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The purpose of the following document is to serve as a directory to a large swath of the current knowledge
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called higher algebra (following Lurie’s coinage). Seeing as this text is not called "A directory of brave new
G-algebra," we restrict our focus almost exclusively to equivariant higher algebra. ◁
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This is a work in progress!
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Chapter 1

Stable ∞-categories

The major reference for this section is [Nar16].

1.1 Foundations

• HA.1.1.2.14 follows for the fibers of T -categories by noting that T -stability implies fiberwise stability
[Nar16, Def 7.1].

1.2 Stable ∞-categories and homological algebra

I don’t know of G-references for any of this section.

1.3 Homological algebra and derived categories

I don’t know of G-references for any of this section.

1.4 Spectra and stabilization

• HA.1.4.1.10: I don’t know of a reference for this.

• HA.1.4.2.14: I don’t know of a reference for this.

• HA.1.4.2.17: this follows for T by [Nar16, Lem 7.2].

• HA.1.4.2.23: this follows for T by [Nar16, Thm 7.4].

• HA.1.4.2.27: this follows for T under the additional assumption that the category is T -semiadditive by
[NS22, Def 7.1].

• Section 1.4.3: I don’t know of any references on equivariant t-structures.

• HA.1.4.4.2 may follow for T from the presentable-idempotents equivalence of [Hil24, Thm 6.5.4]
combined with a version of the characterization of T -stable Ind-completions of [Hil24, Prop 5.2.3]. In
general, results from [Hil24, § 6] should help.

• HA 1.4.4.4-1.4.4.6 should probably follow by adding T to the HA proof using the T -AFT of [Hil24,
Thm 6.2.1]; it is worth noting that the T -category of T -spectra is probably presentable by a combination
of [NS22, Thm 7.4] and a version of [Hil24, Lem 6.7.4] for linear functors.
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Chapter 2

∞-operads

The major references for this section are [CH21; CH23; Hau23; NS22].

2.1 Foundations

Section 2.1 is relitigated for T in [NS22, § 2], and modernized in [BHS22; CH21; CH23].

2.2 Constructions of ∞-operads

• HA.2.2.1 for T is [NS22, § 2.9]

• HA.2.2.2 will appear in upcoming work of mine concerning the BV indexed tensor product.

• I don’t know of a reference for HA.2.2.3.

• HA.2.2.4 for T is [NS22, § 2.8] and it is modernized in [BHS22].

• HA.2.2.5 appears in some guise in [Bar18]; I plan to cover this for T in upcoming work concerning BV
tensor products of N∞ and EV G-operads. Nevertheless, the associated internal hom was constructed
in [NS22, § 5.3], and a proof that it is left adjoint to the "obvious" definition of binary G-BV tensors
appears in some lecture notes of mine.

• HA.2.2.6 for T is [NS22, § 3].

2.3 Disintegration and assembly

Approximation of ∞-operads is modernized in [BHS22, § 5], but otherwise I don’t know references for
HA.2.3.

2.4 Products and coproducts

1. HA.2.4.1: the construction of cartesian Symmetric monoidal structures for T appears as [NS22, Ex 2.4.1],
but I don’ know of an existing reference for HA 2.4.1.8-2.4.1.9; this will appear for I-operads in my
upcoming work on N∞-operads, where I is an indexing system.

2. I don’t know of a reference for HA.2.4.2.5, but this is not hard to show in general.

3. HA.2.4.3.9 and its consequences will appear in upcoming work of ine about N∞-operads.

4. I don’t know of any reference for HA.2.4.4.
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Chapter 3

Algebras and modules of ∞-operads

3.1 Free algebras

• HA.3.1.1-2 seems to be developed for T in [NS22, § 4].

• HA.3.1.3 seems to be developed for T as [NS22, Thm 4.3.4]; we will develop the practical computation
of the monad associated with algebras in a distributive G-symmetric monoidal category in upcoming
work in N∞ operads (c.f. [SY19, Lem 2.4.2])

3.2 Limits and colimits of algebras

• HA 3.2.1 is [NS22, § 5.2].

• Much of HA 3.2.2-3.2.3 may be summarized by [NS22, Cor 5.1.5].

• HA 3.2.4.7 is kind of developed for I as [NS22, Cor 5.3.8], so long as "is cocartesian" is interpreted
as "is a cocartesian structure;" we prove that this identifies the I-symmetric monoidal structure in
upcoming work on N∞-operads using an I-lift of HA 2.4.1.8-2.4.1.9.

3.3 Modules over ∞-operads

Upcoming!

3.4 General features of module ∞-categories

Upcoming!
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Chapter 4

Associative algebras and their modules

(to be filled later, but it’s mostly missing)
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Chapter 5

Little cubes and factorizable sheaves

5.1 Definitions and basic properties

• I know of neither a reference nor a precise statement for HA.5.1.1.1.

• HA.5.1.1.4 is lifted to EV as the main theorem of [Ste24], and HA.5.1.1.5 immediately follows.

• HA.5.1.1.7 is lifted to EV in [Ste24].

• I know of no (homotopical) reference for HA.5.1.2.1, and it is likely to be quite difficult; I expect to
resolve this in the spectral setting in upcoming work.

• I know of no reference for HA.5.1.3-HA.5.1.5

5.2 Bar constructions and Koszul duality

(to be filled later, but it’s mostly missing)

5.3 Centers and centralizers

(to be filled later, but it’s mostly missing)

5.4 Little cubes and manifold topology

(to be filled in later, see [Hor19])

5.5 Topological Chiral homology

(to be filled in later, see [Hor19])
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Chapter 6

The calculus of functors

(to be filled later, but it’s mostly missing)
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Chapter 7

Algebra in the stable homotopy category

(to be filled in later, but it’s mostly upcoming)
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Chapter 8

A graph of dependencies in the literature
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The work of
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The∞-categorical perspective on equivariant homotopy perhaps first began in the two papers of Barwick
and Barwick-Glasman-Shah on spectral Mackey functors (i.e. G-spectra, when G is finite). This is where we
first see the effective burnside category come clearly into view in ∞-category theory, defined functorially for
arbitrary disjunctive triples, and with compatibility with certain fibrations via the unfurling construction.

Following this, the writing of book was declared by Barwick-Dotto-Glasman-Nardin-Shah, fleshing out
Hill’s program (c.f. [HH16]) for equivariant algebra in the ∞-categorical perspective, to be distributed first
as a sequence of 9 exposés. In retrospect, around half of these were finished, and it doesn’t appear that the
members are still publishing papers are still publishing in stable equivariant homotopy.

Nevertheless, several immensefully useful papers were developed; of particular note are Glasman’s paper
on isotropy separation over (epi)orbital categories, Shah’s two papers thoroughly covering equivariant higher
category theory, Nardin’s paper on equivariant stability, and Nardin-Shah’s paper covering some rudiments
of equivariant operads.
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SPECTRAL MACKEY FUNCTORS AND EQUIVARIANT

ALGEBRAIC K-THEORY (I)

CLARK BARWICK

For my dear friend Dan Kan.

Abstract. Spectral Mackey functors are homotopy-coherent versions of ordi-
nary Mackey functors as defined by Dress. We show that they can be described
as excisive functors on a suitable ∞-category, and we use this to show that
universal examples of these objects are given by algebraic K-theory.

More importantly, we introduce the unfurling of certain families of Wald-
hausen ∞-categories bound together with suitable adjoint pairs of functors;
this construction completely solves the homotopy coherence problem that
arises when one wishes to study the algebraic K-theory of such objects as
spectral Mackey functors.

Finally, we employ this technology to lay the foundations of equivariant
stable homotopy theory for profinite groups; the lack of such foundations has
been a serious impediment to progress on the conjectures of Gunnar Carlsson.
We also study fully functorial versions of A-theory, upside-down A-theory, and
the algebraic K-theory of derived stacks.
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2 CLARK BARWICK

0. Summary

This paper lays the foundations of what might be called axiomatic derived rep-
resentation theory. Inspired by Bert Guillou and Peter May [11, 12, 13] and Dmitry
Kaledin [18], we construct here a very general homotopy theory of spectral Mackey
functors — families of spectra equipped with operations that mirror the restriction
and induction operations found in ordinary Mackey functors. Our theory of spec-
tral Mackey functors accounts for all of the compositions of these operations, their
homotopies, their homotopies between homotopies, etc.

The basic input is an ∞-category C with two subcategories, C† ⊂ C, whose
maps we call ingressive, and C† ⊂ C, whose maps we call egressive. We require
that ingressive and egressive maps are stable under pullback, and we require that
C admit finite coproducts that act effectively as disjoint unions (Df. 5.2). We call
this a disjunctive triple (C,C†, C†).

Example. The ordinary category of finite continuousG-sets for a profinite groupG
defines a disjunctive triple in which every morphism is both ingressive and egressive.

Example. The ordinary category of varieties over a field defines a disjunctive triple
in which every morphism is egressive but only flat and proper maps are ingressive.

Example. The ∞-category of spaces defines a disjunctive triple in which every
morphism is ingressive but only morphisms with finite (homotopy) fibers are egres-
sive.

The names “ingressive” and “egressive” are meant to suggest functorialities: a
spectral Mackey functor M on C should consist of a covariant functor

M⋆ : C† Sp

and a contravariant functor

M⋆ : (C†)op Sp,

each valued in the ∞-category Sp of spectra. These functors will be required to
carry coproducts to wedges of spectra. These two functors will agree on objects, so
that given a map f : X Y , we obtain a pullback map

f⋆ : M(Y ) =M⋆(Y ) M⋆(X) =M(X)

and a pushforward map

f⋆ : M(X) =M⋆(X) M⋆(Y ) =M(Y ).

Furthermore, the pullback and pushforward maps are required to satisfy a base
change condition; namely, for any pullback square

X ′ Y ′

X Y

f

g g

f

(with abusively named morphisms), we require that

g⋆f⋆ ≃ f⋆g
⋆.

But this description won’t quite do as a definition of Mackey functors. After
all, the base change condition is no condition at all: the homotopies g⋆f⋆ ≃ f⋆g

⋆
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are additional data, and these data have to satisfy additional coherences, which
themselves are homotopies that in turn have to satisfy further coherences, etc., etc.,
ad infinitum. To encode all this data efficiently, we define the effective Burnside ∞-
category Aeff(C,C†, C†) (Df. 5.7). The objects of this ∞-category are the objects
of C, and a morphism from X to Y in Aeff(C,C†, C†) is a span

U

X Y,

in C in which U X is egressive and U Y is ingressive. Composition is
then defined by forming pullbacks. Of course, pullbacks are only unique up to
a contractible choice, so composition in Aeff(C,C†, C†) is only defined up to a
contractible choice. This is no cause for concern, however, as this is exactly the sort
of thing ∞-categories were designed to handle gracefully. In particular, even when
C is an ordinary category, Aeff(C,C†, C†) typically won’t be.

Now the ∞-category Aeff(C,C†, C†) has direct sums (Pr. 4.3 and 5.8), which
are given by the coproduct in C, and a spectral Mackey functor on (C,C†, C†) is a
functor

Aeff(C,C†, C
†) Sp

that carries this direct sum to the wedge of spectra (Df. 6.1). When C is the
category of finite G-sets for some finite group G, a spectral Mackey functor on C
is tantamount to a genuine G-equivariant spectrum. (This is a theorem of Guillou
and May [12].) If we replace the ∞-category of spectra in this discussion with an
ordinary abelian category A, then we recover the usual notion of Mackey functors
for G with values in A in the sense of Dress [4]. So the homotopy groups of a
spectral Mackey functor form an ordinary Mackey functor in abelian groups, just
as one would expect. (We will actually formulate our definition in terms of general
target additive ∞-categories.)

If C is the ordinary category of finite G-sets for some finite group G, the ho-
motopy category hAeff(C) of the effective Burnside ∞-category is not quite what
one would typically call the Burnside category. Rather, the Burnside category is
obtained by forming the group completion of the Hom sets — the “local group
completion” — of Aeff(C). (This is the significance of the word “effective” here;
it’s meant as a loose pun on the phrase “effective divisor.”) Since our target ∞-
categories will be additive and thus already locally group complete, however, the
local group completion of Aeff(C) is a layer of complication we can do without.

The main result of this paper is the discovery that there is a deep connection
between algebraic K-theory and the homotopy theory of spectral Mackey functors.
We show that spectral Mackey functors can be described as excisive functors from
a certain “derived Burnside ∞-category” (Lm. 7.3). This identification allows us to
use the Goodwillie differential [10] to construct Mackey stabilizations of functors
from Aeff(C,C†, C†) to the ∞-category Kan of spaces (Pr. 7.4). It turns out that
this use of the Goodwillie differential can in important cases be related (§9) to the
use of the Goodwillie differential in our characterization of algebraic K-theory [2].
This little observation permits us to express representable Mackey functors SX as
equivariant algebraic K-theory spectra. The spectral Mackey functor S represented
by the terminal object 1 is called the Burnside Mackey functor (Df. 8.1); it is the
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analog of the sphere spectrum in this context. (In a sequel to this work, we will
show that in fact it is the unit for the natural symmetric monoidal structure on
Mackey functors.) Our formula for the Mackey stabilization gives us a K-theoretic
interpretation of this Mackey functor (§13).

More importantly, we solve the central homotopy coherence problem of equi-
variant algebraic K-theory: we prove that the algebraic K-theories of a family of
Waldhausen ∞-categories [2] connected by suitable adjoint pairs of functors to-
gether define a spectral Mackey functor. This we do via an operation we call un-
furling (Df. 11.3). The resulting structure provides a complete accounting for the
functorialities enjoyed by the algebraic K-theory of such a family of Waldhausen
∞-categories.

The structure of a spectral Mackey functor is a very rich one, and it may be
difficult to appreciate its utility from the abstract formalism alone. Therefore, in
a sequence of appendices, we have the pleasure of studying our examples in some
detail. Readers may find it useful to flip back and forth between bits of the body
of the paper and these examples.

(A) The full subcategory of a coherent n-topos in the sense of Lurie (1 ≤ n ≤ ∞)
spanned by the coherent objects is a disjunctive triple in which every morphism
is both ingressive and egressive (Ex. A.2). If, moreover, every coherent object
can be written as a coproduct of finitely many connected objects (Df. A.7),
then our K-theoretic description of the Burnside Mackey functor S gives us a
formula:

S(1) ≃
∨

X

Σ∞
+ BAut(X),

where the wedge is taken over all equivalence classes of connected objects X ,
and Aut(X) denotes the space of auto-equivalences of X (Th. A.9). This is a
very general form of the Segal–tom Dieck splitting.

(B) Suppose G a profinite group. Then the (nerve of the) ordinary category of finite
continuous G-sets (i.e., finite sets with an action of G whose stabilizers are all
open) is an example of the kind above. In particular, we may speak of spectral
Mackey functors for G. When G is finite, it follows from work of Bert Guillou
and Peter May [12] that the homotopy theory of spectral Mackey functors
is equivalent to the homotopy theory of G-equivariant spectra in the sense
of Lewis–May–Steinberger [24], Mandell–May [32], and Hill–Hopkins–Ravenel
[14, 16, 15]. For general profinite groups, we believe that our ∞-category of
spectral Mackey functors for G is the first definition of the homotopy theory
of G-equivariant spectra. (The lack of foundations for such a subject has been
a serious impediment to real progress on the conjectures of Gunnar Carlsson.)
The generalized Segal–tom Dieck splitting (Th. A.9) gives a formula for the
G-fixed points of the G-equivariant sphere spectrum:

SGG ≃
∨

H

Σ∞
+ B(NGH/H),

where the wedge is taken over conjugacy classes of open subgroups H ≤ G,
and NGH denotes the normalizer of H in G (Pr. B.8).

(C) For any space X , there are two kinds of conditions one might impose on a
retractive spaces X X ′ X (Nt. C.9): one could demand that X ′ is a
retract of a finite CW complex (or, alternately, a finite CW complex itself); al-
ternately, one could demand that the homotopy fibers of X ′ X are retracts
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of finite CW complexes (or, alternately, finite CW complexes). The algebraic
K-theories of these ∞-categories are spectra denoted A(X) and

A

(X). The
former is covariantly functorial and the latter is contravariantly functorial.
But each possesses additional functorialities: if X Y is a map whose homo-
topy fibers are retracts of finite CW complexes, then we obtain umkehr maps
A(Y ) A(X) and

A

(X)

A

(Y ). We can assemble these functorialities
together to get Mackey functors A (respectively,

A

) for the disjunctive triple
given by the ∞-category of spaces in which every map is ingressive (resp.,
egressive), and only those maps whose homotopy fibers are retracts of finite
CW complexes are egressive (resp., ingressive) (Nt. C.11). This provides a host
of interesting assembly maps (C.12)

A⊕(X,Y ) ∧A(X) A(Y ) and A⊕(X,Y ) ∧ A

(Y )

A

(X),

where A⊕(X,Y ) is the group completion of the E∞ space of diagrams

X U Y,

where the homotopy fibers of U X are finite CW complexes, and the E∞
structure is given by coproduct. When X = ∗, the maps S A(∗) S can
be composed with these assembly maps to obtain, for any retract U of a finite
CW complex, maps

Σ∞
+ Map(U, Y ) A(Y ) and Σ∞

+ Map(U, Y ) D

A

(Y ).

Dually, when Y = ∗, we obtain, for any space V , maps

Σ∞
+ Maprc(X,V ) DA(X) and Σ∞

+ Maprc(X,V )

A

(X),

where Maprc denotes the space of maps whose homotopy fibers are retracts of
finite CW complexes. Special cases of these maps have been constructed by
Waldhausen, Malkiewich, and others. Moreover, it turns out that all of this
holds when the ∞-category of spaces is replaced with any compactly generated
∞-topos whose terminal object is compact.

(D) In [2, §12], we defined the algebraicK-theory of derived stacks, and we observed
there that it was contravariantly functorial in morphisms of (nonconnective)
spectral Deligne–Mumford stacks. Here we push this further by including the
covariant functoriality of the algebraic K-theory of spectral Deligne–Mumford
stacks in certain and its compatibility with the contravariant functoriality.
More precisely, we construct two disjunctive triples of derived stacks. The first
is the ∞-category of spectral Deligne–Mumford stacks in which we declare
that every morphism is egressive, and a morphism is ingressive if and only if
it is strongly proper, of finite Tor-amplitude, and locally of finite presentation
(D.17). The second is the ∞-category of all flat sheaves (of spaces) on the
∞-category of connective E∞ rings in which we declare that every morphism
is egressive, and a morphism is ingressive if and only if it is quasi-affine repre-
sentable and perfect in the sense that the pushforward of the structure sheaf
is perfect (Pr. D.20). We prove that algebraic K-theory is a spectral Mackey
functor for each of these disjunctive triples (Nt. D.19 and Nt. D.22). This can
be thought of as a very general and very structured form of proper base change
for K-theory. It also ensures the existence of interesting assembly maps

A⊕
DM(X,Y ) ∧K(X) K(Y ) (respectively, A⊕

Shv(X,Y ) ∧K(X) K(Y ) ),
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whereA⊕
DM(X,Y ) (resp.,A⊕

Shv(X,Y )) is the group completion of the E∞ space
of diagrams

X U Y

of spectral Deligne–Mumford stacks (resp., of flat sheaves), where U Y
is strongly proper, of finite Tor-amplitude, and locally of finite presentation
(resp., quasi-affine representable and perfect), and the E∞ structure is given
by coproduct. When X = SpecS, the maps S K(S) S can be composed
with these assembly maps to obtain, for any spectral Deligne–Mumford stack
(resp., any flat sheaf) U , maps

Σ∞
+ Mappr(U, Y ) K(Y ) and Σ∞

+ Mapperf(U, Y ) K(Y ),

where Mappr(U, Y ) (resp., Mapperf(U, Y )) denotes the space of morphisms
U Y that are strongly proper, of finite Tor-amplitude, and locally of fi-
nite presentation (resp., quasi-affine representable and perfect). Dually, when
Y = ∗, we obtain, for any spectral Deligne–Mumford stack (resp., any flat
sheaf) V that is strongly proper, of finite Tor-amplitude, and locally of finite
presentation (resp., quasi-affine representable and perfect) over SpecS, maps

Σ∞
+ Map(V,X) DK(X) and Σ∞

+ Map(V,X) DK(X).

Restricting this to étale covers of a fixed (nice) scheme X with a geometric
point x ∈ X(Ω), we obtain the Galois equivariant K-theory spectrum (Ex.
D.24)

Kπét
1 (X,x)(X) : Bfin

πét
1 (X,x)

Sp.

In a very precise manner, this object encodes the failure of K-theory to satisfy
Galois descent; this is the subject of a series of conjectures of Gunnar Carlsson
[3], which can now be formulated thanks to the foundations we provide here.
We intend to study this object in great detail in future work.

Related work. It is probably safe to say that others have anticipated a fully
∞-categorical (and thus “model-independent”) construction of equivariant stable
homotopy theory, but, as always, the devil is in the details. We believe this is the first
∞-categorical approach to equivariant stable homotopy theory, and it is the first
to provide a complete construction of equivariant algebraic K-theory of families
of Waldhausen ∞-categories of the kind described above. There are, however, a
number of precursors to this paper.

In a brilliant series of papers, Bert Guillou and Peter May construct [11, 12, 13] a
homotopy theory of spectral Mackey functors, and they show that for a finite group
G, the homotopy theory of spectral Mackey functors for finite G is equivalent to the
homotopy theory of genuine G-spectra. Our homotopy theory of spectral Mackey
functors for finite G-sets is easily seen to be equivalent to theirs.

Dmitry Kaledin has also developed [18] a theory of “derived Mackey functors”
(again for finite groups G). Our work here is a generalization of Kaledin’s: the
homotopy category of Mackey functors valued in the derived ∞-category of abelian
groups is naturally equivalent to his derived category of Mackey functors.

Aderemi Kuku, extending work of Andreas Dress [5], has worked for many years
on the foundations of equivariant higher algebraic K-theory as a construction that
yields ordinary abelian group-valued Mackey functors (partly joint with Dress) [6, 7,
19, 20, 21, 22, 23]. For Mackey functors for finite groups, our work can be understood
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as lifting the target of Kuku’s constructions to the ∞-category of spectrum-valued
Mackey functors.

Work of Shimakawa [34, 35, 36, 37, 38] shows that the K-theory of permutative
categories with a suitable action of a finite group can be given the structure of a
genuine G-spectrum. The work here amounts to the generalization of this result to
the context of Waldhausen K-theory for ∞-categories with suitable G-actions.

Mona Merling has an alternate approach to constructing G-spectra from Wald-
hausen categories with a suitable action of a finite group G. It is possible that her
approach and the one given here are suitably equivalent; however, it seems that
the two approaches differ significantly in the details, and Merling’s appears to be
adapted to the technology of equivariant homotopy theory as developed by Lewis–
May–Steinberger [24], Mandell–May [32], and Hill–Hopkins–Ravenel [14, 16, 15].

Acknowledgments. I have had very helpful conversations with David Ayala and
Haynes Miller about the contents of this paper and its sequels.

1. Preliminaries on ∞-categories

In general, we use the terminology from [25, 2, 1]. We review some of the relevant
notation here.

1.1. Notation. In order to deal gracefully with size issues, we’ll use Grothendieck
universes in this paper. In particular, we fix, once and for all, three uncountable,
strongly inaccessible cardinals κ0 < κ1 < κ2 and the corresponding universesVκ0 ∈
Vκ1 ∈ Vκ2 . Now a set, simplicial set, category, etc., will be said to be small if it
is contained in the universe Vκ0 ; it will be said to be large if it is contained in the
universe Vκ1 ; and it will be said to be huge if it is contained in the universe Vκ2 .
We will say that a set, simplicial set, category, etc., is essentially small if it is
equivalent (in the appropriate sense) to a small one.

1.2. The model of ∞-categories we will employ is Joyal’s model of quasicategories,
which we will here call ∞-categories. We refer systematically to [25] for details
about this model of higher categories.

1.3. Notation. A simplicial category — that is, a category enriched in the
category of simplicial sets — will frequently be denoted with a superscript (−)∆.

SupposeC∆ a simplicial category. Then we write (C∆)0 for the ordinary category
given by taking the 0-simplices of the Mor spaces. That is, (C∆)0 is the category
whose objects are the objects of C, and whose morphisms are given by

(C∆)0(x, y) := C∆(x, y)0.

