AN ECKMANN-HILTON ARGUMENT IN EQUIVARIANT HIGHER ALGEBRA

NATALIE STEWART

ABSTRACT. Let \mathcal{O}^{\otimes} and \mathcal{P}^{\otimes} be k- and ℓ -connected unital G-operads subject to the condition for all S that $\mathcal{O}(S) = \emptyset$ if and only if $\mathcal{P}(S) = \emptyset$. We show that the Boardman-Vogt tensor product $\mathcal{O}^{\otimes} \overset{\text{BV}}{\otimes} \mathcal{P}^{\otimes}$ is $(k + \ell + 2)$ -connected; equivalently, $\mathcal{O} \otimes \mathcal{P}$ -monoids in any $(k + \ell + 3)$ -category lift uniquely to incomplete semi-Mackey functors. In particular, under no connectivity assumptions, discrete $\mathcal{O} \otimes \mathcal{P}$ -monoids lift uniquely to incomplete semi-Mackey functors, recovering an Eckmann-Hilton argument for " C_p -unital magmas." As a consequence, we show that the smashing localizations on unital G-operads correspond precisely with unital \mathcal{N}_{∞} -operads, and hence the (finite) poset of unital weak indexing systems.

Along the way we characterize ℓ -connectivity of a unital *G*-operad \mathcal{O}^{\otimes} equivalently as ℓ -connectivity of \mathcal{O} -admissible Wirthmüller maps of \mathcal{O} -monoid spaces.

INTRODUCTION

The classical *Eckmann-Hilton argument* shows that, given a set with two unital multiplications $(M, *, \cdot)$ satisfying the interchange law

$$(a * b) \cdot (c * d) = (a \cdot c) * (b \cdot d),$$

the unital magmas (M, *) and (M, \cdot) are isomorphic to each other and are commutative monoids. We will study equivariant variations of this result, beginning with a weakening of Dress' Mackey functors [Dre71].

Definition 1. Let C be a 1-category with finite products and C_p the cyclic group of prime order p. A C_p -unital magma in C is a unital magma M^e with a C_p action by unital magma homomorphisms, a unital magma M^{C_p} (with trivial C_p -action), and C_p -equivariant restriction and transfer homomorphisms

$$r: M^{C_p} \to M^e, \qquad t: M^e \to M^{C_p}$$

subject to the condition that $r \circ t$ is multiplication by p. A homomorphism $M \to N$ is a pair of unital magma homomorphisms $F^e \colon M^e \to N^e$ and $F^{C_p} \colon M^{C_p} \to M^e$ such that $F^{C_p} \circ t = t \circ F^e$ and $F^e \circ r = r \circ F^{C_p}$.

In this article, we prove and vastly generalize the following theorem.

Theorem A. Suppose (M, M') is a pair of C_p -unital magma structures on the same coefficient system satisfying suitable interchange relations. Then, $M \simeq M'$ and each underlie a semi-Mackey functor; in particular, if the multiplications on M^e and M^{C_p} are invertible, then M and M' are isomorphic Mackey functors.

To prove this, we embed it in the theory of *algebras over G-operads* in the sense of [NS22]; in particular, we show in Section 3 that C_p -unital magmas are algebras over a particular C_p -operad $\mathbb{A}^{\otimes}_{2,C_p}$ in C_p -coefficient systems valued in \mathcal{C} , and spell out the correct interchange relations there.

Crucially, in [Ste25a] we associated to a pair of G-operads $\mathcal{O}^{\otimes}, \mathcal{P}^{\otimes}$ a *tensor product* $\mathcal{O}^{\otimes} \overset{BV}{\otimes} \mathcal{P}^{\otimes}$, whose algebras are *interchanging* \mathcal{O} - and \mathcal{P} -algebras:

$$\operatorname{Alg}_{\mathcal{O}\otimes\mathcal{P}}(\mathcal{D})\simeq\operatorname{Alg}_{\mathcal{O}}\operatorname{Alg}_{\mathcal{D}}^{\otimes}(\mathcal{D}).$$

In particular, pairs of interchanging C_p -unital magma structures correspond with $\mathbb{A}_{2,C_p}^{\otimes} \overset{\mathrm{BV}}{\otimes} \mathbb{A}_{2,C_p}^{\otimes}$ -algebras.

Date: February 20, 2025.

¹ Explicitly, by V-Mackey functor, we mean a functor $\mathscr{B}_{G}(V) \to \mathbf{Ab}$ sending disjoint unions to direct sums, where $\mathscr{B}_{G}(V)$ is Lewis' V-Burnside category; the transfer map $\Sigma_{+}^{\lambda+1} *_{C_{p}} \to \Sigma_{+}^{\lambda+1}[C_{p}/e]$ is constructed by the usual \mathbb{S}_{G} -duality construction along an embedding $[C_{p}/e] \hookrightarrow \lambda$ (see t[Wir75]). λ refers to any nontrivial 2-dimensional C_{p} -representation, though the same facts are true for the $(\sigma + 1)$ st homotopy coefficient system when p = 2.

Now, G-operads are ∞ -categorical gadgets; thankfully, \mathcal{O} -algebras in a G-symmetric monoidal *n*-category are canonically equivalent to algebras over the homotopy *n*-operad $h_n \mathcal{O}^{\otimes}$, whose structure spaces are the (n-1)-truncations of the structure spaces of \mathcal{O}^{\otimes} [Ste25a]. In particular, if the structure spaces of \mathcal{O}^{\otimes} are *n*-connected, then $h_n \mathcal{O}^{\otimes}$ is canonically equivalent to a (weak) \mathcal{N}_{∞} -operad in the sense of [BH15; Ste25a], so its algebras in the (cartesian) G-symmetric monoidal *n*-category of coefficient systems in an *n*-category \mathcal{D} are precisely incomplete semi-Mackey functors valued in \mathcal{D} [Ste25b].

From this, we identify Theorem A with the statement that $\mathbb{A}_{2,C_p}^{\otimes} \stackrel{\text{BV}}{\otimes} \mathbb{A}_{2,C_p}^{\otimes}$ is connected together with the observation that the "arity support" weak indexing category

$$A\mathbb{A}_{2,C_p} \coloneqq \left\{ T \to S \; \middle| \; \forall [G/H] \subset S, \; \mathbb{A}_{2,C_p}(T \times_S [G/H]) \neq \emptyset \right\} \subset \mathbb{F}_{C_p}$$

satisfies $A\mathbb{A}_{2,C_p} = \mathbb{F}_{C_p}$ (so the corresponding incomplete Mackey functors have all transfers). Our main homotopy-coherent lift of Theorem A is the following generalization of [SY19, Thm 1.0.1].

Theorem B. If \mathcal{O}^{\otimes} and \mathcal{P}^{\otimes} are k and ℓ -connected almost essentially unital G-operads with $A\mathcal{O} = A\mathcal{P}$, then $\mathcal{O}^{\otimes} \otimes \mathcal{P}^{\otimes}$ is $(k + \ell + 2)$ -connected.

For instance, Theorem B, lax G-symmetric monoidality of $\underline{\pi}_0: \underline{Sp}_G^{\otimes} \to \underline{Mack}_G^{\square}(\mathbf{Ab})$, and the results of [Cha24] together construct a natural $A\mathcal{O}$ -Tambara structure on the 0th homotopy groups of $\mathcal{O} \overset{\mathrm{BV}}{\otimes} \mathcal{O}$ -ring G-spectra;² this and a forthcoming equivariant Dunn additivity result will construct a natural AV-Tambara structure on the 0th homotopy Mackey functors of \mathbb{E}_{2V} -ring G-spectra.

We may remove the assumption $A\mathcal{O} = A\mathcal{P}$ in Theorem B, but we will need a more refined notion of connectivity. In general, given a weak indexing category I, we say that \mathcal{O}^{\otimes} is *k*-connected at I if, for all elements of the corresponding weak indexing system

$$T \in \mathbb{F}_{I,H} \coloneqq \left\{ S \in \mathbb{F}_H \mid \operatorname{Ind}_H^G S \to [G/H] \in I \right\},\$$

the structure space $\mathcal{O}(T)$ is k-connected.

Given a subgroup $H \subset G$ and a finite H-set $S \in \mathbb{F}_H$, there is a minimal unital H-weak indexing system $\underline{\mathbb{F}}_{I_S} \subset \underline{\mathbb{F}}_H$ containing S, consisting of summands of restrictions of iterated indexed coproducts of S [Ste24]. We say that \mathcal{O}^{\otimes} is k-connected at S if it's k-connected at I_S . We define the *connectivity function*

$$\operatorname{Conn}_{\mathcal{O}} \colon \coprod_{(H) \subset G} \pi_0 \mathbb{F}_H \to \mathbb{Z} \cup \{\infty\}$$

by the formula $\operatorname{Conn}_{\mathcal{O}}(S) \coloneqq \min\{k \mid \mathcal{O}^{\otimes} \text{ is } k \text{-connected at } S\}$. Now, $(\mathbb{Z} \cup \{\infty\})^{\coprod_{(H) \subset G} \pi_0 \mathbb{F}_H}$ forms a commutative monoid under pointwise addition and a poset by pointwise comparison

$$f \leq g \quad \iff \quad \forall S, f(S) \leq g(S).$$

An index-by-index version of Theorem B is the following.

Theorem C. Given $\mathcal{O}^{\otimes}, \mathcal{P}^{\otimes}$ a pair of almost-unital G-operads, the following inequality holds:

$$\operatorname{Conn}_{\mathcal{O}} + \operatorname{Conn}_{\mathcal{P}} + 2 \leq \operatorname{Conn}_{\mathcal{O} \otimes \mathcal{P}}.$$

The key to our strategy for Theorems B and C is the following precise relationship between Wirthmüller map connectivity and connectivity at I, which the author believes to be of independent interest.

Theorem D. Let \mathcal{P}^{\otimes} be a G-operad and I an almost essentially unital weak indexing category. Then, the following conditions are equivalent:

(a) \mathcal{P}^{\otimes} is ℓ -connected at I.

² To construct this lax symmetric monoidality, first note that $\underline{Sp}_{G,\geq 0}^{\otimes} \subset \underline{Sp}_{G}^{\otimes}$ is closed under tensor products, so the localization G-functor $\underline{Sp}_{G} \to \underline{Sp}_{G,\geq 0}^{\otimes}$ is given a lax G-symmetric monoidal structure by Proposition 36. Moreover, to construct a lax G-symmetric monoidal structure on $\tau_{\leq 0} = \pi_0 : \underline{Sp}_{G,\geq 0} \to \underline{Sp}_{G}$, in light of [NS22] we need only note that \otimes takes π_0 -equivalences to π_0 -equivalences and that the resulting structure agrees with the usual one on Mackey functors; the former follows by the same fact applied to geometric fixed points combined with induction up the poset of families using the isotropy separation sequence.

(b) For all n-toposes C (with $n \leq \infty$), I-admissible H-sets $S \in \mathbb{F}_{I,H}$, and S-indexed tuples of \mathcal{P} -monoids $(X_K) \in \prod_{[H/K] \in \operatorname{Orb}(S)} \operatorname{Mon}_{\operatorname{Res}_{\mathcal{V}}^G \mathcal{P}}(C)$, the S-indexed \mathcal{P} -monoid Wirthmüller map

$$W_{S,(X_K)} \colon \bigsqcup_K^S X_K \longrightarrow \prod_K^S X_K$$

is ℓ -connected.

(c) For all I-admissible H-sets $S \in \mathbb{F}_{I,H}$ and S-indexed tuples of \mathcal{P} -G-spaces $(X_K) \in \prod_{[H/K] \in Orb(S)} Mon_{\operatorname{Res}_K^G \mathcal{P}}(S)$, the S-indexed \mathcal{P} -G-space Wirthmüller map

$$W_{S,(X_K)} \colon \coprod_K^S X_K \longrightarrow \prod_K^S X_K$$

is ℓ -connected.

For Theorem D, a morphism $g: X \to Y$ in an ∞ -category \mathcal{C} is ℓ -truncated if, for all $Z \in \mathcal{C}$, the map of spaces $Map(Z, X) \to Map(Z, Y)$ is ℓ -truncated, and $f: A \to B$ is ℓ -connected if, for all diagrams

$$\begin{array}{c} A \longrightarrow X \\ f \downarrow & \stackrel{h}{\longrightarrow} & \downarrow^{g} \\ B \longrightarrow & Y \end{array}$$

such that g is ℓ -truncated, the space of lifts h is contractible.

Remark 3. In the case that C is an *n*-topos for some $0 \le n \le \infty$, the above definitions are equivalent to ℓ -truncatedness and $(\ell - 1)$ -connectiveness in the sense of [HTT, Def 6.5.1.10] by [SY19, Lem 4.2.6] and [HTT, Prop 6.5.1.12, Prop 6.5.1.19].

Additionally, the *S*-indexed Wirthmüller map in a G- ∞ -category is defined to be the *S*-indexed semiadditive norm map as in [CLL24; Nar16]; that is, the [H/K]-indexed Wirthmüller map $W_{[H/K],X}$: $\operatorname{Ind}_{K}^{H}X \to \operatorname{CoInd}_{K}^{H}X$ is adjunct to the map

$$X \longrightarrow \operatorname{Res}_{K}^{H} \operatorname{CoInd}_{K}^{H} X \simeq \prod_{g \in [K \setminus H/K]} \operatorname{CoInd}_{H \cap gKg^{-1}}^{H} \operatorname{Res}_{H \cap gKg^{-1}}^{H} X$$

whose projection onto the factor indexed by the identity double coset is the identity and whose other projections are zero. The $\coprod_i [H/K_i]$ -indexed Wirthmüller map

$$W_{\bigsqcup_{i}[H/K_{i}],(X_{i})} \colon \coprod_{K_{i}}^{H} X_{i} \simeq \bigsqcup_{i} \operatorname{Ind}_{K_{i}}^{H} X_{i} \longrightarrow \prod_{i} \operatorname{CoInd}_{K_{i}}^{H} X_{i} \simeq \prod_{K_{i}}^{H} X_{i}$$

is classified by the diagonal matrix whose *i*th entry is $W_{[H/K_i],X_i}$.

Remark 4. In the course of proving Theorem D, we will verify that Condition (b) is further equivalent to the condition that the Coeff^HC-map underlying $W_{S,(X_K)}$ is pointwise ℓ -connected; moreover, Condition (c) is equivalent to the condition that the underlying *H*-space map is ℓ -connected, i.e. its associated maps on *J*-fixed point spaces are surjective on path components with ℓ -connected fiber for each $J \subset H$.

The rest of this paper replaces the orbit category \mathcal{O}_G with an arbitrary atomic orbital ∞ -category \mathcal{T} ; we will prove Theorems B to D in that level of generality. We encourage the reader to either globally specialize to $\mathcal{T} = \mathcal{O}_G$ or familiarize themself with the atomic orbital setting via [Ste25a].

Structural implications. The specialization of Theorem B to infinite tensor powers is the following.

Corollary 5. Suppose \mathcal{O}^{\otimes} is an almost-reduced \mathcal{T} -operad. Then, the following conditions are equivalent.

- (a) \mathcal{O}^{\otimes} is an almost-unital weak \mathcal{N}_{∞} -operad.
- (b) $(\mathcal{O}^{\otimes}\text{-}EHA)$ the unique map $\operatorname{triv}_{\mathcal{T}}^{\otimes} \to \mathcal{O}^{\otimes}$ yields an equivalence

$$\mathcal{O}^{\otimes} \simeq \mathcal{O}^{\otimes} \overset{BV}{\otimes} \operatorname{triv}_{\mathcal{T}}^{\otimes} \xrightarrow{\operatorname{id} \otimes \operatorname{can}} \mathcal{O}^{\otimes} \overset{BV}{\otimes} \mathcal{O}^{\otimes}.$$

(c) (abstract \otimes -idempotence) there exists an equivalence $\mathcal{O}^{\otimes} \overset{BV}{\otimes} \mathcal{O}^{\otimes} \simeq \mathcal{O}^{\otimes}$.

