(D) := Alg _(D'™); Mon (D) := Alg,, (D' ™).

The associated I-symmetric monoidal structure is cartesian [Ste25b]. When C is an co-category, we will write

(7) Mon,,(C) := Mon,, (CoeffTC); Mony(C) := Mong (CoeffTC).
instead we will use their monadic presentation, which goes as follows.

Proposition 31 ([Ste25a]). Suppose C is a presentable and cartesian closed co-category. Then, the monad Tp
associated with the monadic functor Monp(C) — Coeff! C has fized points

(ToX)W =~ ]_[ FroO(S) x ]_[ xV ,
SG]F]’W UEOI‘b(S) hAutw(S)
where Frg: § — C is the unique left adjoint sending * to the terminal object of C.
Moreover, in the case that O® is unital, we characterized cocartesian algebras simply as diagrams

Alg® (¢'™) = Fun (UO,0)"™;
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in fact, CI™! still exists as an I-operad with the above algebras in when C is not assumed to have I-indexed
coproducts. In particular, in the unital case, we acquire a double adjunction

BV
tl’iV(*)® ® EO,U(U
— L * .
(8) Caty <—u— Opj™.
~_ "
(=)

Example 32. In [Ste25b] we gave a general formula for CI~Y, but the mapping-in property makes it easy
enough to determine this in the case that C: there is an equivalence

Algo (x—é_—l—l) ~ %~ Algo ('/\[18;0)’

natural in the unital I-operad O%, constructing an equivalence N = *IT’ Y by Yoneda’s lemma. <
1.3.7. I-d-operads. In [Ste25a|, we defined the full subcategory Opz ; C Ops of T -d-operads to be those
such that O(S) is a (d — 1)-truncated space for all S € F,,, and verified the following.
Proposition 33 ([Ste25a]). Fiz d > -1 and O® € Op;.

(1) The inclusion Opz 4, C Op has a left adjoint hy: Opy — Opyz 4 satisfying

haO(S) = 141 O(S).
(2) The unit of the hg-localization adjunction is the map O® — NA@O; in particular, ./\f(?)oo factors through

an equivalence
wlndexCaty ~ Opy .

(3) When P® is a T -d-operad, there is a natural equivalence
® (D) ~ Alo®
AlgE(P) = Alg? (P)
and each are T -d-operads.
(4) An I-symmetric monoidal co-category C® is a T -d-operad if and only if UC is a T -d-category.
We call h;O® the homotopy d-operad of OP.

1.3.8. O-algebras in I-symmetric monoidal 1-categories. Fix C® an I-symmetric monoidal 1-category; in light
of Proposition 33, to characterize O-algebras in C®, we may equivalently characterise h; O-algebras in C, so
assume O® is an [-1-operad, i.e. its structure spaces are sets.

We gave a simple combinatorial model for I-1-operads in [Ste25a], which we will not relitigate here,
instead focusing only on algebras. Given a T-object X € T”7C, we defined the unreduced endomorphism
I-operad Endx(C) as a one-colored I-1-operad with structure sets

Endy (C)(S) ~ Home, (X5°, Xy ),
where Xy € Cy is the V-object underlying X. 1-categorical algebras take a familiar form.

Proposition 34 ([Ste25a]). Given O% € Op}, Algp(C) is a 1-category whose objects are pairs (X € I7¢C,¢: 0—
Endy(C)) and whose morphisms are T7 C-maps f: X > Y such that the corresponding diagram commutes

Endy(C)

0®/

Endy
Endy(C)
Moreover, we may exploit this to explicitly describe interchange.

Corollary 35 (|Ste25a]). Given O®,P® € op7y, an O B@’®V P-algebra structure on X is precisely a pair of
O-algebra and P-algebra structures such that, for all u € O(S), the corresponding C-map X%S — Xy is a

BV
morphism of P-algebras; a morphism of O ® P-algebras is a T C-map which is separately an O-algebra and
P-algebra morphism.
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1.4. The doctrinal adjunction. The following proposition will play a crucial role in constructing I-symmetric
monoidal left adjoints. We temporarily assume that the reader is familiar with [Ste25a, § 2].