If the Mor spaces of C∆ are all fibrant, then we will often write

C for the simplicial nerve N(C∆)

[25, Df. 1.1.5.5], which is an ∞-category [25, Pr. 1.1.5.10].

1.4. Notation. For any ∞-category A, there exists a simplicial subset ιA ⊂ A,
which is the largest Kan simplicial subset of A [25, 1.2.5.3]. We shall call this space
the interior ∞-groupoid of A. The assignment A ιA defines a right adjoint
ι to the inclusion functor u from Kan simplicial sets to ∞-categories.
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1.5. Notation. The large simplicial category Kan∆ is the category of small Kan
simplicial sets, with the usual notion of mapping space. The large simplicial category
Cat∆∞ is defined in the following manner [25, Df. 3.0.0.1]. The objects of Cat∆∞ are
small ∞-categories, and for any two ∞-categories A and B, the morphism space

Cat∆∞(A,B) := ιFun(A,B)

is the interior ∞-groupoid of the ∞-category Fun(A,B).
Similarly, for any strongly inaccessible cardinal τ , we may define the locally τ -

small simplicial category Kan(τ)∆ of τ -small simplicial sets and the locally τ -small
simplicial category Cat∞(τ)∆ of τ -small ∞-categories.

2. The twisted arrow ∞-category

We have elsewhere [] spoken of the twisted arrow ∞-category of an ∞-category.
Let us recall the basic facts here.

2.1. Proposition. The following are equivalent for a functor θ : ∆ ∆.

(2.1.1) The functor θop : N∆op N∆op is cofinal in the sense of Joyal [25, Df.
4.1.1.1].

(2.1.2) The induced endofunctor θ⋆ : sSet sSet on the ordinary category of
simplicial sets (so that (θ⋆X)n = Xθ(n)) carries every standard simplex
∆m to a weakly contractible simplicial set.

(2.1.3) The induced endofunctor θ⋆ : sSet sSet on the ordinary category of
simplicial sets is a left Quillen functor for the usual Quillen model structure.

Proof. By Joyal’s variant of Quillen’s Theorem A [25, Th. 4.1.3.1], the functor θop is
cofinal just in case, for any integer m ≥ 0, the nerve N(θ/m) is weakly contractible.
The category (θ/m) is clearly equivalent to the category of simplices of θ⋆(∆m),
whose nerve is weakly equivalent to θ⋆(∆m). This proves the equivalence of the first
two conditions.

It is clear that for any functor θ : ∆ ∆, the induced functor θ⋆ : sSet sSet
preserves monomorphisms. Hence θ⋆ is left Quillen just in case it preserves weak
equivalences. Hence if θ⋆ is left Quillen, then it carries the map ∆n ∼ ∆0 to
an equivalence θ⋆∆n ∼ θ⋆∆0 ∼= ∆0, and, conversely, if θop : N∆op N∆op is
cofinal, then for any weak equivalence X ∼ Y , the induced map θ⋆X θ⋆Y
factors as

θ⋆X ≃ hocolimnXθ(n) ≃ hocolimn PN

≃ X
∼ Y

≃ hocolimn Yn

≃ hocolimn Yθ(n) ≃ θ⋆Y,

which is a weak equivalence. This proves the equivalence of the third condition with
the first two. �

2.2. One may call any functor θ : ∆ ∆ satisfying the equivalent conditions
above a combinatorial subdivision . Work of Katerina Velcheva shows that in
fact combinatorial subdivisions can be classified: they are all iterated joins of id
and op. The example in which we are interested, the join op ⋆ id, is originally due
to Segal.
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2.3. Notation. Denote by ǫ : ∆ ∆ the combinatorial subdivision

[n] [n]
op
⋆ [n] ∼= [2n+ 1].

Including [n] into either factor of the join [n]
op
⋆ [n] (either contravariantly or

covariantly) defines two natural transformations op ǫ and id ǫ. Precompo-
sition with ǫ induces an endofunctor ǫ⋆ on the ordinary category of simplicial sets,
together with natural transformations ǫ⋆ op and ǫ⋆ id.

For any simplicial set X , the edgewise subdivision of X is the simplicial set

Õ(X) := ǫ⋆X.

That is, Õ(X) is given by the formula

Õ(X)n = Mor(∆n,op ⋆∆n, X) ∼= X2n+1.

The two natural transformations described above give rise to a morphism

Õ(X) Xop ×X,

functorial in X .

2.4. For any simplicial set X , the vertices of Õ(X) are edges of X ; an edge of Õ(X)
from u v to x y can be viewed as a commutative diagram (up to chosen
homotopy)

u x

v y

When X is the nerve of an ordinary category C, Õ(X) is isomorphic to the nerve
of the twisted arrow category of C in the sense of [8]. When X is an ∞-category,

we are therefore inclined to call Õ(X) the twisted arrow ∞-category of X . This
terminology is justified by the following.

2.5. Proposition (Lurie, [29, Pr. 4.2.3]). If X is an ∞-category, then the functor

Õ(X) Xop ×X is a left fibration; in particular, Õ(X) is an ∞-category.

2.6. Example. To illustrate, for any object p ∈ ∆, the ∞-category Õ(∆p) is the
nerve of the category

00

01 10

..
. . . .. .

. . . .

02 13 31 20

01 12
.. .. .
.

21 10

00 11 22 22 11 00

(Here we write n for p− n.)
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3. The effective Burnside ∞-category

We now employ the edgewise subdivision to define a quasicategorical variant of
the Burnside category. The essence of the idea was explored in our work on the
∞-categorical Q construction.

3.1.Notation. For any∞-category C, denote byR∗(C) : ∆op sSet the functor
given by the assignment

[n] ιFun(Õ(∆n)op , C).

3.2. Proposition. The functor R∗ : Cat0∞ Fun(∆op , sSet) carries every qua-
sicategory to a Reedy fibrant simplicial space, and it preserves weak equivalences.

Proof. We first show that for any ∞-category C, the simplicial space R∗(C) is
Reedy fibrant. This is the condition that for any monomorphism K L, the map

ιFun(Õ(L)op , C) ιFun(Õ(K)op , C)

is a Kan fibration of simplicial sets. This follows immediately from Pr. 2.1 and
[25, Lm. 3.1.3.6]. To see that R∗ preserves weak equivalences, we note that since

Fun(Õ(∆n)op ,−) preserves weak equivalences, so does Rn. �

3.3. Definition. Suppose C an ∞-category. For any integer n ≥ 0, let us say that a

functor X : Õ(∆n)op C is cartesian if, for any integers 0 ≤ i ≤ k ≤ ℓ ≤ j ≤ n,
the square

Xij Xkj

Xiℓ Xkℓ

is a pullback.

Write Aeff
∗ (C) ⊂ R∗(C) for the subfunctor in which Aeff

n (C) is the full simplicial
subset of Rn(C) spanned by the cartesian functors

X : Õ(∆n)op C.

Note that since any functor that is equivalent to an cartesian functor is itself carte-
sian, the simplicial set Aeff

n (C) is a union of connected components of Rn(C).

3.4. Proposition. For any ∞-category C that admits all pullbacks, the simplicial

space Aeff
∗ (C) is a complete Segal space.

Proof. The Reedy fibrancy of Aeff
∗ (C) follows easily from the Reedy fibrancy of

R∗(C).
To see that Aeff

∗ (C) is a Segal space, it is necessary to show that for any integer
n ≥ 1, the Segal map

Aeff
n (C) Aeff

1 (C)×Aeff
0 (C) · · · ×Aeff

0 (C) A
eff
1 (C)

is an equivalence. Let Ln denote the ordinary category

00 01 11 12 · · · (n− 1)(n− 1) (n− 1)n nn.

The target of the Segal map can then be identified with the maximal Kan complex
contained in the ∞-category

Fun(NLn, C).
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The Segal map is therefore an equivalence by the uniqueness of limits in ∞-
categories [25, Pr. 1.2.12.9].

Finally, to check that Aeff
∗ (C) is complete, let E be the nerve of the contractible

ordinary groupoid with two objects; then completeness is equivalent to the assertion
that the Rezk map

Aeff
0 (C) lim

[n]∈(∆/E)op
Aeff
n (C)

is a weak equivalence. The source of this map can be identified with ιC; its target
can be identified with the full simplicial subset of

ιFun(Õ(E)op , C)

spanned by those functors X : Õ(E)op C such that for any simplex ∆n E,

the induced functor Õ(∆n)op C is ambigressive. Note that the twisted ar-
row category of the contractible ordinary groupoid with two objects is the con-
tractible ordinary groupoid with four objects. Consequently, the image of any func-

tor X : Õ(E)op C is contained in ιC. Thus the target of the Rezk map can be

identified with ιFun(Õ(E)op , C) itself, and the Rezk map is an equivalence. �

3.5. It is now clear that Aeff
∗ defines a functor of ∞-categories

Aeff
∗ : Catlex∞ CSS,

where Catlex∞ ⊂ Cat∞ is the subcategory consisting of ∞-categories with all finite
limits and left exact functors between them, and where CSS ⊂ Fun(∆op ,Kan) is
the full subcategory spanned by complete Segal spaces.

Joyal and Tierney show that the functor that carries a simplicial space X to the
simplicial set whose n-simplices are the vertices of Xn induces an equivalence of
∞-categories CSS Cat∞. This leads us to the following definition.

3.6.Definition. For any∞-categoryC that admits all pullbacks, denote by Aeff(C)
the ∞-category whose n-simplices are vertices of Aeff

n (C), i.e., cartesian functors

Õ(∆n)op C. We may call this the effective Burnside ∞-category of C.
This defines a functor of ∞-categories

Aeff : Catlex∞ Cat∞.

3.7. For any ∞-category C that admits all pullbacks, an n-simplex of Aeff(C) is a
diagram

X00

X01 ✸ X10

. .
.

✸
. . .. .
.

✸
. . .

X02 ✸ X13 ✸ X31 ✸ X20

X01 ✸ X12 ✸
. . .. .
.

✸ X21 ✸ X10

X00 X11 X22 X22 X11 X00
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of C in which every square is a pullback. Here we write n for p− n.
Another way of describing Aeff(C) is as follows. The objects of Aeff(C) are pre-

cisely those of C. Between objects X and Y , the space of maps is given by

MapAeff(C)(X,Y ) ≃ ιC/{X,Y },

where {X,Y } denotes the diagram {x, y} C from the discrete simplicial set
{x, y} to C that carries x to X and y to Y . Composition

ιC/{X,Y } × ιC/{Y,Z} ιC/{X,Z}

is defined, up to coherent homotopy, by pullback −×Y −.

3.8. Note that the traditional Burnside category is distinct from Aeff(C) in two
ways. First, when forming the traditional Burnside category, one begins by studying
isomorphism classes of spans between objects. This is to ensure that one obtains
a nice set of maps for which the pullback construction is sensible. In our effective
Burnside∞-category, we do not pass to isomorphism classes. Rather, we are content
to take the entire space of spans between objects as our mapping space. We again use
pullback to define composition, and we lose no sleep over the fact that pullbacks are
only defined up to coherent equivalence, since composition in any∞-category is only
required to be defined up to coherent equivalence in the first place. The ordinary
effective Burnside category of an ordinary category C may be identified with
the homotopy category hAeff(NC) of Aeff(NC).

Second, the ordinary Burnside category is usually defined as the “local group
completion” of this ordinary effective Burnside category. Then Mackey functors are
then defined as additive functors from this Burnside category to, say, the category
of abelian groups. This is overkill: if the target is already group complete, one
knows already what additive functors from the Burnside category will be in terms
of the category before group completion. The group completion is a relatively minor
procedure for ordinary categories, but for ∞-categories, group completion is serious
business. Indeed, if F is the ordinary category of finite sets, then when one forms
the local group completion A(NF) of Aeff(NF), the space of endomorphisms on
the one point set becomes

MapA(NF)(∗, ∗) ≃ QS0,

by Barratt–Priddy–Quillen. To avoid such complications, we happily stick with the
effective Burnside ∞-category.

3.9. Notation. The two natural transformations ε⋆ op and ε⋆ id induce
two natural transformations

(·)⋆ : id Aeff and (·)⋆ : op Aeff.

For any morphism f : U V of an ∞-category C that admits all pullbacks, one
thus obtains morphisms

f⋆ : U V and f⋆ : V U.

For any pullback square

U X

V Y,

i

f g

j
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one obtains a homotopy

g⋆ ◦ j⋆ ≃ i⋆ ◦ f⋆ : V X.

3.10. Notation. Additionally, there is a self-duality equivalence

Õop ∼ Õ,

whence we have a natural equivalence

D : Aeff,op ∼ Aeff

such that the diagram

Aeff,op

id op

Aeff

D

(·)⋆,op

(·)⋆

(·)op⋆

(·)⋆

commutes.

4. Disjunctive ∞-categories

An ∞-category with all finite limits is disjunctive if the coproduct acts effectively
as a disjoint union. The effective Burnside ∞-category Aeff(C) of a disjunctive ∞-
category C has the peculiar property that the initial object of C becomes a zero
object in Aeff(C), and the coproduct in C becomes both the coproduct and the
product in Aeff(C). This permits us to regard the effective Burnside ∞-category as
somewhat “algebraic” in nature.

4.1. Definition. Suppose C is an ∞-category. Then C is said to admit direct
sums if the following conditions hold.

(4.1.1) The ∞-category C is pointed.
(4.1.2) The ∞-category C has all finite products and coproducts.
(4.1.3) For any finite set I and any I-tuple (Xi)i∈I of objects of C, the map

∐
XI

∏
XI

in hC — given by the maps φij : Xi Xj , where φij is zero unless i = j,
in which case it is the identity — is an isomorphism.

If C admits finite direct sums, then for any finite set I and any I-tuple (Xi)i∈I of
objects of C, we denote by

⊕
XI the product (or, equivalently, the coproduct) of

the Xi.
If C admits direct sums, then C will be said to be additive if its homotopy

category hC is additive. Denote by Catadd∞ ⊂ Cat∞(κ1) the subcategory consisting
of locally small additive ∞-categories and functors between them that preserve
direct sums.

We are mostly interested in ∞-categories C such that the ∞-category Aeff(C)
admit direct sums. To ensure this, we introduce the following class of ∞-categories.
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4.2. Definition. An ∞-category will be called disjunctive if it admits all finite
limits and finite coproducts and if, in addition, finite coproducts are disjoint and
universal [25, §6.1.1, (ii) and (iii)].

Equivalently, an ∞-category C that admits all finite limits and all finite coprod-
ucts is disjunctive just in case, for any finite set I and any collection {Xi}i∈I of
objects of C, the natural functor

∏

i∈I
C/Xi

C/
∐

i∈I Xi

given by the coproduct is an equivalence of ∞-categories. Its inverse is given infor-
mally by the assignment

U (U ×∐
j∈I Xj

Xi)i∈I

Let us denote by Catdisj∞ ⊂ Cat∞ the subcategory whose objects are (small)
disjunctive ∞-categories and whose morphisms are those functors that preserve
pullbacks and finite coproducts.

In ordinary category theory, it may be more customary to refer to categories
with the properties described above with the portmanteau “lextensive.” We won’t
be doing that.

4.3. Proposition. If C is a disjunctive ∞-category, then the ∞-category Aeff(C)
admits direct sums.

Proof. We show that the natural functor (·)⋆ : C Aeff(C) preserves coproducts.
The result will then follow from the self-dualityD : Aeff(C)op ≃ Aeff(C). Unwinding
the definitions, the claim that (·)⋆ preserves coproducts amounts to the following
claim: for any object Y of C, the space

ιC/{∅,Y }

is contractible (which follows directly from [25, Lm. 6.1.3.6]), and for any objects
X and X ′ of C, the map

ιC/{X⊔Y,Z} ιC/{X,Z} × ιC/{Y,Z}

given informally by the assignment

W (W ×X⊔Y X,W ×X⊔Y Y )

is an equivalence. We claim that the map

ιC/{X,Z} × ιC/{Y,Z} ιC/{X⊔Y,Z}

given informally by the assignment

(U, V ) U ⊔ V
is a homotopy inverse. Indeed, the statement that

W ≃ (W ×X⊔Y X) ⊔ (W ×X⊔Y Y )

follows from the universality of finite coproducts, and the statement that

U ≃ (U ⊔ V )×X⊔Y X and V ≃ (U ⊔ V )×X⊔Y Y

follows from the identifications

X ≃ X ×X⊔Y X , ∅ ≃ X ×X⊔Y Y and Y ≃ Y ×X⊔Y Y,

all of which follow easily from the disjointness and universality of coproducts. �
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Note that we do not quite use the full strength of disjunctivity here. It would
have been enough to assume only that C admits pullbacks and finite coproducts and
that finite coproducts are disjoint and universal. However, we will use the further
condition that C admits a terminal object and hence all finite products when we
study the Burnside Mackey functor.

5. Disjunctive triples

In a little while we will define Mackey functors on a disjunctive ∞-category
C (valued in spectra, say) as direct-sum preserving functors M from the effective
Burnside category Aeff(C). This means that for any object X of C, we’ll have an
associated spectrum M(X), and for any morphism X Y of C, we’ll have both
a morphism M(X) M(Y ) and a morphism M(Y ) M(X). So a Mackey
functor will splice together a covariant functor and a contravariant functor.

However, it is not always reasonable to expect both covariance and contravari-
ance for all morphisms simultaneously. Rather, one may wish instead to specify
classes of morphisms in which one has covariance and contravariance. This leads to
the notion of a disjunctive triple.

5.1. Recall [2, Df. 1.11] that a pair of ∞-categories (C,C†) consists of an ∞-
category C and a subcategory C† [25, §1.2.11] that contains all the equivalences.

A triple of ∞-categories is an ∞-category equipped with two pair structures.
That is, a triple (C,C†, C†) consists of an ∞-category C and two subcategories

C†, C
† ⊂ C,

each of which contains all the equivalences. We call morphisms of C† ingressive
and morphisms of C† egressive.

5.2. Definition. A triple (C,C†, C†) of ∞-categories is said to be adequate if the
following conditions obtain.

(5.2.1) For any ingressive morphism Y X and any egressive morphismX ′ X ,
there exists a pullback square

Y ′ X ′

Y X.

(5.2.2) In any pullback square

Y ′ X ′

Y X.

f ′

f

if f is ingressive (respectively, egressive), then so is f ′.

We will say that an adequate triple (C,C†, C†) is a disjunctive triple if the
following further conditions obtain.

(5.2.3) The ∞-category C admits finite coproducts.
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(5.2.4) The class of ingressive morphisms and the class of egressive morphisms are
each compatible with coproducts in the following sense. First, any mor-
phism from an initial object is both ingressive and egressive. Second, for any
objects X,Y, Z ∈ C, a morphism X ⊔ Y Z is ingressive (respectively,
egressive) just in case both the restrictions X Z and Y Z are so.

(5.2.5) Suppose I and J finite sets. Suppose that for any pair (i, j) ∈ I × J , we are
given a pullback square

X ′
ij Y ′

j

Xi Y

a pullback square in which Xi Y is ingressive and Y ′
j Y is egressive.

Then the resulting square

∐
(i,j)∈I×J X

′
ij

∐
j∈J Y

′
j

∐
i∈I Xi Y

is also a pullback square.

If (C,C†, C†) is a disjunctive triple, then we shall call a pullback square

Y ′ Y

X ′ X

j

p′ p

i

of C disjunctive if i (and hence also j) is ingressive and p (and hence also p′) is
egressive.

Now a functor of disjunctive triples is a functor of triples

f : (C,C†, C
†) (D,D†, D

†)

(i.e., a functor C D that carries ingressive morphisms to ingressive morphisms
and egressive morphisms to egressive morphisms) such that f preserves finite co-
products and ambigressive pullbacks.

5.3. Notation. Let us write Tripdisj
∞ for the subcategory of the ∞-category Trip∞

of small triples of ∞-categories whose objects are disjunctive triples and whose
morphisms are functors of disjunctive triples.

5.4. Example. Of course every disjunctive ∞-category C admits its maximal
triple structure (C,C,C). Hence anything said of disjunctive triples specializes
to disjunctive ∞-categories.

5.5. Definition. Suppose (C,C†, C†) a triple of ∞-categories. For any integer n ≥
0, let us say that a functorX : Õ(∆n)op C is ambigressive cartesian (relative
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to the triple structure) if, for any integers 0 ≤ i ≤ k ≤ ℓ ≤ j ≤ n, the square

Xij Xkj

Xiℓ Xkℓ

is a pullback in which the morphisms Xij Xkj and Xiℓ Xkℓ are ingressive,
and the morphisms Xij Xiℓ and Xkj Xkℓ are egressive.

Recall the functor R∗(C) : ∆op Kan from Nt. 3.1. Write Aeff
∗ (C,C†, C†) ⊂

R∗(C) for the subfunctor in which Aeff
n (C,C†, C†) is the full simplicial subset of

Rn(C) spanned by the cartesian functors X : Õ(∆n)op C. Note that since any
functor that is equivalent to an cartesian functor is itself cartesian, the simplicial
set Aeff

n (C,C†, C†) is a union of connected components of Rn(C).

The proof of the following is virtually identical to that of Pr. 3.4.

5.6. Proposition. For any adequate triple of ∞-categories (C,C†, C†), the simpli-

cial space Aeff
∗ (C,C†, C†) is a complete Segal space.

5.7. Definition. For any adequate triple of ∞-categories (C,C†, C†), denote by
Aeff(C,C†, C†) the ∞-category whose n-simplices are vertices of Aeff

n (C,C†, C†),

i.e., ambigressive cartesian functors Õ(∆n)op C. We may call this the effective
Burnside ∞-category of (C,C†, C†).

5.8. Suppose (C,C†, C†) a locally small adequate triple of∞-categories (C,C†, C†).
Here’s an alternate way to go about defining Aeff(C,C†, C†). Write P(C) :=
Fun(Cop ,Kan) for the usual ∞-category of presheaves of spaces. We may describe
(an equivalent version of)

Aeff(C,C†, C
†) ⊂ Aeff(P(C))

as the subcategory whose objects are those functors that are representable, in which
a morphism F G of Aeff(P(C)) exhibited as a diagram

H

F G,

lies in Aeff(C,C†, C†) just in case the morphism of C representing the morphism
H F of P(C) is egressive and the morphism of C representing the morphism
H G of P(C) is ingressive. Since the pullback of an ingressive (respectively,
egressive) morphism along an egressive (resp., ingressive) morphism is ingressive
(resp., egressive) of C, and since the Yoneda embedding preserves all limits that
exist in C, it follows that Aeff(C,C†, C†) is indeed a subcategory.

Note that for any disjunctive triple (C,C†, C†), the subcategory

Aeff(C,C†, C
†) ⊂ Aeff(P(C))

is closed under direct sums.

5.9. Notation. Suppose (C,C†, C†) an adequate triple. The two natural transfor-
mations

(·)⋆ : id Aeff and (·)⋆ : op Aeff
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restrict to yield functors

(·)⋆ : C† Aeff(C,C†, C
†) and (·)⋆ : C†,op Aeff(C,C†, C

†)

Consequently, for any ingressive morphism f : U V ofC, one obtains a morphism
f⋆ : U V , and for any egressive morphism f : U V of C, one obtains a
morphism f⋆ : V U . Additionally, for any pullback square

U X

V Y

i

f g

j

in which i, j are ingressive and f, g are egressive, one obtains a homotopy

g⋆ ◦ j⋆ ≃ i⋆ ◦ f⋆ : V X.

5.10. Notation. Suppose (C,C†, C†) a disjunctive triple. Then the self-duality
equivalence

Õop ∼ Õ,

induces the natural equivalence

D : Aeff(C,C†, C†)
op ∼ Aeff(C,C†, C

†)

such that the diagram

Aeff(C,C†, C†)op

C† C†,op

Aeff(C,C†, C†)

D

(·)⋆,op

(·)⋆

(·)op⋆

(·)⋆

commutes.

5.11. A functor of disjunctive triples f : (C,C†, C†) (D,D†, D†) induces a func-
tor Aeff(C,C†, C†) Aeff(D,D†, D†) that preserves direct sums.