Proof. The implication (a) \implies (b) is one of the main results of [Ste25b], and is also implied by Theorem B. The implication (b) \implies (c) is obvious. To see the implication (c) \implies (a), note that Theorem B implies that \mathcal{O}^{\otimes} is ∞ -connected, i.e. all of its nonempty structure spaces are contractible. The result follows by the identification of such almost-reduced \mathcal{T} -operads with almost-unital weak \mathcal{N}_{∞} -operads [Ste25a].

To see why we may view Condition (b) as an *Eckmann-Hilton argument*, note that it is equivalent to the condition that \mathcal{O}^{\otimes} possesses a unital magma structure in $\operatorname{Op}_{\mathcal{T}}^{\otimes}$ whose multiplication map $\mu : \mathcal{O}^{\otimes} \overset{\mathrm{BV}}{\otimes} \mathcal{O}^{\otimes} \to \mathcal{O}^{\otimes}$ is an equivalence; unitality of μ is precisely the condition that the associated diagonal natural transformation

$$\delta: \operatorname{Alg}_{\mathcal{O}}(\mathcal{C}) \to \operatorname{Alg}_{\mathcal{O}}\operatorname{Alg}_{\mathcal{O}}^{\otimes}(\mathcal{C})$$

is split by restriction to either \mathcal{O} -algebra structure, and the fact that μ is an equivalence is precisely the condition that δ is a natural equivalence, i.e. pairs of interchanging \mathcal{O} -algebra structures agree, and there is one such pair for all \mathcal{O} -algebra structures.

On the other hand, Condition (b) is equivalent to the assertion that \mathcal{O}^{\otimes} admits a (unique) structure as an *idempotent algebra* in $\operatorname{Op}_{\mathcal{T}}^{\operatorname{auni},\otimes}$; taking modules yields a bijective monotone correspondence between these and the smashing localizations on $\operatorname{Op}_{\mathcal{T}}^{\operatorname{auni},\otimes}$ (see [GGN15, § 3] and [CSY20, § 5.1]).

Corollary 5 classifies smashing localizations on $Op_{\mathcal{T}}^{auni}$; define the full subcategory

$$\operatorname{Op}_{\mathcal{T}}^{I-\operatorname{Wirth}} := \left\{ \mathcal{O}^{\otimes} \mid \forall S \in \underline{\mathbb{F}}_{I}, \, \mathcal{C}^{\otimes} \in \operatorname{Cat}_{\mathcal{T}}^{\otimes}, \, \bigotimes^{S} \simeq \bigsqcup^{S} \text{ in } \underline{\operatorname{Alg}}_{\mathcal{O}}(\mathcal{C}) \right\} \subset \operatorname{Op}_{\mathcal{T}}^{auni}.$$

In [Ste25b] we showed that this is the smashing localization for $\mathcal{N}_{I\infty}^{\otimes}$ in order to compute tensor products of \mathcal{N}_{∞} -operads. We also showed that idempotent algebras in $\operatorname{Op}_{\tau}^{auni}$ are almost-reduced, yielding the following.

Corollary E. The construction $I \mapsto \operatorname{Op}_{\mathcal{T}}^{I-\operatorname{Wirth}}$ yields an isomorphism of posets

wIndex^{*a*uni}_{*T*} $\xrightarrow{\sim}$ {Smashing localizations of Op^{*a*uni}_{*T*} under reverse inclusion}

A striking corollary of this is that there are finitely many smashing localizations on Op_{τ}^{auni} [Ste24].

Consequences in algebraic topology. Let *I* be an indexing category and Sp_I be the ∞ -category presented by Blumberg-Hill's stable model category of *I*-spectra [BH21]. We say that an *I*-spectrum *E* is *connected* if $\underline{\pi}_n(E) \simeq 0$ for all $n \leq 0$, i.e. it is the suspension of a connective *I*-spectrum. We see that any loop space theory with arity support *I* reaches connected *I*-spectra after infinite iteration.

Corollary 6. If \mathcal{O}^{\otimes} is a reduced G-operad with $\mathcal{O}(2 \cdot *_G) \neq 0$ and X is a connected G-space with infinitely many interchanging \mathcal{O} -algebra structures, then X is the 0th G-space of an essentially unique connected $A\mathcal{O}$ -spectrum compatibly with its $\mathcal{O}^{\otimes \infty}$ -structure.

Proof. Note that $\mathcal{O}^{\otimes \infty} \coloneqq \operatorname{colim}_{n \to \infty} \mathcal{O}^{\otimes n}$ is abstractly $\overset{\mathrm{BV}}{\otimes}$ -idempotent, so $\mathcal{O}^{\otimes \infty} \simeq \mathcal{N}_{A\mathcal{O}}^{\otimes}$ by Corollary 5, i.e.

(1)
$$\underline{\operatorname{CAlg}}_{A\mathcal{O}}^{\otimes}(\mathcal{C}) \xrightarrow{\sim} \lim_{n \to \infty} \underbrace{\overline{\operatorname{Alg}}_{\mathcal{O}}^{\otimes}} \cdots \underbrace{\overline{\operatorname{Alg}}_{\mathcal{O}}^{\otimes}}_{\mathcal{O}}(\mathcal{C}).$$

Moreover, given a model $\mathcal{P}^{\otimes} \in \operatorname{Op}(\operatorname{sSet}_{BG})$ for $\mathcal{N}_{A\mathcal{O}}^{\otimes}$, [Ste25b] and [Mar24] yield equivalences

$$\operatorname{CAlg}_{\mathcal{AO}}\left(\underline{\mathcal{S}}_{G,\geq 1}^{G-\times}\right) \simeq \operatorname{CMon}_{\mathcal{AO}}\left(\mathcal{S}_{\geq 1}\right) \simeq \operatorname{Alg}_{\mathcal{P}}\left(\operatorname{Top}_{G,\geq 1}\right) \left[\operatorname{WEQ}^{-1}\right]$$

over $S_{G,\geq 1}$, the right hand side denoting the Hammock localization inverting the class of (point-set) \mathcal{P} algebra morphisms whose underlying function of topological G-spaces is a G-weak equivalence.³ The defining equivalence $\operatorname{Sp}_{A\mathcal{O},\geq 0} \simeq \operatorname{Alg}_{\mathcal{P}}^{\operatorname{grplike}}(\operatorname{Top}_{G})[\operatorname{WEQ}^{-1}]$ then embeds $\operatorname{Alg}_{\mathcal{O}}(\operatorname{Top}_{G,\geq 1})[\operatorname{WEQ}^{-1}]$ as those $A\mathcal{O}$ -spectra whose 0th G-space is connected; it follows by unwinding definitions that this is precisely $\operatorname{Sp}_{A\mathcal{O},\geq 1}$, so Eq. (1) restricts to an equivalence

$$\operatorname{Sp}_{I,\geq 1} \simeq \lim_{n \to \infty} \widetilde{\operatorname{Alg}}_{\mathcal{O}} \cdots \underline{\operatorname{Alg}}_{\mathcal{O}}^{\otimes} (\mathcal{S}_{G,\geq 1})$$

³ Here, $sSet_G := sSet^{BG}$ and $Top_G := Top^{BG}$ are the 1-categories of *simplicial sets* and *topological spaces* with G-action.

ECKMANN-HILTON DRAFT

over $\mathcal{S}_{G,\geq 1}$.

To construct an infinite loop space theory for I-spectra, one is left with the following question.

Question 7. Given an indexing category I, does there exist a reduced G-operad \mathcal{O}^{\otimes} with $A\mathcal{O} = I$ and a space S^I such that \mathcal{O} -monoid structures on a connected G-space X are equivalent to S^I -loop space structures? **Remark 8.** We chose to specialize to the connected setting for convenience; one could instead assume that there exists some $\mu \in \mathcal{O}(2 \cdot *_G)$ whose action on one of the \mathcal{O} -structures on X induces an *invertible* magma structure on the coefficient system $\underline{\pi}_0 X$, in which case the corresponding $A\mathcal{O}$ -commutative algebra has an underlying grouplike commutative monoid structure; the variation of **Corollary 6** follows *mutatis mutandis*.

Additionally, we acquire Ω^V -spectrum structures in a wide variety of circumstances.

Corollary 9. Fix V an orthogonal G-representation. If \mathcal{O}^{\otimes} is an almost-reduced G-operad with $\mathcal{O}(S) \neq \emptyset$ whenever there exists an embedding $S \hookrightarrow \operatorname{Res}_{H}^{G} V$ and X is a connected G-space admitting infinitely many interchanging \mathcal{O} -algebra structures, then X admits the structure of a V-infinite loop space.

Proof. The V-infinite loop space structure corresponds with the $\mathbb{E}_{\infty V}$ -structure pulled back along the unique map $\mathbb{E}_{\infty V}^{\otimes} \simeq \mathcal{N}_{AV}^{\otimes} \to \mathcal{N}_{A\mathcal{O}}^{\otimes} \simeq \mathcal{O}^{\otimes \infty}$ under the recognition principle of [GM17; RS00].

Sharpness. Theorems B and C are not sharp for all examples. One reason is the discrepancy between unions and joins of weak indexing systems.

Example 10. Given I an almost-unital weak indexing category, let $\mathcal{N}_{I\infty}^{\otimes} \in \operatorname{Op}_{G}$ be the corresponding weak \mathcal{N}_{∞} -operad as in [Ste25a]. Unwinding definitions, we find that

$$\operatorname{Conn}_{\mathcal{N}_{I\infty}}(S) = \begin{cases} \infty & S \in \underline{\mathbb{F}}_I \\ -2 & \text{otherwise.} \end{cases}$$

Moreover, we found in [Ste25b] that $\mathcal{N}_{I\infty}^{\otimes} \stackrel{\text{BV}}{\otimes} \mathcal{N}_{J\infty}^{\otimes} \simeq \mathcal{N}_{I \vee J\infty}^{\otimes}$. This demonstrates a failure of sharpness in Theorem C; indeed, generically, we have

$$\left(\operatorname{Conn}_{\mathcal{N}_{I\infty}} + \operatorname{Conn}_{\mathcal{N}_{J\infty}} + 2\right)^{-1}(\infty) = \underline{\mathbb{F}}_{I} \cup \underline{\mathbb{F}}_{J} \subsetneq \underline{\mathbb{F}}_{I} \vee \underline{\mathbb{F}}_{J} = \operatorname{Conn}_{\mathcal{N}_{I\infty} \otimes \mathcal{N}_{J\infty}}^{-1}(\infty).$$

Another issue is topological; in forthcoming work, given V an orthogonal G-representation, we will show that the little V-disks G-operad \mathbb{E}_{V}^{\otimes} is ℓ -connected at S if and only if the following conditions are satisfied:

(a) For all orbits $[H/K] \subset S$ and intermediate inclusions $K \subset J \subset H$, we have dim $V^J \ge \dim V^K + \ell + 2$, and (b) if $|S^H| \ge 2$, then dim $V^H \ge \ell + 2$.

Moreover, we will show that \mathbb{E}_V is additive under tensor products, i.e. $\mathbb{E}_V^{\otimes} \stackrel{\text{BV}}{\otimes} \mathbb{E}_W^{\otimes} \simeq \mathbb{E}_{V \oplus W}^{\otimes}$. **Example 11.** Let $G \coloneqq C_2$, with sign representation σ . Then, we have fixed point dimensions

$$\dim (a + b\sigma)^e = a + b; \qquad \qquad \dim (a + b\sigma)^{c_2} = a$$

In particular, the connectivity function has

$$\operatorname{Conn}_{\mathbb{E}_{a+b\sigma}}(k*_{e}) = a+b-2$$
$$\operatorname{Conn}_{\mathbb{E}_{a+b\sigma}}(c*_{C_{2}}+d[C_{2}/e])) = \begin{cases} a-2 & d=0\\ b-2 & c<2\\ \min(a,b)-2 & \text{otherwise.} \end{cases}$$

 $\operatorname{Conn}_{\mathbb{E}_{a+b\sigma}}(c*_{C_2}+d[C_2/e])$ is as non-additive as is possible in the last case; indeed, the examples $1+b\sigma$ and $a'+\sigma$ have the same arity-support, but when a', b > 1, we have

$$Conn_{1+b\sigma}(2*_{C_2} + [C_2/e]) + Conn_{a'+\sigma}(2*_{C_2} + [C_2/e]) - 2 = 0$$

< min(a', b) - 1
= Conn_{a'+1+(b+1)\sigma}(2*_{C_2} + [C_2/e]).

Nevertheless, equality is sometimes attained.

Example 12. For all orthogonal G-representations V, it follows from the above description that

$$\operatorname{Conn}_{\mathbb{E}_V \otimes \mathbb{E}_V} = \operatorname{Conn}_{\mathbb{E}_{2V}} = 2\operatorname{Conn}_{\mathbb{E}_V} - 2.$$

The strategy. First, the tautological symmetric monoidal equivalence

$$\operatorname{Op}_{\mathcal{T}}^{\otimes} \simeq \lim_{V \in \mathcal{T}} \operatorname{Op}_{V}^{\otimes}$$

detects connectivity at an index, so we may assume without loss of generality that \mathcal{T} has a terminal object (and, in particular, it is a 1-category). Second, we have the following.

Lemma 13. The following theorems imply each other:

- (a) Theorem B in all cases.
- (b) Theorem B in the case $A\mathcal{O} \simeq \underline{\mathbb{F}}_{I_W}$ for some finite W-set $S \in \mathbb{F}_W$, where W is the terminal object of \mathcal{T} .
- (c) Theorem C.

Proof. The implication (a) \implies (b) is obvious. The implication (b) \implies (c) follows by noting that, when $S \in \underline{\mathbb{F}}_{A\mathcal{O}}$, the condition $\operatorname{Conn}_{\mathcal{O}}(S) \ge k$ is precisely the condition that the arity-Borelification $\operatorname{Bor}_{\underline{\mathbb{F}}_{S}}^{\mathcal{T}} \mathcal{O}^{\otimes}$ is *k*-connected. The implication (c) \implies (a) follows by monotonicity the function

$$\min_{\mathbf{G}\in\underline{\mathbb{F}}_{A\mathcal{O}}}f(S)\colon (\mathbb{Z}\cup\{\infty\})^{\coprod_{V\in\mathcal{I}}\pi_{0}\mathbb{F}_{V}}\to\mathbb{Z}\cup\{\infty\}.$$

We're left with proving Theorem B in the almost-unital case. We will perform a similar reduction to [SY19]; namely, by examining the free \mathcal{O} -algebra monad, we reduce this to (k + 1)-connectivity of the reduced endomorphism $A\mathcal{O}$ -operad in $\underline{\mathrm{Mon}}_{\mathcal{P}}(\mathcal{C})^{I-\times}$ in the case \mathcal{C} is the \mathcal{T} - ∞ -category of coefficient systems in a presheaf ∞ -topos.

We express the structure space $\operatorname{End}_X(\operatorname{\underline{Mon}}_{\mathcal{O}}(\mathcal{C})^{I-\times})(S)$ as the spaces of lifts of $\Delta: X^{\sqcup S} \to X$ along the S-indexed Wirthmüller map $W_{X,S}: X^{\sqcup S} \to X^{\times S}$, which is directly related to truncatedness of X and connectedness of $W_{X,S}$ [SY19]; hence it suffices to prove Theorem D in the almost-unital case.