Proposition 36 (Doctrinal adjunction). Suppose L®: C® — D® is an I-symmetric monoidal functor whose
underlying T -functor L admits a right adjoint R. Then, R lifts to a canonical lax I-symmetric monoidal Tight
adjoint R® + L®. Moreover, for any T -operad O® the postcomposition lax I-symmetric monoidal functors
partake in a lax [-symmetric monoidal adjunction

L®: Alg®(C) 2 Alg®(D): R®

such that L® is I-symmetric monoidal. If R® is symmetric monoidal then R® is symmetric monoidal; if R is
also fully faithful, then R® is fully faithful.

Proof. Applying [HA, Prop 7.3.2.6] to the fibrations on opposite categories, we acquire a right adjoint
R® + L2 relative to Span;(F7). Moreover, an identical argument to [HA, Cor 7.3.2.7] shows that R® preserves
cocartesian lifts for inert morphisms. The lax I-symmetric monoidal functors L® and R® are then constructed
in [Ste25a], where postcomposition along an I-symmetric monoidal functor is verified to be I-symmetric
monoidal; in particular, L® is always I-symmetric monoidal and R® is I-symmetric monoidal whenever R® is.

Note that postcomposition along the unit and counit data for L® 4 R® yield unit and counit data for L®
and R® in any case. When R®,L® are symmetric monoidal and R is fully faithful, the counit e: L*R®C® — C®
is an I-symmetric monoidal functor whose underlying 7 -functor is an equivalence, so ¢ is an I-symmetric
monoidal equivalence; in particular, this implies that the counit of L® 4 R® is an equivalence, so R® is fully
faithful. |

1.5. Recognizing h, . 1-equivalences. Theorem D recognizes morphisms of 7 -operads which become equiva-
lences after applying h,,,1, so we now spell out some of its antecedents.

Proposition 37. Let ¢: O® — P® be a morphism of T -operads. The following are equivalent:
(a) for all S € Fyp UF 4p, the map of spaces
®(S): O(S) = P(S)

is an n-equivalence;
(b) @ is an h,, 1 -equivalence;
(c) for all T -symmetric monoidal (n+ 1)-categories C, the pullback T -symmetric monoidal functor

Alg?(C) — Alg% ()

is an equivalence;

(d) the pullback functor
MonP(SSn) - MonO(SSn)

is an equivalence; and
(e) for all co-categories K, the pullback map of spaces

Monp (Sé(n)_ — Monp (Sé{n)_
is an equivalence.
To prove this, we apply the following lemma.

Lemma 38. Given a T -operad P® and a pair of co-categories D,K such that D admits finite products, there
18 an equivalence

Mon, (D) = Fun (Infl; K, Mon,(D)),

natural in functors of K, product-preserving functors of D, and T -operad maps of P; in particular, taking
T -fized points yields a natural equivalence of categories

Monp (DK) ~ Monp(D)K.
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Proof. We construct a chain of equivalences

Mon, (DK) ~ AlgP(CoeffT(DK )Ty Egs. (6) and (7)
T—
~ Alg_Fun; (Infl] K, Coeff’ D) ) Example 17
~ ® T T —x
_A_lgPAlgtriv(InﬂeTK)(—C()eff p ) Eq. (3)
~ T T —x
~ Alg Al glnﬂftm(K) (Coeft” D7) Example 24
~ T T —x
- A_lglnﬂZtriv(K)A_lgP (—Coeﬂ: D ) Eq. (4)
~Fun, (InﬂeTK,Algp (Coef‘fT, DT_X)) Eq. (5)
~ Fun; (Infl] K, Mon,, (D)) Egs. (6) and (7)
The remaining equivalence follows by noting that FTInﬂeTC =~ C, naturally in C. ]