6. Mackey functors

6.1. Definition. Suppose E an additive ∞-category, and suppose (C,C†, C†) a
disjunctive triple. Then a Mackey functor on (C,C†, C†) valued in E is a functor

M : Aeff(C,C†, C
†) E

that preserves direct sums. If C itself is a disjunctive ∞-category, then a Mackey
functor on C is nothing more than a Mackey functor on the maximal triple
(C,C,C).

6.2. Example. When E is the nerve of an ordinary additive category, a Mackey
functor M : Aeff(C,C†, C†) E factors in an essentially unique fashion through
the homotopy category hAeff(C,C†, C†) and then its local group completion (ob-
tained by taking the Grothendieck group of the Hom sets). Hence the notion of
Mackey functor described here subsumes the one defined by Dress [4].
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Note that some authors define “ordinary” Mackey functors as functors on the lo-
cal group completion of the opposite category hAeff(C,C†, C†)op . This is just a mat-
ter of convention, as the duality functor provides the equivalenceAeff(C,C†, C†)op ≃
Aeff(C,C†, C†).

6.3.Notation. Suppose E an additive ∞-category, and suppose (C,C†, C†) a small
disjunctive triple. Then we denote by

Mack(C,C†, C
†;E) ⊂ Fun(Aeff(C,C†, C

†), E)

the full subcategory spanned by the Mackey functors. This is covariantly functo-
rial for additive functors in E. For any functor f : (C,C†, C†) (D,D†, D†) of
disjunctive triples, we have an induced functor

f⋆ : Mack(D,D†, D
†, E) Mack(C,C†, C

†, E).

These functors fit together to yield a functor

Mack : Tripdisj ,op
∞ ×Catadd∞ Cat∞(κ1).

If C is a disjunctive ∞-category, then Mack(C,E) = Mack(C,C,C;E).

In fact, let’s see that the functor Mack is valued in Catadd∞ .

6.4. Proposition. For any disjunctive triple (C,C†, C†) and for any additive ∞-
category E, the ∞-category Mack(C,C†, C†;E) is additive.

Proof. It is easy to see that Fun(Aeff(C,C†, C†), E) is additive. The full subcategory

Mack(C,C†, C
†;E) ⊂ Fun(Aeff(C,C†, C

†), E)

is closed under finite direct sums by noting that the constant functor at a zero
object clearly preserves direct sums, and for any Mackey functors M and N , the
functor M ⊕N carries zero objects to zero objects, and

(M ⊕N)(X ⊕ Y ) = M(X ⊕ Y )⊕N(X ⊕ Y )

≃ M(X)⊕M(Y )⊕N(X)⊕N(Y )

≃ (M ⊕N)(X)⊕ (M ⊕N)(Y )

for any objects X,Y ∈ Aeff(C,C†, C†). �
Perhaps surprisingly, Mackey functors are closed under all limits and colimits.

6.5. Proposition. For any disjunctive triple (C,C†, C†) and for any additive ∞-
category E that admits all limits (respectively, all colimits), the full subcategory
Mack(C,C†, C†;E) ⊂ Fun(Aeff(C,C†, C†), E) is closed under limits (resp., under
colimits).

Proof. We will prove the statement about colimits. The statement about limits will
then follow from consideration of the equivalence

Mack(C,C†, C
†;E)op ≃ Mack(C,C†, C†;E

op).

We have already seen that Mack(C,C†, C†;E) ⊂ Fun(Aeff(C,C†, C†), E) is closed
under finite coproducts; it therefore remains to show that if Λ is a sifted ∞-category
and if M : Λ Mack(C,C†, C†;E) is a diagram of Mackey functors, then the
colimit M∞ = colimα∈ΛMα in Fun(Aeff(C,C†, C†), E) is again a Mackey functor.
For this, suppose X,Y ∈ Aeff(C,C†, C†), and observe that

M∞(X ⊕ Y ) ≃ colimα∈ΛMα(X ⊕ Y ) ≃ colimα∈ΛMα(X)⊕Mα(Y ).
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Now since Λ is sifted, we further have

colimα∈ΛMα(X)⊕Mα(Y ) ≃ colimα,β∈ΛMα(X)⊕Mβ(Y ).

Since

colimα,β∈ΛMα(X)⊕Mβ(Y ) ≃ colimα∈ΛMα(X)⊕ colimβ∈ΛMβ(Y ),

we obtain
M∞(X ⊕ Y ) ≃M∞(X)⊕M∞(Y ). �

6.5.1. Corollary. For any disjunctive triple (C,C†, C†) and for any additive ∞-
category E that admits all limits (respectively, all colimits), limits (resp., colimits)
in Mack(C,C†, C†;E) are computed objectwise.

6.6. Example. For any disjunctive triple (C,C†, C†), the effective Burnside ∞-
category admits a local group completion, which is a universal target for Mackey
functors. This is the Burnside ∞-category . More precisely, there exists an addi-
tive category A(C,C†, C†) and a Mackey functor

Aeff(C,C†, C
†) A(C,C†, C

†)

with the following universal property. For any additive ∞-category E, the functor

Funadd (A(C,C†, C
†), E) Mack(C,C†, C

†;E)

is an equivalence, where Funadd (A(C,C†, C†), E) ⊂ Fun(A(C,C†, C†), E) is the full
subcategory of additive functors.

This follows from the fact that the functor

Mack(C,C†, C
†;−) : Catadd∞ Catadd∞

preserves all limits, which in turn follows from the fact that limits in Catadd∞ are
computed in the ∞-category Cat∞. We leave the details to the reader, as we will
not need the Burnside ∞-category itself in this paper.

Mackey functors valued in an additive∞-categoryE will inherit duality functors.
To illustrate, we focus particularly on the case of Mackey functors valued in finite
spectra.

6.7. Suppose (C,C†, C†) a disjunctive triple. Then the equivalence

D : Aeff(C,C†, C
†) ∼ Aeff(C,C†, C†)

op

induces an equivalence

Mack(C,C†, C
†;E) ≃ Mack(C,C†, C†;E

op)op

for any additive ∞-category E.

6.8.Definition. Suppose (C,C†, C†) a disjunctive triple. The (Spanier–Whitehead)
duality functor Spω ∼ Spω,op for finite spectra can be composed with the equiv-
alence above to yield an equivalence

Mack(C,C†, C
†;Spω)op ≃ Mack(C,C†, C

†;Spω,op)op ≃ Mack(C,C†, C†;Sp
ω).

The image of a Mackey functor

M : Aeff(C,C†, C
†) Spω

under this equivalence is the dual Mackey functor

M∨ : Aeff(C,C†, C†) Spω.
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We conclude this subsection by remarking on the potential covariant dependence
of Mack(C,C†, C†;E) on C.

6.9. Notation. Suppose E a presentable additive ∞-category, suppose (C,C†, C†)
and (D,D†, D†) disjunctive ∞-categories, and suppose

f : (C,C†, C
†) (D,D†, D

†)

a functor of disjunctive triples. Then the induced functor

f⋆ : Mack(D,D†, D
†;E) Mack(C,C†, C

†;E)

preserves limits (since they are computed objectwise), whence it follows from the
Adjoint Functor Theorem [25] that it admits a left adjoint f!. These left adjoints
fit together to yield a functor

Mack : Tripdisj
∞ ×PrL,add PrL,add ,

where, in the notation of [25, Df. 5.5.3.1],

PrL,add := PrL ∩Catadd∞ ,

the ∞-category of presentable additive ∞-categories, whose morphisms are left
adjoints.

7. Mackey stabilization

7.1. Definition. Suppose (C,C†, C†) a disjunctive triple, suppose E a presentable
∞-category in which filtered colimits are left exact [25, Df. 7.3.4.2], and suppose

f : Aeff(C,C†, C
†) E and F : Aeff(C,C†, C

†) Sp(E)

two functors. Then a natural transformation

η : f Ω∞ ◦ F
will be said to exhibit F as the Mackey stabilization of f if F is a Mackey
functor, and if, for any Mackey functor M : Aeff(C,C†, C†) Sp(E), the map

MapMack(C,C†,C†;Sp(E))(F,M) MapFun(Aeff(C,C†,C†),E)(f,Ω
∞ ◦M)

induced by η is an equivalence.

We shall now show that Mackey stabilization exist and are computable by means
of a Goodwillie derivative. In particular, we will show that the functor

Ω∞ ◦ − : Mack(C,C†, C
†;Sp(E)) Fun(Aeff(C,C†, C

†), E)

admits a left adjoint.

7.2. Notation. Suppose (C,C†, C†) a disjunctive triple. Then we write

DA(C,C†, C
†) := PΣ(A

eff(C,C†, C
†))

for the nonabelian derived ∞-category of Aeff(C,C†, C†) [25]. This ∞-category
admits all colimits, and it comes equipped with a fully faithful functor

j : Aeff(C,C†, C
†) DA(C,C†, C

†).

These are uniquely characterized by either of the following conditions.
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(7.2.1) For any ∞-category E that admits all colimits, the restriction functor

FunL(DA(C,C†, C
†), E) Fun(Aeff(C,C†, C

†), E)

induced by j is fully faithful, and its essential image is spanned by those
functors Aeff(C,C†, C†) E that preserve finite coproducts.

(7.2.2) For any ∞-category E with all sifted colimits, the restriction functor

FunG (DA(C,C†, C
†), E) Fun(Aeff(C,C†, C

†), E)

induced by j is an equivalence, where G denotes the class of small sifted
simplicial sets.

The following is now immediate from [31].

7.3. Lemma. Suppose (C,C†, C†) a disjunctive triple, and suppose E a presentable
∞-category in which filtered colimits are left exact. Then the inclusion functor

Aeff(C,C†, C
†) DA(C,C†, C

†)

and the 0-th space functor Ω∞ : Sp(E) E induce equivalences

FunL(DA(C,C†, C†),Sp(E)) Mack(C,C†, C†;Sp(E))

ExcF (DA(C,C†, C†),Sp(E)) ExcF (DA(C,C†, C†), E)

∼

∼

where ExcF denotes the ∞-category of (1-)excisive functor that preserve all filtered
colimits.

Now we are well positioned to obtain Mackey stabilizations.

7.4. Proposition. Suppose (C,C†, C†) a disjunctive triple, and suppose E a pre-
sentable ∞-category in which filtered colimits are left exact. Then any functor
f : Aeff(C,C†, C†) E admits a Mackey stabilization. In particular, the functor

Ω∞ ◦ − : Mack(C,C†, C
†;Sp(E)) Fun(Aeff(C,C†, C

†), E)

admits a left adjoint.

Proof. Compose the equivalences of the previous lemma with the 1-excisive approx-
imation functor P1 : FunF (DA(C,C†, C†), E) ExcF (DA(C,C†, C†), E), which
is left adjoint to the inclusion. Employing the equivalences of the previous lemma,
a left adjoint to the inclusion functor

Mack(C,C†, C
†;Sp(E)) ≃ ExcF (DA(C,C†, C

†), E) FunF (DA(C,C†, C
†), E).

This left adjoint may now be composed with the inclusion

Fun(Aeff(C,C†, C
†), E) ≃ FunG (DA(C,C†, C

†), E) FunF (DA(C,C†, C
†), E)

to obtain the desired Mackey stabilization functor. �

Happily, Tom Goodwillie has provided us with a formula for the 1-excisive ap-
proximation [31, Cnstr. 7.1.1.27]. Hence for any functor f : Aeff(C,C†, C†) E,
we obtain a formula for its Mackey stabilization as a 1-excisive functor Ω∞ ◦
F : DA(C,C†, C†) E:

Ω∞ ◦ F ≃ colim
n≥0

Ωn ◦ f ◦ ΣnDA(C,C†,C†),
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where f : DA(C,C†, C†) E is the essentially unique functor that preserves sifted
colimits such that

f |Aeff(C,C†,C†) = f.

Consequently, we have the task of studying the suspension functor ΣDA(C,C†,C†) on

DA(C,C†, C†). In particular, we are interested in its values on objects of the effec-
tive Burnside ∞-category. For any object X ∈ Aeff(C,C†, C†), we have a simplicial
object B∗(0, X, 0) given by

n Xn,

whose geometric realization in DA(C,C†, C†) is ΣDA(C,C†,C†)X . Since f preserves
geometric realizations, we find

Ω∞F (X) ≃ colim
n≥0

Ωn
(

colim
(k1,...,kn)∈(N∆op)n

f
(
Xk1+···+kn)

)
.

In one important class of cases, it follows immediately from Segal’s delooping
machine that passage to the colimit is unnecessary.

7.5. Proposition. Suppose (C,C†, C†) a disjunctive triple, and suppose E an ∞-
topos. If f : Aeff(C,C†, C†) E is a functor that preserves finite products, the
Mackey stabilization F of f is defined by the formula

Ω∞F (X) ≃ Ω
∣∣B∗(∗, f(X), ∗)

∣∣
N∆op ,

where B∗(∗, f(X), ∗) is the simplicial object k f(X)k, and | · |N∆op denotes
geometric realization.

8. Representable spectral Mackey functors and assembly morphisms

The Mackey stabilization is useful for constructing universal examples of Mackey
functors.

8.1. Definition. Suppose (C,C†, C†) a disjunctive triple, and suppose X and ob-
ject of C. Then the Mackey stabilization of the functor Aeff(C,C†, C†) Kan
corepresented by X will be denoted

SX(C,C†,C†) : A
eff(C,C†, C

†) Sp.

(We will drop the subscript and write SX when the chosen disjunctive triple is clear
from the context.) This is the Mackey functor corepresented by X

We will call the Mackey functor corepresented by the terminal object 1 the
Burnside Mackey functor . In this case, we drop the superscript and write simply
S(C,C†,C†).

The following is now an immediate consequence of the universal property of the
Mackey stabilization.

8.2. Proposition. Suppose (C,C†, C†) a disjunctive triple, and suppose X and
object of C. Then the corepresentable Mackey functor has the universal property
that for any Mackey functor M : Aeff(C,C†, C†) Sp, there is an identification

MapMack(C,C†,C†;Sp)(S
X ,M) ≃ Ω∞M(X),

functorial in M .
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8.3. Definition. Suppose (C,C†, C†) a disjunctive triple, suppose X and object of
C, and suppose M : Aeff(C,C†, C†) Sp a Mackey functor. Then the identity
functor M(X) M(X) defines a morphism of Mackey functors

SX F (M(X),M),

where the target is the composite

Aeff(C,C†, C
†)

M
Sp

F (M(X),−)
Sp.

For any object Y ∈ C, we call the corresponding morphism

α : SX(Y ) ∧M(X) M(Y )

the assembly morphism for M , X , and Y .

9. Mackey stabilization via algebraic K-theory

Let us discuss a key circumstance in which we can express the Mackey stabiliza-
tion (Df. 7.1) of a functor in terms of the additivization presented in [2, Df. 7.9]: we
are interested in the situation in which a functor is given by composing a Mackey
functor valued in Waldhausen ∞-categories with a suitable theory in the sense of
[2, Df. 7.1].

9.1. Definition. Suppose φ : Wald∞ E a pre-additive theory [2, Df. 7.11].
Then we will say that a Waldhausen ∞-category C is φ-split if, for any integer
m ≥ 0, the functors Fm(C ) C and Fm(C ) Sm(C ) induce an equivalence

φ(Fm(C )) ∼ φ(C )× φ(Sm(C )).

9.2. Proposition. Suppose (C,C†, C†) a disjunctive triple, and suppose

X : Aeff(C,C†, C
†) Wald∞

a Mackey functor valued in the ∞-category of Waldhausen ∞-categories. Suppose,
additionally, that E is an ∞-topos and φ : Wald∞ E a pre-additive theory such
that for any object s ∈ C, the Waldhausen ∞-category is φ-split. Then the Mackey
stabilization of the composite φ ◦ X is given by

s Dφ(X (s)),

where Dφ : Wald∞ Sp(E ) denote the canonical lift of the additivization of [2,
Cor. 7.6.1].

Proof. Let us extend φ ◦ X to a functor DA(C,C†, C†) E and compute the
1-excisive approximation. The Mackey stabilization of φ ◦X is then the spectrum-
valued lift of the 1-excisive approximation of the composite

DA(C,C†, C
†)

LX
D(Wald∞)

Φ
E ,

where Φ is the left derived functor of φ [2, Df. 4.14], and LX is the essentially
unique colimit-preserving functor whose restriction to Aeff(C,C†, C†) is X . Then
one has (by, for example, [31, Rk. 7.1.1.30])

P1(Φ ◦ LX ) ≃ P1(Φ) ◦ LX ;

hence the Mackey stabilization of φ ◦X is given by the spectrum-valued lift of the
functor

s colimm ΩmΦΣmX (s).
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Here Σ denotes the suspension in D(Wald∞). It can be computed by means of
a bar construction:

ΣY ≃ |B∗(0,Y , 0)|N∆op ,

where Bn(0,Y , 0) ≃ Y n. Consequently, one may compute Φ ◦ Σ as a geometric
realization:

ΦΣ(Y ) ≃ |B∗(∗,Φ(Y ), ∗)|N∆op .

Now let us assume further that for any object s ∈ S, the Waldhausen ∞-category
X (s) is φ-split. In this case, one has

|B∗(∗, φ(X (s)), ∗)|N∆op ≃ Φ(S X (s)),

whence ΩΦΣ(X (s)) is the additivization [2, Df. 7.9] of φ applied to X (s). It follows
that the colimit stabilizes, and the result follows. �

9.2.1. Corollary. Suppose (C,C†, C†) a disjunctive triple, and suppose

X : Aeff(C,C†, C
†) Wald∞

a Mackey functor valued in the ∞-category of Waldhausen ∞-categories. If each
Waldhausen ∞-category X (s) is ι-split, then the Mackey stabilization of ι ◦ X is
given by K ◦ X , where K denotes connective algebraic K-theory.

10. Waldhausen bicartesian fibrations

We have already seen that there is a close relationship between algebraic K-
theory and spectral Mackey functors. The inputs required there were Mackey func-
tors valued in Waldhausen ∞-categories. Unfortunately, in nature, these Mackey
functors tend not to appear with all of their coherences splayed out. Instead, the
most interesting examples are found furled — as fibrations that exhibit both covari-
ant functoriality and contravariant functoriality along with a compatibility between
the two in certain situations. We call these fibrations Waldhausen bicartesian fi-
brations. In this section, we define this notion, and in the next, we show how to
unfurl these fibrations to extract the desired Mackey functors valued in Waldhausen
∞-categories.

10.1. Suppose p : X S a cartesian and cocartesian fibration. Then for any
morphism f : s t of S, one has and adjoint pair of functors

f! : Xs Xt : f
⋆.

For any square

(10.1.1)

s s′

t t′,

i

q q′

j

the unit η : id j⋆ ◦ j! induces a natural transformation

q⋆
q⋆(η)

q⋆ ◦ j⋆ ◦ j! ≃ i⋆ ◦ q′⋆ ◦ j!,
which is adjoint to a natural transformation

(10.1.2) i! ◦ q⋆ q′
⋆ ◦ j!,
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which we call the base change natural transformation . Equivalently, we may
construct this natural transformation by using the counit ǫ : q! ◦ q⋆ id to define

q′! ◦ i! ◦ q⋆ ≃ j! ◦ f! ◦ q⋆
j!(ǫ)

j!;

its right adjoint is then the base change natural transformation (10.1.2).
When the base change natural transformation is an equivalence, then one says

that the square

Xs Xs′

Xt Xt′ ,

i!

q! q′!

j!

(respectively, the square

Xt′ Xs′

Xt Xs,

q′⋆

j⋆ i⋆

q⋆

)

is right adjointable (resp., left adjointable) [25]. Apparently this is sometimes
called the Beck–Chevalley condition.

If we only assume p an inner fibration, we can make sense of the base change
natural transformation (10.1.2) in the presence of a small amount of extra infor-
mation. Of course one needs to know that the functors i!, j!, q

⋆, and q′⋆ all exist,
and in order to construct (10.1.2), it is enough to assume either that the functors
q! and q

′
! exist or that the functors i⋆ and j⋆. That is, if σ : ∆1 ×∆1 S is given

by the square (10.1.1), then it suffices to assume only one of the following.

(10.1.3) The functor

X ×S (∆1 ×∆1) ∆1 ×∆1

is a cocartesian fibration, and the functor

X ×S (∆1 × ∂∆1) ∆1 × ∂∆1

is a cartesian fibration.
(10.1.4) The functor

X ×S (∆1 ×∆1) ∆1 ×∆1

is a cartesian fibration, and the functor

X ×S (∂∆1 ×∆1) ∂∆1 ×∆1

is a cocartesian fibration.

We will apply this idea in the case that (10.1.1) is a square of a disjunctive triple
in which the vertical morphisms q, q′ of are egressive and the horizontal morphisms
i, j are ingressive.

10.2. Definition. A triple (C,C†, C†) is said to be left complete if C† ⊂ C† and
right complete if C† ⊂ C†.

In the examples of disjunctive triples of greatest interest to us, it is often the
case that either every map is egressive or every map is ingressive. In particular,
most of the examples of interest to us are either left complete or right complete.

Our equivariant K-theory will take as input assignments of Waldhausen ∞-
categories to objects of disjunctive triples (C,C†, C†) that are covariant in ingres-
sive morphisms and contravariant in egressive morphisms. We will insist that for
morphisms that are both ingressive and egressive, the resulting functors are adjoint.
Finally, we will assume that for pullback squares of egressive morphisms along in-
gressive morphisms, the base change natural transformation is an equivalence. But



SPECTRAL MACKEY FUNCTORS AND EQUIVARIANT ALGEBRAIC K-THEORY (I) 27

for the base change natural transformation to make sense, we must assume that
(C,C†, C†) is either left or right complete. This leads us to the following.

10.3.Definition. Suppose (C,C†, C†) an adequate triple that is either left complete
or right complete. An inner fibration p : X C is said to be adequate over the
triple (C,C†, C†) if the following conditions obtain.

(10.3.1) For any ingressive morphism f : s t and any object x ∈ Xs, there exists
a p-cocartesian edge x y covering f . In particular, the functor

p† : X ×C C† C†

is a cocartesian fibration.
(10.3.2) For any egressive morphism f : s t and any object y ∈ Xt, there exists

a p-cartesian edge x y covering f . In particular, the functor

p† : X ×C C† C†

is a cartesian fibration.
(10.3.3) For any ambigressive pullback square

s s′

t t′,

i

q q′

j

the base change natural transformation

i! ◦ q⋆ q′
⋆ ◦ j!

is an equivalence.

Suppose now that (C,C†, C†) is a disjunctive triple that is either left com-
plete or right complete. A Waldhausen bicartesian fibration over the triple
(C,C†, C†)

q : X C

is a functor of pairs X C♭ that enjoys the following properties.

(10.3.4) The underlying functor q : X C is an adequate inner fibration over
the triple (C,C†, C†).

(10.3.5) For any ingressive morphism η : s t, the induced functor η! : Xs Xt

carries cofibrations to cofibrations, and it is an exact functor

(Xs,Xs ×X X†) (Xt,Xt ×X X†)

of Waldhausen ∞-categories.
(10.3.6) For any egressive morphism η : s t, the induced functor η⋆ : Xt Xs

carries cofibrations to cofibrations, and it is an exact functor

(Xt,Xt ×X X†) (Xs,Xs ×X X†)

of Waldhausen ∞-categories.
(10.3.7) For any finite set I and any collection {si | i ∈ I} of objects of C indexed

by the elements of I with coproduct s, the functors

j⋆i : Xs Xsi

induced by the inclusions ji : si s together exhibit Xs as the direct
sum

⊕
i∈I Xsi .
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The following lemma is just an unwinding of the relevant definitions, but it will
come in handy later.

10.4. Lemma. Suppose (C,C†, C†) an adequate triple that is either left or right
complete. If p : X C is an inner fibration satisfying conditions (10.3.1) and
(10.3.2), then condition (10.3.3) is equivalent to the condition that for any square

x x′

y y′

η

α α′

θ

of X that covers an ambigressive pullback square

s s′

t t′

i

q q′

j

of C, if α and α′ are p-cartesian and θ is p-cocartesian, then η is also p-cocartesian.