We finish by directly relating ℓ -connectivity of $W_{X,S}$ in $\operatorname{Mon}_{\mathcal{O}}(\mathcal{C})$ and $\operatorname{Mon}_{\mathcal{O}}(\tau_{\leq \ell}\mathcal{C})$, reducing Theorem D to the fact that $\operatorname{Mon}_{\mathcal{O}}(\tau_{\leq \ell}\mathcal{C})$ is *I*-semiadditive when \mathcal{O} is ℓ -connected at *I*, which we verified in [Ste25b].

Acknowledgements. This article is greatly influenced by the work of Schlank-Yanovski [SY19], which recovers almost all of the results and ideas in this article in the case that G is the trivial group, and has additionally been influential to my thinking in the previous articles [Ste25a; Ste25b]. In general, I'd like to thank my advisor Mike Hopkins for several helpful conversations on this material.

1. I-OPERADS

Throughout this article, we fix \mathcal{T} an atomic orbital ∞ -category in the sense of [NS22]; that is, we assume that all retracts in \mathcal{T} are equivalences and that the finite coproduct completion $\mathbb{F}_{\mathcal{T}} \coloneqq \mathcal{T}^{\sqcup}$ has pullbacks.

We begin in Section 1.1 by recalling the simultaneous generalization and weakening of Blumberg-Hill's G-indexing systems and I-Mackey functors to \mathcal{T} -weak indexing systems and I-commutative monoids. We go on to Section 1.3 where we recall the relevant background from [NS22; Ste25a; Ste25b] on \mathcal{T} -operads, as well as establishing a few foundational results concerning the *doctrinal adjunction* and *reduced endomorphism* I-operads.

1.1. Preliminaries on \mathcal{T} - ∞ -categories and weak indexing systems. Recall that a \mathcal{T} -coefficient system is a functor out of \mathcal{T}^{op} :

$$\operatorname{Coeff}^{T}(\mathcal{C}) \coloneqq \operatorname{Fun}(\mathcal{T}^{\operatorname{op}}, \mathcal{C}).$$

Generalizing Elmendorf's theorem, we define d-truncated \mathcal{T} -spaces and \mathcal{T} -d-categories as coefficient systems:

$$\mathcal{S}_{\mathcal{T},\leq d} \coloneqq \operatorname{Coeff}^{I}(\mathcal{S}_{\leq d});$$
 $\operatorname{Cat}_{\mathcal{T},d} \coloneqq \operatorname{Coeff}^{I}(\operatorname{Cat}_{d})$

We write $\operatorname{Cat}_{\mathcal{T}} \coloneqq \operatorname{Cat}_{\mathcal{T},\infty}$ and $\mathcal{S}_{\mathcal{T}} \coloneqq \mathcal{S}_{\mathcal{T},\leq\infty}$. Given a \mathcal{T} - ∞ -category \mathcal{C} , we write \mathcal{C}_V for the value $\mathcal{C}(V)$ and $\operatorname{Res}_V^W : \mathcal{C}_W \to \mathcal{C}_V$ for the functoriality under a map $V \to W$. The ∞ -category of \mathcal{T} -coefficient systems lifts to a \mathcal{T} - ∞ -category with V-value the $\mathcal{T}_{/V}$ -coefficient systems

$$\operatorname{Coeff}^{\mathcal{T}}(\mathcal{C})_{V} \coloneqq \operatorname{Coeff}^{\mathcal{T}_{/V}}(\mathcal{C});$$

the functoriality is given by restriction. We acquire \mathcal{T} - ∞ -categories $\underline{S}_{\mathcal{T},\leq d}$ and $\underline{Cat}_{\mathcal{T},d}$ similarly.

Example 14. We may define a \mathcal{T} - ∞ -category by $\underline{\mathbb{F}}_{\mathcal{T}}$ by values

$$(\underline{\mathbb{F}}_{\mathcal{T}})_V \coloneqq \mathbb{F}_{\mathcal{T},/V} \simeq \mathbb{F}_{\mathcal{T}/V}$$

with functoriality given by pullback. We write $\mathbb{F}_V \coloneqq \mathbb{F}_{\mathcal{T},/V}$. Note that this is a \mathcal{T} -1-category since $\mathcal{T}_{/V}$ is a 1-category [NS22, Prop 2.5.1].

Example 15. Given C an arbitrary *n*-category, <u>Coeff</u>^T(C) is a T-*n*-category [HTT, Cor 2.3.4.8]. In particular, if C is an ∞ -topos and $\tau_{\leq n-1}C$ its *n*-topos of (n-1)-truncated objects, then <u>Coeff</u>^T($\tau_{\leq n-1}C$) is a T-*n*-category. **Example 16.** The ∞ -category of T- ∞ -categories is Cartesian closed with internal hom characterized by values

$$\underline{\operatorname{Fun}}_{\mathcal{T}}(\mathcal{C},\mathcal{D})_V \simeq \operatorname{Fun}_{\mathcal{T}_{/V}}(\operatorname{Res}_V^T \mathcal{C},\operatorname{Res}_V^T \mathcal{D}),$$

where $\operatorname{Res}_{V}^{\mathcal{T}}$: $\operatorname{Cat}_{\mathcal{T}} \to \operatorname{Cat}_{\mathcal{T}_{V}}$ is pullback and $\operatorname{Fun}_{\mathcal{T}}(-,-)$ denotes the evident ∞ -category of natural transformations [BDGNS16]. By unwinding definitions and applying [HTT, Cor 2.3.4.8], we find that whenever \mathcal{D} is a \mathcal{T} -*n*-category, $\operatorname{Fun}_{\mathcal{T}}(\mathcal{C},\mathcal{D})$ is a \mathcal{T} -*n*-category.

Example 17. We refer to the adjunction between limits and constant diagrams as the *inflation and fixed point* adjunction

$$\operatorname{Cat}_{\Gamma^{\mathcal{T}}}^{\operatorname{Infl}_{e}^{\mathcal{T}}}\operatorname{Cat}_{\mathcal{T}}$$

In the case that \mathcal{T} has a terminal object V, the image of $\operatorname{Infl}_{e}^{\mathcal{T}}$ consists of the \mathcal{T} - ∞ -categories whose restriction functors $\operatorname{Res}_{W}^{V}$ are all equivalences. In any case, we may string together natural equivalences

$$\underline{\operatorname{Fun}}_{\mathcal{T}}\left(\operatorname{Infl}_{e}^{\mathcal{T}}K, \underline{\operatorname{Coeff}}^{\mathcal{T}}\mathcal{C}\right)_{V} \simeq \operatorname{Fun}_{V}\left(\operatorname{Infl}_{e}^{\mathcal{T}_{/V}}K, \underline{\operatorname{Coeff}}^{\mathcal{T}_{/V}}\mathcal{C}\right)$$
$$\simeq \operatorname{Fun}\left(K, \operatorname{Fun}\left((\mathcal{T}_{/V})^{\operatorname{op}}, \mathcal{C}\right)\right)$$
$$\simeq \operatorname{Fun}\left((\mathcal{T}_{/V})^{\operatorname{op}}, \operatorname{Fun}(K, \mathcal{C})\right)$$
$$\simeq \underline{\operatorname{Coeff}}^{\mathcal{T}}\left(\mathcal{C}^{K}\right)_{V}$$

to construct a \mathcal{T} -equivalence $\underline{\operatorname{Fun}}_{\mathcal{T}}\left(\operatorname{Infl}_{e}^{\mathcal{T}}K, \underline{\operatorname{Coeff}}^{\mathcal{T}}\mathcal{C}\right) \simeq \underline{\operatorname{Coeff}}^{\mathcal{T}}\left(\mathcal{C}^{K}\right)$; in particular, choosing $\mathcal{C} = \mathcal{K}$, \mathcal{T} -coefficient systems in presheaves of spaces on K can equivalently be realized as \mathcal{T} -equivariant presheaves of \mathcal{T} -spaces on K with trivial \mathcal{T} -equivariant structure. We henceforth write

$$\underline{\mathcal{S}}_{\mathcal{T},\leq n}^{K} \coloneqq \underline{\operatorname{Coeff}}^{\mathcal{T}}\left(\mathcal{S}_{\leq n}^{K}\right); \qquad \underline{\mathcal{S}}_{\mathcal{T}}^{K} \coloneqq \underline{\operatorname{Coeff}}^{\mathcal{T}}\left(\mathcal{S}^{K}\right).$$

Given $V \in \mathcal{T}$ an orbit and $S \in \mathbb{F}_V$ a finite V-set, we write $\varphi_{SV} \colon \operatorname{Ind}_V^{\mathcal{T}}S \to V$ for the corresponding map in $\mathbb{F}_{\mathcal{T}}$, and we write

$$\mathcal{C}_{S} \coloneqq \prod_{U \in \operatorname{Orb}(S)} \mathcal{C}_{U} \simeq \operatorname{Fun}_{\mathcal{T}} \left(\operatorname{Ind}_{V}^{\mathcal{T}} S, \mathcal{C} \right).$$

Pullback along the structure map φ_{SV} yields an *indexed diagonal* functor

$$\Delta^{S}: \mathcal{C}_{V} \to \mathcal{C}_{S};$$

its values are $\Delta^S X = (\operatorname{Res}_U^V X)_{U \in \operatorname{Orb}(S)}$. The *S*-indexed coproduct (if it exists) is the left adjoint $\coprod^S : \mathcal{C}_S \to \mathcal{C}_V$ to Δ^S , and the *S*-indexed product $\prod^S : \mathcal{C}_S \to \mathcal{C}_V$ is the right adjoint. These are the ür-examples of equivariantly indexed operations, whose combinatorics we control using weak indexing systems.

Definition 18. A one-color weak indexing system is a full \mathcal{T} -subcategory $\underline{\mathbb{F}}_I \subset \underline{\mathbb{F}}_T$ which is closed under $\underline{\mathbb{F}}_I$ -indexed coproducts and contains $*_V$ for all $V \in \mathcal{T}$. A one-color weak indexing category is a pullback-stable wide subcategory $I \subset \mathbb{F}_T$ subject to the condition that $\coprod_i (T_i \to S_i)$ lies in I if and only if each map $T_i \to S_i$ lies in I.

Given I a one-color weak indexing category, we define the I-admissible V-sets as

$$\underline{\mathbb{F}}_I \coloneqq \left\{ S \mid \operatorname{Ind}_V^T S \to V \in I \right\} \subset \underline{\mathbb{F}}_T$$

we verified in [Ste24] that $\underline{\mathbb{F}}_{(-)}$ furnishes an equivalence between one-color weak indexing systems and one-color weak indexing categories, so we safely conflate these notions. For the following example, a full subcategory $\mathcal{F} \subset \mathcal{T}$ is called a \mathcal{T} -family if, whenever there exists a morphism $V \to W$ with $W \in \mathcal{F}$, we have $V \in \mathcal{F}$.

Example 19. The terminal one-color weak indexing system is $\underline{\mathbb{F}}_{\mathcal{T}}$. We define the following other examples, where $\mathcal{F} \subset \mathcal{T}$ is a fixed \mathcal{T} -family:

$$(\underline{\mathbb{F}}_{\text{triv}})_{V} \coloneqq \{*_{V}\}$$
$$\left(\underline{\mathbb{F}}_{0,\mathcal{F}}\right)_{V} \coloneqq \begin{cases} \{\varnothing_{V}, *_{V}\} & V \in \mathcal{F} \\ \{*_{V}\} & \text{otherwise.} \end{cases}$$
$$\left(\underline{\mathbb{F}}_{\infty}\right)_{V} \coloneqq \{n \cdot *_{V} \mid n \in \mathbb{N}\}.$$

The corresponding one-color weak indexing categories are denoted $I_{\text{triv}}, I_{0,\mathcal{F}}, I_{\infty}$.

Construction 20. We write

$$v(I) \coloneqq \left\{ V \in \mathcal{T} \mid \varnothing_V \in (\underline{\mathbb{F}}_I)_V \right\} \subset \mathcal{T}.$$

This is a \mathcal{T} -family, called the *unit family* of I [Ste24].

We say that $\underline{\mathbb{F}}_I$ is *almost-unital* if, whenever $\{*_V\} \subsetneq \mathbb{F}_{I,V}$, we have $\emptyset_V \in \mathbb{F}_{I,V}$; that is, $\underline{\mathbb{F}}_I$ is unital over all orbits for which $\underline{\mathbb{F}}_I$ has nontrivial arities. We say $\underline{\mathbb{F}}_I$ is *unital* if $\emptyset_V \in \mathbb{F}_{I,V}$ for all V.

1.2. Preliminaries on *I*-commutative monoids and *I*-symmetric monoidal ∞ -categories. Let *I* be a one-color weak indexing category. The pair ($\mathbb{F}_{\mathcal{T}}$, *I*) is a span pair in the sense of [EH23] (i.e. ($\mathbb{F}_{\mathcal{T}}$, *I*, *I*) is an adequate triple in the sense of [Bar14]), so it yields a wide subcategory

$$\operatorname{Span}_{I}(\mathbb{F}_{T}) \hookrightarrow \operatorname{Span}(\mathbb{F}_{T})$$

of the effective Burnside ∞ -category whose morphisms are given by spans $X \leftarrow R \xrightarrow{f} Y$ with $f \in I$. Given I a one-color weak indexing category and C an ∞ -category, we define the ∞ -category of I-commutative monoids in C as

$$\mathrm{CMon}_{I}(\mathcal{C}) \coloneqq \mathrm{Fun}^{\times}(\mathrm{Span}_{I}(\mathbb{F}_{\mathcal{T}}), \mathcal{C}).$$

We define the ∞ -category of small I-symmetric monoidal ∞ -categories as

$$\operatorname{Cat}_{I}^{\otimes} \coloneqq \operatorname{CMon}_{I}(\operatorname{Cat}).$$

We henceforth ignore size issues and omit the adjective "small." Given an *I*-symmetric monoidal ∞ category \mathcal{C} and $S \in \mathbb{F}_{I,V}$ an *I*-admissible *V*-set, we denote the functoriality of \mathcal{C}^{\otimes} under the structure map $\operatorname{Ind}_{S}^{T}S = \operatorname{Ind}_{S}^{T}S \to V$ by

$$\bigotimes^{S}: \mathcal{C}_{S} \to \mathcal{C}_{V}.$$

If I is almost-unital, $S \in \mathbb{F}_{I,V}$ is I-admissible, and $1_U \in \mathcal{C}_U$ is initial whenever it exists, then given an S-indexed tuple $(X_U) \in \mathcal{C}_S$ in an I-symmetric monoidal ∞ -category with S-indexed coproducts, we define an S-indexed tensor Wirthmüller map

$$W_{S,(X_U)} \colon \bigsqcup_U^S X_U \longrightarrow \bigotimes_U^S X_U$$

by defining its composite map $\operatorname{Ind}_W^V X_W \hookrightarrow \coprod_U^S X_U \to \bigotimes_U^S X_U$ to be adjunct to the map

$$X_W \simeq X_W \otimes \bigotimes_W^{\operatorname{Res}_W^V S \to *_W} 1_U \xrightarrow{(\operatorname{id}, \eta)} X_W \otimes \bigotimes_W^{\operatorname{Res}_W^V S \to *_W} X_U \simeq \operatorname{Res}_U^V \bigotimes_U^S X_U;$$

intuitively, on the W'th factor, $W_{S,(X_U)}$ takes x to the simple tensor with x in the W'th place and units elsewhere. Given $J \subset I$, we say that C is J-cocartesian if $W_{S,(X_U)}$ is an equivalence for all $S \in \mathbb{F}_I$ and $(X_U) \in \mathcal{C}_S$, and we say that C is J-cartesian if its "vertical opposite"

$$\operatorname{Span}_{I}(\mathbb{F}_{\mathcal{T}}) \xrightarrow{\mathcal{C}^{\otimes}} \operatorname{Cat} \xrightarrow{\operatorname{op}} \operatorname{Cat}$$

is a J-cocartesian I-symmetric monoidal ∞ -category..