Proof of Proposition 37. A generalization of the equivalence between Conditions (a) to (d) was proved in
[Ste25al, and Condition (c) clearly implies Condition (e). Moreover, fixing D = Sc,, and taking cores of
Lemma 38 yields a natural equivalence

Monp (Sé(n )_ ~ Map,, (K, Monp (S<,))
so Condition (e) and Yoneda’s lemma together imply Condition (d). O

We say that O® is n-connected if the unique map O® — pr is an h,,q-equivalence. In [Ste25b| we
acquired the following additional characterizations for n-connected 7 -operads:
Proposition 39. Suppose O® is an almost-unital T -operad. Then, the following conditions are equivalent:

(b’) O® is n-connected.
(f’) For all AO-symmetric monoidal (n + 1)-categories C®, the AO-symmetric monoidal (n+ 1)-category
Alg®(C) is cocartesian.

(g9°) The T -(n+1)-category Mon,, (S<,,) is AO-semiadditive.

1.6. The reduced endomorphism I-operad as a right adjoint. In [Ste25b], we introduced the reduced en-
domorphism I-operad of a T-operad for the purpose of lifting the disintegration and assembly process of
[HA]. In this section, we gain explicit computational control over reduced endomorphism I-operads of unital
I-symmetric monoidal co-categories.

Proposition 40. The inclusion Opred ~ Opﬁ‘é0 < Opunl o0/ has a right adjoint computed by the pullback

Endyd —— 0®

(9) |- ln

N =g 077"

In the case that C® is a unital I-symmetric monoidal co-category and X € Cy is a V-object, mapping in from

BV
the free unital I-operad Frop(S) ® Eo 1) on an operation in arity S € Fyy yields a pullback

End}*!(S) —— Map, (X®5,X)

l ’ [

{V} ——— Mapg, (X5,X)
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i.€e. Endééred(S) is equivalent to the space of lifts along the following dashed arrow in Cy

xus V. x

A
WS,X\L 7 7 \Ll

X®S ‘ N
Proof. We will apply the general reduction procedure of [SY19, Prop 2.1.5|, applied to the sliced adjunction
U,: Op"tl, ———Caty,: n"(-)'™",
I’]Eo,u(l)/ 4
whose right adjoint is (-=)/™" together with the precomposed structure map
® T ar® . I-U I-L
EO,U(I) > Njg, =+ > C

Indeed, Catz . admits an initial object *7 ~ UEq (1), and Op?EQg /
750,0(I)

U since it is a right adjoint by Eq. (8). Moreover, Eg ) € Op?ed is initial by Corollary 29, there is a unique

admits all limits, which are preserved by

uni

equivalence N2 =~ *IT_ Y by Eq. (2) and Example 32, and O% € Op} Eq

if and only if UO® € Caty, is initial, so the first claim follows by [SY19, Prop 2.1.5].
To acquire the second pullback square, one need only note that the natural equivalences

o/ corresponds with a reduced I-operad

BV
Mapg,, (Frop(S) ® Eou(1), C®) ~Mapg, (X®S,X),

BV
MapOpT (FrOp(S) ® ]EO,U(I)’ NI?;o) ~ %

follow by Propositions 22 and 28. What remains is to verify that the right vertical arrow is W¢ y and the
bottom arrow includes the fold map V; both facts were verified in [Ste25b]. O

In fact, [SY19, Prop 4.2.8] introduced a result on connectivity of such spaces of lifts, immediately
yielding the following corollary.

Corollary 41. If X € Cy is a (k+ { + 2)-truncated object and the Wirthmiiller map Wg x XUYS 5 X®S s
C-connected, then the space Endééred(C)(S) is k-truncated.

In general, reduction is an incarnation of the disintegration and assembly procedure of [HA; Ste25b];
given a reduced I-operad P® and a V-object X € Oy, applying P-algebras to Eq. (9) yields a pullback

AlgResngndggred(O) — Alg (O)v
) [ l
U
X} e— 5 U0y

In the case that UQO is a 7 -space, U is a automatically cocartesian fibration, so O-algebras are UO-indexed
diagrams of Endg(‘red((’))—algebras. Unfortunately, this is far from our case; the best we can do is take cores of
the above pullback square, resulting in the following proposition.