11. Unfurling

Here is the central construction of this paper. A Waldhausen bicartesian fibration
over a left or right complete disjunctive triple (C,C†, C†) has all the elements that
we might look for in a Mackey functor valued in Waldhausen ∞-categories: there’s
a covariant functor C† Wald∞ and a contravariant functor (C†)op Wald∞,
and the two are glued via base change equivalences. Unfortunately, these data are
not displayed in a fashion that makes it easy to spot the functoriality in the ef-
fective Burnside ∞-category Aeff(C,C†, C†). In order to extract something that is
visibly functorial in the effective Burnside ∞-category, we must perform an opera-
tion, which we call unfurling. When we unfurl a Waldhausen bicartesian fibration
X C for the triple (C,C†, C†), we end up with a Waldhausen cocartesian fi-
bration Υ(X /(C,C†, C†)) Aeff(C,C†, C†), which we may then straighten into
a Mackey functor on (C,C†, C†) valued in Waldhausen ∞-categories.

11.1. Notation. Suppose (C,C†, C†) a triple, and suppose p : X C an inner
fibration. Denote by X† ⊂ X ×C C† (respectively, X† ⊂ X ×C C†) the subcategory
containing all the objects whose morphisms are p-cocartesian (resp., p-cartesian).

11.2. Proposition. Suppose (C,C†, C†) an adequate triple (Df. 5.2), and suppose
p : X C an adequate inner fibration over (C,C†, C†) (Df. 10.3). Then the triples
(X,X ×C C†, X†) and (X,X†, X ×C C†) are adequate as well.

Proof. We show that (X,X ×C C†, X†) is adequate; the case of (X,X†, X ×C C†)
is dual. Suppose σ : ∆1 ×∆1 C an ambigressive pullback

s′ t′

s t,
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and suppose x y a morphism covering s t and y′ y a p-cartesian edge
covering t′ t. Then there exists a p-cartesian edge x′ x covering s′ s,
and after filling in the inner horn x′ x y and the outer horn x′ y y′

(using the p-cartesianness of y′ y), we obtain a pullback square

x′ y′

x y

covering σ. �

11.3. Definition. Suppose (C,C†, C†) an adequate triple, and suppose p : X C
an adequate inner fibration over (C,C†, C†). Then the unfurling of p is the ∞-
category

Υ(X/(C,C†, C
†)) := Aeff(X,X ×C C†, X

†).

Composition with p defines a natural map

Υ(p) : Υ(X/(C,C†, C
†)) Aeff(C,C†, C

†).

We’ll prove the following brace of lemmas in the next section.

11.4. Lemma. Suppose (C,C†, C†) an adequate triple, and suppose p : X C an
adequate inner fibration over (C,C†, C†). Then

Υ(p) : Υ(X/(C,C†, C
†)) Aeff(C,C†, C

†)

is an inner fibration.

11.5. Lemma. Suppose (C,C†, C†) an adequate triple, and suppose p : X C an
adequate inner fibration over (C,C†, C†). An edge f : y z of Υ(X/(C,C†, C†))
is Υ(p)-cocartesian if it is represented as a span

u

y z,

φ ψ

in which φ is p-cartesian over an egressive morphism and ψ is p-cocartesian over
an ingressive morphism.

The following is now immediate.

11.6. Proposition. Suppose (C,C†, C†) an adequate triple that is either left or
right complete, and suppose

p : X C

an adequate inner fibration over (C,C†, C†). Then the unfurling Υ(p) is a cocarte-
sian fibration.

More particularly, for any disjunctive triple (C,C†, C†) that is either left or right
complete (Df. 10.2), and for any Waldhausen bicartesian fibration p : X C over
(C,C†, C†) (Df. 10.3), it follows that Υ(p) is a cocartesian fibration. Moreover, for
any object s of C, consider the functor Xs Υ(X /(C,C†, C†))s induced by the
natural transformation ε⋆ op. This functor is the identity on objects, and it is
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easy to see that it is fully faithful. Now for any s t of Aeff(C,C†, C†) represented
as a span

u

s t,

f g

in C, the induced functor

Xs ≃ Υ(X /(C,C†, C
†))s Υ(X /(C,C†, C

†))t ≃ Xt

is equivalent to g! ◦ f⋆. In particular, it is exact, whence we have the following.

11.7. Proposition. Suppose (C,C†, C†) a disjunctive triple that is either left or
right complete, and suppose

p : X C

a Waldhausen bicartesian fibration over (C,C†, C†). Then the unfurling Υ(p) is a
Waldhausen cocartesian fibration.

Now condition (10.3.2) immediately implies the main feature of unfurlings.

11.8. Theorem. Suppose (C,C†, C†) a disjunctive triple, and suppose

p : X C

a Waldhausen bicartesian fibration over (C,C†, C†). Then a functor

Mp : A
eff(C,C†, C

†) Wald∞

that classifies the unfurling Υ(p) is a Mackey functor.

One may compose a functor classifying the unfurling of a Waldhausen bicartesian
fibration with the delooping Wald∞ Sp of any additive theory to obtain the
following.

11.8.1. Corollary. Suppose (C,C†, C†) a disjunctive triple, and suppose

p : X C

a Waldhausen bicartesian fibration over (C,C†, C†). Suppose

Mp : A
eff(C,C†, C

†) Wald∞

a functor that classifies the unfurling Υ(p). Then for any additive theory

F : Wald∞ E

in the sense of [2, Df. 7.1], the composition

F ◦ Mp : A
eff(C,C†, C

†) Sp(E ),

where F : Wald∞ Sp(E ) is the canonical delooping of F [2, Cor. 7.6.1], is a
Mackey functor.

In particular, we see that the algebraic K-theory of a Waldhausen bicartesian
fibration naturally organizes itself into a Mackey functor valued in spectra.
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12. Horn filling in effective Burnside ∞-categories

In both Lm. 11.4 and Lm. 11.5, we are interested in filling horns in effective
Burnside ∞-categories. These correspond to extensions along inclusions of the form

Õ(Λmk )op Õ(∆m)op that enjoy certain properties. In this section, we construct
a filtration that provides a general strategy for constructing the desired extensions,
and we use this to prove Lms. 11.4 and 11.5.

The reader uninterested in such nitty-gritty may be forgiven for skipping this sec-
tion; however, one must acknowledge that this is where the rubber meets the road.
Ultimately, it is the combinatorics of simplices that allow us to solve homotopy-
coherence problems.

12.1. Notation. In this section, let (C,C†, C†) and (D,D†, D†) denote two ad-
equate triples, and let p : (C,C†, C†) (D,D†, D†) be a functor of triples that
carries ambigressive pullbacks to ambigressive pullbacks. Write p† for the restriction
C† D†, and write p† for the restriction C† D†.

Here is what we will prove.

12.2. Theorem. Assume that the underlying functor C D is an inner fibration.
Then the induced functor

Aeff(p) : Aeff(C,C†, C
†) Aeff(D,D†, D

†)

is an inner fibration.
Furthermore, assume the following.

(12.2.1) For any ingressive morphism g : s t of D and any object x ∈ Cs, there
exists an ingressive morphism f : x y of C covering g that is both
p-cocartesian and p†-cocartesian.

(12.2.2) Suppose σ a commutative square

x′ y′

x y,

f ′

φ ψ

f

of C such that the square f(σ) is an ambigressive pullback in D, the mor-
phism f ′ is ingressive, the morphism φ is egressive, and the morphism f
is p-cocartesian. Then f ′ is p-cocartesian if and only if the square is an
ambigressive pullback (and in particular ψ is egressive).

Then an edge f : y z of Aeff(C,C†, C†) is Aeff(p)-cocartesian if it is represented
as a span

u

y z,

φ ψ

in which φ is egressive and p-cartesian and ψ is ingressive and p-cocartesian.

The proof will occupy the entirety of this section. This implies both Lm. 11.4
and Lm. 11.5 as special cases. (Note that (12.2.2) is an immediate consequence of
the Beck–Chevvaley condition (10.3.3).) This result may also be used to give an
alternative argument that Aeff(C,C†, C†) is an ∞-category.
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12.3. Notation. Suppose m ≥ 2 and suppose 0 ≤ k < m (note that we are
excluding the case k = m), and suppose we are given a commutative square

Λmk Aeff(C,C†, C†).

∆m Aeff(D,D†, D†),

Aeff(p)

and we seek a lift ∆m Aeff(C,C†, C†). This corresponds to a (solid) commutative
square

Õ(Λmk )op C

Õ(∆m)op D

g

p

h

g

of simplicial sets in which h is ambigressive cartesian and, for every i 6= k, the
restriction

Õ(∆{0,...,ı̂,...,m})op ⊂ Õ(Λmk )op
g
C

is ambigressive cartesian. Our objective then becomes to construct a (dotted) lift

g : Õ(∆m)op C

that is ambigressive cartesian.

12.4. Definition. Let us call a m-simplex

i0j0 i1j1 · · · imjm

of Õ(∆m)op completely factored if ir − ir−1 + jr−1 − jr = 1 for each 1 ≤ r ≤ m.
Note that any complete m-simplex is in particular nondegenerate, and i0 = 0 and
j0 = m.

12.5. Completely factored m-simplices are essentially the same as walks on the

poset Õ([m])op that begin at the point 0m and end at a point of the form pp. We
may therefore parametrize the completely factored m-simplices as follows. For each
integer 0 ≤ N ≤ 2m − 1, let σ(N) be the unique completely factored m-simplex

i0j0 i1j1 · · · imjm

such that if dr is the r-th binary digit of N (read left to right, so that N =∑m
s=1 2

m−sds), then

dr =

{
0 if ir−1 = ir;

1 if jr−1 = jr.

We order these simplices accordingly. Hence σ(N) is the m-simplex

i0j0 i1j1 · · · imjm

with

ir =

r∑

s=1

ds and jr = (m− r) +

r∑

s=1

ds.

Fig. 1 shows the completely factored 5-simplex σ(01101) = σ(13) ⊂ Õ(∆m)op .
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05

04 15

03 14 25

02 13 24 35

01 12 23 34 45

00 11 22 33 44 55

Figure 1. The completely factored 5-simplex σ(01101) = σ(13) ⊂
Õ(∆5)op , drawn in red as a walk from 05 to 33. The juts of this
5-simplex are 3 and 5. There are no crossings away from 1; if k 6= 1,
the only crossing away from 1 is 2.

Now for any integer 0 ≤ N ≤ 2m, write

PN (k) := Õ(Λmk )op ∪
⋃

0≤K<N
σ(K);

this provides a filtration

Õ(Λmk )op = P0(k) ⊂ · · · ⊂ P2m(k) = Õ(∆m)op .

Our aim is to find conditions that permit us to extend g along this filtration.

We proceed to analyze the intersections σ(N)∩PN (k) as a subset of σ(N) ∼= ∆m.
We will find that each σ(N)∩PN (k) is in fact a union of faces of ∆m. There are two
kinds of faces that will appear in this intersection. To describe these, let’s introduce
some simplifying notation.

12.6. Notation. For any nonempty totally ordered finite set T and any element
j ∈ T , write ∆̂ for the face

∆T−{j} ⊂ ∆T .

More generally, for any ordered subsets S ⊂ T , write ΛTS ⊂ ∆T for the union
of all the faces (i.e., #T -simplices) of ∆T that contain the simplex ∆S . In other
words, let

ΛTS :=
⋃

j /∈S
∆̂.

When T = {0, . . . ,m}, we just write ΛmS for ΛTS .

In this notation, we have

σ(N) ∩ PN (k) =


 ⋃

0≤K<N
σ(N) ∩ σ(K)


 ∪


⋃

j 6=k
σ(N) ∩ Õ(∆̂)op


 ,

and our claim is that there is a set E(N, k) ⊂ {0, . . . ,m} such that

σ(N) ∩ PN (k) = ΛmE(N,k).
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We proceed to construct this set now.

12.7. Definition. Suppose N an integer such that 0 ≤ N ≤ 2m − 1, written as
N =

∑m
s=1 2

m−sds. A jut of the completely factored m-simplex σ(N) is an integer
z ∈ {1, . . . ,m} such that

• dz = 1, and
• either dz+1 = 0 or z = m.

Denote by Z(N) ⊂ {1, . . . ,m} the set of juts of σ(N).
For any jut z, write

Kz =

m∑

s=1

2m−sdz,s,

where

dz,s =





ds if s /∈ {z, z + 1};
0 if s = z;

1 if s = z + 1.

12.8. Lemma. Suppose N an integer such that 0 ≤ N ≤ 2m − 1, written as N =∑m
s=1 2

m−sds. Then
⋃

0≤K<N
σ(N) ∩ σ(K) =

⋃

z∈Z(N)

∆ẑ .

Proof. It is easy to see that in the poset of simplicial subsets of σ(N) of the form
σ(N) ∩ σ(K), the maximal elements consist of those subsets of the form σ(N) ∩
σ(Kz), where z in a jut of σ(N). Of course ∆ẑ = σ(N) ∩ σ(Kz). �

12.9. Definition. Suppose N an integer such that 0 ≤ N ≤ 2m− 1 written as N =∑m
s=1 2

m−sds. A crossing of σ(N) away from k is an integer x ∈ {0, . . . ,m − 1}
such that one of the following holds:

• x = 0, d1 = 0;
• x = 0, d1 = 1, and k 6= 0;
• x > 0, dx = dx+1 = 1, and ix 6= k; or
• x > 0, dx = dx+1 = 0 and jx 6= k.

Denote by X(N, k) ⊂ {0, . . . ,m− 1} the set of crossings away from k.

The crossings away from k are now all we need to complete our computation of
the intersections σ(N) ∩ PN (k).

12.10. Proposition. Suppose N an integer such that 0 ≤ N ≤ 2m − 1, written as
N =

∑m
s=1 2

m−sds. Then

σ(N) ∩ PN (k) =
⋃

y∈Z(N)∪X(N,k)

∆ŷ.

Proof. For any crossing x of σ(N) away from k, it is clear that the corresponding
face is given by

∆x̂ =

{
σ(N) ∩ Õ(∆ı̂x)op if dx = 1;

σ(N) ∩ Õ(∆̂x)op if dx = 0.

Now for any j ∈ {0, . . . ,m}, if the set

{r ∈ {0, . . . ,m} | ir = j or jr = j}
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contains more than one element, then it contains a jut z, and consequently,

σ(N) ∩ Õ(∆̂)op ⊂ ∆ẑ = σ(N) ∩ σ(Kz). �

12.11. Warning. Note that this doesn’t quite work if k = m (which we expressly
excluded): in this case it is just not true that σ(N)∩PN (k) is a union of faces. For
example, in the completely factored 5-simplex σ(13) depicted in Fig. 1, if k = 5,
then the simplicial subset σ(13) ∩ P13(5) ⊂ σ(13) is the union

∆3̂ ∪∆5̂ ∪∆{2,3,4,5}.

Let us reformulate what we have shown.

12.12. Definition. Suppose N an integer such that 0 ≤ N ≤ 2m − 1 written as
N =

∑m
s=1 2

m−sds. Let us call an integer s ∈ {0, . . . ,m} an essential vertex of
σ(N) for k if it is neither a jut nor a crossing away from k. Denote by

E(N, k) := {0, . . . ,m} − (Z(N) ∪X(N, k))

the ordered set of essential vertices of σ(N) for k.

We have thus shown that we may write

σ(N) ∩ PN (k) = ΛmE(N,k) ⊂ ∆m ∼= σ(N).

Now we want to extend g along each inclusion PN−1(k) PN (k), which we now
write as pushout

ΛmE(N,k) ∆m

PN (k) PN+1(k).

For this, we need to determine just what sort of inclusions these ore. For example,
if ΛmE(N,k) ∆m is inner anodyne, one has the desired extension simply because

p is an inner fibration. Let’s determine precisely when this does the job.

12.13. Lemma. Suppose S ⊂ {0, . . . ,m} a nonempty ordered subset. Then the
inclusion ΛmS ∆m is inner anodyne if the following condition holds.

(∗) there exists elements a < s < b of {0, . . . ,m} such that s ∈ S, but a, b /∈ S.

Proof. The claim is trivial if either m = 2 or S has cardinality 1. For m ≥ 3 and
#S ≥ 2, assume that the result holds both for all smaller values of m and for
subsets S of smaller cardinality.

Choose an element s ∈ S as follows: if 0 ∈ S, let s = 0; otherwise, if m ∈ S, let
s = m; otherwise choose s ∈ S arbitrarily. Then the subset

S − {s} ⊂ {0, . . . , ŝ, . . . ,m}
satisfies condition (∗) for m− 1; hence the inclusion

ΛmS ∩∆ŝ = Λ
{0,...,ŝ,...,m}
S−{s} ∆{0,...,ŝ,...,m}

is inner anodyne by the inductive hypothesis. The pushout of this edge along the
inclusion

ΛmS ∩∆ŝ ΛmS
is the inclusion

ΛmS ΛmS−{s},
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which is thus inner anodyne. Now our claim follows from the observation that the
subset S − {s} ⊂ {0, . . . ,m} also satisfies condition (∗), whence the inclusion

ΛmS−{s} ∆m

is also inner anodyne by the inductive hypothesis. �

Suppose N an integer such that 0 ≤ N ≤ 2m − 1 written as N =
∑m
s=1 2

m−sds.
We have shown that if E(N, k) satisfies condition (∗), then PN (k) PN+1(k)
is inner anodyne. If however E(N, k) fails condition (∗), let’s refer to σ(N) as an
exceptional case.

Indeed, such an m-simplex is quite exceptional: it cannot contain more than one
jut, since there must be an essential vertex between any two juts. Consequently, for
any t ∈ {0, . . . ,m}, if

ds =

{
1 if s ≤ t;

0 if s > t,

then let’s write Nt :=
∑m
s=1 2

m−sds. Then σ(Nt) is the walk

0m 1m · · · tm t(m− 1) · · · tt.

One thus sees that any exceptional case is of the form σ(Nt).
Furthermore, the simplex σ(Nt) begins with a crossing if either k 6= 0 or Nt <

2m−1, so 0 ∈ E(Nt, k) if and only if both k = 0 and Nt ≥ 2m−1. Dually, σ(Nt)
ends in a jut precisely when Nt is odd, so m ∈ E(k) if and only if Nt is even. Now
a quick analysis of the location of the crossings away from k yields the following
classification of all the exceptional cases.

12.14. Proposition. When k 6= 0, there are only two exceptional cases:

(12.14.1) t = k − 1, in which case E(Nk−1, k) = {m− 1,m}.
(12.14.2) t = k, in which case E(Nk, k) = {m}.
When k = 0, there are t+ 1 exceptional cases:

(12.14.3) t = 0, in which case E(0, 0) = {m}.
(12.14.4) 0 < t < m, in which case E(Nt, 0) = {0,m}.
(12.14.5) t = m, in which case E(2m − 1, 0) = {0}.

To illustrate, in Fig. 2, the two exceptional cases in Õ(∆5)op for k = 3 are depicted.

We can now begin the proof of Th. 12.2. Here is the first bit.

12.15. Lemma. Suppose 0 < k < m. Then there exists a (dotted) lift

Õ(Λmk )op C

Õ(∆m)op D

g

p

h

g

Proof. Let’s handle the case m = 2 separately. Note that Õ(∆2)op = (Õ(∆2
1)

op)✁,
so we may form the desired lift g simply by forming the p-limit in the sense of [25,
Df. 4.3.1.1].

For m ≥ 3, of course we will proceed by induction on the filtration

Õ(Λmk )op = P0(k) ⊂ · · · ⊂ P2m(k) = Õ(∆m)op .
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05

04 15

03 14 25

02 13 24 35

01 12 23 34 45

00 11 22 33 44 55

Figure 2. The two exceptional cases σ(N2) and σ(N3) for k = 3

in Õ(∆5)op , drawn in red and blue (respectively) as walks from 05
to 22 and from 05 to 33.

Given a lift

Õ(Λmk )op C

PN (k) D,

g

p

h|PN (k)

gN

we seek a (dotted) lift

PN (k) C

PN+1(k) D.

gN

p

h|PN+1(k)

gN+1

The only catch will be that we must choose the extensions to the exceptional m-
simplices and some of their neighbors carefully.

To begin, for 0 ≤ N < Nk−1, we use the right lifting property with respect to
the inner anodyne inclusions σ(N) ∩ PN (k) σ(N) to obtain the desired lift

gNk−1
: PNk−1

(k) C.

Now let us call a completely factored m-simplex σ(N) special just in case the
corresponding integer N =

∑m
s=1 2

m−sds has the property that ds = 1 for every
1 ≤ s ≤ k − 1, and no more than one of dk, . . . , dm is equal to 1. Let R(k) be
the collection of those N such that σ(N) is special. Note that the exceptional m-
simplex σ(Nk−1) of (12.14.1) is the first special m-simplex, and the exceptional
m-simplex σ(Nk) of (12.14.2) is the last special m-simplex. Also observe that for
any N ∈ R(k), one has

σ(N) ∩ PN = (σ(N) ∩ PNk−1
) ∪

⋃

K∈R(k), K<N

(σ(N) ∩ σ(K)).

Now we have a functor

fk : ∆
1 ×∆m−1 Õ(∆m)op
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that is determined on its value on objects:

fk(u, v) := (max{0, v − k + 1},max{m− v − u, k − u}).
The functor fk restricts to a functor

(∆1 × Λm−1
m−1) ∪(∆{1}×Λm−1

m−1) (∆{1} ×∆m−1) PNk−1
(k).

Note that (dotted) lifts in the diagram

(∆1 × Λm−1
m−1) ∪(∆{1}×Λm−1

m−1) (∆{1} ×∆m−1) C

∆1 ×∆m−1 D

gNk−1

p

h|(∆1 × ∆m−1)

g′

are in bijection with (dotted) lifts in the adjoint diagram

Λm−1
m−1 Fun(∆1, C)

∆m−1 Fun(∆{1}, C)×Fun(∆{1},D) Fun(∆
1, D).

(t, p)

η

Such a lift exists by [25, Lm. 6.1.1.1]. Consequently, a lift g′ exists, and it specifies
a family of maps

g′N : σ(N) C

for N ∈ R(k) with N > Nk−1.
Now to obtain a (dotted) lift

PNk−1
(k) C

PNk−1+1(k) D,

gNk−1

p

h|PNk−1+1(k)

gNk−1+1

we must extend along

σ(Nk−1) ∩ PNk−1
∼= Λm{m−1,m} ∆m ∼= σ(Nk−1),

which we factor as the composite

Λm{m−1,m} Λm{m−1,m} ∪Λ
{0,...,m−1}
m−1 ∆{0,...,m−1} ∼= Λmm−1 ∆m.

We extend across the first inclusion by using the restriction of the lift g′ we have
constructed, and then we extend across the inner horn Λmm−1 ∆m using the fact
that p is an inner fibration.

Now for any N > Nk−1, extend across PN+1 as follows: if N ∈ R(k), extend
using the chosen map g′N , which since

σ(N) ∩ PN = (σ(N) ∩ PNk−1
) ∪

⋃

K∈R(k), K<N

(σ(N) ∩ σ(K)),

is compatible with the map PN C constructed so far. If N /∈ R(k), simply
extend using the fact that σ(N) ∩ PN σ(N) is an inner horn inclusion. At the
end of this procedure, the desired extension

g : P2m = Õ(∆m)op C
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is constructed, and it is ambigressive cartesian by construction. �
Now let us complete the proof of the theorem.

12.16. Lemma. Suppose p satisfies conditions (12.2.1-3) and that k = 0. If the
morphism g(01) g(00) is p-cartesian and the morphism g(01) g(11) is p-
cocartesian, then there is an ambigressive cartesian (dotted) lift

Õ(Λmk )op C

Õ(∆m)op D

g

p

h

g

Proof. Again let’s treat the case m = 2 separately. In this case, since the morphism
g(0, 1) g(0, 0) is p-cartesian, we obtain a 2-simplex

g(0, 1)

g(0, 2) g(0, 0).

Now after filling inner horns, we choose a p-cocartesian edge g(0, 2) g(1, 2) lying
over h(0, 2) h(1, 2), and then by filling the corresponding outer horns, we obtain
a diagram

g(0, 2)

g(0, 1) g(0, 2)

g(0, 0) g(1, 1) g(2, 2)

It follows from conditions (12.2.1-2) that the morphisms are ingressive or egressive
as marked and that the square is ambigressive cartesian.

For m ≥ 3, we will once again proceed by induction on the filtration

Õ(Λmk )op = P0(k) ⊂ · · · ⊂ P2m(k) = Õ(∆m)op .