•

⊲

In [Ste25b], given $C \ a \ T$ - ∞ -category with *I*-indexed (co)products, we constructed essentially unique (co)cartesian *I*-symmetric monoidal structures on C and verified that C is *I*-semiadditive in the sense of [CLL24] if and only if there exists an equivalence $C^{I-\sqcup} \simeq C^{I-\times}$, which can be chosen (uniquely) to lie over the identity endofunctor.

1.3. **Preliminaries on** *I***-operads.** In [NS22], an ∞ -category Op_{\mathcal{T}} of \mathcal{T} -operads was introduced, and in [Ste25a; Ste25b] it was given a symmetric monoidal closed \mathcal{T} - ∞ -category structure $\underline{Op}_{\mathcal{T}}^{\otimes}$. We review the relevant formal properties here; in particular, outside of a small part of the verification of another formal property in Proposition 36, we will only use formal properties of $Op_{\mathcal{T}}^{\otimes}$, instead probing its objects via the various functors

$$\begin{array}{ccc} \operatorname{Cat}_{\mathcal{T}}^{\otimes} & & \operatorname{Op}_{\mathcal{T}} & \xrightarrow{\operatorname{sseq}} & \operatorname{Fun}(\operatorname{Tot}_{\Sigma_{\mathcal{T}}}, \mathcal{S}) \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\$$

In this way, this paper can be considered agnostic to the presentation of $\underline{Op}^{\otimes}_{\mathcal{T}}$ and the above functors.

1.3.1. \mathcal{T} -symmetric sequences and I-operads. Writing $\underline{\Sigma}_{\mathcal{T}}$ for the composite \mathcal{T} - ∞ -category

$$\mathcal{T}^{\operatorname{op}} \xrightarrow{\mathbb{F}_{\mathcal{T}}} \operatorname{Cat} \xrightarrow{(-)^{\simeq}} \mathcal{S} \hookrightarrow \operatorname{Cat}$$

and writing Tot: $\operatorname{Cat}_{\mathcal{T}} \simeq \operatorname{Cat}_{\mathcal{T}^{\operatorname{op}}}^{\operatorname{cocart}} \rightarrow \operatorname{Cat}$ for the total category functor, in [Ste25a] we defined a *underlying* \mathcal{T} -symmetric sequence functor

$$\mathcal{O}(-)\colon \operatorname{Op}_{\mathcal{T}} \to \operatorname{Fun}(\operatorname{Tot}_{\underline{\Sigma}_{\mathcal{T}}}, \mathcal{S})$$

To characterize this, we need a definition.

Definition 21. We say that an *I*-operad \mathcal{O}^{\otimes} has at least one color if $\mathcal{O}(*_V) \neq \emptyset$ for all $V \in \mathcal{T}$ and has one color if $\mathcal{O}(*_V) \simeq *$ for all $V \in \mathcal{T}$,

Proposition 22 ([Ste25a]). The functor $\mathcal{O}(-)$: $\operatorname{Op}_{\mathcal{T}} \to \operatorname{Fun}(\operatorname{Tot}_{\Sigma_{\mathcal{T}}}, \mathcal{S})$ has a left adjoint Fr ; in particular, letting $\operatorname{Fr}_{\operatorname{Op}}(S)$ be the free \mathcal{T} -operad on the left Kan extended \mathcal{T} -symmetric sequence

$$\begin{cases} S \\ \downarrow \\ Fr_{\Sigma,S}(*) \end{cases} \xrightarrow{*} S$$

Fot $\underline{\Sigma}_{\mathcal{T}}$,

the adjunctions construct a natural equivalence

$$\operatorname{Alg}_{\operatorname{Fr}_{\operatorname{On}}(S)}(\mathcal{O}) \simeq \mathcal{O}(S).$$

Moreover, the restricted functor $\mathcal{O}(-)\colon \operatorname{Op}_{\mathcal{T}}^{\operatorname{oc}} \to \operatorname{Fun}(\operatorname{Tot}_{\Sigma_{\mathcal{T}}}, \mathcal{S})$ is monadic.

In particular, identifying an object of $\text{Tot}\underline{\Sigma}_{\mathcal{T}}$ with a pair (V, S) where $V \in \mathcal{T}$ and $S \in \mathbb{F}_V$, \mathcal{T} -operads are identified conservatively by the functor

$$\mathcal{O} \mapsto \prod_{V,S} \mathcal{O}(S).$$

Intuitively, we view $\mathcal{O}(S)$ as the space of *S*-ary operations $\left(\operatorname{Res}_{V}^{\mathcal{T}}X\right)^{\otimes S} \to \operatorname{Res}_{V}^{\mathcal{T}}X$ borne by an \mathcal{O} -algebra *X*. This technology allowed us to define the *arity support* functor

$$A\mathcal{O} := \left\{ T \to S \; \middle| \; \prod_{U \in \operatorname{Orb}(S)} \mathcal{O}(T \times_S U) \neq \emptyset \right\} \subset \mathbb{F}_{\mathcal{T}};$$

which we verified in [Ste25a] to be a weak indexing category. In fact, we verified that the essential surjection associated with A possesses a fully faithful right adjoint

(2)
$$\operatorname{Op}_{\mathcal{T}} \underbrace{\overset{A}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\perp}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\dots}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\infty}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\ldots}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\ldots}}{\overset{\omega}{\underset{\mathcal{N}_{(-)\ldots}}{\underset{(-)\ldots}{\underset{(-)$$

we refer to the \mathcal{T} -operad $\mathcal{N}_{I\infty}^{\otimes}$ as the weak \mathcal{N}_{∞} -operad associated with I. Now, we further verified in [Ste25a] that, given a \mathcal{T} -operad \mathcal{O}^{\otimes} , the unique map $\mathcal{O}^{\otimes} \to \operatorname{Comm}_{\mathcal{T}}^{\otimes}$ is a monomorphism if and only if the counit map $\mathcal{O}^{\otimes} \to \mathcal{N}_{A\mathcal{O}}^{\otimes}$ is an equivalence; in particular, we acquire an equality of full subcategories

$$\operatorname{Op}_{\mathcal{T},/\mathcal{N}_{I\infty}^{\otimes}} = A^{-1}(\operatorname{wIndexCat}_{\mathcal{T},\leq I}) \subset \operatorname{Op}_{\mathcal{T}},$$

and a full subcategory of $\operatorname{Op}_{\mathcal{T}}$ has a terminal object if and only if it is of this form. We refer to $\operatorname{Op}_{I} \coloneqq \operatorname{Op}_{\mathcal{T},/\mathcal{N}_{I\infty}^{\otimes}}$ as the ∞ -category of *I*-operads; see [Ste25a] for an intrinsic characterization of Op_{I} .

Monomorphisms are right-cancellable, so all inclusions $I \subset J$ induce monomorphisms $\iota_I^J \colon \mathcal{N}_{I\infty}^{\otimes} \to \mathcal{N}_{J\infty}^{\otimes}$; in other words, the push-pull adjunction

$$Op_{I} \underbrace{\overbrace{\overset{L}{\longrightarrow}}_{Bor_{I}^{J}=l_{I}^{J*}}^{E_{I}^{J}=l_{I}^{J}} Op_{J}$$

witnesses $\operatorname{Op}_I \subset \operatorname{Op}_J$ as a colocalizing subcategory. Moreover, it behaves well with $\overset{\operatorname{BV}}{\otimes}.$

Proposition 23 ([Ste25a]). Suppose $\mathcal{O}^{\otimes}, \mathcal{P}^{\otimes}$ have at least one color. Then, there is an equality

$$A(\mathcal{O}\otimes\mathcal{P})\simeq A\mathcal{O}\vee A\mathcal{P}.$$

In particular, $Op_I \subset Op_T$ is a symmetric monoidal full subcategory.

1.3.2. I-symmetric monoidal categories and O-algebras. [NS22] constructed a (non-full) subcategory inclusion

$$: \operatorname{Cat}_{I}^{\otimes} \to \operatorname{Op}_{T};$$

 \mathcal{T} -operad maps between *I*-symmetric monoidal categories are called *lax I-symmetric monoidal functors*, and morphisms in the image of ι are called *I-symmetric monoidal functors*.

Moreover, given $\mathcal{O}^{\otimes}, \mathcal{C}^{\otimes} \in \operatorname{Op}_{\mathcal{T}}$, we define \mathcal{O} -algebras in \mathcal{C}^{\otimes} to be \mathcal{T} -operad maps $\mathcal{O}^{\otimes} \to \mathcal{C}^{\otimes}$, which naturally fit into an ∞ -category $\operatorname{Alg}_{\mathcal{O}}(\mathcal{C})$. These have a pointwise \mathcal{T} -operad structure $\operatorname{Alg}_{\mathcal{O}}^{\otimes}(\mathcal{C})$ given by the internal hom in a presentably symmetric monoidal structure on $\operatorname{Op}_{\mathcal{T}}$, whose tensor product we write as $\overset{\mathrm{BV}}{\otimes}$ [Ste25a; Ste25b]. The unit for this symmetric monoidal structure is the \mathcal{T} -operad $\operatorname{triv}_{\mathcal{T}}^{\otimes} := \mathcal{N}_{I^{\operatorname{triv}}\infty}^{\otimes}$ [Ste25a], i.e. there is a canonical equivalence

(3)
$$\underline{\operatorname{Alg}}_{\operatorname{triv}_{\mathcal{T}}}^{\otimes}(\mathcal{O}) \simeq \mathcal{O}^{\otimes}$$

Moreover, we verified in [Ste25a] that whenever \mathcal{C}^{\otimes} is an *I*-symmetric monoidal ∞ -category, $\underline{\mathrm{Alg}}^{\otimes}_{\mathcal{O}}(\mathcal{C})$ is as well, and given a \mathcal{T} -operad map $\mathcal{O}^{\otimes} \to \mathcal{P}^{\otimes}$ and an *I*-symmetric monoidal functor $\mathcal{C}^{\otimes} \to \mathcal{D}^{\otimes}$, the induced lax *I*-symmetric monoidal functors

$$\underline{\mathrm{Alg}}^{\otimes}_{\mathcal{P}}(\mathcal{C}) \to \underline{\mathrm{Alg}}^{\otimes}_{\mathcal{O}}(\mathcal{C}); \qquad \qquad \underline{\mathrm{Alg}}^{\otimes}_{\mathcal{O}}(\mathcal{C}) \to \underline{\mathrm{Alg}}^{\otimes}_{\mathcal{O}}(\mathcal{D})$$

are *I*-symmetric monoidal. In particular, when \mathcal{C}^{\otimes} is an *I*-symmetric monoidal ∞ -category and $\mathcal{O}^{\otimes}, \mathcal{P}^{\otimes}$ are *I*-operads, there are natural *I*-symmetric monoidal equivalence

(4)
$$\underline{\mathrm{Alg}}_{\mathcal{O}}^{\otimes}\underline{\mathrm{Alg}}_{\mathcal{P}}^{\otimes}(\mathcal{C}) \simeq \underline{\mathrm{Alg}}_{\mathcal{O}\otimes\mathcal{P}}^{\otimes}(\mathcal{C}) \simeq \underline{\mathrm{Alg}}_{\mathcal{O}}^{\otimes}\underline{\mathrm{Alg}}_{\mathcal{O}}^{\otimes}(\mathcal{C})$$

1.3.3. The underlying \mathcal{T} - ∞ -category. An I-operad \mathcal{O}^{\otimes} has an underlying \mathcal{T} - ∞ -category $U\mathcal{O}$ [NS22]; indeed, \mathcal{T} -operads are equivariantizations of the classical notions of colored operads, and $U\mathcal{O}$ the ∞ -category of colors. Moreover, the composite functor $Cat^{\otimes} \rightarrow On$, $\stackrel{U}{\longrightarrow} Cat_{\mathcal{T}}$ is the usual underlying \mathcal{T} - ∞ -category functor

Moreover, the composite functor $\operatorname{Cat}_{I}^{\otimes} \to \operatorname{Op}_{I} \xrightarrow{U} \operatorname{Cat}_{\mathcal{T}}$ is the usual *underlying* \mathcal{T} - ∞ -category functor. U behaves well with respect to $\operatorname{\underline{Alg}}^{\otimes}$; indeed, we verified in [Ste25a] that the underlying \mathcal{T} - ∞ -category has values

$$U\left(\underline{\operatorname{Alg}}_{\mathcal{O}}^{\otimes}(\mathcal{C})\right)_{V} \simeq \operatorname{Alg}_{\operatorname{Res}_{V}^{\mathcal{T}}\mathcal{O}}\left(\operatorname{Res}_{V}^{\mathcal{T}}\mathcal{C}\right),$$

where $\operatorname{Res}_V^{\mathcal{T}} : \operatorname{Op}_{\mathcal{T}} \to \operatorname{Op}_V$ is a restriction functor, and furthermore

$$\operatorname{Alg}_{\mathcal{O}}(\mathcal{C}) \simeq \Gamma^T U \underline{\operatorname{Alg}}_{\mathcal{O}}^{\otimes}(\mathcal{C}).$$

It was observed in [NS22] that the composite functor $\operatorname{Op}_{I^{\operatorname{triv}}} \subset \operatorname{Op}_{\mathcal{T}} \xrightarrow{U} \operatorname{Cat}_{\mathcal{T}}$ is an equivalence, and that U factors as $\operatorname{Op}_{\mathcal{T}} \xrightarrow{\operatorname{Bor}_{I^{\operatorname{cov}}}} \operatorname{Op}_{I^{\operatorname{triv}}} \simeq \operatorname{Cat}_{\mathcal{T}}$. We write $\operatorname{triv}(-)^{\otimes}$ for the composite functor

$$\operatorname{triv}(-)^{\otimes}\colon \operatorname{Cat}_{\mathcal{T}} \xrightarrow{U^{-1}} \operatorname{Op}_{I^{\infty}} \hookrightarrow \operatorname{Op}_{\mathcal{T}};$$

unwinding definitions, we find that there is a natural equivalence

$$\underline{\operatorname{Alg}}_{\operatorname{triv}(\mathcal{C})}(\mathcal{O}) \simeq \underline{\operatorname{Fun}}_{\mathcal{T}}(\mathcal{C}, U\mathcal{O});$$

that is, $triv(\mathcal{C})$ algebras are simply \mathcal{C} -indexed diagrams of objects.