Proposition 42. Suppose P® — Q% is a morphism of I-operads inducing an equivalence of spaces
PY "t Algre o Endy™*(0)* — Algy, .7 » Endy*(0)*
for all VeT and X € UOy. Then, the induced map of T -spaces
Alg (0) > Alg_(0)°
18 an equivalence; in particular, passing to T -fixed points, the induced map of spaces
Algs(0)” — Algp(0)~

s an equivalence.
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Proof. Taking cores of Eq. (10), we find that that (p?éz is the induced map on the homotopy fiber over X of
the following map of 7 -spaces over UQO:

Alg, (O ———"——— Alg (O)°

SN

vuo

*,

@~ is an equivalence if and only if its V-fixed points are an equivalence for all V € 7, and the homotopy
fibers of =V are contractible by the above argument, so ¢~V is an equivalence for all V. Hence @™~ is
an equivalence, proving the proposition. O

2. CONNECTIVITY AND WIRTHMULLER MAPS
In this section, we verify Theorem D; in particular, we will acquire the following technical corollary.

Corollary 43. If P® is (-connected at I, then for all (k + ¢+ 2)-toposes C, the reduced endomorphism I-operad
Endy (MP(C)I_X) is an I-(k +1)-operad.

Proof. Since C is a (k + € + 2)-category, X is (k + € + 2)-truncated, and Theorem D implies that Wx s is
£-connected, so the result follows from Corollary 41. O

Before moving on, we show how this yields the atomic orbital generalization of Theorem B.

Proof of Theorem B. By passing to restrictions and Borelifications, we assume that O, P are almost reduced.
By Proposition 37, we’re tasked with verifying that, for all presheaf (k + € + 2)-toposes C, the map of spaces

MonpMonp(C)™ — CMon 40(C)~.

BV
is an equivalence; since Nfooo ~P® @ Nfom by Proposition 30, we may equivalently require that the map
MonpMonyp(C)™ — CMon ,pMonp(C)™

is an equivalence. In particular, by Propositions 37 and 42, it suffices to prove that Endy (Monp(C)AO_X) is
an AO-(k + 1)-operad, which is Corollary 43. O

2.1. Connectivity of algebras can be detected in the value topos. Fix C an n-topos for some n < co.

Lemma 44. A map f: C— D in Coeff’ C is €-connected if and only if, for all V € T°P, the fized point map
CV — DV s £-connected.

Proof. Per Remark 3, it is equivalent to prove that ¢-connectiveness of a morphism in Fun(7 °P,() is measured
elementwise. Indeed, since (co)limits in Fun(7 °P,C) are computed elementwise, effective epimorphisms and
diagonals are as well. The former proves the statement for (—2)-connectiveness, and the latter together with
the diagonal presentation of [HTT, Prop 6.5.1.18] shows that the statement for (¢ — 1)-connectiveness implies
the statement for ¢-connectiveness, so the lemma follows by induction. a

Proposition 45. Given a map f: X — Y in Monp(C), if the underlying map U f in Coeff’ C is €-connected,
then f is €-connected.

Proof. In view of [SY19, Lem 4.4.1], it suffices to verify that the monad Ty: Coeff’ ¢ — Coeff’ C preserves
{-connected morphisms; by Lemma 44, it suffices to verify that whenever each C-diagram XV — YV is
{-connected, each induced map TpX"W — TpXW is €-connected. But by Proposition 31, it suffices to note that
{-connected morphisms in an co-topos are closed under cartesian products and colimits [HTT, Cor 6.5.1.13,
Prop 5.2.8.6]. O

For instance, U preserves the terminal object and is conservative, so it also reflects the property of
being terminal; applying Proposition 45 in the case Y =% shows that U reflects n-connectivity of objects.