Given a lift

Õ(Λmk )op C

PN (k) D,

g

p

h|PN (k)

gN

we seek a (dotted) lift

PN (k) C

PN+1(k) D.

gN

p

h|PN+1(k)

gN+1

Once again, one really only has to tiptoe around the exceptional m-simplices.
To begin, we may easily extend g along the inclusion

σ(0) ∩ P0
∼= Λmm ∆m ∼= σ(0)
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(the exceptional m-simplex of type (12.14.3)), since the edge g|∆{m−1,m} is p-
cartesian.

Now for 0 < N < 2m − 1, we have two options for the inclusion

σ(N) ∩ PN ∼= ΛmE(N,0) ∆m ∼= σ(N) :

either it is inner anodyne, in which case it is easy to extend along it, using the fact
that p is an inner fibration, or else N is exceptional of type (12.14.4), and hence
N = Nt for some integer 0 < t < m, and E(Nt, 0) = {0,m}.

To extend along the inclusion

σ(Nt) ∩ PNt
∼= Λm{0,m} ∆m ∼= σ(Nt),

we factor it as the composite

Λm{0,m} Λm{0,m} ∪Λ
{0,...,m−1}
0 ∆{0,...,m−1} ∼= Λm0 ∆m.

Extensions along each of these inclusions exists simply because the edge g|∆{0,1} is
p-cocartesian.

At the end of this procedure, we are left with an extension P2m−1 C. To
extend over σ(2m− 1) (the exceptional m-simplex of type (12.14.5)), it suffices just
to note that, by assumption, g|∆{0,1} is p-cocartesian, so one may extend over the
inclusion

σ(2m − 1) ∩ P2m−1
∼= Λm0 ∆m ∼= σ(2m − 1).

The result is the desired extension

g : P2m = Õ(∆m)op C,

which is ambigressive cartesian by construction. �

The proof of Th. 12.2 is complete.

13. The Burnside Waldhausen bicartesian fibration

Perhaps the most important Waldhausen bicartesian fibration is the one whose
algebraic K-theory will be the spectral Burnside Mackey functor S(C,C†,C†). To
describe it, we need some preparatory material.

13.1. Notation. In this subsection, let us fix a disjunctive triple (C,C†, C†).

13.2. Definition. Let us say a morphism X U of C is a summand inclusion
if there exists a morphism X ′ U of C that, together with X U , exhibits U
as the coproduct X ⊔X ′.

Now if i : X U is a summand inclusion, a complement of i is a summand
inclusion i′ : X ′ U such that any square

∅ X

X ′ U

i

i′

in which ∅ is initial in C is a pushout square.
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13.3. The compatibility of ingressive and egressive morphisms with coproducts im-
plies that summand inclusions are necessarily ingressive and egressive. Note also
that the pullback of a summand inclusion along a morphism that is both ingres-
sive and egressive is again a summand inclusion. Furthermore, the pushout of a
summand inclusion i : X U along any map f : X Y exists and is again a
summand inclusion. Finally, a complement for i is a complement for the pushout
j : Y V of i along f .

The following lemma will allow us to formulate definitions using complements,
as long as we do not use any non-homotopy-invariant constructions.

13.4. Lemma. Suppose i : X U a summand inclusion. If Compl(i) ⊂ C/U
denotes the full subcategory spanned by the complements of i, then the Kan complex
ιCompl(i) is contractible.

Proof. We show that the diagonal map ιCompl(i) ιCompl(i)× ιCompl(i) is a
weak equivalence. To this end, we observe that since C admits all ambigressive
pullbacks, it follows that the full subcategory Sum(U) ⊂ C/U spanned by the
summand inclusions admits all finite products. Consequently, the diagonal functor
Sum(U) Sum(U)× Sum(U) admits a right adjoint, which is given informally
by the assignment

(X ′
1 U, X ′

2 U) (X ′
1 ×U X ′

2 U).

Our claim is that this right adjoint restricts to a quasi-inverse

ιCompl(i)× ιCompl(i) ιCompl(i)

of the diagonal. For this, we must show that if

i′1 : X
′
1 U and i′2 : X

′
2 U

are complements of i, then the projection maps

X ′
1 ×U X ′

2 X ′
1 and X ′

1 ×U X ′
2 X ′

2

are equivalences, and the morphism i′12 : X
′
1 ×U X ′

2 U is a complement of i.
Indeed, the universality of coproducts implies that the projection X ′

1 ×U X ′
2 X ′

1

factors as

X ′
1 ×U X ′

2
∼ (X ′

1 ×U X ′
2) ⊔ (X ′

1 ×U X) ≃ X ′
1 ×U (X ′

2 ⊔X) ≃ X ′
1 ×U U ≃ X ′

1

(and similarly for the projection X ′
1 ×U X ′

2 X ′
2). Now in the cube

∅ ∅

∅ X

X ′
1 ×U X ′

2 X ′
1

X ′
2 U

every face is a pullback, and all faces but the top and bottom squares are pushouts,
whence i′12 is a complement of i. �
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13.5. Definition. We consider the fibration

p : Fun(∆2/∆{0,2}, C) ∼= Fun(∆2, C)×Fun(∆{0,2},C) C C.

We may think of the objects of the ∞-category Fun(∆2/∆{0,2}, C) as retract dia-
grams

S0 S1 S0;

the functor p is given by the assignment

[S0 S1 S0] S0.

We therefore denote by CS0/ /S0
the fiber of p over an object S0 ∈ C.

We consider the full subcategory R(C) ⊂ Fun(∆2/∆{0,2}, C) spanned by those
objects S such that the morphism S0 S1 is a summand inclusion. We endow
R(C) with the structure of a pair in the following manner. A morphism T S
will be declared ingressive just in case T0 S0 is an equivalence, and T1 S1

is a summand inclusion.
Now let R(C,C†, C†) ⊂ R(C) be the full subcategory spanned by those objects

S : ∆2/∆{0,2} C such that for any complement S′
0 S1 of the summand

inclusion S0 S1,

(13.5.1) the essentially unique morphism S′
0 ∗ to the terminal object of C is

egressive, and
(13.5.2) the composite S′

0 S1 S0 is ingressive.

We endow R(C,C†, C†) with the pair structure induced by R(C). We will abuse no-
tation by denoting the restriction of the functor p : R(C) C to the subcategory
R(C,C†, C†) ⊂ R(C) again by p.

We will now show that p is a Waldhausen bicartesian fibration. This claim follows
from the following sequence of observations.

13.6. For any object S0 of C, the fiber R(C)S0 can be identified with the full
subcategory of CS0/ /S0

spanned by those objects U such that S U is a summand
inclusion. A morphism S1 S′

1 of this ∞-category is ingressive just in case it is a
summand inclusion. It is an easy consequence of the existence of finite coproducts
and the compatibility of the triple structure with these coproducts that the full
subcategory R(C,C†, C†)S0 ⊂ R(C)S0 is a Waldhausen ∞-category.

13.7. For any ingressive morphism f : S0 T0 and for any object S ∈ R(C,C†, C†)
over S0, there exists a pushout diagram

S0 T0

S1 T1

S0 T0,

hence a p-cocartesian edge covering f . The compatibility of the triple structure
with coproducts ensures that this defines a functor

f! : R(C,C†, C
†)S0 R(C,C†, C

†)T0 .
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The functors f! are exact because they are all left adjoints, which preserve any
colimits that exist.

13.8. Dually, for any egressive morphism f : S0 T0 and for any object T ∈
R(C,C†, C†) over T0, there exists a pullback diagram

S0 T0

S1 T1

S0 T0.

We claim that the functor f⋆ : R(C)T0 R(C)S0 is given informally by the assign-
ment T1 T1 ×T0 S0. This follows from the fact that for any cofibration T ′

0 T0
such that the morphism T ′

0 ∗ is egressive, the pullback T ′
0 ×T0 S0 S0 is a

cofibration and the morphism T ′
0 ×T0 S0 ∗ is egressive. This follows from the fact

that the pullback of an egressive map is egressive, and the pullback of an ingressive
map along an egressive map is ingressive. The universality of finite coproducts in C
ensures that the functors f⋆ preserve finite coproducts; in particular the functors
f⋆ preserve summand inclusions and pushouts along summand inclusions.

13.9. Now suppose I a finite set, and suppose {Xi | i ∈ I} a collection of objects
of C indexed by the elements of I with coproduct X . We claim that the functor

C/X ∼
∏

i∈I
C/Xi

induced by the inclusions Xi X induce an equivalence

R(C,C†, C
†)X ∼

∏

i∈I
R(C,C†, C

†)Xi .

One need only note that both this functor, which is given by pullbacks along sum-
mand inclusions (which are egressive), and its left adjoint, which is given by co-
product, preserve the desired subcategories and restrict to adjoint equivalences.

13.10. Finally, the base change condition for R(C,C†, C†) states that for any am-
bigressive pullback square

S0 S′
0

T0 T ′
0,

i

q q′

j

of C and for any object T ′
1 of C over T0, the base change morphism

((T0 ⊔ T ′
1)×T0 S0) ∪S0 S′

0 ((T0 ⊔ T ′
1) ∪T0 T ′

0)×T ′
0
S′
0
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is an equivalence. This follows from the identifications

((T0 ⊔ T ′
1)×T0 S0) ∪S0 S′

0 ≃ (S0 ⊔ (T ′
1 ×T0 S0)) ∪S0 S′

0

≃ S′
0 ⊔ (T ′

1 ×T0 S0)

≃ S′
0 ⊔ (T ′

1 ×T ′
0
S′
0)

≃ (T ′
0 ⊔ T ′

1)×T ′
0
S′
0

≃ ((T0 ⊔ T ′
1) ∪T0 T ′

0)×T ′
0
S′
0,

which all follow from the universality of finite coproducts in C and the equivalence
S0 ≃ T0 ×T ′

0
S′
0.

We thus conclude the following.

13.11. Theorem. For any disjunctive triple (C,C†, C†) that is either left or right
complete, the functor

p : R(C,C†, C
†) C

is a Waldhausen bicartesian fibration over (C,C†, C†).

Now let’s unfurl this Waldhausen bicartesian fibration to obtain a Waldhausen
cocartesian fibration

Υ(p) : Υ(R(C,C†, C
†)) Aeff(C,C†, C

†),

whence we obtain a Mackey functor

Mp : A
eff(C,C†, C

†) Wald∞.

Note that the assignment

[1 U X ] [X X ⊔ U X ]

defines a functor

Aeff(C,C†, C
†)1/ ιAeff(C,C†,C†)R(C,C†, C

†)

of left fibrations over Aeff(C,C†, C†), and it follows from Lm. 13.4 that it is a
fiberwise equivalence. Consequently, we deduce that the functor ι ◦Mp is naturally
equivalent to the functor represented by the terminal object 1.

Now, almost by definition, the Waldhausen ∞-category Mp(S) ≃ R(C,C†, C†)S
is ι-split. We therefore conclude the following.

13.12. Theorem. For any disjunctive triple (C,C†, C†) that is either left or right
complete, the functor

K ◦ Mp : A
eff(C,C†, C

†) Sp

is the Burnside Mackey functor S(C,C†,C†) — i.e., the Mackey functor represented

by the terminal object 1 ∈ C (Df. 8.1).

Example A. Coherent n-topoi and the Segal–tom Dieck splitting

The similarities between the axioms for a disjunctive ∞-category and the Giraud
axioms for n-topoi [25, Th. 6.1.0.6(3)] suggest a deep relationship between the two
notions. Here, we briefly describe a way for higher topoi to give rise to a disjunctive
∞-category.



SPECTRAL MACKEY FUNCTORS AND EQUIVARIANT ALGEBRAIC K-THEORY (I) 45

A.1. Example. Any subcategory of an n-topos (1 ≤ n ≤ ∞) that is stable un-
der finite limits and finite coproducts is obviously disjunctive. All our examples
in this paper are ultimately of this kind. In fact, one can show that every dis-
junctive ∞-category arises (possibly after a change of universe) in this manner.
(If τ is a strongly inaccessible uncountable cardinal, then any τ -small disjunctive
∞-category C can be embedded in the full subcategory X ⊂ Fun(Cop ,Kan(τ))
spanned by the functors that preserve products. This is an accessible localization of
the ∞-category Fun(Cop ,Kan(τ)), and one can show that the localization functor
Fun(Cop ,Kan(τ)) X is left exact, whence X is an ∞-topos.)

A.2. Example. More particularly, the full subcategory X coh of a coherent∞-topos
X spanned by the coherent objects [27, Df. 3.12] is thus a disjunctive ∞-category.
Furthermore, for any natural number n, the full subcategory τ≤nX coh spanned by
the n-truncated objects is a full subcategory of an (n+1)-topos that is closed under
finite coproducts and finite limits; hence it too is a disjunctive ∞-category.

For 1 ≤ n <∞, let us say that an object U of an n-topos X is coherent if for
any n-localic ∞-topos Y and any equivalence φ : X ∼ τ≤n−1Y , the object φ(U)
is coherent. If Y is coherent, then we will say that X is coherent , and the full
subcategory X coh ⊂ X by the coherent objects is a disjunctive ∞-category.

A.3. Example. In particular, the ∞-category Kancoh of Kan simplicial sets all of
whose homotopy groups are finite is a disjunctive ∞-category, and for any n ≥ 0,
the truncation τ≤nKancoh (whose objects may be called finite n-groupoids) is a
disjunctive ∞-category.

The effective Burnside ∞-category Aeff(τ≤nKancoh) is an (n + 1)-category in

the sense of [25, Df. 2.3.4.1]. The homotopy category of Aeff(τ≤1Kancoh) = Aeff(F)
(where F is the nerve of the ordinary category of finite sets) is the ordinary effective
Burnside category for the trivial group.

The following proposition, whose proof we leave to the reader, can be summarized
by saying that the ∞-category Aeff(F) as the free ∞-category with direct sums
generated by a single object (the terminal object 1 of F).

A.4. Proposition. For any ∞-category E that admits direct sums, evaluation at
the terminal object 1 induces an equivalence of ∞-categories

Mack(F, E) ∼ E.

Let us turn now to a general version of the Segal–tom Dieck splitting theorem.

A.5. Notation. To this end, note that if X is a coherent n-topos (1 ≤ n ≤ ∞),
then there is a functor δ : F X coh informally given by the assignment

S S ⊗ 1 ≃
∐

s∈S
1.

See [25, §4.4.4].

A.6. Definition. A coherent n-topos X will be said to be locally connected if
the functor δ admits a left adjoint π.

The idea here is of course that for any coherent object X , the unit morphism
X δπX will decompose X into finitely many summands, each of which will be
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“connected,” in a unique manner. Indeed, for any object X , one may exhibit X as
a canonical coproduct

X ≃
∐

α∈πX
(X ×δπX δ{α}).

These objects X ×δπX δ{α} are now connected in the following sense.

A.7. Definition. Suppose X a coherent n-topos. A coherent object X of X will
be said to be connected if the functor X coh Kan it corepresents preserves
finite coproducts. Equivalently, X is connected just in case πX is a one-point set.
Denote by X conn ⊂ X coh the full subcategory spanned by the connected objects.

A.8. Warning. It is not necessarily the case that the terminal object ∗ of a lo-
cally connected coherent n-topos X is connected. If it is, then X is said to be
connected , and in this case δ is fully faithful.

It turns out that the spectral Burnside ring of a locally connected coherent n-
topos can be identified with a suspension spectrum.

A.9. Theorem (Segal–tom Dieck, [39]). Suppose X a locally connected coherent
n-topos. Then there is a natural equivalence

SX coh (1) ≃ Σ∞
+ ιX

conn ≃
∨

X

Σ∞
+ BAut(X),

where the wedge is taken over all equivalence classes of connected objects X, and
Aut(X) denotes the space of auto-equivalences of X.

Proof. It follows from Th. 13.12 that SX coh (1) can be identified with the group
completion of the object ιX coh ∈ CAlg(Kan), where the commutative algebra
structure is given by coproduct. It therefore suffices to show that ιX coh is the
free commutative algebra generated by the space ιX conn in the sense of [31, Ex.
3.1.3.12].

For this, note that the (homotopy) fiber of the map ι(π) : ιX coh ιNF over a
finite set I of cardinality n may be described as the space of pairs (X, f) consisting
of an object X ∈ ιX coh and an isomorphism π(X) ∼ I, which can in turn be
identified with the product (ιX conn)n. We therefore obtain an identification

Symn(ιX conn) ≃ BΣn ×hιNF ιX
coh .

Since one has ιNF ≃ ∐
n≥0BΣn, we find that

ιX coh ≃
∐

n≥0

Symn(ιX conn).

The proof is thus complete by [31, Ex. 3.1.3.11]. �

Example B. Equivariant spectra for a profinite group

Certain topological groups give a subexample of Ex. A.

B.1. Definition. A topological group is coherent if for every open subgroup H of
G, there exist only finitely many subsets of the form HgH for g ∈ G.
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B.2. Suppose G a coherent topological group. Suppose BG the classifying 1-topos
of G; that is, BG is the nerve of the ordinary category of sets equipped with a
continuous action of G. Then BG is the nerve of a coherent topos [17, §D3.4],

and the full subcategory Bfin
G spanned by the coherent objects is a disjunctive

∞-category.

B.3. A pro-discrete group G is coherent just in case it is profinite. In this case, the
coherent objects of BG are simply those continuous G-sets with only finitely many

orbits. Hence the full subcategory Bfin
G ⊂ BG spanned by finite G-sets with open

stabilizers is a disjunctive ∞-category. The effective Burnside ∞-category of Bfin
G

will be denoted, abusively, Aeff(G).

B.4. For any finite group G, the ∞-category Aeff(G) is in fact a 2-category whose
homotopy category hAeff(G) is the ordinary effective Burnside category for G; the
ordinary Burnside category forG is the local group completion (obtained by forming
the Grothendieck group of each of the Hom-sets under direct sum).

B.5. Notation. When C = NBfin
G for some profinite group G and E is some

additive ∞-category, we will write

MackG(E) := Mack(NBfin
G , E).

B.6. Example. When G is finite and E = NAb is the nerve of the ordinary

category of abelian groups, the ∞-category Fun(Aeff(NBfin
G ), NAb) is naturally

equivalent to the nerve of the ordinary category of functors Fun(hAeff(NBfin
G ),Ab).

Using the fact that the homotopy category hAeff(NBfin
G ) is the ordinary effective

Burnside category (3.8), we conclude that the full subcategory MackG(NAb) is

equivalent to the full subcategory of Fun(hAeff(NBfin
G ),Ab) spanned by Mackey

functors in the classical sense.
When G is finite and E = Sp is the ∞-category of spectra, work of Guillou and

May [12] show that this ∞-category is equivalent to the underlying ∞-category of
the relative category of genuine G-spectra in the sense of Lewis–May–Steinberger
[24], Mandell–May [32], and Hill–Hopkins–Ravenel [14, 16, 15]. For general profinite
groups G, we call MackG(Sp) the ∞-category of G-equivariant spectra .

B.7. Suppose G a profinite group, and suppose H a closed normal subgroup of G.
Then the natural functor ϕ : G G/H induces a morphism of topoi

ϕ⋆ : BG/H BG : ϕ⋆.

Both functors preserve coherent objects, finite coproducts and pullbacks. Hence we
obtain functors

ϕ⋆ : NBfin
G/H NBfin

G and ϕ⋆ : NB
fin
G NBfin

G/H .

For any presentable additive ∞-category E, we obtain adjunctions

ϕ⋆! : MackG/H(E) MackG(E) : ϕ⋆⋆

and

ϕ⋆! : MackG(E) MackG/H(E) : ϕ⋆⋆.

We write ΨH := ϕ⋆⋆ and ΦH := ϕ⋆!. When G is finite, one may use the equiva-
lence of Guillou–May [12] to interpret ΨH and ΦH as functors on the ∞-categories
of G- and G/H-equivariant spectra. One may show that these functors agree (up
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to equivalence) with the Lewis–May fixed points ΨH and the geometric fixed points
ΦH constructed by Mandell–May [32].

For any profinite group G, the 1-topos NBfin
G is locally connected (connected,

in fact). This fact permits us to use our Segal–tom Dieck Theorem A.9 to compute
the value of the Burnside spectral Mackey functor

SG := SNBfin
G

on the terminal G-set [G/G]. Indeed, the connected objects of NBfin
G are precisely

the finite G-sets with open stabilizers that are transitive. Up to equivalence, these
are classified by conjugacy classes of open subgroups of G. The space of autoequiv-
alences of the transitive G-set [G/H ] is equivalent to the quotient NGH/H , whence
we obtain the traditional Segal–tom Dieck splitting [39], now for profinite groups:

B.8. Proposition. For any profinite group G, one has

SG([G/G]) ≃
∨

H

Σ∞
+ B(NGH/H),

where the wedge is indexed by conjugacy classes of open subgroups H ≤ G.

Example C. A-theory and upside-down A-theory of ∞-topoi

In this section, we introduce two dual disjunctive triple structures on an∞-topos,
where the ingressive or egressive morphisms are defined by means of a finiteness
condition. We use these structures to construct both the A-theory and the

A

-theory
of ∞-topoi together with all their functorialities.

To begin, if we consider an ∞-topos as a disjunctive ∞-category, then there is
a natural Waldhausen bicartesian fibration that lies over it. Let us investigate this
now.

The following is an easy analogue of [25, Lm. 6.1.1.1].

C.1. Lemma. If C is an ∞-category that admits both pullbacks and pushouts, then
the functor

Fun(∆2, C) Fun(∆{0,2}, C)

is a both a cartesian fibration and a cocartesian fibration.

C.2. Notation. For the remainder of this section, suppose X an ∞-topos. We
consider the fibration

p : Fun(∆2/∆{0,2},X ) ∼= Fun(∆2,X )×Fun(∆{0,2},X ) X X ,

which is both cartesian and cocartesian. We may think of the objects of the ∞-
category Fun(∆2/∆{0,2},X ) as retract diagrams

X X ′ X ;

the functor p is given by the assignment

[X X ′ X ] X.

We therefore denote XX/ /X the fiber of p over an objectX of X . For any morphism
f : X Y , the corresponding functors

f! : XX/ /X XY/ /Y and f⋆ : XY/ /Y XX/ /X

are given informally by the assignments X ′ Y ∪X X ′ and Y ′ Y ′ ×Y X.
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C.3. Proposition. Endow the ∞-category Fun(∆2/∆{0,2},X ) with the pair struc-
ture in which a morphism f is ingressive just in case p(f) is an equivalence. Then
p : Fun(∆2/∆{0,2},X ) X is a Waldhausen bicartesian fibration.

Proof. The only nontrivial points are the following. For any morphism f : X Y ,
the functor f⋆ preserves pushout squares by the universality of colimits in X . The
admissibility of p also follows from the universality of colimits in X . Finally, if I is
a finite set and {Xi}i∈I a family of objects of X with coproduct X , then pullback
along the various inclusions Xi X defines an equivalence of ∞-categories

XX/ /X
∼

∏

i∈I
XXi/ /Xi

. �

This Waldhausen bicartesian fibration is not so interesting from the point of
view of algebraic K-theory, as each ∞-category XX/ /X has vanishing K-theory.
To make it more interesting, we must restrict attention to objects with a finiteness
condition. We thus turn to the study of finiteness conditions on objects of the
∞-topos X . We begin with the following result.

C.4. Proposition. Suppose X ∈ X an object. An object X ′ ∈ X/X is compact if
and only if it is compact as an object of X .

Proof. It is easy to see that if X ′ is compact in X , then it is compact in X/X .
Conversely, the forgetful functor X/X X admits a right adjoint that, thanks
to the universality of colimits, preserves colimits. It follows from [25, Pr. 5.5.7.2(1)]
that if X ′ is compact as an object of X/X , then it is compact as an object of X . �

The following is now immediate.

C.4.1. Corollary. If the ∞-topos X is compactly generated, then for any object
X ∈ X , the ∞-topos X/X is compactly generated as well.

In the ∞-category of spaces, those maps whose fibers are (homotopy) retracts
of finite CW complexes play a special role. In a more general ∞-topos, this role is
played by the relatively compact morphisms, which we define now.

C.5. Definition (Lurie, [25, Df. 6.1.6.4]). A morphism Y X of X is said to be
relatively compact just in case, for any compact object S of X and any morphism
η : S X and any pullback square

Yη Y

S X,
η

the object Yη is compact.