1.3.4. T-operadic inflation and fixed points. In [Ste25a] we constructed an equivalence

$$\varphi \colon \operatorname{Op}_{I_{\infty}} \xrightarrow{\sim} \operatorname{Coeff}^{\mathcal{T}} \operatorname{Op}$$

exhibiting natural equivalences $\varphi \mathcal{O}_V(n) \simeq \mathcal{O}(n \cdot *_V)$. Limits and constant diagrams yields an *inflation and fixed point* adjunction

$$Op \underbrace{\stackrel{Infl_{e}^{T}}{\stackrel{\iota}{\underset{\Gamma^{T}}{\overset{\Gamma}{\underset{\Gamma^{T}}{\overset{\Gamma}{\underset{\Gamma^{T}}{\overset{\Gamma}{\underset{\Gamma^{T}}{\underset{\Gamma^{T}}{\overset{\Gamma}{\underset{\Gamma^{T}}{\atopT}{\underset{\Gamma^{$$

we refer to the composite adjunction $\operatorname{Op} \rightleftharpoons \operatorname{Op}_{\mathcal{T}}$ also as $\operatorname{Infl}_{\ell}^{\mathcal{T}} \dashv \Gamma^{\mathcal{T}}$. For instance we have

(5)
$$\operatorname{Alg}_{\operatorname{Infl}(\mathcal{O})}(\mathcal{P}) \simeq \operatorname{Alg}_{\mathcal{O}}(\Gamma^T \mathcal{P});$$

moreover, we can identify the image of $\operatorname{Infl}_{e}^{\mathcal{T}}$ easily: they are the I_{∞} -operads \mathcal{O}^{\otimes} whose underlying \mathcal{T} - ∞ category is inflated and whose restriction maps

$$\mathcal{O}(C;D) \to \mathcal{O}(\operatorname{Res}_{U}^{V}C;\operatorname{Res}_{U}^{V}D)$$

are all equivalences.

Example 24. The above description yields a natural equivalence $\operatorname{Infl}_{e}^{\mathcal{T}}(\operatorname{triv}(\mathcal{C})^{\otimes}) \simeq \operatorname{triv}(\operatorname{Infl}_{e}^{\mathcal{T}}\mathcal{C})^{\otimes}$. **Example 25.** The \mathcal{T} -operads $\mathbb{E}_{0}^{\otimes} \coloneqq \mathcal{N}_{I_{0,\mathcal{T}}}^{\otimes}$ and $\mathbb{E}_{\infty}^{\otimes} \coloneqq \mathcal{N}_{I_{\infty}}^{\otimes}$ are inflated from operads of the same names; in particular, unwinding definitions, we may identify \mathbb{E}_{0} -algebras by the formula

$$\underline{\operatorname{Alg}}_{\mathbb{E}_0}(\mathcal{C})_V \simeq \mathcal{C}_{V,1_V}$$

If 1_V is terminal for all $V \in \mathcal{T}$, then this is the \mathcal{T} -category of pointed objects \mathcal{C}_* .

1.3.5. Unital I-operads. Assume that I is an almost unital weak indexing category. In [Ste25b] we introduced the following gamut of definitions, each of which will be useful.

Definition 26. We say that an *I*-operad \mathcal{O}^{\otimes}

- is almost unital if it has at least one color and whenever there exists some $S \in \mathbb{F}_V$ such that $\mathcal{O}(S) \neq \emptyset$, we have $\mathcal{O}(\emptyset_V) \simeq *$,
- is unital if it has at least one color and $\mathcal{O}(\emptyset_V) \simeq \mathcal{N}_{I\infty}(\emptyset_V)$ for all $V \in \mathcal{T}$, and
- is almost reduced if it is almost unital and has one color, and
- is *reduced* if it is unital and has one color.

A \mathcal{T} -operad is almost unital if and only if it's a unital *I*-operad for *some* almost-unital weak indexing category *I*. For this reason, we'll usually focus on either unital *I*-operads or almost-unital \mathcal{T} -operads. It will be important to keep the *I*-symmetric monoidal case in mind.

Example 27. We verified in [Ste25b] that an *I*-symmetric monoidal ∞ -category \mathcal{C}^{\otimes} is a unital *I*-operad if and only if, for all $V \in v(I)$, the unit object $1_V \in \mathcal{C}_V$ is initial.

Write $\mathbb{E}_{0,\nu(I)}^{\otimes} \coloneqq \mathcal{N}_{I_{0,\nu(I)}}^{\otimes}$. We will largely use the following result of [Ste25b] to access unital *I*-operads.

4

⊲

Proposition 28 ([Ste25b]). The full subcategory $Op_I^{uni} \subset Op_I$ of unital I-operads is both a localizing and colocalizing subcategory, i.e. the inclusion participates in a double adjunction

$$\operatorname{Op}_{I} \underbrace{\overset{(-) \otimes \mathbb{E}_{0,\nu(I)}^{\otimes}}{\underbrace{\overset{\bot}{\underset{\underline{\operatorname{Alg}}_{\mathbb{E}_{0,\nu(I)}}^{\otimes}}}}}_{\mathbb{E}_{0,\nu(I)}^{\otimes}} \operatorname{Op}_{I}^{\operatorname{uni}}.$$

In particular, if \mathcal{O}^{\otimes} and \mathcal{C}^{\otimes} are unital, then there are natural equivalences

$$\frac{\operatorname{Alg}_{\mathcal{P}}^{\otimes}(\mathcal{C}) \simeq \operatorname{Alg}_{\mathcal{P}\otimes\mathbb{E}_{0,v(I)}}^{\otimes}(\mathcal{C});}{\operatorname{Alg}_{\mathcal{O}}^{\otimes}(\mathcal{D}) \simeq \operatorname{Alg}_{\mathcal{O}}^{\otimes}\operatorname{Alg}_{\mathbb{E}_{0,v(I)}}^{\otimes}(\mathcal{D}).}$$

We accomplished this in part by recognizing an equality of full subcategories $\operatorname{Op}_{I}^{\operatorname{uni}} = \operatorname{Op}_{I}^{I_{0,v(I)}-\operatorname{Wirth}}$; that is, an *I*-operad is unital if and only if its *I*-symmetric monoidal ∞ -categories of algebras have *V*-units which are initial for each $V \in v(I)$, which is true if and only if they are unital by Example 27. Moreover, since the $\overset{\mathrm{BV}}{\otimes}$ -unit triv $\overset{\otimes}{T}$ is initial among one color *I*-operads, this yields the following easy corollary.

Corollary 29. $\mathbb{E}_{0,\nu(I)}^{\otimes}$ is initial among reduced *I*-operads.

 Op_I^{red} has initial unit object; interestingly, it has *absorptive* terminal object.

Proposition 30 ([Ste25b]). If \mathcal{O}^{\otimes} is a unital I-operad, then the map $\mathbb{E}_{0,\nu(I)}^{\otimes} \to \mathcal{O}^{\otimes}$ induces a (unique) equivalence

$$\mathcal{N}_{I\infty}^{\otimes} \simeq \mathcal{N}_{I\infty}^{\otimes} \overset{BV}{\otimes} \mathbb{E}_{0,v(I)}^{\otimes} \overset{\sim}{\longrightarrow} \mathcal{N}_{I\infty}^{\otimes} \overset{BV}{\otimes} \mathcal{O}^{\otimes}.$$

1.3.6. Cartesian and cocartesian I-symmetric monoidal ∞ -categories. In [Ste25b], given C a \mathcal{T} - ∞ -category with I-indexed (co)products, we defined cocartesian and cartesian I-symmetric monoidal ∞ -categories $C^{I-\sqcup}$ and $C^{I-\times}$, which are determined by the properties that their I-indexed tensor products are canonically equivalent to indexed (co)products. We gave algebras in cartesian I-symmetric monoidal ∞ -categories an explicit presentation generalizing the \mathcal{O} -monoids of [HA] (as \mathcal{T} -functors satisfying "Segal conditions") which we will not mention explicitly here; as a relic of this, we will simply use the notation

(6)
$$\underline{\mathrm{Mon}}_{\mathcal{O}}(\mathcal{D}) \coloneqq \underline{\mathrm{Alg}}_{\mathcal{O}}(\mathcal{D}^{I-\times}); \qquad \mathrm{Mon}_{\mathcal{O}}(\mathcal{D}) \coloneqq \mathrm{Alg}_{\mathcal{O}}(\mathcal{D}^{I-\times}).$$

The associated I-symmetric monoidal structure is cartesian [Ste25b]. When \mathcal{C} is an ∞ -category, we will write

(7)
$$\underline{\mathrm{Mon}}_{\mathcal{O}}(\mathcal{C}) \coloneqq \underline{\mathrm{Mon}}_{\mathcal{O}}(\underline{\mathrm{Coeff}}^{\mathcal{T}}\mathcal{C}); \qquad \mathrm{Mon}_{\mathcal{O}}(\mathcal{C}) \coloneqq \mathrm{Mon}_{\mathcal{O}}(\underline{\mathrm{Coeff}}^{\mathcal{T}}\mathcal{C}).$$

7

instead we will use their monadic presentation, which goes as follows.

Proposition 31 ([Ste25a]). Suppose C is a presentable and cartesian closed ∞ -category. Then, the monad $T_{\mathcal{O}}$ associated with the monadic functor $\operatorname{Mon}_{\mathcal{O}}(\mathcal{C}) \to \operatorname{Coeff}^{T} \mathcal{C}$ has fixed points

$$(T_{\mathcal{O}}X)^{W} \simeq \prod_{S \in \mathbb{F}_{I,W}} \left(\operatorname{Fr}_{\mathcal{C}} \mathcal{O}(S) \times \prod_{U \in \operatorname{Orb}(S)} X^{U} \right)_{h \operatorname{Aut}_{W}(S)},$$

where $\operatorname{Fr}_{\mathcal{C}} \colon S \to \mathcal{C}$ is the unique left adjoint sending * to the terminal object of \mathcal{C} .

Moreover, in the case that \mathcal{O}^{\otimes} is unital, we characterized cocartesian algebras simply as diagrams

$$\underline{\operatorname{Alg}}_{\mathcal{O}}^{\otimes}\left(\mathcal{C}^{I-\sqcup}\right) \simeq \underline{\operatorname{Fun}}_{\mathcal{T}}(U\mathcal{O},\mathcal{C})^{I-\sqcup};$$

in fact, $C^{I-\sqcup}$ still exists as an *I*-operad with the above algebras in when C is not assumed to have *I*-indexed coproducts. In particular, in the unital case, we acquire a double adjunction

Example 32. In [Ste25b] we gave a general formula for $C^{I-\sqcup}$, but the mapping-in property makes it easy enough to determine this in the case that C: there is an equivalence

$$\operatorname{Alg}_{\mathcal{O}}\left(*_{\mathcal{T}}^{I-\sqcup}\right) \simeq * \simeq \operatorname{Alg}_{\mathcal{O}}\left(\mathcal{N}_{I\infty}^{\otimes}\right),$$

natural in the unital *I*-operad \mathcal{O}^{\otimes} , constructing an equivalence $\mathcal{N}_{I\infty}^{\otimes} \simeq *_{\mathcal{T}}^{I-\sqcup}$ by Yoneda's lemma.

1.3.7. *I-d-operads*. In [Ste25a], we defined the full subcategory $\operatorname{Op}_{\mathcal{T},d} \subset \operatorname{Op}_{\mathcal{T}}$ of \mathcal{T} -*d-operads* to be those such that $\mathcal{O}(S)$ is a (d-1)-truncated space for all $S \in \underline{\mathbb{F}}_{A\mathcal{O}}$, and verified the following.

Proposition 33 ([Ste25a]). *Fix* $d \ge -1$ and $\mathcal{O}^{\otimes} \in \operatorname{Op}_{\mathcal{T}}$.

(1) The inclusion $\operatorname{Op}_{\mathcal{T},d} \subset \operatorname{Op}_{\mathcal{T}}$ has a left adjoint $h_d \colon \operatorname{Op}_{\mathcal{T}} \to \operatorname{Op}_{\mathcal{T},d}$ satisfying

$$h_d \mathcal{O}(S) \simeq \tau_{\leq d-1} \mathcal{O}(S).$$

(2) The unit of the h_0 -localization adjunction is the map $\mathcal{O}^{\otimes} \to \mathcal{N}^{\otimes}_{A\mathcal{O}}$; in particular, $\mathcal{N}^{\otimes}_{(-)\infty}$ factors through an equivalence

wIndexCat_{$$T$$} \simeq Op _{$T,0$}

(3) When \mathcal{P}^{\otimes} is a \mathcal{T} -d-operad, there is a natural equivalence

$$\underline{\mathrm{Alg}}^{\otimes}_{\mathcal{O}}(\mathcal{P}) \simeq \underline{\mathrm{Alg}}^{\otimes}_{h_d\mathcal{O}}(\mathcal{P}),$$

and each are T-d-operads.

(4) An I-symmetric monoidal ∞ -category \mathcal{C}^{\otimes} is a \mathcal{T} -d-operad if and only if UC is a \mathcal{T} -d-category.

We call $h_d \mathcal{O}^{\otimes}$ the homotopy *d*-operad of \mathcal{O}^{\otimes} .

1.3.8. \mathcal{O} -algebras in I-symmetric monoidal 1-categories. Fix \mathcal{C}^{\otimes} an I-symmetric monoidal 1-category; in light of Proposition 33, to characterize \mathcal{O} -algebras in \mathcal{C}^{\otimes} , we may equivalently characterise $h_1\mathcal{O}$ -algebras in \mathcal{C} , so assume \mathcal{O}^{\otimes} is an I-1-operad, i.e. its structure spaces are sets.

We gave a simple combinatorial model for *I*-1-operads in [Ste25a], which we will not relitigate here, instead focusing only on algebras. Given a \mathcal{T} -object $X \in \Gamma^{\mathcal{T}} \mathcal{C}$, we defined the *unreduced endomorphism I*-operad End_X(\mathcal{C}) as a one-colored *I*-1-operad with structure sets

$$\operatorname{End}_X(\mathcal{C})(S) \simeq \operatorname{Hom}_{\mathcal{C}_V}(X_V^{\otimes S}, X_V)$$

where $X_V \in \mathcal{C}_V$ is the V-object underlying X. 1-categorical algebras take a familiar form.

Proposition 34 ([Ste25a]). Given $\mathcal{O}^{\otimes} \in \operatorname{Op}_{I,1}^{\operatorname{oc}}$, $\operatorname{Alg}_{\mathcal{O}}(\mathcal{C})$ is a 1-category whose objects are pairs $(X \in \Gamma^{\mathcal{T}}\mathcal{C}, \varphi : \mathcal{O} \to \operatorname{End}_{X}(\mathcal{C}))$ and whose morphisms are $\Gamma^{\mathcal{T}}\mathcal{C}$ -maps $f : X \to Y$ such that the corresponding diagram commutes

$$\mathcal{O}^{\otimes} \underbrace{\swarrow}_{\operatorname{End}_{Y}(\mathcal{C})}^{\operatorname{End}_{X}(\mathcal{C})}$$

Moreover, we may exploit this to explicitly describe interchange.

Corollary 35 ([Ste25a]). Given $\mathcal{O}^{\otimes}, \mathcal{P}^{\otimes} \in \operatorname{op}_{I,1}^{\operatorname{oc}}$, an $\mathcal{O} \overset{BV}{\otimes} \mathcal{P}$ -algebra structure on X is precisely a pair of \mathcal{O} -algebra and \mathcal{P} -algebra structures such that, for all $\mu \in \mathcal{O}(S)$, the corresponding \mathcal{C} -map $X_{\underline{V}}^{\otimes S} \to X_{\underline{V}}$ is a morphism of \mathcal{P} -algebras; a morphism of $\mathcal{O} \overset{BV}{\otimes} \mathcal{P}$ -algebras is a $\Gamma^T \mathcal{C}$ -map which is separately an \mathcal{O} -algebra and \mathcal{P} -algebra morphism.

⊲

1.4. The doctrinal adjunction. The following proposition will play a crucial role in constructing *I*-symmetric monoidal left adjoints. We temporarily assume that the reader is familiar with [Ste25a, \S 2].