Remark 46. Since U is a right adjoint, it preserves n-truncatedness and n-truncated objects. <

Warning 47. Proposition 45 is delicate for a few reasons.
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(1) 1f O is not n-connected, then the free O-algebra monad Tp: Cy — Cy may itself may fail to preserve
n-connected objects; indeed, we have To*y = [[scp, Fre O(S)paut, s, which is often not much more
highly connected than the individual spaces O(S)jaut, s-

(2) U does not generally preserve {-connectivity of objects or morphisms for instance, given an € > (k+1)-
connected space X, the equivalence QF: Sisk+l = Alg]Ek (S>1) exhibits QF as an ¢-connected Ey-

algebra such that UQ" is only in general (¢ — k)-connected.
(3) For a similar reason, U does not usually reflect ¢-truncatedness of morphisms or objects. <

2.2. The proof of Theorem D. We now begin to reduce Theorem D to the case n <€+ 1 with the following.
Lemma 48. The truncation functor t<p: C — 1<,C extends to a T -functor

T0: Mon,(C) — Mon,(1<,C)
satisfying ToWs x = Ws ¢,x. Moreover, the inclusion 1: 1<,C — C extends to a fully faithful T -functor

10+ Mon(te(C) > Mon(C)

such that TOWS,l@X = WS,X'

Proof. Since t<, is product-preserving [HTT, Lem 6.5.1.2], 7<: MTC — MTTS% is a 7-symmetric
monoidal left adjoint for the cartesian structure [Ste25b]; everything other than the equalities involving Ws x
then follows straightforwardly from Proposition 36.

In particular, Ty is a 7 -functor which preserves indexed products and coproducts; this implies that
toWs,x = Ws ,x. The remaining equality follows from fully faithfulness by noting that

toWs,ix = Ws1pi0x = Ws,x- O

We say that a map f: X — Y in an n-topos is an €-equivalence if it is a T<o-equivalence; if f admits a
section, this is equivalent to f being ¢-connected (see [SY19, Prop 4.3.5] or note that this follows by splitting
the long exact sequence in homotopy). We apply this by equivariantizing [SY19, Lem 5.1.1].

Lemma 49. If C'™* is a Cartesian I-symmetric monoidal co-category and S € F;, then the image of the
O-algebra Wirthmiiller map Wx g: ]_[SU Xy — ]_[SU Xy under U: Alg(C)y — Cy admits a section.

Given (Yy) an S-tuple and U € Orb(S) a distinguished orbit, choose the distinguished fixed point a
whose induction is the following

T
Indg Res‘{] Indg*U — U

U———V
(see [Ste24] for the fact that this is indeed a summand inclusion). Let
Resg Indg*u

B: Yy — Res[; Colndy, Yy ~ ]_[ ColndY, ResY, Yy
w

be the map whose corresponding map Reslvjv Yy — Resyv Yy is 0 when W = a and the identity otherwise. Let

S S-U
1y Yy — Res%/] I_[ Yy = Res[‘GCOIndEYU X Resg ]_[ Yw
w w

be the map corresponding with f on the first factor and 0 on the other. Let iy: Yy — ResE]_[?], Yy be
adjunct to the inclusion IndeU — ]_[“2], Y.
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Proof of Lemma 49. Fix some operation p € O(S). We will verify that the following diagram commutes.
Then, poy f will be the desired section for Wy s.

s . s xS P s
H(RESUUXU) = > (]_[XU) > ]_[XU

U U U U

lh:(WRESKX'RESlV]S)UEOrb(S) lWX,S

s xS S
f=(iv)ueors) (]—]XU) r > [ Xy

U U

2| H

S g=(tr)ueorb(s) S xResV S " S

lL_]lXU > 1X, Y > [[Xy

Note that the top right square is commutative by the fact that Wg x is an O-algebra morphism and the
bottom right follows by unwinding the definition of p.