C.6. Proposition. Suppose G ⊂ X a full subcategory whose objects are compact
that generates X under colimits (so that X is compactly generated). Then a mor-
phism Y X of X is relatively compact just in case, for any object T ∈ G and
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any morphism ξ : T X and any pullback square

Yξ Y

T X,
ξ

the object Yξ is compact.

Proof. To prove this claim, it suffices to show that if

(C.6.1) S ∈ X ω,
(C.6.2) Z ∈ X , and
(C.6.3) Z S is a morphism such that for any pullback square

Zξ Z

T S,
ξ

of X in which T ∈ G , the object Zξ is compact,

then the object Z is also compact. To see this, we first argue that X ω is generated
under finite colimits and retracts by G ; indeed, if X f ⊂ X ω denotes the full
subcategory generated by G under finite colimits, then [25, Pr. 5.3.5.11] implies that
the colimit preserving functor Ind(X f ) Ind(X ω) = X corresponding to the
inclusion X f X ω is an equivalence, whence X ω is the idempotent completion
of X f thanks to [25, Pr. 5.5.7.8]. We therefore may write S as a retract of a finite
colimit of objects of G , and employing the universality of colimits, we obtain a
presentation of Z as a retract of a finite colimit of compact objects. �

C.7. Example. In particular, we deduce that the ∞-category Kan admits a dis-
junctive triple structure in which every morphism is ingressive, and a morphism is
egressive just in case its fibers are compact (or, in the parlance of [9, p. 3], homotopy
finitely dominated).

C.8. Proposition. If Xrc ⊂ X denotes the subcategory of relatively compact mor-
phisms, then the triples (X ,X ,Xrc) and (X ,Xrc,X ) are disjunctive.

Proof. It is obvious that relatively compact morphisms are closed under pullback.
The universality of colimits and the fact that compact objects of X are closed under
finite coproducts implies that the class of relatively compact morphisms is compat-
ible with coproducts. The other axioms all follow directly from the universality of
colimits and the disjointness of finite coproducts in X . �

C.9. Notation. Now let us restrict the Waldhausen bicartesian fibration

p : Fun(∆2/∆{0,2},X ) X .

Let us write I (X ) for the full subcategory of Fun(∆2/∆{0,2},X ) spanned by
those retract diagrams

X X ′ X
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such that the object X ′ ∈ XX/ /X is compact. Dually, let us write J (X ) for the

full subcategory of Fun(∆2/∆{0,2},X ) spanned by those retract diagrams

X X ′ X

such that the morphism X ′ X is relatively compact.

C.10. Theorem. Assume that X is compactly generated, and assume that the ter-
minal object 1 ∈ X is compact. The functor p restricts to Waldhausen bicartesian
fibrations

pI (X ) : I (X ) X

over (X ,X ,Xrc) and

pJ (X ) : J (X ) X

over (X ,Xrc,X ).

Proof. The only points left to be shown are the following for a morphism f : X Y
of X .

(A) If X ′ ∈ XX/ /X is compact, then X ′ ∪X Y ∈ XY/ /Y is also compact.
(B) If Y ′ Y is relatively compact, then the pullback Y ′ ×Y X X is also

relatively compact.
(C) If f is relatively compact and Y ′ ∈ XY/ /Y is compact, then Y ′×YX ∈ XX/ /X

is also compact.
(D) If f is relatively compact and X ′ X is relatively compact, then the pushout

X ′ ∪X Y Y is also relatively compact.

To prove (1), note that the functor XX/ /X XY/ /Y given by the assignment

X ′ X ′ ∪X Y can be identified with the tensor product

u⊗ id : X/X ⊗Kan∗ X/Y ⊗Kan∗

of presentable ∞-categories (in the sense of [31, §6.3.1]) of the forgetful functor
u : X/X X/Y with the identity functor [31, Pr. 6.3.2.11]. By Pr. C.4 and Cor.
C.4.1, u is an ω-good functor between compactly generated ∞-categories in the
sense of [31, Nt. 6.3.7.8]. Hence by [31, Lm. 6.3.7.11], u ⊗ id is ω-good as well. In
particular, it preserves compact objects.

Assertion (2) is clear.
To prove (3), note that the functor v : X/Y X/X given by the assignment

Y ′ Y ′ ×Y X preserves colimits by the universality of colimits in X , and it pre-
serves compact objects thanks to Pr. C.4; we thus conclude that v is ω-good. Once
again we may identify the functor XY/ /Y XX/ /X given by the assignment
Y ′ Y ′ ×Y X with v ⊗ id, and once again we may appeal to [31, Lm. 6.3.7.11]
to conclude that v ⊗ id is ω-good.

Finally, to prove (4), assume that S ∈ X is a compact object and S Y a
morphism. The universality of colimits implies that

(X ′ ∪X Y )×Y S ≃ (X ′ ×Y S) ∪(X×Y S) S.

Since both X ′ X and X Y are relatively compact, it follows that both
X ′ ×Y S and X ×Y S are compact. Since compact objects are closed under finite
colimits, it follows that (X ′ ∪X Y )×Y S is compact as well, and this completes the
proof that X ′ ∪X Y Y is relatively compact. �
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C.10.1. Corollary. Assume that X is compactly generated, and assume that the
terminal object 1 ∈ X is compact. The unfurlings

Υ(pI (X )) Aeff(X ,X ,Xrc) and Υ(pJ (X )) Aeff(X ,Xrc,X )

classify Mackey functors

MI (X ) : A
eff(X ,X ,Xrc) Wald∞

and
MJ (X ) : A

eff(X ,Xrc,X ) Wald∞.

C.11. Notation. Assume that X is compactly generated, and assume that the
terminal object 1 ∈ X is compact. Write A and

A

for the composite Mackey
functors

AX := K ◦ MI (X ) and

A

X := K ◦ MJ (X ).

For any object X ∈ X , the spectrum AX (X) is the algebraic K-theory of the
full subcategory I (X )X ⊂ XX/ /X spanned by the compact objects, and

A

X (X)
is the algebraic K-theory of the full subcategory J (X )X ⊂ XX/ /X spanned by
those retract diagrams X X ′ X such that X ′ X is relatively compact.

C.12. Assume that X is compactly generated, and assume that the terminal object
1 ∈ X is compact. We have equivalences

MapMack(X ,X ,Xrc;Sp)(S(X ,X ,Xrc),AX ) ≃ AX (1)

and
MapMack(X ,Xrc,X ;Sp)(S(X ,Xrc,X ),

A
X ) ≃ A

X (1),

where 1 denotes the terminal object of X . The object 1 ⊔ 1 ∈ X1/ /1 lies in both
I (X )1 and J (X )1, whence its classes in the corresponding K-theories specify
morphisms of Mackey functors

S(X ,X ,Xrc) AX and S(X ,Xrc,X )

A

X .

We thus obtain, for any object X ∈ X , assembly morphisms

S(X ,X ,Xrc)(X) AX (X) and S(X ,Xrc,X )(X)

A

X (X).

We in turn obtain, for any three objects U, V,X ∈ X such that U 1 is relatively
compact, assembly morphisms

Σ∞
+ MapX (U,X) AX (X) and Σ∞

+ MapXrc
(V,X)

A

X (X).

As in Df. 8.3, we obtain, for any object X ∈ X , morphisms of Mackey functors

SX(X ,X ,Xrc)
F (AX (X),AX ) and SX(X ,Xrc,X ) F (

A

X (X),

A

X ),

which induce, for any object Y ∈ X , assembly morphisms

SX(X ,X ,Xrc)
(Y ) ∧AX (X) AX (Y )

and
SX(X ,Xrc,X )(Y ) ∧ A

X (X)

A

X (Y ),

We in turn obtain, for any objects U, V ∈ X such that U 1 is relatively compact,
assembly morphisms

Σ∞
+ MapX (U,X) F (

A

X (X),

A

X (1))

and
Σ∞

+ MapXrc
(V,X) F (AX (X),AX (1)).



SPECTRAL MACKEY FUNCTORS AND EQUIVARIANT ALGEBRAIC K-THEORY (I) 53

C.13. Example. If X = Kan, then the functors A and

A

are fully functorial
version of A-theory and

A

-theory as considered by Waldhausen in [40, §2.1] (modulo
the small point that here we deal with finitely dominated spaces in place of finite
spaces). The assembly morphisms above described above are

Σ∞
+ Map(U,X) A(X) and Σ∞

+ Maprc(V,X)

A

(X),

any three objects U, V,X ∈ X such that U ∗ is relatively compact, where
Maprc(V,X) ⊂ Map(V,X) is the union of the connected components corresponding
to maps V X with finitely dominated (homotopy) fibers. When U = ∗, the first
of these morphisms is the usual assembly morphism Σ∞

+X A(X). Dually, we
also have co-assembly morphisms

Σ∞
+ Map(U,X) F (

A

(X),A(∗))
and

Σ∞
+ Maprc(V,X) F (A(X),A(∗)).

(Observe that A(∗) ≃ A

(∗).) When U = ∗, the first of these morphisms seems to
have been studied independently by Cary Malkiewich. When composed with the
morphism induced by the trace

A(∗) ≃ K(S) THH(S) ≃ S,

we obtain morphisms

Σ∞
+ Map(U,X) D

A

(X) and Σ∞
+ Maprc(V,X) DA(X).

Example D. Algebraic K-theory of derived stacks

We turn to a more geometric setting. Over suitable schemes, complexes of qua-
sicoherent sheaves admit both a pushforward and pullback functor. The pullback
carries perfect complexes to perfect complexes, but the pushforward does not, unless
some heavy constraints are placed on the morphisms of schemes involved. In this
subsection, we discuss such restrictions for a very general class of derived stacks.

There are two classes of examples in which we will be interested: (i) spectral
Deligne–Mumford stacks and (ii) arbitrary sheaves of spaces for the flat site. In
each case we will construct algebraicK-theory as a spectral Mackey functor relative
to certain disjunctive triple structures.

D.1. For simplicity, in this section we work absolutely, i.e., over the sphere spectrum.
Nothing here uses that fact in a nontrivial way, and all the results of this section
can obviously be adapted to work over more general bases.

D.2. Notation. We consider the ∞-category CAlgcn of connective E∞ rings and
the huge ∞-topos

Shvflat ⊂ Fun(CAlgcn,Kan(κ1))

of large sheaves on CAlgcn,op for the flat topology [27, Pr. 5.4].

Let us begin by identifying two sources of disjunctive triples within the ∞-
category Shvflat. Since our aim is to study categories of modules that are con-
travariantly functorial in all morphisms but only covariantly functorial in certain
classes of morphisms, these disjunctive triples will have the property that every
morphism will be egressive, but the ingressives will be heavily restricted.
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D.3. Notation. The full subcategory DM ⊂ Shvflat spanned by those sheaves
that are representable by spectral Deligne–Mumford stacks is closed under finite
coproducts and pullbacks, whence it is a disjunctive ∞-category.

For any class P of morphisms of DM that is stable under pullback and com-
patible with coproducts in the sense of (5.2.4), one obtains a disjunctive triple

(DM,DMP ,DM),

where DMP ⊂ DM is the subcategory that contains all the objects, in which the
morphisms lie in P.

D.4.Notation. Alternately, one may opt to keep all the objects of Shvflat. Then for
any class P of morphisms of Shvflat that is stable under pullback and compatible
with coproducts in the sense of (5.2.4), one obtains a disjunctive triple

(Shvflat,Shvflat,P ,Shvflat),

where Shvflat,P ⊂ Shvflat is the subcategory that contains all the objects, in which
the morphisms lie in P.

Our ultimate interest will be in the study of perfect modules over these sorts of
objects, but let us first consider the larger ∞-category of quasicoherent modules.

D.5. Notation. We let

Mod QCoh

CAlgcn Shvop
flat

q p

be a pullback square in which q is the cocartesian fibration of [31, Df. 4.4.1.1], and
p is a cocartesian fibration classified by the right Kan extension of the functor that
classifies q. The objects of QCoh can be thought of as pairs (X,M) consisting of
a sheaf X : CAlgcn Kan(κ1) for the flat topology and a quasicoherent module
M over X .

D.6. Let us note that by [28, Pr. 2.7.17(1)], the fibers of p are all stable∞-categories.
Furthermore, since the functor Shvop

flat Cat∞(κ1) that classifies p preserves
limits [28, Pr. 2.7.14], it follows that for any finite set I and any collection {Xi | i ∈
I} of sheaves, the natural functor

QCoh∐
i∈I Xi

∏

i∈I
QCohXi

is an equivalence.

D.7. Warning. Note that p is not a cartesian fibration. In general, the functor

f⋆ : QCohY QCohX

induced by a natural transformation f : X Y will preserve all small colimits
[28, Pr. 2.7.17(2)], but the ∞-categories may not be presentable unless one knows
that X and Y are in some sense “small.”

This smallness is ensured if, for example, X and Y are represented by spectral
Deligne–Mumford stacks ([28, Prs. 2.3.13 and 2.7.18]). We therefore conclude the
following.
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D.8. Lemma. The pulled back functor

QCoh×Shvop
flat

DMop DMop

is both a cocartesian fibration and a cartesian fibration.

D.9. Notation. In the ∞-category DM, consider the class RS of relatively
scalloped morphisms in the sense of [28, Df. 2.5.10]. Then since relatively scalloped
morphisms are stable under pullback and compatible with coproducts in the sense
of (5.2.4), we obtain a disjunctive triple

(DM,DMRS ,DM).

D.10. Proposition. The functor

QCohop ×Shvflat
DM DM

is a Waldhausen bicartesian fibration for the left complete disjunctive triple

(DM,DMRS ,DM).

Proof. By [28, Pr. 2.5.14], the relevant base change functors are all equivalences. �
D.11. Notation. In the bigger ∞-category of all flat sheaves, we consider the
class QA in Shvflat of quasi-affine representable morphisms — that is, those
morphisms X Y such that for any connective E∞ ring R and any R-point
η : SpecR Y , the pullback X×Y SpecR is representable by a spectral Deligne–
Mumford stackXη, and the map Xη SpecR is quasi-affine [28, Df. 3.1.24]. Then
since quasi-affine representable morphisms are stable under pullback and compatible
with coproducts in the sense of (5.2.4), we have a disjunctive triple

(Shvflat,Shvflat,QA ,Shvflat).

The following is immediate from [28, Pr. 3.2.5].

D.12. Lemma. The pulled back functor

QCoh×Shvop
flat

Shvop
flat,QA Shvop

flat,QA

is both a cocartesian fibration and a cartesian fibration.

Furthermore, we deduce from [28, Cor. 3.2.6(2)] that the relevant base change
functors are all equivalences, whence we conclude the following.

D.13. Proposition. The functor

p : QCohop Shvflat

is a Waldhausen bicartesian fibration for the left complete disjunctive triple

(Shvflat,Shvflat,QA ,Shvflat).

D.14. Notation. Now denote by Perf ⊂ QCoh the full subcategory spanned by
those pairs (X,M) in which M is a perfect quasicoherent module on X — i.e., a
strongly dualizable object of the symmetric monoidal ∞-category QCohX . Endow
Perfop with its fiberwise maximal pair structure, so that

Perf † := Perf ×Shvop
flat

ιShvop
flat.

Note that the restricted functor

Perfop Shvflat

remains a Waldhausen cartesian fibration, since pullbacks are symmetric monoidal.
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We now wish to shrink our classes of ingressives on DM and Shvflat to en-
sure that perfect modules define a supported Waldhausen bicartesian fibration. For
this, it’s enough to find a class of morphisms such that the pushforward preserves
perfection.

D.15. Definition. Suppose f : X Y a morphism of Shvflat such that the
functor f⋆ : QCohY QCohX admits a right adjoint f⋆. Call f perfect if
f⋆ : QCohX QCohY carries perfect objects [28, Df. 2.7.21] to perfect objects.

Between spectral Deligne–Mumford stacks, Lurie identifies an important class of
perfect morphisms.

D.16. Proposition (Lurie, [30, Pr. 3.3.20]). If a morphism f : X Y of spectral
Deligne–Mumford stacks is strongly proper [30, Df. 3.1.1], of finite Tor-amplitude
[30, Df. 3.3.9], and locally almost of finite presentation [26, Df. 8.16], then it is
perfect.

D.17. Notation. Denote by FP the class of strongly proper morphisms of finite
Tor-amplitude [30, Df. 3.3.9] and locally almost of finite presentation. To see that
the class FP is stable under pullbacks, combine [30, Rk. 3.1.5 and Pr. 3.3.16] and
[26, Pr. 8.25]. It is easy to see that this class is compatible with coproducts in the
sense of (5.2.4).

D.18. Proposition. The functor

pDM : Perfop ×Shvflat
DM DM

is a Waldhausen bicartesian fibration for the left complete disjunctive triple

(DM,DMFP ,DM).

D.18.1. Corollary. The unfurling

Υ(pDM) Aeff(DM,DMFP ,DM)

is classified by a Mackey functor

MDM : Aeff(DM,DMFP ,DM) Wald∞.

D.19. Notation. As a result, we obtain a Mackey functor

K ◦ MDM : Aeff(DM,DMFP ,DM) Sp.

The algebraic K-theory of any Deligne–Mumford stack is an E∞ ring spectrum,
whence it has a canonical K-theory class, given by the unit. Correspondingly, we
obtain a morphism of Mackey functors

S(DM,DMFP ,DM) K ◦ MDM.

We thus obtain, for any Deligne–Mumford stacks U and X , an assembly morphism

Σ∞
+ MorFP(U,X) K(X),

where MorFP is the space of strongly proper morphisms of finite Tor-amplitude
and locally almost of finite presentation.

As in Df. 8.3, we obtain a morphism of spectral Mackey functors

SX(DM,DMFP ,DM) F (K(X),K ◦ MDM),

which induces assembly morphisms

SX(DM,DMFP ,DM)(Y ) ∧K(X) K(Y ).
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We in turn obtain, for any spectral Deligne–Mumford stack U such that the mor-
phism U Specét(S) is strongly proper, of finite Tor-amplitude, and locally almost
of finite presentation, an assembly morphism

Σ∞
+ Map(U,X) F (K(X),K(S)).

When composed with the morphism induced by the trace

K(S) THH(S) ≃ S,

we obtain a morphism
Σ∞

+ Map(U,X) DK(X).

Now among the more general class of flat sheaves, let us characterize perfect
morphisms that are also quasi-affine representable.

D.20. Proposition. The following are equivalent for a quasi-affine representable
morphism f : X Y of Shvflat.

(D.20.1) The morphism f is perfect.
(D.20.2) The quasicoherent module f⋆OX is perfect.

Proof. That the first condition implies the second is obvious. To prove the converse,
let us first reduce to the case where Y is affine. Indeed, for any quasicoherent module
M over X , the quasicoherent module f⋆M is perfect just in case, for any point
η : SpecR Y , the R-module η⋆f⋆M is perfect. Now consider the pullback

Xη SpecR

X Y.

f ′

ε η

f

One now has η⋆f⋆M ≃ f ′
⋆ε
⋆M [28, Cor. 3.2.6(2)], and if M is perfect, so is ε⋆M .

So we now assume that Y = SpecR. Now let A := f⋆OX , an R-module. In light
of [28, Pr. 3.2.5], we obtain an equivalence QCohX ≃ ModA, under which the
functor f⋆ can be identified with the forgetful functor

U : ModA ModR.

Now U−1(PerfR) is a stable subcategory that is closed under retracts, and by
assumption it contains A. Hence PerfA ⊂ U−1(PerfR). �
D.20.1. Corollary. The collection QP of quasi-affine representable and perfect
morphisms of Shvflat is stable under pullback.

Proof. Suppose

X ′ Y ′

X Y

f ′

α β

f

a pullback square in Shvflat, and suppose f quasi-affine representable and perfect.
Then the quasicoherent module

f ′
⋆OX′ ≃ f ′

⋆α
⋆OX ≃ β⋆f⋆OX

is perfect as well. �
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It is a straightforward matter to see that QP is compatible with coproducts in
the sense of (5.2.4). We thus conclude the following.

D.21. Proposition. The functor

Perfop Shvflat

is a Waldhausen bicartesian fibration for the left complete disjunctive triple

(Shvflat,Shvflat,QP ,Shvflat).

D.21.1. Corollary. The unfurling

Υ(pShvflat
) Aeff(Shvflat,Shvflat,QP ,Shvflat)

is classified by a Mackey functor

MShvflat
: Aeff(Shvflat,Shvflat,QP ,Shvflat) Wald∞.

D.22. Notation. As a result, we obtain a Mackey functor

K ◦ MShvflat
: Aeff(Shvflat,Shvflat,QP ,Shvflat) Sp.

The algebraic K-theory of any flat sheaf is an E∞ ring spectrum, whence it has a
canonicalK-theory class, given by the unit. Correspondingly, we obtain a morphism
of Mackey functors

S(Shvflat,Shvflat,QP,Shvflat) K ◦ MShvflat
.

We thus obtain, for any flat sheaves U and X , an assembly morphism

Σ∞
+ MorQP(U,X) K(X),

where MorQP is the space of quasi-affine representable and perfect morphisms.
Dually, as in Df. 8.3, we obtain a morphism of Mackey functors

SX(Shvflat,Shvflat,QP ,Shvflat)
F (K(X),K ◦ MShvflat

),

which induces assembly morphisms

SX(Shvflat,Shvflat,QP ,Shvflat)
(Y ) ∧K(X) K(Y )

for any flat sheaf Y . We in turn obtain, for any flat sheaf U such that U Specf(S)
is quasiaffine representable and perfect, an assembly morphism

Σ∞
+ Map(U,X) F (K(X),K(S)).

When composed with the morphism induced by the trace

A(∗) ≃ K(S) THH(S) ≃ S,

we obtain a morphism

Σ∞
+ Map(U,X) DK(X).

Finally, let us restrict Ex. D to relate it to Ex. B.

D.23. Notation. Suppose X a spectral Deligne–Mumford stack. We denote by
FÉt(X) the subcategory of DM/X whose objects are finite [30, Df. 3.2.4] and étale
morphisms Y X and whose morphisms are finite and étale morphisms over X .
We will abuse notation and write Aeff(X) for the effective Burnside ∞-category of

FÉt(X).
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D.24. Example. Suppose X a connected, noetherian scheme, suppose x a geomet-
ric point of X . Then if πét

1 (X, x) is the étale fundamental group of X , then by

Grothendieck’s Galois duality [33, Exp. V, §7], the ∞-category FÉt(X) is canoni-

cally equivalent to the ∞-categoryNBfin

πét
1 (X,x)

of Ex. B, whence we have a canonical

equivalence

Aeff(πét
1 (X, x)) ≃ Aeff(X).

(We can, of course, relax the condition that X be connected by passing to the étale
fundamental groupoid.)

Restricting the Mackey functor K ◦ MDM of Nt. D.19 to

Aeff(X) ⊂ Aeff(DM,DMFP ,DM),

we obtain a πét
1 (X, x)-equivariant K-theory spectrum

Kπét
1 (X,x)(X) : Aeff(πét

1 (X, x)) Sp,

whose value on the πét
1 (X, x)-set [πét

1 (X, x)/H ] (with H ≤ πét
1 (X, x) open) is the

algebraicK-theory of the étale cover X ′ X corresponding to H . Corresponding
to the unit of K(X), we obtain a morphism of Mackey functors

Sπét
1 (X,x) Kπét

1 (X,x)(X).

The Segal–tom Dieck splitting thus provides a collection of maps

Σ∞
+ B(Nπét

1 (X,x)H/H) K(X),

one for each conjugacy class of open subgroups H ≤ πét
1 (X, x).
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SPECTRAL MACKEY FUNCTORS AND EQUIVARIANT
ALGEBRAIC K-THEORY (II)

CLARK BARWICK, SAUL GLASMAN, AND JAY SHAH

Abstract. We study the “higher algebra” of spectral Mackey functors, which
the first named author introduced in Part I of this paper. In particular, armed
with our new theory of symmetric promonoidal ∞-categories and a suitable
generalization of the second named author’s Day convolution, we endow the
∞-category of Mackey functors with a well-behaved symmetric monoidal struc-
ture. This makes it possible to speak of spectral Green functors for any operad
O. We also answer a question of Mathew, proving that the algebraic K-theory
of group actions is lax symmetric monoidal. We also show that the algebraic
K-theory of derived stacks provides an example. Finally, we give a very short,
new proof of the equivariant Barratt–Priddy–Quillen theorem, which states
that the algebraic K-theory of the category of finite G-sets is simply the G-
equivariant sphere spectrum.
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0. Summary

This paper is part of an effort to give a complete description of the structures
available on the algebraic K-theory of varieties and schemes (and even of various
derived stacks) with all their concomitant functorialities and homotopy coherences.