Proposition 36 (Doctrinal adjunction). Suppose $L^{\otimes}: \mathcal{C}^{\otimes} \to \mathcal{D}^{\otimes}$ is an I-symmetric monoidal functor whose underlying \mathcal{T} -functor L admits a right adjoint R. Then, R lifts to a canonical lax I-symmetric monoidal right adjoint $\mathbb{R}^{\otimes} \vdash \mathbb{L}^{\otimes}$. Moreover, for any \mathcal{T} -operad \mathcal{O}^{\otimes} the postcomposition lax I-symmetric monoidal functors partake in a lax I-symmetric monoidal adjunction

$$L^{\otimes}_* : \operatorname{Alg}^{\otimes}_{\mathcal{O}}(\mathcal{C}) \rightleftharpoons \operatorname{Alg}^{\otimes}_{\mathcal{O}}(\mathcal{D}) : R^{\otimes}_*$$

such that L^{\otimes_*} is I-symmetric monoidal. If \mathbb{R}^{\otimes} is symmetric monoidal then \mathbb{R}^{\otimes}_* is symmetric monoidal; if \mathbb{R} is also fully faithful, then \mathbb{R}^{\otimes}_* is fully faithful.

Proof. Applying [HA, Prop 7.3.2.6] to the fibrations on opposite categories, we acquire a right adjoint $R^{\otimes} \vdash L^{\otimes}$ relative to $\operatorname{Span}_{I}(\mathbb{F}_{T})$. Moreover, an identical argument to [HA, Cor 7.3.2.7] shows that R^{\otimes} preserves cocartesian lifts for inert morphisms. The lax *I*-symmetric monoidal functors L^{\otimes}_{*} and R^{\otimes}_{*} are then constructed in [Ste25a], where postcomposition along an *I*-symmetric monoidal functor is verified to be *I*-symmetric monoidal; in particular, L^{\otimes}_{*} is always *I*-symmetric monoidal and R^{\otimes}_{*} is *I*-symmetric monoidal whenever R^{\otimes} is.

Note that postcomposition along the unit and counit data for $L^{\otimes} \dashv R^{\otimes}$ yield unit and counit data for L^{\otimes}_{*} and R^{\otimes}_{*} in any case. When R^{\otimes}, L^{\otimes} are symmetric monoidal and R is fully faithful, the counit $\varepsilon \colon L^{\otimes}R^{\otimes}\mathcal{C}^{\otimes} \to \mathcal{C}^{\otimes}$ is an *I*-symmetric monoidal functor whose underlying \mathcal{T} -functor is an equivalence, so ε is an *I*-symmetric monoidal equivalence; in particular, this implies that the counit of $L^{\otimes}_{*} \dashv R^{\otimes}_{*}$ is an equivalence, so R^{\otimes}_{*} is fully faithful.

1.5. Recognizing h_{n+1} -equivalences. Theorem D recognizes morphisms of \mathcal{T} -operads which become equivalences after applying h_{n+1} , so we now spell out some of its antecedents.

Proposition 37. Let $\varphi \colon \mathcal{O}^{\otimes} \to \mathcal{P}^{\otimes}$ be a morphism of \mathcal{T} -operads. The following are equivalent:

(a) for all $S \in \underline{\mathbb{F}}_{A\mathcal{O}} \cup \underline{\mathbb{F}}_{A\mathcal{P}}$, the map of spaces

$$\varphi(S): \mathcal{O}(S) \to \mathcal{P}(S)$$

is an *n*-equivalence;

- (b) φ is an h_{n+1} -equivalence;
- (c) for all T-symmetric monoidal (n + 1)-categories C, the pullback T-symmetric monoidal functor

$$\operatorname{Alg}_{\mathcal{D}}^{\otimes}(\mathcal{C}) \to \operatorname{Alg}_{\mathcal{D}}^{\otimes}(\mathcal{C})$$

is an equivalence;

(d) the pullback functor

$$\operatorname{Mon}_{\mathcal{P}}(\mathcal{S}_{\leq n}) \to \operatorname{Mon}_{\mathcal{O}}(\mathcal{S}_{\leq n})$$

is an equivalence; and

(e) for all ∞ -categories K, the pullback map of spaces

$$\operatorname{Mon}_{\mathcal{P}}\left(\mathcal{S}_{\leq n}^{K}\right)^{\simeq} \to \operatorname{Mon}_{\mathcal{O}}\left(\mathcal{S}_{\leq n}^{K}\right)^{\simeq}$$

is an equivalence.

To prove this, we apply the following lemma.

Lemma 38. Given a \mathcal{T} -operad \mathcal{P}^{\otimes} and a pair of ∞ -categories \mathcal{D}, K such that \mathcal{D} admits finite products, there is an equivalence

$$\underline{\mathrm{Mon}}_{\mathcal{P}}(\mathcal{D}^{K}) \simeq \underline{\mathrm{Fun}}_{\mathcal{T}}(\mathrm{Infl}_{e}^{\mathcal{T}}K, \underline{\mathrm{Mon}}_{\mathcal{P}}(\mathcal{D})),$$

natural in functors of K, product-preserving functors of \mathcal{D} , and \mathcal{T} -operad maps of \mathcal{P} ; in particular, taking \mathcal{T} -fixed points yields a natural equivalence of categories

$$\operatorname{Mon}_{\mathcal{P}}(\mathcal{D}^K) \simeq \operatorname{Mon}_{\mathcal{P}}(\mathcal{D})^K.$$

Proof. We construct a chain of equivalences

$$\underline{\operatorname{Mon}}_{\mathcal{P}}(\mathcal{D}^{K}) \simeq \underline{\operatorname{Alg}}_{\mathcal{P}}(\underline{\operatorname{Coeff}}^{T}(\mathcal{D}^{K})^{T-\mathsf{x}}) \qquad \operatorname{Eqs.} (6) \text{ and } (7)$$

$$\simeq \underline{\operatorname{Alg}}_{\mathcal{P}}\underline{\operatorname{Fun}}_{\mathcal{T}}\left(\operatorname{Infl}_{e}^{T}K, \underline{\operatorname{Coeff}}^{T}\mathcal{D}\right)^{T-\mathsf{x}} \qquad \operatorname{Example} 17$$

$$\simeq \underline{\operatorname{Alg}}_{\mathcal{P}}\underline{\operatorname{Alg}}_{\operatorname{triv}(\operatorname{Infl}_{e}^{T}K)}^{\otimes}\left(\underline{\operatorname{Coeff}}^{T}\mathcal{D}^{T-\mathsf{x}}\right) \qquad \operatorname{Eq.} (3)$$

$$\simeq \underline{\operatorname{Alg}}_{\mathcal{P}}\underline{\operatorname{Alg}}_{\operatorname{Infl}_{e}^{T}\operatorname{triv}(K)}^{\otimes}\left(\underline{\operatorname{Coeff}}^{T}\mathcal{D}^{T-\mathsf{x}}\right) \qquad \operatorname{Example} 24$$

$$\simeq \underline{\operatorname{Alg}}_{\operatorname{Infl}_{e}^{T}\operatorname{triv}(K)}\underline{\operatorname{Alg}}_{\mathcal{P}}^{\otimes}\left(\underline{\operatorname{Coeff}}^{T}\mathcal{D}^{T-\mathsf{x}}\right) \qquad \operatorname{Eq.} (4)$$

$$\simeq \underline{\operatorname{Fun}}_{\mathcal{T}}\left(\operatorname{Infl}_{e}^{T}K, \underline{\operatorname{Alg}}_{\mathcal{P}}\left(\underline{\operatorname{Coeff}}^{T}, \mathcal{D}^{T-\mathsf{x}}\right)\right) \qquad \operatorname{Eq.} (5)$$

$$\simeq \underline{\operatorname{Fun}}_{\mathcal{T}}\left(\operatorname{Infl}_{e}^{T}K, \underline{\operatorname{Mon}}_{\mathcal{P}}(\mathcal{D})\right) \qquad \operatorname{Eqs.} (6) \text{ and } (7)$$

The remaining equivalence follows by noting that $\Gamma^T \operatorname{Infl}_e^T \mathcal{C} \simeq \mathcal{C}$, naturally in \mathcal{C} .

Proof of Proposition 37. A generalization of the equivalence between Conditions (a) to (d) was proved in [Ste25a], and Condition (c) clearly implies Condition (e). Moreover, fixing $\mathcal{D} = S_{\leq n}$ and taking cores of Lemma 38 yields a natural equivalence

$$\operatorname{Mon}_{\mathcal{P}}\left(\mathcal{S}_{\leq n}^{K}\right)^{-} \simeq \operatorname{Map}_{\operatorname{Cat}}\left(K, \operatorname{Mon}_{\mathcal{P}}\left(\mathcal{S}_{\leq n}\right)\right)$$

so Condition (e) and Yoneda's lemma together imply Condition (d).

We say that \mathcal{O}^{\otimes} is *n*-connected if the unique map $\mathcal{O}^{\otimes} \to \mathcal{N}_{A\mathcal{P}}^{\otimes}$ is an h_{n+1} -equivalence. In [Ste25b] we acquired the following additional characterizations for *n*-connected \mathcal{T} -operads:

Proposition 39. Suppose \mathcal{O}^{\otimes} is an almost-unital \mathcal{T} -operad. Then, the following conditions are equivalent:

- (b') \mathcal{O}^{\otimes} is n-connected.
- (f') For all AO-symmetric monoidal (n + 1)-categories C^{\otimes} , the AO-symmetric monoidal (n + 1)-category $\operatorname{Alg}_{\mathcal{O}}^{\otimes}(\mathcal{C})$ is cocartesian.
- (g') $\overline{The \mathcal{T}} \cdot (n+1)$ -category $\underline{Mon}_{\mathcal{O}}(\mathcal{S}_{\leq n})$ is AO-semiadditive.

1.6. The reduced endomorphism *I*-operad as a right adjoint. In [Ste25b], we introduced the *reduced en*domorphism *I*-operad of a \mathcal{T} -operad for the purpose of lifting the disintegration and assembly process of [HA]. In this section, we gain explicit computational control over reduced endomorphism *I*-operads of unital *I*-symmetric monoidal ∞ -categories.

Proposition 40. The inclusion $\operatorname{Op}_{I}^{\operatorname{red}} \simeq \operatorname{Op}_{I,\mathbb{E}_{0,v(I)}^{\ell}}^{\operatorname{red}} \hookrightarrow \operatorname{Op}_{I,\mathbb{E}_{0,v(I)}^{\ell}}^{\operatorname{uni}}$ has a right adjoint computed by the pullback

In the case that \mathcal{C}^{\otimes} is a unital I-symmetric monoidal ∞ -category and $X \in \mathcal{C}_V$ is a V-object, mapping in from the free unital I-operad $\operatorname{Fr}_{\operatorname{Op}}(S) \overset{BV}{\otimes} \mathbb{E}_{0,v(I)}$ on an operation in arity $S \in \mathbb{F}_{I,V}$ yields a pullback

i.e. End^{*I*,red}_{*X*}(*S*) is equivalent to the space of lifts along the following dashed arrow in \mathcal{C}_V

$$\begin{array}{ccc} X^{\sqcup S} & \stackrel{\nabla}{\longrightarrow} X \\ W_{S,X} \downarrow & & \stackrel{\gamma}{\longrightarrow} 1 \\ X^{\otimes S} & \stackrel{\gamma}{\longrightarrow} * \end{array}$$

Proof. We will apply the general reduction procedure of [SY19, Prop 2.1.5], applied to the *sliced* adjunction

$$U_* \colon \operatorname{Op}_{I, \mathbb{E}^{\otimes}_{0, \nu(I)}}^{\operatorname{uni}} \xleftarrow{} \operatorname{Cat}_{\mathcal{T}, *} \colon \eta^*(-)^{I - \sqcup},$$

whose right adjoint is $(-)^{I-\sqcup}$ together with the precomposed structure map

$$\mathbb{E}_{0,\upsilon(I)}^{\otimes} \xrightarrow{\eta} \mathcal{N}_{I\infty}^{\otimes} \simeq *_{\mathcal{T}}^{I-\sqcup} \to \mathcal{C}^{I-\sqcup}.$$

Indeed, $\operatorname{Cat}_{\mathcal{T},*}$ admits an initial object $*_{\mathcal{T}} \simeq U\mathbb{E}_{0,v(I)}$, and $\operatorname{Op}_{I,\mathbb{E}_{0,v(I)}^{\otimes}}^{\otimes}$ admits all limits, which are preserved by U since it is a right adjoint by Eq. (8). Moreover, $\mathbb{E}_{0,v(I)} \in \operatorname{Op}_{I}^{\operatorname{red}}$ is initial by Corollary 29, there is a unique equivalence $\mathcal{N}_{I\infty}^{\otimes} \simeq *_{\mathcal{T}}^{I-\sqcup}$ by Eq. (2) and Example 32, and $\mathcal{O}^{\otimes} \in \operatorname{Op}_{I,\mathbb{E}_{0,v(I)}}^{\operatorname{uni}}$ corresponds with a reduced I-operad if and only if $U\mathcal{O}^{\otimes} \in \operatorname{Cat}_{\mathcal{T},*}$ is initial, so the first claim follows by [SY19, Prop 2.1.5].

To acquire the second pullback square, one need only note that the natural equivalences

$$\operatorname{Map}_{\operatorname{Op}_{\mathcal{T}}}\left(\operatorname{Fr}_{\operatorname{Op}}(S)\overset{\mathrm{Bv}}{\otimes}\mathbb{E}_{0,v(I)}, \, \mathcal{C}^{\otimes}\right) \simeq \operatorname{Map}_{\mathcal{C}_{V}}\left(X^{\otimes S}, X\right)$$
$$\operatorname{Map}_{\operatorname{Op}_{\mathcal{T}}}\left(\operatorname{Fr}_{\operatorname{Op}}(S)\overset{\mathrm{Bv}}{\otimes}\mathbb{E}_{0,v(I)}, \, \mathcal{N}_{I\infty}^{\otimes}\right) \simeq *$$

follow by Propositions 22 and 28. What remains is to verify that the right vertical arrow is $W_{S,X}^*$ and the bottom arrow includes the fold map ∇ ; both facts were verified in [Ste25b].

In fact, [SY19, Prop 4.2.8] introduced a result on connectivity of such spaces of lifts, immediately yielding the following corollary.

Corollary 41. If $X \in \mathcal{C}_V$ is a $(k + \ell + 2)$ -truncated object and the Wirthmüller map $W_{S,X} \colon X^{\sqcup S} \to X^{\otimes S}$ is ℓ -connected, then the space $\operatorname{End}_X^{I,\operatorname{red}}(\mathcal{C})(S)$ is k-truncated.

In general, reduction is an incarnation of the *disintegration and assembly* procedure of [HA; Ste25b]; given a reduced *I*-operad \mathcal{P}^{\otimes} and a *V*-object $X \in \mathcal{O}_V$, applying \mathcal{P} -algebras to Eq. (9) yields a pullback

In the case that $U\mathcal{O}$ is a \mathcal{T} -space, U is a automatically cocartesian fibration, so \mathcal{O} -algebras are $U\mathcal{O}$ -indexed diagrams of $\operatorname{End}_X^{I,\operatorname{red}}(\mathcal{O})$ -algebras. Unfortunately, this is far from our case; the best we can do is take cores of the above pullback square, resulting in the following proposition.