. . . / Res); S
Now, note that po g is the external product of a collection of endomorphisms Xy SN X[XJ RN Xu;

unwinding definitions, 1y; is the inclusion of a unit on all but one factor:

Xy lu > X(XJReSZS —M/ Xy
Res‘L/, S—{a} (id.7) Res‘L/, S—{a}
Xux [l 1w ——Xyux [l Xw
w w

in particular, p o1y is homotopic to the identity, so po g is homotopic to the identity, and the bottom triangle
commutes.
To characterize the composite morphism of the left rectangle, we may equivalently characterize the

. S \% xRes}?S . . xResgS Resgs U
composite map 7y oyho; f 1 [[Xy — Colndf; X, ; in fact, under the expression X;; ~ [] Resy Xy,
U w

it suffices to characterize the composite morphism ]_[fj Xy — CoIndK, Res% Xy and verify that it is homotopic
to the relevant projection of g for each W, U.
In particular, relevant projection of g is the composite morphism

S .
o
| [Xu > Colndyj Xy = Colndy; Res}) Xy
U

where oy v is a Kronecker delta

5 _jid U=Ww;
uw = 0 otherwise.

S ResY, S
Moreover, note that the projection 1tyo hoy: [[Xy — X[X] U itself factors as
U

\4

ﬁ [Res‘{] UXU
U U

—> CoIndEXU —@» CoInd% Res‘% Xy,
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so we're tasked with verifying that }-;J is homotopic to oy, . Indeed, this follows by examining the following
diagram:

: f : 7 S . h S xS S xRes!; s
[1Xy —— H(ReSEUXu) S (uxu) — (nxU) = xSt
U U U U U U
l Colndy)i 4 Colnd}, W V v
Colnd) Xy el » Colnd}; Res L1 Xy Do colnd), Resf[1Xy = X Resy S

I |
[ Colndyy, ResY, Xy

O

Proof of Theorem D. Assume O® is {-connected at I, i.e. Condition (a). We study the behavior of Wg x
under the following diagram:

Mon(7<,C) —<5 Mon)(C) —2 Mon(7<(C)

lUgf l/U lUgi

Coeff” 7.,C —— Coeff’ C —L— Coeff’ 7.,C

In particular, by Proposition 37 and Lemma 48, Lo Ws x = Ws 1 x is an equivalence, so U<cLoWs x = LU Ws x
is an equivalence, i.e. UWs x is an £-equivalence. In turn, by Lemma 49 this implies that U Wg x is {-connected,
so Proposition 45 implies that Ws x is £-connected, i.e. Condition (b).

The implication Condition (b) = Condition (c) is immediate, so assume Condition (c), i.e. fix the
case C := & and assume that that Ws x is ¢-connected for all X € Alg,S and S € F;. We may invert the
above argument: this time, we find that UWs )y is an {-equivalence for all Y € Alg,S<s, so LUWsy =
U<eLoWs .y = U<¢Ws y is an equivalence. By conservativity of U<, this implies that Ws y is an equivalence,
so O® is {-connected at I by Proposition 37, proving Condition (a). O

® & BV .®
3. THE CP—OPERADS Az,cp AND Az,c,, ® Az,cp

For the rest of this article, we specialize to 7 = (’)Cp7 where C, is the group of prime order p, and C is a

l-category. As in Proposition 22, let Fry(S) denote the free C,-symmetric sequence on an operation in arity
S. Now, the pointwise formula for left Kan extensions yields equivalences

FrE,p-*CP (*)(p - %e) = Ep;
FrE,[Cp/e](*)(p “xp) = Zp'

We define the C,-symmetric sequence of sets Fz,cp as the coequalizer
Fz’cp = COEq(Zp [p . x-e] = (Frzr[cp/e](*) L Frz’p,*cp(*))),
where ¥,[p-#,] is the C,-symmetric sequence defined by

Ep[p-*e1<s>:={zp =P

& otherwise.

and the two arrows are the inclusions of ), [p-*.. We define the unital Cp-operad A?’Cp by the Boardman-Vogt
tensor product

BV
® ._m®
AYc =Ef ® Frop (Fac,)-
As promised, we verify that Az,cp -monoids are the same as Cp-unital magmas.