So suppose X a scheme (quasicompact and quasiseparated). The derived tensor
product ⊗L on perfect complexes on X defines a symmetric monoidal structure on
the derived category Dperf

X of perfect complexes on X . With a little more effort, one
1



2 CLARK BARWICK, SAUL GLASMAN, AND JAY SHAH

can lift this structure to a symmetric monoidal structure on the stable ∞-category
of perfect complexes on X . This suffices to get a product on algebraic K-theory

⊗ : K(X) ∧K(X) K(X)

that is associative and commutative up to coherent homotopy. Thus, K(X) has not
only the structure of a connective spectrum, but also the structure of a connective
E∞ ring spectrum. This is an exceedingly rich structure: not only do the homotopy
groups K∗(X) form a graded commutative ring, but these homotopy groups also
support (in a functorial way) a tremendous amount of structure involving intricate
higher homotopy operations called Toda brackets. Still more information (in the
form of Dyer-Lashof operations) can be found on the Fp-cohomology of K(X).

Now for any morphism f : Y X of schemes, the derived functor

Lf⋆ : Dqcoh
X Dqcoh

Y

on the category of complexes with quasicoherent cohomology preserves perfect com-
plexes, and the resulting functor Lf⋆ : Dperf

X Dperf
Y induces a morphism

f⋆ : K(X) K(Y )

on the algebraic K-theory. The functor Lf⋆ is compatible with the derived tensor
product, in the sense that for any perfect complexes E and F on X , there is a
canonical isomorphism

Lf⋆(E ⊗L F ) ≃ (Lf⋆E)⊗L (Lf⋆F ).

Again this can be lifted to the level of stable ∞-categories, whence the induced
morphism f⋆ on K-theory turns out to be a morphism of connective E∞ ring
spectra. This implies that the induced homomorphism on homotopy groups

f⋆ : K∗(X) K∗(Y )

is a homomorphism of graded commutative rings, and it must respect all the higher
homotopy operations on K∗(X) as well.

Furthermore, one can fit all the functors Lf⋆ together to get a presheaf U
Dperf
U on the big site of all schemes. This can even be viewed as a presheaf of stable

∞-categories, which suffices to give us a presheaf of connective spectra U K(U).
Since the morphisms f⋆ are morphisms of connectiveE∞ ring spectra, we can regard
this as presheaf of E∞ ring spectra.

If one wanted, one might “externalize” the product on K-theory in the following
manner. For any two schemes X and Y over a base scheme S, one may define an
external tensor product

⊠L : Dperf
X ×Dperf

X Dperf
X×SY

by the assignment (E,F ) (Lpr⋆1 E) ⊗L (Lpr⋆2 F ). Note that we have natural
equivalences

(Lf⋆E)⊠L (Lg⋆F ) ≃ L(f × g)⋆(E ⊠L F )

If we lift this to the level of stable ∞-categories, this gives rise to an external pairing

⊠ : K(X) ∧K(Y ) K(X ×S Y ),

which is functorial (contravariantly) in X and Y . The E∞ product on K(X) can
now be obtained by pulling back this external pairing along the diagonal map:

K(X) ∧K(X) K(X ×S X) K(X).
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A morphism of schemes f : Y X may induce morphisms in the covariant
direction as well. The pushforward Rf⋆ : D

qcoh
Y Dqcoh

X generally will not pre-
serve perfect complexes. If, however, f is flat and proper, then for any perfect
complex E, the complex Rf⋆E is perfect. Thus in this case Rf⋆ restricts to a func-
tor Rf⋆ : D

perf
Y Dperf

X , and after lifting this to the stable ∞-categories, we find
an induced morphism

f⋆ : K(Y ) K(X)

on the algebraic K-theory. One thus obtains a covariant functor U K(U), but
only with respect to flat and proper morphisms. Observe, however, that since the
functors Rf⋆ do not commute with the derived tensor product, this functor is not
valued in ring spectra.

Nevertheless, if f : Y X is proper and flat, we do have an algebraic structure
preserved by Rf⋆. Observe that one may regard K(Y ) as a module over the E∞
ring spectrum K(X) via f⋆. For any perfect complexes E on Y and F on X , one
has a canonical equivalence

(Rf⋆E)⊗L F ≃ Rf⋆(E ⊗L Lf⋆F )

of perfect complexes; this is the usual projection formula [8, Exp. III, Pr. 3.7]. At
the level of K-theory, this translates to the observation that the morphism

f⋆ : K(Y ) K(X)

is a morphism of connective K(X)-modules. The induced map on homotopy groups

f⋆ : K∗(Y ) K∗(X)

is therefore a homomorphism of K∗(X)-modules.
Note that the external tensor product ⊠L is actually perfectly compatible with

the pushforwards, in the sense that one has natural equivalences

(Rf⋆E)⊠L (Rg⋆F ) ≃ R(f × g)⋆(E ⊠L F ),

so onK-theory the external product ⊠ : K(X) ∧K(Y ) K(X ×S Y ) is functorial
(covariantly) in X and Y .

Last, but certainly not least, there is a compatibility between the morphisms f⋆
and the morphisms g⋆, which results from the base change theorem for complexes
[8, Exp. IV, Pr. 3.1.0]. Suppose that

Y ′ Y

X ′ X

g

f f

g

is a pullback square of schemes in which the horizontal maps g are flat and proper.
Then the canonical morphism

Lf⋆Rg⋆ Rg⋆Lf
⋆

is an objectwise equivalence of functors Dperf
X′ Dperf

Y . This translates to the
condition that there is a canonical homotopy

f⋆g⋆ ≃ g⋆f
⋆ : K(X ′) K(Y )

of morphisms of K(X)-modules. In fact, this compatibility between the pullbacks
and the pushforwards, combined with the compatibility between f⋆ and the external
tensor product, allows us to deduce the projection formula.
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Let us summarize the structure we’ve found on the assignment U K(U):
◮ For every scheme X , we have an E∞ ring spectrum K(X). Moreover, for

any two schemes X and Y over a base S, one has an external pairing

⊠ : K(X) ∧K(Y ) K(X ×S Y ).

◮ For every morphism f : Y X , we have a pullback morphism

f⋆ : K(X) K(Y ),

which is compatible with the external pairings and thus also with the E∞
product.

◮ For every flat and proper morphism f : Y X , we have a pushforward
morphism

f⋆ : K(Y ) K(X),

which is compatible with the external pairings and thus (in light of the next
condition) also with the K(X)-module structure.

◮ For any pullback square

Y ′ Y

X ′ X

g

f f

g

in which the horizontal maps g are flat and proper, we have a canonical
homotopy

f⋆g⋆ ≃ g⋆f
⋆ : K(X ′) K(Y ).

of morphisms of K(X)-modules.
In this paper, we will demonstrate that these structures, along with all of their ho-
motopy coherences, are neatly packaged in a spectral Green functor on the category
of schemes.

This structure is the origin of both the Gal(E/F )-equivariant E∞ ring spectrum
structure on the algebraicK-theory of a Galois extension E ⊃ F and the cyclotomic
structure on the p-typical curves on a smooth Fp-scheme. For the former, see 9.7,
and for the latter, see the forthcoming paper [7].

In order to describe all the structure we see here, we study the “higher algebra”
(in the sense of Lurie’s book [19], for example) of spectral Mackey functors, which we
introduced in Part I of this paper [4]. The ∞-category of spectral Mackey functors
turns out to admit all the same well-behaved structures as the ∞-category of spec-
tra itself. In particular, the ∞-category of Mackey functors admits a well-behaved
symmetric monoidal structure. This, combined with Saul Glasman’s convolution for
∞-categories [11], makes it possible to speak of E1 algebras, E∞ algebras, or indeed
O-algebras for any operad O in this context; these are called O-Green functors.

We use this framework to provide a very simple answer to a question posed to
us by Akhil Mathew, in which we demonstrate that the functor that assigns to
any ∞-category with an action of a finite group G its equivariant algebraic K-
theory is lax symmetric monoidal. We also show that the algebraic K-theory of
derived stacks with its transfer maps as described above offers an example of an
E∞ Green functor. We also use this theory to give a new proof of the equivariant
Barratt–Priddy–Quillen theorem, which states that the algebraic K-theory of the
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category of finite G-sets is simply the G-equivariant sphere spectrum. (In fact, we
will generalize this result dramatically.)

Warning. Let us emphasize that E∞-Green functors for a finite group G are not
equivalent to algebras in G-equivariant spectra structured by the equivariant linear
isometries operad on a complete G-universe. To describe the latter in line with the
discussion here – and to find such structures on algebraic K-theory spectra – it is
necessary to develop elements of the theory of G-∞-categories. This we do in the
forthcoming joint paper [5].

Acknowledgments. We have had very helpful conversations with David Ayala
and Mike Hill about the contents of this paper, its predecessor, and its sequels. We
also thank the other participants of the Bourbon Seminar – Emanuele Dotto, Marc
Hoyois, Denis Nardin, and Tomer Schlank – for their many, many insights.

1. ∞-anti-operads and symmetric promonoidal ∞-categories

One of the many complications that arises when one combines an ∞-category
and its opposite in the way we have in our construction of the effective Burnside ∞-
category is that our constructions are extremely intolerant of asymmetries in basic
definitions. This complication rears its head the moment we want to contemplate the
symmetric monoidal structure on the Burnside ∞-category. In effect, the description
of a symmetric monoidal ∞-categories given in [19, Ch. 4] forces one to specify the
data of maps out of various tensor products in a suitably compatible fashion. Thus
symmetric monoidal categories are there identified as certain ∞-operads. But since
we are also working with opposites of symmetric monoidal ∞-categories, we will
come face-to-face with circumstances in which we must identify the data of maps
into various tensor products in a suitably compatible fashion. We will call the
resulting opposites of ∞-operads ∞-anti-operads.1 Awkward as this may seem, it
cannot be avoided.

1.1. Notation. Let Λ(F) denote the following ordinary category. The objects will
be finite sets, and a morphism J I will be a map J I+; one composes
ψ : K J+ with φ : J I+ by forming the composite

K
ψ

J+
φ+

I++
µ

I+,

where µ : I++ I+ is the map that simply identifies the two added points. (Of
course Λ(F) is equivalent to the category F∗ of pointed finite sets, but we prefer to
think of the objects of Λ(F) as unpointed. This is the natural perspective on this
category from the theory of operator categories [1].)

1.2. Definition. (1.2.1) An ∞-anti-operad is an inner fibration

p : O⊗ NΛ(F)op

whose opposite
pop : (O⊗)

op NΛ(F)

is an ∞-operad.

1We do not know a standard name for this structure. In a previous verion of this paper, CB
called these “cooperads,” but this conflicts with better-known terminology.
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(1.2.2) If p : O⊗ NΛ(F)op is an ∞-anti-operad, then an edge of O⊗ will be said
to be inert if it is cartesian over an edge of NΛ(F)op that corresponds to
an inert map in Λ(F), that is, a map φ : J I+ such that the induced
map φ−1(I) I is a bijection [19, Df. 2.1.1.8], [1, Df. 8.1].

(1.2.3) A cartesian fibration
q : X⊗ O⊗

will be said to exhibit X⊗ as an O⊗-monoidal ∞-category just in case
the cocartesian fibration

qop : (X⊗)
op (O⊗)

op

exhibits (X⊗)op as an (O⊗)op-monoidal ∞-category in the sense of [19, Df.
2.1.2.13]. When O⊗ = NΛ(F)op, we will say that q exhibits X⊗ as a
symmetric monoidal ∞-category .

(1.2.4) A morphism f : O⊗ P⊗ of ∞-anti-operads is a morphism over
NΛ(F)op that carries inert edges to inert edges. If O⊗ and P⊗ are symmetric
monoidal ∞-categories, then f is a symmetric monoidal functor if it
carries all cartesian edges to cartesian edges.

1.3. Example. Suppose C an ∞-category. We define the cartesian ∞-anti-
operad as

p : C× := ((Cop)⊔)op NΛ(F)op,

where the notation (·)⊔ refers to the cocartesian ∞-operad [19, Cnstr. 2.4.3.1]. If
C is an ∞-category that admits all products, then the functor p exhibits C× as a
symmetric monoidal ∞-category [19, Rk. 2.4.3.4].

An object (I,X) of C× consists of a finite set I and a family {Xi | i ∈ I}; a
morphism (φ, ω) : (I,X) (J, Y ) of C× consists of a map of finite sets φ : J I+
and a family of morphisms

{
ωj : Xφ(j) Yj

∣∣ j ∈ φ−1(I)
}

of C. If C admits finite products, then the morphisms ωj determine and are deter-
mined by a family of morphisms



 ωJi : Xi

∏

j∈Ji

Yj

∣∣∣∣∣∣
i ∈ I



 ;

here Ji denotes the fiber φ−1(i).
Observe that the cartesian ∞-anti-operad is significantly simpler to define than

the cartesian ∞-operad. Note also that (∆0)× = NΛ(F)op.

It is extremely useful to note that the condition that an ∞-operad C⊗ be a
symmetric monoidal ∞-category can be broken into two conditions:

(1) The first of these is corepresentability [19, Df. 6.2.4.3]; this is the condition that
the functors MapξIC⊗(xI ,−) : C Top be corepresentable, where ξI is the
unique active map I ∗ in Λ(F). A compact expression of this is simply to
say (as Lurie does) that the inner fibration C⊗ NΛ(F) is locally cocartesian.

(2) The second condition is symmetric promonoidality. This can be expressed in a
number of ways. One may say that for any active map φ : J I of Λ(F), for
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any object xJ ∈ C⊗
J , and for any object z ∈ C, the natural map

∫ yI∈C⊗
I

MapξIC⊗(yI , z)×MapφC⊗(xJ , yI) MapξJC⊗(xJ , z)

is an equivalence; this is an operadic version of the condition expressed in
[19, Ex. 6.2.4.9]. Equivalently, C⊗ is a symmetric promonoidal ∞-category if
it represents a commutative algebra object in the ∞-category of ∞-categories
and profunctors. In light of [19, §B.3], we make the following definition.

1.4. Definition. We will say that an ∞-operad C⊗ is symmetric promonoidal
if the structure map C⊗ NΛ(F) is a flat inner fibration [19, Df. B.3.8]. Similarly,
we will say that an ∞-anti-operad C⊗ is symmetric promonoidal if the structure
map C⊗ NΛ(F)op is a flat inner fibration.

Our claim now is that the conjunction of these two conditions are equivalent
to the condition that C⊗ be a symmetric monoidal ∞-category. That is, we claim
that a symmetric monoidal ∞-category is precisely a corepresentable symmetric
promonoidal ∞-category. This follows immediately from the following.

1.5. Proposition. The following are equivalent for an inner fibration p : X S.
(1.5.1) The inner fibration p is flat and locally cocartesian.
(1.5.2) The inner fibration p is cocartesian.

Proof. The second condition implies the first by [19, Ex. B.3.11]. Let us show that
the first condition implies the second. By [16, Pr. 2.4.2.8], it suffices to consider the
case in which S = ∆2, and to show that for any section of p given by a commutative
triangle

y

x z

f

h

g

in which f and g are locally p-cocartesian, the edge h is locally p-cocartesian as
well.

In this case, by [16, Cor. 3.3.1.2], we can find a cocartesian fibration q : Y ∆2

along with an equivalence

φ : X ×∆2 Λ2
1

∼ Y ×∆2 Λ2
1

of cocartesian fibrations over Λ2
1. Now since p is flat, the inclusion X ×∆2 Λ2

1 X
is a categorical equivalence over ∆2. Consequently, we may lift to obtain a map
ψ : X Y over ∆2 extending φ. This map is a categorical equivalence since both
p and q are flat.

Now ψ(f) = φ(f) and ψ(g) = φ(g) are q-cocartesian, whence so is ψ(h). The
stability of relative colimits under categorical equivalences [16, Pr. 4.3.1.6], in light
of [16, Ex. 4.3.1.4], now implies that h is p-cocartesian. �

One reason to treasure symmetric promonoidal structures is the fact that, as we
shall now prove, they are precisely the structure needed on an ∞-category C in
order for Fun(C,D) to admit a Day convolution symmetric monoidal structure.2

2We would like to acknowledge that Dylan Wilson has independently made this observation.



8 CLARK BARWICK, SAUL GLASMAN, AND JAY SHAH

To explain, suppose first C⊗ a small symmetric monoidal ∞-category, and sup-
pose D⊗ a symmetric monoidal ∞-category such that D admits all colimits, and
the tensor product preserves colimits separately in each variable. In [11], Glasman
constructs a symmetric monoidal structure on the functor ∞-category Fun(C,D)
which is the natural ∞-categorical generalization of Day’s convolution product. As
in Day’s construction, the convolution F ⊗ G of two functors F,G : C D in
Glasman’s symmetric monoidal structure is given by the left Kan extension of the
composite

C × C
(F,G)

D ×D
⊗

D

along the tensor product ⊗ : C × C C.
In particular, for any finite set I, and for any I-tuple {Fi}i∈I of functors C D,

the value of the tensor product is given by the coend
(⊗

i∈I
Fi

)
(x) ≃

∫ uI∈C⊗
I

MapξIC⊗(uI , x) ⊗
⊗

i∈I
Fi(ui).

Equivalently, the Day convolution on Fun(C,D) is the essentially unique sym-
metric monoidal structure that enjoys the following criteria:

◮ The tensor product

−⊗− : Fun(C,D)× Fun(C,D) Fun(C,D)

preserves colimits separately in each variable.
◮ The functor given by the composite

Cop ×D
j × id

Fun(C,Kan)×D
m

Fun(C,D)

is symmetric monoidal, where j denotes the Yoneda embedding, and m is
the functor corresponding to the composition

Fun(C,Kan) Fun(D × C,D × Kan) Fun(D × C,D)

in which the first functor is the obvious one, and the functorD × Kan D
is the tensor functor (X,K) X ⊗K of [16, §4.4.4].

Conveniently, we can extend Glasman’s Day convolution to situations in which
C⊗ is only symmetric promonoidal.

1.6. Proposition. For any symmetric promonoidal ∞-category C⊗ and any sym-
metric monoidal ∞-category D⊗ such that D admits all colimits and ⊗ : D ×D D
preserves colimits separately in each variable, Fun(C,D) admits a symmetric mon-
oidal structure such that the E∞-algebras therein are morphisms of ∞-operads
C⊗ D⊗.

Proof. The results of the first two sections of [11] hold when C⊗ is symmetric
promonoidal with only one change: in the proof of [11, Lm. 2.3], the reference to
[16, Pr. 3.3.1.3] should be replaced with a reference to [19, Pr. B.3.14]. Consequently,
our claim follows from [11, Prs. 2.11 and 2.12]. �
1.7. Once again, for any finite set I, and for any I-tuple {Fi}i∈I of functors C D,
the value of the tensor product is given by the coend

(⊗

i∈I
Fi

)
(x) ≃

∫ uI∈C⊗
I

MapξIC⊗(uI , x) ⊗
⊗

i∈I
Fi(ui).
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2. The symmetric promonoidal structure on the effective Burnside
∞-category

Suppose C a disjunctive ∞-category. The product on C does not induce the
product on the effective Burnside ∞-category Aeff(C). (Indeed, recall that the ef-
fective Burnside ∞-category admits direct sums, and these direct sums are induced
by the coproduct in C.) However, a product on C (if it exists) does induce a sym-
metric monoidal structure on Aeff(C). The construction of the previous example is
just what we need to describe this structure, and it will work for a broad class of
disjunctive triples – which we call cartesian – as well.

It turns out to be convenient to consider situations in which C does not actually
have products. In this case, the effective Burnside ∞-category Aeff(C) admits not a
symmetric monoidal structure, but only a symmetric promonoidal structure, which
suffices to get the Day convolution on ∞-categories of Mackey functors.

2.1. Notation. Suppose (C,C†, C†) a disjunctive triple. We now define a triple
structure (C×, (C×)†, (C×)†) on C× in the following manner. A morphism

(φ, ω) : (I,X) (J, Y )

of C× will be ingressive just in case φ is a bijection, and each morphism

ωj : Xφ(j) Yj

is ingressive. The morphism (φ, ω) will be egressive just in case each morphism

ωj : Xφ(j) Yj

is egressive (with no condition on φ).

It is a trivial matter to verify the following.

2.2. Lemma. Suppose (C,C†, C†) a left complete disjunctive triple. Then the triple

(C×, (C×)†, (C×)
†)

is adequate in the sense of [4, Df. 5.2].

In particular, for any left complete disjunctive triple (C,C†, C†), one may con-
sider the effective Burnside ∞-category

Aeff(C×, (C×)†, (C×)
†).

2.3. Example. Note in particular that

((∆0)×, ((∆
0)×)†, ((∆

0)×)
†) ≃ (NΛ(F)op, ιNΛ(F)op,NΛ(F)op),

whence one proves easily that the inclusion

NΛ(F) ≃ (((∆0)×)
†)op Aeff((∆0)×, ((∆

0)×)†, ((∆
0)×)

†)

is an equivalence.

We’ll use the following pair of results. They follow the same basic pattern as
[4, Lms. 11.4 and 11.5]; in particular, they too follow immediately from the first
author’s “omnibus theorem” [4, Th. 12.2].

2.4. Lemma. Suppose (C,C†, C†) a left complete disjunctive triple. Then the nat-
ural functor

Aeff(C×, (C×)†, (C×)
†) Aeff((∆0)×, ((∆

0)×)†, ((∆
0)×)

†)

is an inner fibration.
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2.5. Lemma. Suppose (C,C†, C†) a left complete disjunctive triple. Then for any
object Y of C× lying over an object J ∈ (∆0)× and any inert morphism φ : I J
of NΛ(F), there exists a cocartesian edge Y X for the inner fibration

Aeff(C×, (C×)†, (C×)
†) Aeff((∆0)×, ((∆

0)×)†, ((∆
0)×)

†)

lying over the image of φ under the equivalence of Ex. 2.3.

Now we can go about defining the symmetric promonoidal structure on the
effective Burnside ∞-category of a disjunctive triple.

2.6. Notation. For any disjunctive triple (C,C†, C†), we define Aeff(C,C†, C†)⊗ as
the pullback

Aeff(C,C†, C
†)⊗ := Aeff(C×, (C×)†, (C×)

†)×Aeff((∆0)×,((∆0)×)†,((∆0)×)†) NΛ(F),

equipped with its canonical projection to NΛ(F). Note that because the inclusion

NΛ(F) Aeff((∆0)×, (∆
0)×,†, (∆

0)†×)

is an equivalence, it follows that the projection functor

Aeff(C,C†, C
†)⊗ Aeff(C×, (C×)†, (C×)

†)

is actually an equivalence.

2.7. Remark. Suppose (C,C†, C†) a disjunctive triple. The objects of the total
∞-category Aeff(C,C†, C†)⊗ are pairs (I,XI) consisting of a finite set I and an
I-tuple XI = (Xi)i∈I of objects of C. A morphism

(J, YJ) (I,XI)

of Aeff(C,C†, C†)⊗ can be thought of as a morphism φ : J I of Λ(F) and a
collection of diagrams





Uφ(j)

Yj Xφ(j),

∣∣∣∣∣∣∣∣∣
j ∈ φ−1(I)





such that for any j ∈ J , the morphism Uφ(j) Xφ(j) is ingressive, and the
morphism

Uφ(j) Yj

is egressive.
Composition is then defined by pullback; that is, a 2-simplex

(K,ZK) (J, YJ) (I,XI)

consists of morphisms ψ : K J and φ : J I of Λ(F) along with a collection
of diagrams





Wφ(ψ(k))

Vψ(k) Uφ(ψ(k))

Zk Yψ(k) Xφ(ψ(k))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k ∈ (φψ)−1(I)
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in which the square in the middle exhibits each Wi (for i ∈ I) as the iterated fiber
product over Ui of the set of objects {Vj ×Yj Ui | j ∈ Ji}. (Note that the left
completeness is used to show that this iterated fiber product exists.)

In particular, Aeff(C,C†, C†)⊗{1} may be identified with the effective Burnside
∞-category Aeff(C,C†, C†) itself, and for any finite set I, the inert morphisms
χi : I {i}+ together induce an equivalence

Aeff(C,C†, C
†)⊗I

∼
∏

i∈I
Aeff(C,C†, C

†)⊗{i}.