Proposition 42. Suppose $\mathcal{P}^{\otimes} \to \mathcal{Q}^{\otimes}$ is a morphism of *I*-operads inducing an equivalence of spaces

$$\varphi_X^{*,\simeq} \colon \mathrm{Alg}_{\mathrm{Res}_V^T \mathcal{Q}} \mathrm{End}_X^{I,\mathrm{red}}(\mathcal{O})^{\simeq} \longrightarrow \mathrm{Alg}_{\mathrm{Res}_V^T \mathcal{P}} \mathrm{End}_X^{I,\mathrm{red}}(\mathcal{O})$$

for all $V \in \mathcal{T}$ and $X \in U\mathcal{O}_V$. Then, the induced map of \mathcal{T} -spaces

$$\underline{\operatorname{Alg}}_{\mathcal{O}}(\mathcal{O})^{\simeq} \to \underline{\operatorname{Alg}}_{\mathcal{P}}(\mathcal{O})^{\simeq}$$

is an equivalence; in particular, passing to \mathcal{T} -fixed points, the induced map of spaces

$$\operatorname{Alg}_{\mathcal{O}}(\mathcal{O})^{\simeq} \to \operatorname{Alg}_{\mathcal{P}}(\mathcal{O})^{\simeq}$$

is an equivalence.

Proof. Taking cores of Eq. (10), we find that that $\varphi_X^{*,\simeq}$ is the induced map on the homotopy fiber over X of the following map of \mathcal{T} -spaces over $U\mathcal{O}$:

 $\varphi^{*,\simeq}$ is an equivalence if and only if its V-fixed points are an equivalence for all $V \in \mathcal{T}$, and the homotopy fibers of $\varphi^{*,\simeq,V}$ are contractible by the above argument, so $\varphi^{*,\simeq,V}$ is an equivalence for all V. Hence $\varphi^{*,\simeq}$ is an equivalence, proving the proposition. \square

2. Connectivity and Wirthmüller maps

In this section, we verify Theorem D; in particular, we will acquire the following technical corollary.

Corollary 43. If \mathcal{P}^{\otimes} is ℓ -connected at I, then for all $(k + \ell + 2)$ -toposes C, the reduced endomorphism I-operad $\operatorname{End}_X(\operatorname{Mon}_{\mathcal{D}}(\mathcal{C})^{I-\times})$ is an I-(k+1)-operad.

Proof. Since C is a $(k + \ell + 2)$ -category, X is $(k + \ell + 2)$ -truncated, and Theorem D implies that $W_{X,S}$ is ℓ -connected, so the result follows from Corollary 41.

Before moving on, we show how this yields the atomic orbital generalization of Theorem B.

Proof of Theorem B. By passing to restrictions and Borelifications, we assume that \mathcal{O}, \mathcal{P} are almost reduced. By Proposition 37, we're tasked with verifying that, for all presheaf $(k + \ell + 2)$ -toposes C, the map of spaces

$$\operatorname{Mon}_{\mathcal{O}}\operatorname{Mon}_{\mathcal{P}}(\mathcal{C})^{\simeq} \to \operatorname{CMon}_{\mathcal{AO}}(\mathcal{C})^{\simeq}$$

is an equivalence; since $\mathcal{N}_{A\mathcal{O}\infty}^{\otimes} \simeq \mathcal{P}^{\otimes} \overset{\mathrm{BV}}{\otimes} \mathcal{N}_{A\mathcal{O}\infty}^{\otimes}$ by Proposition 30, we may equivalently require that the map

$$\operatorname{Mon}_{\mathcal{O}}\operatorname{Mon}_{\mathcal{P}}(\mathcal{C})^{-} \to \operatorname{CMon}_{\mathcal{AO}}\operatorname{Mon}_{\mathcal{P}}(\mathcal{C})^{-}$$

is an equivalence. In particular, by Propositions 37 and 42, it suffices to prove that $\operatorname{End}_X(\underline{\operatorname{Mon}}_{\mathcal{P}}(\mathcal{C})^{\mathcal{AO}-\times})$ is an AO-(k + 1)-operad, which is Corollary 43. \Box

2.1. Connectivity of algebras can be detected in the value topos. Fix \mathcal{C} an *n*-topos for some $n \leq \infty$.

Lemma 44. A map $f: C \to D$ in Coeff^T C is ℓ -connected if and only if, for all $V \in T^{\text{op}}$, the fixed point map $C^V \to D^V$ is ℓ -connected.

Proof. Per Remark 3, it is equivalent to prove that ℓ -connectiveness of a morphism in Fun($\mathcal{T}^{op}, \mathcal{C}$) is measured elementwise. Indeed, since (co)limits in $\operatorname{Fun}(\mathcal{T}^{\operatorname{op}},\mathcal{C})$ are computed elementwise, effective epimorphisms and diagonals are as well. The former proves the statement for (-2)-connectiveness, and the latter together with the diagonal presentation of [HTT, Prop 6.5.1.18] shows that the statement for $(\ell - 1)$ -connectiveness implies the statement for ℓ -connectiveness, so the lemma follows by induction.

Proposition 45. Given a map $f: X \to Y$ in $Mon_{\mathcal{O}}(\mathcal{C})$, if the underlying map Uf in $Coeff^{\mathcal{T}}\mathcal{C}$ is ℓ -connected. then f is ℓ -connected.

Proof. In view of [SY19, Lem 4.4.1], it suffices to verify that the monad $T_{\mathcal{O}}$: Coeff^T $\mathcal{C} \to \text{Coeff}^T \mathcal{C}$ preserves ℓ -connected morphisms; by Lemma 44, it suffices to verify that whenever each C-diagram $X^V \to Y^V$ is ℓ -connected, each induced map $T_{\mathcal{O}}X^W \to T_{\mathcal{O}}X^W$ is ℓ -connected. But by Proposition 31, it suffices to note that ℓ -connected morphisms in an ∞ -topos are closed under cartesian products and colimits [HTT, Cor 6.5.1.13, Prop 5.2.8.6].

For instance, U preserves the terminal object and is conservative, so it also reflects the property of being terminal; applying Proposition 45 in the case Y = * shows that U reflects n-connectivity of objects.

Remark 46. Since U is a right adjoint, it preserves n-truncatedness and n-truncated objects.

Warning 47. Proposition 45 is delicate for a few reasons.

⊲

- (1) If \mathcal{O} is not *n*-connected, then the free \mathcal{O} -algebra monad $T_{\mathcal{O}}: \mathcal{C}_V \to \mathcal{C}_V$ may itself may fail to preserve *n*-connected objects; indeed, we have $T_{\mathcal{O}^*V} \simeq \coprod_{S \in \mathbb{F}_V} \operatorname{Fr}_{\mathcal{C}} \mathcal{O}(S)_{h\operatorname{Aut}_V S}$, which is often not much more highly connected than the individual spaces $\mathcal{O}(S)_{h\operatorname{Aut}_V S}$.
- (2) U does not generally preserve ℓ -connectivity of objects or morphisms for instance, given an $\ell \geq (k+1)$ connected space X, the equivalence $\Omega^k \colon \mathcal{S}_{*,\geq k+1} \xrightarrow{\sim} \operatorname{Alg}_{\mathbb{E}_k}(\mathcal{S}_{\geq 1})$ exhibits Ω^k as an ℓ -connected \mathbb{E}_k algebra such that $U\Omega^n$ is only in general (ℓk) -connected.
- (3) For a similar reason, U does not usually reflect ℓ -truncatedness of morphisms or objects.

2.2. The proof of Theorem D. We now begin to reduce Theorem D to the case $n \le \ell + 1$ with the following.

Lemma 48. The truncation functor $\tau_{\leq \ell} \colon \mathcal{C} \to \tau_{\leq \ell} \mathcal{C}$ extends to a \mathcal{T} -functor

$$\tau_{\mathcal{O}}: \underline{\mathrm{Mon}}_{\mathcal{O}}(\mathcal{C}) \to \underline{\mathrm{Mon}}_{\mathcal{O}}(\tau_{<\ell}\mathcal{C})$$

satisfying $\tau_{\mathcal{O}}W_{S,X} = W_{S,\tau_{\mathcal{O}}X}$. Moreover, the inclusion $\iota: \tau_{\leq \ell}\mathcal{C} \to \mathcal{C}$ extends to a fully faithful \mathcal{T} -functor

$$\iota_{\mathcal{O}} \colon \underline{\mathrm{Mon}}_{\mathcal{O}}(\tau_{\leq \ell}\mathcal{C}) \hookrightarrow \underline{\mathrm{Mon}}_{\mathcal{O}}(\mathcal{C})$$

such that $\tau_{\mathcal{O}} W_{S,\iota_{\mathcal{O}}X} = W_{S,X}$.

Proof. Since $\tau_{\leq \ell}$ is product-preserving [HTT, Lem 6.5.1.2], $\tau_{\leq \ell} \colon \underline{\text{Coeff}}^T \mathcal{C} \to \underline{\text{Coeff}}^T \tau_{\leq \ell \mathcal{C}}$ is a \mathcal{T} -symmetric monoidal left adjoint for the cartesian structure [Ste25b]; everything other than the equalities involving $W_{S,X}$ then follows straightforwardly from Proposition 36.

In particular, $\tau_{\mathcal{O}}$ is a \mathcal{T} -functor which preserves indexed products and coproducts; this implies that $\tau_{\mathcal{O}}W_{S,X} = W_{S,\tau_{\mathcal{O}}X}$. The remaining equality follows from fully faithfulness by noting that

$$\tau_{\mathcal{O}} W_{S,\iota_{\mathcal{O}} X} = W_{S,\tau_{\mathcal{O}} \iota_{\mathcal{O}} X} = W_{S,X}.$$

⊲

We say that a map $f: X \to Y$ in an *n*-topos is an ℓ -equivalence if it is a $\tau_{\leq \ell}$ -equivalence; if f admits a section, this is equivalent to f being ℓ -connected (see [SY19, Prop 4.3.5] or note that this follows by splitting the long exact sequence in homotopy). We apply this by equivariantizing [SY19, Lem 5.1.1].

Lemma 49. If $\mathcal{C}^{I-\times}$ is a Cartesian I-symmetric monoidal ∞ -category and $S \in \underline{\mathbb{F}}_I$, then the image of the \mathcal{O} -algebra Wirthmüller map $W_{X,S} \colon \coprod_U^S X_U \to \prod_U^S X_U$ under $U \colon \operatorname{Alg}_{\mathcal{O}}(\mathcal{C})_V \to \mathcal{C}_V$ admits a section.

Given (Y_U) an S-tuple and $U \in Orb(S)$ a distinguished orbit, choose the distinguished fixed point α whose induction is the following

(see [Ste24] for the fact that this is indeed a summand inclusion). Let

$$\beta: Y_U \to \operatorname{Res}_U^V \operatorname{CoInd}_U^V Y_U \simeq \prod_W^{\operatorname{Res}_U^V \operatorname{Ind}_U^V *_U} \operatorname{CoInd}_W^U \operatorname{Res}_W^U Y_U$$

be the map whose corresponding map $\operatorname{Res}_W^U Y_U \to \operatorname{Res}_W^U Y_U$ is 0 when $W \neq \alpha$ and the identity otherwise. Let

$$\iota_U \colon Y_U \to \operatorname{Res}_U^V \prod_W^S Y_U \simeq \operatorname{Res}_U^V \operatorname{CoInd}_U^V Y_U \times \operatorname{Res}_U^V \prod_W^{S-U} Y_W$$

be the map corresponding with β on the first factor and 0 on the other. Let $i_U: Y_U \to \operatorname{Res}_U^V \coprod_{U'}^S Y_{U'}$ be adjunct to the inclusion $\operatorname{Ind}_U^V Y_U \hookrightarrow \coprod_{U'}^S Y_{U'}$.

Proof of Lemma 49. Fix some operation $\mu \in \mathcal{O}(S)$. We will verify that the following diagram commutes. Then, $\mu \sigma_1 f$ will be the desired section for $W_{X,S}$.

Note that the top right square is commutative by the fact that $W_{S,X}$ is an \mathcal{O} -algebra morphism and the bottom right follows by unwinding the definition of μ .

Now, note that $\mu \circ g$ is the external product of a collection of endomorphisms $X_U \xrightarrow{\iota_U} X_U^{\times \operatorname{Res}_U^V S} \xrightarrow{\mu} X_U$; unwinding definitions, ι_U is the inclusion of a unit on all but one factor:

in particular, $\mu \circ \iota_U$ is homotopic to the identity, so $\mu \circ g$ is homotopic to the identity, and the bottom triangle commutes.

To characterize the composite morphism of the left rectangle, we may equivalently characterize the composite map $\pi_U \sigma_2 h \sigma_1 f: \prod_U^S X_U \to \operatorname{CoInd}_U^V X_U^{\times \operatorname{Res}_U^V S}$; in fact, under the expression $X_U^{\times \operatorname{Res}_U^V S} \simeq \prod_W^{\operatorname{Res}_W^V S} \operatorname{Res}_W^U X_U$, it suffices to characterize the composite morphism $\prod_U^S X_U \to \operatorname{CoInd}_W^V \operatorname{Res}_W^U X_U$ and verify that it is homotopic to the relevant projection of g for each W, U.

In particular, relevant projection of g is the composite morphism

$$\prod_{U}^{S} X_{U} \twoheadrightarrow \operatorname{CoInd}_{U}^{V} X_{U} \xrightarrow{\delta_{U,W}} \operatorname{CoInd}_{W}^{V} \operatorname{Res}_{W}^{U} X_{U}$$

where $\delta_{U,W}$ is a Kronecker delta

$$\delta_{U,W} = \begin{cases} \text{id} & U = W; \\ 0 & \text{otherwise.} \end{cases}$$

Moreover, note that the projection $\pi_U \sigma_2 h \sigma_1 \colon \prod_U^S X_U \to X_U^{\times \operatorname{Res}_U^V S}$ itself factors as

$$\prod_{U}^{S} \left(\operatorname{Res}_{U}^{V} \bigsqcup_{U}^{V} X_{U} \right) \twoheadrightarrow \operatorname{CoInd}_{U}^{V} X_{U} \xrightarrow{\widetilde{f}_{U}} \operatorname{CoInd}_{W}^{V} \operatorname{Res}_{W}^{U} X_{U},$$

so we're tasked with verifying that f_U is homotopic to $\delta_{U,W}$. Indeed, this follows by examining the following diagram:

Proof of Theorem D. Assume \mathcal{O}^{\otimes} is ℓ -connected at I, i.e. Condition (a). We study the behavior of $W_{S,X}$ under the following diagram:

In particular, by Proposition 37 and Lemma 48, $L_{\mathcal{O}}W_{S,X} = W_{S,L_{\mathcal{O}}X}$ is an equivalence, so $U_{\leq \ell}L_{\mathcal{O}}W_{S,X} = LUW_{S,X}$ is an equivalence, i.e. $UW_{S,X}$ is an ℓ -equivalence. In turn, by Lemma 49 this implies that $UW_{S,X}$ is ℓ -connected, so Proposition 45 implies that $W_{S,X}$ is ℓ -connected, i.e. Condition (b).