Proposition 50. There is an equivalence between MOHAQ,CP (C) and Cy-unital magmas in C.
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Proof. By Example 25 and Proposition 28 we have

MonAQ’CP (C) = Mong, ( )Mongo(C) =~ Mong, ( C..

Facp, Facp)

Moreover, by Proposition 34, the data of an Az,cp—monoid structure on X € Coeffr( is equivalently viewed

as amap 1: *c, > X (which we identify with an element X € CoeffC,) and an element of

Mongrq, , ¢, ) (Endg(C.))” = Hom S)(Fz,cp,Endi(C*))

Facp Fun(Tot;Cp ,

~ YP ¥ Coze
~Hom cc,. (XP,X) Xitome, (), %) HOMcoegtoc, (Colnde X X)

We're left with interpreting this concretely: by a standard argument, Hom .c,. (ip,f) corresponds
bijectively with the set of unital magma structures on X with unit #, and this corresponds bijectively with
the pairs of unital magma structures on X% and X° with unit maps 11CP and #° such that the restriction
map is a homomorphism. Under this bijection, the forgetful map Hom . «c,. (XVP,XV) — Homyg, (()?g)p,)?)
simply forgets the data of X % and the restriction.

A
Similarly, since C,-coefficient coinduction is presented by the coefficient system X «— X with permutation
Co o~
action, Hom _.c, .. (CoInde FXe, X ) corresponds bijectively with the set of unital C,-equivariant transfers

t: X¢ > X% and unital magma structures on X® with unit #° satisfying the condition that the following
diagram commutes.

XE t ) ch
lA lr
(XP — X°
Once again, the forgetful map restricts to the unital magama structure on #°; thus the fiber product
corresponds exactly with G-unital magma structures on X with units #° and r]CP.

Now, what we’ve described is a bijective assignment of sets ObMony, & (C) > Ob Magma‘é;“(C) over
ObC. To conclude, it suffices to prove that a CoeffCrC morphism between a pair of Cp-unital magmas is a
Cp-unital magma homomorphism if and only if it’s an Azrcp—algebra homomorphism.

To prove this, note that an Az,cp—monoid morphism is equivalently a Frop(Fzycp)—monoid morphism of

pointed objects, i.e. a pair of maps F¢: M¢ — N¢ and F%: M% — N which are compatible with units,
satisfying F? ot =t o F¢ and Féor =ro F® together with p-degree additivity

(Mcp)p — (Ncp)p (M€Y ——3 (M®)P
! Ll
M% ——— N M¢ —— N¢

It suffices to note that a map between the pointed sets underlying unital magmas is a homomorphism if and
only if it intertwines with nary addition for some n > 2; indeed, one can simply identify binary addition with
n-ary addition whose first (n— 2)-factors are the unit. O

We now spell out the interchange relations explicitly.

Proposition 51. There is an equivalence between Mony, ¢, ®hac, (C) and pairs of G-unital magma structures

(M, *,0,t,,t,) in C satisfying the interchange relations 1, =1, and

(XP)P l}}(p XCr o xe . XCo (Xe)P (t_>> (XCP)P (Xe)P (t.) (ch)p

SO S S ST S S SR A

X —* 5 X X¢ ¢—— (XO)P » X© Xe —— X% X —— X%

t,
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Proof. Example 25 and Proposition 28 yields an equivalence.

MonA%p (C) ~ MonFrop(Fz,cp 12(C.).

This is characterized explicitly by Corollary 35 and Proposition 50; it suffices to note that the specified
interchange relations correspond precisely with the conditions that t, and e are C,-unital magma homomor-

phisms.

O

We conclude the following form of Theorem A.

Corollary 52. Given C a 1-category, the forgetful functor

Fun™ (Span(IFCp ),C) —>MonA2,Cp ®hsc, (€)

:{Interchanging pairs of Cy-unital magmas in C}

s an equivalence of categories.
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