The implication Condition (b) \implies Condition (c) is immediate, so assume Condition (c), i.e. fix the case $\mathcal{C} \coloneqq \mathcal{S}$ and assume that that $W_{S,X}$ is ℓ -connected for all $X \in \operatorname{Alg}_{\mathcal{O}} \mathcal{S}$ and $S \in \underline{\mathbb{F}}_{I}$. We may invert the above argument: this time, we find that $UW_{S,\iota_{\mathcal{O}}Y}$ is an ℓ -equivalence for all $Y \in \operatorname{Alg}_{\mathcal{O}} \mathcal{S}_{\leq \ell}$, so $LUW_{S,Y} = U_{\leq \ell} L_{\mathcal{O}} W_{S,\iota_{\mathcal{O}}Y} = U_{\leq \ell} W_{S,Y}$ is an equivalence. By conservativity of $U_{\leq \ell}$, this implies that $W_{S,Y}$ is an equivalence, so \mathcal{O}^{\otimes} is ℓ -connected at I by Proposition 37, proving Condition (a). \Box

3. The
$$C_p$$
-operads $\mathbb{A}^{\otimes}_{2,C_p}$ and $\mathbb{A}^{\otimes}_{2,C_p} \overset{\mathrm{BV}}{\otimes} \mathbb{A}^{\otimes}_{2,C_p}$

For the rest of this article, we specialize to $\mathcal{T} = \mathcal{O}_{C_p}$, where C_p is the group of prime order p, and \mathcal{C} is a 1-category. As in Proposition 22, let $\operatorname{Fr}_{\Sigma}(S)$ denote the free C_p -symmetric sequence on an operation in arity S. Now, the pointwise formula for left Kan extensions yields equivalences

$$\operatorname{Fr}_{\Sigma, p \cdot *_{C_p}}(*)(p \cdot *_e) \simeq \Sigma_p;$$

$$\operatorname{Fr}_{\Sigma_e[C_p/e]}(*)(p \cdot *_e) \simeq \Sigma_p.$$

We define the C_p -symmetric sequence of sets F_{2,C_p} as the coequalizer

$$F_{2,C_p} \coloneqq \operatorname{CoEq}\left(\Sigma_p[p \cdot *_e] \rightrightarrows \left(\operatorname{Fr}_{\Sigma, [C_p/e]}(*) \sqcup \operatorname{Fr}_{\Sigma, p \cdot *_{C_p}(*)}\right)\right),$$

where $\Sigma_p[p \cdot *_e]$ is the C_p -symmetric sequence defined by

$$\Sigma_p[p \cdot *_e](S) \coloneqq \begin{cases} \Sigma_p & S = p \cdot *_e; \\ \varnothing & \text{otherwise.} \end{cases}$$

and the two arrows are the inclusions of $\Sigma_p[p \cdot *_e]$. We define the unital C_p -operad $\mathbb{A}^{\otimes}_{2,C_p}$ by the Boardman-Vogt tensor product

$$\mathbb{A}_{2,C_p}^{\otimes} \coloneqq \mathbb{E}_0^{\otimes} \overset{\mathrm{BV}}{\otimes} \mathrm{Fr}_{\mathrm{Op}}(F_{2,C_p}).$$

As promised, we verify that \mathbb{A}_{2,C_p} -monoids are the same as C_p -unital magmas.

Proposition 50. There is an equivalence between $Mon_{\mathbb{A}_{2,C_{p}}}(\mathcal{C})$ and C_{p} -unital magmas in \mathcal{C} .

Proof. By Example 25 and Proposition 28 we have

$$\operatorname{Mon}_{\mathbb{A}_{2,C_p}}(\mathcal{C}) \simeq \operatorname{Mon}_{\operatorname{Fr}_{\operatorname{Op}}(F_{2,C_p})} \underline{\operatorname{Mon}}_{\mathbb{E}_0}^{\otimes}(\mathcal{C}) \simeq \operatorname{Mon}_{\operatorname{Fr}_{\operatorname{Op}}(F_{2,C_p})}\mathcal{C}_*.$$

Moreover, by Proposition 34, the data of an \mathbb{A}_{2,C_p} -monoid structure on $X \in \operatorname{Coeff}^{C_p} \mathcal{C}$ is equivalently viewed as a map $\eta: *_{C_p} \to X$ (which we identify with an element $\widetilde{X} \in \operatorname{Coeff}^{C_p} \mathcal{C}_*$) and an element of

$$\operatorname{Mon}_{\operatorname{Fr}_{\operatorname{Op}}(F_{2,C_{p}})}(\operatorname{End}_{\widetilde{X}}(\mathcal{C}_{*}))^{\simeq} \simeq \operatorname{Hom}_{\operatorname{Fun}\left(\operatorname{Tot}_{\Sigma_{C_{p}}},\mathcal{S}\right)}\left(F_{2,C_{p}},\operatorname{End}_{\widetilde{X}}(\mathcal{C}_{*})\right)$$
$$\simeq \operatorname{Hom}_{\operatorname{Coeff}^{C_{p}}\mathcal{C}_{*}}\left(\widetilde{X}^{p},\widetilde{X}\right) \times_{\operatorname{Hom}_{\mathcal{C}_{*}}\left(\left(\widetilde{X}^{e}\right)^{p},\widetilde{X}^{e}\right)}\operatorname{Hom}_{\operatorname{Coeff}^{C_{p}}\mathcal{C}_{*}}\left(\operatorname{CoInd}_{e}^{C_{p}}\widetilde{X}^{e},\widetilde{X}\right).$$

We're left with interpreting this concretely: by a standard argument, $\operatorname{Hom}_{\operatorname{Coeff}^{C_p}\mathcal{C}_*}(\widetilde{X}^p,\widetilde{X})$ corresponds bijectively with the set of unital magma structures on X with unit η , and this corresponds bijectively with the pairs of unital magma structures on X^{C_p} and X^e with unit maps η^{C_p} and η^e such that the restriction map is a homomorphism. Under this bijection, the forgetful map $\operatorname{Hom}_{\operatorname{Coeff}^{C_p}\mathcal{C}_*}(\widetilde{X}^p,\widetilde{X}) \to \operatorname{Hom}_{\mathcal{C}_*}((\widetilde{X}^e)^p,\widetilde{X})$ simply forgets the data of X^{C_p} and the restriction.

Similarly, since C_p -coefficient coinduction is presented by the coefficient system $X^p \xleftarrow{\Delta} X$ with permutation action, $\operatorname{Hom}_{\operatorname{Coeff}^{C_p}\mathcal{C}^*}\left(\operatorname{CoInd}_e^{C_p} \widetilde{X}^e, \widetilde{X}\right)$ corresponds bijectively with the set of unital C_p -equivariant transfers $t: X^e \to X^{C_p}$ and unital magma structures on X^e with unit η^e satisfying the condition that the following diagram commutes.

$$\begin{array}{ccc} X^e & \xrightarrow{t} & X^{C_p} \\ \downarrow \Delta & & \downarrow r \\ (X^e)^p & \xrightarrow{*} & X^e \end{array}$$

Once again, the forgetful map restricts to the unital magama structure on η^e ; thus the fiber product corresponds exactly with G-unital magma structures on X with units η^e and η^{C_p} .

Now, what we've described is a bijective assignment of sets $ObMon_{\mathbb{A}_{2,C_{p}}}(\mathcal{C}) \to ObMagma_{C_{p}}^{uni}(\mathcal{C})$ over $Ob\mathcal{C}$. To conclude, it suffices to prove that a $Coeff^{C_{p}}\mathcal{C}$ morphism between a pair of C_{p} -unital magmas is a C_{p} -unital magma homomorphism if and only if it's an $\mathbb{A}_{2,C_{p}}$ -algebra homomorphism.

To prove this, note that an \mathbb{A}_{2,C_p} -monoid morphism is equivalently a $\operatorname{Fr}_{\operatorname{Op}}(F_{2,C_p})$ -monoid morphism of pointed objects, i.e. a pair of maps $F^e: M^e \to N^e$ and $F^{C_p}: M^{C_p} \to N^{C_p}$ which are compatible with units, satisfying $F^{C_p} \circ t = t \circ F^e$ and $F^e \circ r = r \circ F^{C_p}$ together with *p*-degree additivity

It suffices to note that a map between the pointed sets underlying unital magmas is a homomorphism if and only if it intertwines with *n*ary addition for *some* $n \ge 2$; indeed, one can simply identify binary addition with *n*-ary addition whose first (n-2)-factors are the unit.

We now spell out the interchange relations explicitly.

Proposition 51. There is an equivalence between $\operatorname{Mon}_{\mathbb{A}_{2,C_{p}} \otimes \mathbb{A}_{2,C_{p}}}(\mathcal{C})$ and pairs of *G*-unital magma structures $(M, *, \bullet, t_{*}, t_{\bullet})$ in \mathcal{C} satisfying the interchange relations $1_{*} = 1_{\bullet}$ and

Proof. Example 25 and Proposition 28 yields an equivalence.

$$\operatorname{Mon}_{\mathbb{A}_{2,C_p}^{\otimes 2}}(\mathcal{C}) \simeq \operatorname{Mon}_{\operatorname{Fr}_{\operatorname{Op}}(F_{2,C_p})^{\otimes 2}}(\mathcal{C}_*).$$

This is characterized explicitly by Corollary 35 and Proposition 50; it suffices to note that the specified interchange relations correspond precisely with the conditions that t_{\bullet} and \bullet are C_p -unital magma homomorphisms.

We conclude the following form of Theorem A.

Corollary 52. Given C a 1-category, the forgetful functor

$$\operatorname{Fun}^{\times}(\operatorname{Span}(\mathbb{F}_{C_p}), \mathcal{C}) \longrightarrow \operatorname{Mon}_{\mathbb{A}_{2,C_p} \otimes \mathbb{A}_{2,C_p}}(\mathcal{C})$$
$$\simeq \left\{ Interchanging \ pairs \ of \ C_p \text{-unital magmas in } \mathcal{C} \right\}$$

is an equivalence of categories.

References

- [Bar14] C. Barwick. Spectral Mackey functors and equivariant algebraic K-theory (I). 2014. arXiv: 1404.0108 [math.AT] (cit. on p. 8).
- [BDGNS16] Clark Barwick, Emanuele Dotto, Saul Glasman, Denis Nardin, and Jay Shah. Parametrized higher category theory and higher algebra: Exposé I – Elements of parametrized higher category theory. 2016. arXiv: 1608.03657 [math.AT] (cit. on p. 7).
- [BH15] Andrew J. Blumberg and Michael A. Hill. "Operadic multiplications in equivariant spectra, norms, and transfers". In: Adv. Math. 285 (2015), pp. 658–708. ISSN: 0001-8708,1090-2082. DOI: 10.1016/j.aim.2015.07.013. URL: https://arxiv.org/abs/1309.1750 (cit. on p. 2).
- [BH21] Andrew J. Blumberg and Michael A. Hill. "Equivariant stable categories for incomplete systems of transfers". In: J. Lond. Math. Soc. (2) 104.2 (2021), pp. 596–633. ISSN: 0024-6107,1469-7750. DOI: 10.1112/jlms.12441. URL: https://doi.org/10.1112/jlms.12441 (cit. on p. 4).
- [CSY20] Shachar Carmeli, Tomer M. Schlank, and Lior Yanovski. *Ambidexterity and Height.* 2020. arXiv: 2007.13089 [math.AT]. URL: https://arxiv.org/abs/2007.13089 (cit. on p. 4).
- [Cha24] David Chan. "Bi-incomplete Tambara functors as O-commutative monoids". In: Tunisian Journal of Mathematics 6.1 (Jan. 2024), pp. 1–47. ISSN: 2576-7658. DOI: 10.2140/tunis.2024.6.1. URL: https://arxiv.org/pdf/2208.05555 (cit. on p. 2).
- [CLL24] Bastiaan Cnossen, Tobias Lenz, and Sil Linskens. *Parametrized higher semiadditivity and the universality of spans.* 2024. arXiv: 2403.07676 [math.AT] (cit. on pp. 3, 9).
- [Dre71] Andreas W. M. Dress. Notes on the theory of representations of finite groups. Part I: The Burnside ring of a finite group and some AGN-applications. With the aid of lecture notes, taken by Manfred Küchler. Universität Bielefeld, Fakultät für Mathematik, Bielefeld, 1971, iv+158+A28+B31 pp. (loose errata) (cit. on p. 1).
- [EH23] Elden Elmanto and Rune Haugseng. "On distributivity in higher algebra I: the universal property of bispans". In: Compos. Math. 159.11 (2023), pp. 2326–2415. ISSN: 0010-437X,1570-5846. DOI: 10.1112/s0010437x23007388. URL: https://arxiv.org/abs/2010.15722 (cit. on p. 8).
- [GGN15] David Gepner, Moritz Groth, and Thomas Nikolaus. "Universality of multiplicative infinite loop space machines". In: Algebr. Geom. Topol. 15.6 (2015), pp. 3107–3153. ISSN: 1472-2747,1472-2739. DOI: 10.2140/agt.2015.15.3107. URL: https://arxiv.org/pdf/1305.4550 (cit. on p. 4).
- [GM17] Bertrand J. Guillou and J. Peter May. "Equivariant iterated loop space theory and permutative G-categories". In: Algebr. Geom. Topol. 17.6 (2017), pp. 3259–3339. ISSN: 1472-2747. DOI: 10.2140/agt.2017.17.3259. URL: https://arxiv.org/abs/1207.3459 (cit. on p. 5).
- [Lew92] L. Gaunce Lewis Jr. "The equivariant Hurewicz map". In: Trans. Amer. Math. Soc. 329.2 (1992), pp. 433–472. ISSN: 0002-9947,1088-6850. DOI: 10.2307/2153946. URL: https://doi.org/10.2307/2153946 (cit. on p. 1).
- [HTT] Jacob Lurie. Higher topos theory. Vol. 170. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009, pp. xviii+925. DOI: 10.1515/9781400830558. URL: https://www. math.ias.edu/~lurie/papers/HTT.pdf (cit. on pp. 3, 7, 17, 18).

REFERENCES

- [HA] Jacob Lurie. *Higher Algebra*. 2017. URL: https://www.math.ias.edu/~lurie/papers/HA.pdf (cit. on pp. 12, 14-16).
- [Mar24] Gregoire Marc. A higher Mackey functor description of algebras over an N_{∞} -operad. 2024. arXiv: 2402.12447 [math.AT] (cit. on p. 4).
- [Nar16] Denis Nardin. Parametrized higher category theory and higher algebra: Exposé IV Stability with respect to an orbital ∞-category. 2016. arXiv: 1608.07704 [math.AT] (cit. on p. 3).
- [NS22] Denis Nardin and Jay Shah. Parametrized and equivariant higher algebra. 2022. arXiv: 2203. 00072 [math.AT] (cit. on pp. 1, 2, 6, 7, 9–11).
- [RS00] Colin Rourke and Brian Sanderson. "Equivariant configuration spaces". In: J. London Math. Soc. (2) 62.2 (2000), pp. 544–552. ISSN: 0024-6107,1469-7750. DOI: 10.1112/S0024610700001241. URL: https://doi.org/10.1112/S0024610700001241 (cit. on p. 5).
- [SY19] Tomer M. Schlank and Lior Yanovski. "The ∞-categorical Eckmann-Hilton argument". In: Algebr. Geom. Topol. 19.6 (2019), pp. 3119–3170. ISSN: 1472-2747,1472-2739. DOI: 10.2140/ agt.2019.19.3119. URL: https://arxiv.org/abs/1808.06006 (cit. on pp. 2, 3, 6, 16–18).
- [Ste24] Natalie Stewart. Orbital categories and weak indexing systems. 2024. arXiv: 2409.01377 [math.CT]. URL: https://arxiv.org/abs/2409.01377 (cit. on pp. 2, 4, 8, 18).
- [Ste25a] Natalie Stewart. Equivariant operads, symmetric sequences, and Boardman-Vogt tensor products. 2025. arXiv: 2501.02129 [math.CT]. URL: https://arxiv.org/abs/2501.02129 (cit. on pp. 1-6, 9-15).
- [Ste25b] Natalie Stewart. On tensor products of equivariant commutative operads (draft). 2025. URL: https://nataliesstewart.github.io/files/ninfty.html (cit. on pp. 2, 4-6, 9-13, 15, 16, 18).
- [Wir75] Klaus Wirthmüller. "Equivariant S-duality". In: Arch. Math. (Basel) 26.4 (1975), pp. 427–431.
 ISSN: 0003-889X,1420-8938. DOI: 10.1007/BF01229762. URL: https://doi.org/10.1007/BF01229762 (cit. on p. 1).