For the proofs of the next few results it is convenient to introduce a bit of
notation.

2.8. Notation. Suppose (C,C†, C†) a triple, suppose A and B are two sets, and
suppose S : A ⊔B C a functor. Then let

C′
/{Sx ; Sy}x∈A,y∈B

⊆ C/{Sz}z∈A⊔B

denote the full subcategory spanned by those objects such that the morphisms to
the objects Sx are egressive and the morphisms to the objects Sy are ingressive. In
particular, note that

MapAeff(C,C†,C†)⊗((J, YJ ), (∗, X)) ≃ ιC′
/{Yj ; X}j∈J

.

We have almost proven the following.

2.9. Proposition. For any left complete disjunctive triple (C,C†, C†), the inner
fibration

Aeff(C,C†, C
†)⊗ NΛ(F)

is an ∞-operad.

Proof. Following Rk. 2.7, it only remains to show that given an edge α : I J in
NΛ(F) and objects (I,X), (J, Y ) in Aeff(C,C†, C†)⊗, the cocartesian edges

(∗, Yj)

(J, Y ) (∗, Yj),

over the inert edges ρj : J ∗ induce an equivalence

MapαAeff(C,C†,C†)⊗((I,X), (J, Y ))
∏

j∈J
Mapρ

j◦α
Aeff(C,C†,C†)⊗((I,X), (∗, Yj)).

But this is indeed true, since the map identifies the left-hand side as
∏

j∈J
ιC′

/{Xi ; Yj}i∈α−1(j)
. �

We now show that the ∞-operad Aeff(C,C†, C†)⊗ is symmetric promonoidal.

2.10. Proposition. Suppose (C,C†, C†) a left complete disjunctive triple. Then the
∞-operad

p : Aeff(C,C†, C
†)⊗ NΛ(F)

is symmetric promonoidal; that is, p is a flat inner fibration.
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Proof. Suppose σ : ∆2 NΛ(F) a 2-simplex given by a diagram

J

I K

α

γ

β

a 2-simplex of NΛ(F). Suppose

(K,W )

(I,X) (K,Z),

an edge γ̃ of
Σ := Aeff(C,C†, C

†)⊗ ×NΛ(F),σ ∆
2

lifting γ. Set
E := Σ(I,X)/ /(K,Z) ×NΛ(F) {J}

be the ∞-category of factorizations of γ̃ through ΣJ . Observe that an n-simplex
of E is a cartesian functor Õ(∆n+2)op (C×, (C×)†, (C×)†) satisfying certain
conditions.

We aim to show that E is weakly contractible. To this end, we will identify a
full subcategory E′ ⊂ E whose inclusion functor admits a right adjoint such that
E′ contains a terminal object.

To begin, let us define a functor ǫ : E × ∆1 E extending the projection
E × {1} ∼ E as follows: given non-negative integers k ≤ n, let

fn,k : Õ(∆n+3) Õ(∆n+2)

be the unique functor which on objects is given by

fn,k(ij) :=





0j if i ≤ k + 1 and j ≤ k + 1;

0(j − 1) if i ≤ k + 1 and j > k + 1;

(i− 1)(j − 1) if i > k + 1.

Then for every n-simplex σ : ∆n E corresponding to a functor

σ : Õ(∆n+2)op C×,

define ǫ(σ) : ∆n×∆1 E to be the unique functor which sends the nondegenerate
(n+ 1)-simplex

(0, 0) · · · (0, k) (1, k) · · · (1, n)

to the (n+ 1)-simplex ∆n+1 E corresponding to the functor

σ ◦ fop
nk : Õ(∆n+3)op C×.

It is easy (albeit tedious) to verify that the functors ǫ(σ) assemble to yield a unique
functor ǫ. Now set

R := ǫ|(E×{0}).
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Given an object τ ∈ E displayed as a 2-simplex

(K,W )

(J, Y01) (K,Y12)

(I,X) (J, Y ) (K,Z)

of Σ, the edge ǫτ : R(τ) τ to be

(K,W )

(J, Y01) (K,W )

(J, Y01) (J, Y01) (K,Y12)

(I,X) (J, Y01) (J, Y ) (K,Z)

From this, it is apparent that the essential image E′ of R is the full subcategory
spanned by those τ ∈ E such that the morphism (J, Y01) (J, Y ) is an equivalence,
and by the dual of [16, Pr. 5.2.7.4], R is a colocalization functor.

We now define (J,W ) ∈ C× by

W j :=

{
Wβ(j) if β(j) 6= ∗;
∅ if β(j) = ∗.

There is an obvious factorization of (K,W ) (I,X) through (J,W ), and we
define an object ω ∈ E′ as

(K,W )

(J,W ) (K,W )

(I,X) (J,W ) (K,Z)

We now claim that ω is terminal in E′. Let τ ∈ E′ be any object displayed as a
2-simplex

(K,W )

(J, Y01) (K,Y12)

(I,X) (J, Y ) (K,Z)
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of Σ. We have a homotopy pullback square

MapE(τ, ω) MapΣ(I,X)/
(d2(τ), d2(ω))

∆0 MapΣ(I,X)/
(d2(τ), γ̃)

ω∗

τ

and the terms on the right-hand side are in turn given as homotopy pullbacks

MapΣ(I,X)/
(d2(τ), d2(ω)) MapΣ((J, Y ), (J,W ))

∆0 MapΣ((I,X), (J,W )),

d2(τ)
∗

d2(ω)

and

MapΣ(I,X)/
(d2(τ), γ̃) MapΣ((J, Y ), (K,Z))

∆0 MapΣ((I,X), (K,Z)).

d2(τ)
∗

γ̃

In light of the equivalence (J, Y01) ∼ (J, Y ), we obtain equivalences

MapΣ((J, Y ), (J,W )) ≃
∏

j∈J
ιC′

/{(Y01)j ; W j};

MapΣ((I,X), (J,W )) ≃
∏

j∈J
ιC′

/{Xi ; W j}i∈α−1(j)

.

Under these equivalences the map d2(τ)∗ is given by
∏
j∈J φj where

φj : ιC
′
/{(Y01)j ; W j} ιC′

/{Xi ; W j}i∈α−1(j)

is defined by postcomposition by the maps (Y01)j Xi (with i ∈ α−1(j)). As
a corollary of Cor. 2.11.1 below, we may factor the square in question into two
homotopy pullback squares:

MapΣ(I,X)/
(d2(τ), d2(ω)) Map(C×)†id

((J,W ), (J, Y01))
∏
j∈J ιC

′
/{(Y01)j ; W j}

∆0 Map(C×)†α
((J,W ), (I,X))

∏
j∈J ιC

′
/{Xi ; W j}i∈α−1(j)

.

Similarly, we factor the second square into two homotopy pullback squares:

MapΣ(I,X)/
(d2(τ), γ̃) Map(C×)†β

((K,W ), (J, Y01))
∏
k∈K ιC

′
/{(Y01)j ; Zk}j∈β−1(k)

∆0 Map(C×)†γ
((K,W ), (I,X))

∏
k∈K ιC

′
/{Xi ; Zk}i∈γ−1(k)
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The map ω∗ is then seen to be equivalent to the induced map between the fibers
of the horizontal maps in the following commutative square:

Map(C×)†
id
((J,W ), (J, Y01)) Map(C×)†α

((J,W ), (I,X))

Map(C×)†β
((K,W ), (J, Y01)) Map(C×)†γ

((K,W ), (I,X)).

The left vertical map is the equivalence
∏

j∈β−1(K)

MapC†(Wβ(j), (Y01)j) ∼
∏

k∈K

∏

j∈β−1(k)

MapC†(Wk, (Y01)j),

and the right vertical map is the equivalence
∏

j∈β−1(K)

∏

i∈α−1(j)

MapC†(Wβ(j), Xi) ∼
∏

k∈K

∏

i∈γ−1(k)

MapC†(Wk, Xi),

so the square is in fact a homotopy pullback square and ω∗ is an equivalence. Hence
the mapping space MapE(τ, ω) is contractible and ω is a terminal object of E′. This
proves that E is weakly contractible. �

We digress briefly to give the following proposition, which is useful for study-
ing the interaction of the over and undercategory functors with homotopy colimit
diagrams.

2.11. Proposition. Suppose C an ∞-category, and let sSet/C be endowed with
the model structure created by the forgetful functor to sSet equipped with the Joyal
model structure. Then we have a Quillen adjunction

C(−)/ : sSet/C (sSet/C)op :C/(−)

between the over and undercategory functors.

Proof. The displayed functors are indeed adjoint to each other, since for objects
φ : X C and ψ : Y C we have natural isomorphisms

Hom/C(X,Cψ/) ∼= Hom(X⊔Y )/(X ⋆ Y,C) ∼= Hom/C(Y,C/φ).

To check that this adjunction is a Quillen adjunction, we check that C(−)/ preserves
cofibrations and trivial cofibrations. Let τ : φ φ′ be a map in sSet/C , and
let f = d2(τ) : X X ′. If f is a monomorphism, by [16, 2.1.2.1] we have that
Cφ′/ Cφ/ is a left fibration, hence by [16, 2.4.6.5] a categorical fibration. If f is
a monomorphism and a categorical equivalence, by [16, 4.1.1.9] and [16, 4.1.1.1(4)]
f is right anodyne, hence by [16, 2.1.2.5] Cφ′/ Cφ/ is a trivial Kan fibration. �

2.11.1. Corollary. Let C be an ∞-category and suppose given a morphism f :
x y in C and a diagram

K L C

K ⊔∆0 L ⊔∆0

φ p

φ′ p′
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of simplicial sets where φ′ = φ ⊔ id and p′|∆0 selects y. Then we have a homotopy
pullback square of ∞-categories

{x} ×C C/p C/p′

{x} ×C C/p◦φ C/p′◦φ′

F

G

where the vertical functors are given by change of diagram and the horizontal func-
tors are to be defined.

Proof. Define the functor F as follows: the datum of an n-simplex ∆n {x}×CC/p
consists of a map α : ∆n ⋆ L C which restricts to p on L and to the constant
map to x on ∆n, and we use this to define ∆n ⋆ (L ⊔∆0) C to be the unique
map which restricts to α on ∆n ⋆ L and to

∆n ⋆∆0 ∆1 f C

on ∆n ⋆∆0; this gives the n-simplex of C/p′ . The definition of G is analogous. The
square in question then fits into a rectangle

{x} ×C C/p C/p′ C/p

{x} ×C C/p◦φ C/p′◦φ′ C/p◦φ

F

G

where the long horizontal functors are given as the inclusion of the fiber over x
and the functors in the righthand square are given by change of diagram. By Prp.
2.11 and left properness of the Joyal model structure, the righthand square is a
homotopy pullback square. The vertical functor C/p C/p◦φ is a right fibration,
so the outermost square is a homotopy pullback square. The conclusion follows. �

If we want the symmetric promonoidal ∞-category

Aeff(C,C†, C
†)⊗ NΛ(F)

to be symmetric monoidal, we need a nontrivial condition on our disjunctive triple.

2.12. Definition. A disjunctive triple (C,C†, C†) will be said to be cartesian just
in case it enjoys the following properties
(2.12.1) It is left complete.
(2.12.2) The underlying ∞-category C admits finite products.
(2.12.3) For any object X ∈ C, the product functor

X ×− : C C

preserves finite coproducts; that is, for any finite set I and any collection
{Ui | i ∈ I} of objects of C, the natural map

∐

i∈I
(X × Ui) X ×

(∐

i∈I
Ui

)

is an equivalence.
(2.12.4) A morphismX

∏
j∈J Yj is egressive just in case each of the components

X Yj is so.
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2.13. Example. Note that a disjunctive ∞-categoryC that admits a teminal object,
when equipped with the maximal triple structure (in which every morphism is both
ingressive and egressive) is always cartesian. More generally, any disjunctive triple
that contains a terminal object 1 with the property that every morphism X 1
is ingressive and egressive is cartesian.

2.14. Proposition. If (C,C†, C†) is a cartesian disjunctive triple, then the sym-
metric promonoidal ∞-category

p : Aeff(C,C†, C
†)⊗ NΛ(F)

is symmetric monoidal; that is, p is a cocartesian fibration.

Proof. Since p is flat, by Pr. 1.5 it suffices to verify that p is a locally cocartesian
fibration. Since p is an ∞-operad, by the dual of [16, Lm. 2.4.2.7] we reduce to check-
ing that for any active edge α : I J and any object (I,X) over I, there exists
a locally p-cocartesian edge α̃ covering α. For each j ∈ J , let X̃j =

∏
i∈α−1(j)Xi,

and define α̃ to be

(J, X̃)

(I,X) (J, X̃),

where the morphism (J, X̃) (I,X) is defined using the various projection maps
X̃α(i) Xi. Then α̃ is a locally p-cocartesian edge if for all (J, Y ) ∈ Aeff(C,C†, C†)⊗J ,
the induced map

α̃∗ : MapAeff(C,C†,C†)⊗J
((J, X̃), (J, Y )) MapAeff(C,C†,C†)⊗α

((I,X), (J, Y ))

is an equivalence. This map is in turn equivalent to the map
∏

j∈J
φj :

∏

j∈J
ιC′

/{∏i∈α−1(j) Xi ; Yj}
∏

j∈J
ιC′

/{Xi ; Yj}i∈α−1(j)

where φj is induced by postcomposition by the projection maps
∏
i∈α−1(j)Xi Xi.

Since (C,C†, C†) is a cartesian disjunctive triple, we have that the functor

(C†)/∏i∈α−1(j) Xi
(C†)/(Xi,i∈α−1(j))

is an equivalence. Hence in light of Prp. 2.11 we have a homotopy pullback square

∏
j∈J ιC

′
/{∏i∈α−1(j) Xi ; Yj}

∏
j∈J ιC

′
/{Xi ; Yj}i∈α−1(j)

(C†)/∏i∈α−1(j) Xi
(C†)/{Xi}i∈α−1(j)

φj

where the horizontal maps are equivalences. We deduce that the map α̃∗ is an
equivalence, as desired. �

In light of Lm. 2.5 and Rk. 2.7, we obtain the following.
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2.15. Theorem. Suppose (C,C†, C†) a left complete disjunctive triple. Then the
functor

Aeff(C,C†, C
†)⊗ NΛ(F)

exhibits Aeff(C,C†, C†)⊗ as a symmetric promonoidal ∞-category, the underlying
∞-category of which is the effective Burnside ∞-category Aeff(C,C†, C†). Further-
more, if (C,C†, C†) is cartesian, then Aeff(C,C†, C†)⊗ is symmetric monoidal.

2.16. Notation. When (C,C†, C†) is a right complete disjunctive triple, we may
employ duality and write

Aeff(C,C†, C
†)⊗ := (Aeff(C,C†, C†)

⊗)op.

The functor Aeff(C,C†, C†)⊗ NΛ(F)op is then a symmetric promonoidal struc-
ture on the Burnside ∞-category Aeff(C,C†, C†)op ≃ Aeff(C,C†, C†).

2.17. Suppose (C,C†, C†) a cartesian disjunctive triple. Note that the formula

∐

i∈I
(X × Ui) ≃ X ×

(∐

i∈I
Ui

)

implies immediately that the tensor product functor

⊗ : Aeff(C,C†, C
†)×Aeff(C,C†, C

†) Aeff(C,C†, C
†)

preserves direct sums separately in each variable.
More generally, suppose (C,C†, C†) a left complete disjunctive triple, suppose

I a finite set, and suppose {xi}i∈I a collection of objects of C, which we view,
by the standard abuse, as an object of Aeff(C,C†, C†)⊗I . Consider the 1-simplex
ξI : ∆

1 NΛ(F), and denote by h{xi}i∈I the restriction of the functor

Aeff(C,C†, C
†)⊗ ×NΛ(F) ∆

1 Kan

corepresented by {xi}i∈I to Aeff(C,C†, C†). Informally, this is the functor

MapξIC⊗({xi}i∈I ,−).

Suppose j ∈ I, and suppose {yk xj}k∈K a family of morphisms that together
exhibit xj as the coproduct

∐
k∈K yk. For each i ∈ I and k ∈ K, write

x′i,k :=

{
yk if i = j;

xi if i 6= j.

Then the natural map

h{xi}i∈I

∏

k∈K
h{x

′
i,k}i∈I

is an equivalence.

2.18. For any disjunctive ∞-category C that admits a terminal object, the duality
functor

D : Aeff(C)op ∼ Aeff(C)

of [4, Nt. 3.10] provides duals for the symmetric monoidal ∞-category Aeff(C)⊗ [17,
Df. 2.3.5]. More precisely, for any object X of Aeff(C), there exists an evaluation
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morphism X ⊗DX 1 given by the diagram

X

X ×X 1,

∆ !

and, dually, there exists a coevaluation morphism 1 DX ⊗X given by the
diagram

X

1 X ×X.

! ∆

Since the square

X X ×X

X ×X X ×X ×X

∆

∆ ∆ × id

id×∆

is a pullback, it follows that the composite

X X ⊗DX ⊗X X

in Aeff(C) is homotopic to the identity. We conclude that Aeff(C)⊗ is a symmetric
monoidal ∞-category with duals.

2.19. If (C,C†, C†) is a cartesian disjunctive triple, then in general it is not quite
the case that the symmetric monoidal ∞-category Aeff(C,C†, C†)⊗ admits duals.
We have an evaluation morphism X ⊗DX 1 in Aeff(C,C†, C†) just in case
the diagonal ∆: X X ×X of C is egressive, and the morphism ! : X 1 is
ingressive. We have a coevaluation morphism 1 DX ⊗X in Aeff(C,C†, C†) just
in case ∆ is ingressive and ! is egressive.

2.20. If (C,C†, C†) and (D,D†, D†) are left complete disjunctive triples, then it is
easy to see that a functor of disjunctive triples

f : (C,C†, C
†) (D,D†, D

†)

induces a functor of adequate triples

(C×, (C×)†, (C×)
†) (D×, (D×)†, (D×)

†)

and thus a morphism of ∞-operads

Aeff(f)⊗ : Aeff(C,C†, C
†)⊗ Aeff(D,D†, D

†)⊗.

If, furthermore, (C,C†, C†) and (D,D†, D†) are cartesian and f preserves finite
products, then Aeff(f)⊗ is of course a symmetric monoidal functor.



20 CLARK BARWICK, SAUL GLASMAN, AND JAY SHAH

3. Green functors

Andreas Dress [10] defined Green functors as Mackey functors equipped with
certain pairings. Gaunce Lewis [14] noticed that these pairings made them commu-
tative monoids for the Day convolution tensor product on the category of Mackey
functors. By an old observation of Brian Day [9, Ex. 3.2.2], these are precisely
the lax symmetric monoidal additive functors on the effective Burnside category.
Thanks to recent work of Saul Glasman [11], this characterization of monoids for
the Day convolution holds in the ∞-categorical context as well.

3.1. Definition. We shall say that a symmetric monoidal ∞-category E⊗ is ad-
ditive if the underlying ∞-category E is additive, and the tensor product functor
⊗ : E × E E preserves direct sums separately in each variable.

3.2. Definition. (3.2.1) Suppose (C,C†, C†) a left complete disjunctive triple and
E⊗ an additive symmetric monoidal ∞-category. Then a commutative
Green functor is a morphism of ∞-operads

Aeff(C,C†, C
†)⊗ E⊗

such that the underlying functor Aeff(C,C†, C†) E preserves direct sums.
(3.2.2) More generally, if O⊗ is an ∞-operad, then an O⊗-Green functor is a

morphism of ∞-operads

Aeff(C,C†, C
†)⊗ ×NΛ(F) O

⊗ E⊗ ×NΛ(F) O
⊗

over O⊗ such that for any object X of the underlying ∞-category O, the
functor

Aeff(C,C†, C
†) ≃ (Aeff(C,C†, C

†)⊗ ×NΛ(F) O
⊗)X (E⊗ ×NΛ(F) O

⊗)X ≃ E

preserves direct sums.
(3.2.3) Similarly, for any perfect operator category Φ, we may define a Φ-Green

functor as a morphism

Aeff(C,C†, C
†)⊗ ×NΛ(F) NΛ(Φ) E⊗ ×NΛ(F) NΛ(Φ)

of ∞-operads over Φ such that the underlying functor Aeff(C,C†, C†) E
preserves direct sums.

3.3. Notation. Suppose (C,C†, C†) a left complete disjunctive triple, and suppose
E⊗ an additive symmetric monoidal ∞-category. For any ∞-operad O⊗, let us
write, employing the notation of [19, Df. 2.1.3.1]

GreenO⊗(C,C†, C
†;E⊗) ⊂ AlgAeff(C,C†,C†)⊗×NΛ(F)O⊗ /O⊗(E⊗ ×NΛ(F) O

⊗)

for the full subcategory spanned by the O⊗-Green functors.

3.4. Example. We define modules over an associative Green functor in this way.
Suppose (C,C†, C†) a left complete disjunctive triple, and suppose E⊗ an additive
symmetric monoidal ∞-category. Then we may consider the ∞-operad of [19, Df.
4.2.7], which we will denote LM⊗. The inclusion Ass⊗ LM⊗ induces a functor

GreenLM⊗(C,C†, C
†;E⊗) GreenAss⊗(C,C†, C

†;E⊗).

An object A of the target may be called an associative Green functor , and an
object of the fiber of this functor over A may be called a left A-module. We write

ModℓA(C,C†, C
†;E⊗) := GreenLM⊗(C,C†, C

†;E⊗)×GreenAss⊗ (C,C†,C†;E⊗) {A}
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for the ∞-category of left A-modules. When A is a commutative Green functor, we
will drop the superscript ℓ.

The convolution of two Mackey functors will not in general be a Mackey functor,
but it can replaced with one by employing a localization (which we might as well
call Mackeyification). To prove that convolution followed by Mackeyification defines
a symmetric monoidal structure on the ∞-category of Mackey functors, it is nec-
essary to show that Mackeyification is compatible with the convolution symmetric
monoidal structure in the sense of Lurie [19, Df. 2.2.1.6, Ex. 2.2.1.7].

The following is immediate from [4, Pr. 6.5].

3.5. Lemma. Suppose (C,C†, C†) a disjunctive triple, and suppose E a presentable
additive ∞-category. Then the ∞-category Mack(C,C†, C†;E) is an accessible lo-
calization of the ∞-category Fun(Aeff(C,C†, C†), E).

3.6. Notation. Suppose (C,C†, C†) a disjunctive ∞-category, and suppose E a
presentable additive ∞-category. Then write M for the left adjoint to the fully
faithful inclusion

Mack(C,C†, C
†;E) Fun(Aeff(C,C†, C

†), E).

3.7. Lemma. Suppose (C,C†, C†) a left complete disjunctive ∞-category, and sup-
pose E⊗ a presentable symmetric monoidal additive ∞-category. Then the left ad-
joint M constructed above is compatible in the sense of [19, Df. 2.2.1.6] with Glas-
man’s Day convolution symmetric monoidal structure on Fun(Aeff(C,C†, C†), E).

Proof. For any collection of objects {si | i ∈ I} of C, let

h{si} : Aeff(C,C†, C
†) Kan

be as in 2.17, and for any object x ∈ E, let

−⊗ x : Fun(Aeff(C,C†, C
†),Kan) Fun(Aeff(C,C†, C

†), E)

be the composition with the tensor product −⊗x : Kan E with spaces [16, §4.].
Thus objects of the form h{si} ⊗x generate the ∞-category Fun(Aeff(C,C†, C†), E)
under colimits. It is easy to see that for any functors f, g : Aeff(C,C†, C†) Kan
and any object x ∈ E, the map

(f × g)⊗ x (f ⊗ x)⊕ (g ⊗ x)

is an M -equivalence; furthermore, the class of M -equivalences is the strongly satu-
rated class generated by the canonical morphisms

hs⊕t ⊗ x (hs ⊗ x)⊕ (ht ⊗ x).

This tensor product and the Day convolution are compatible in the sense that there
are natural equivalences

(hs ⊗ x)⊗ (ht ⊗ y) ≃ h{s,t} ⊗ (x⊗ y),

whence one obtains natural M -equivalences

((hs ⊗ x)⊕ (ht ⊗ x))⊗ (hu ⊗ y) ≃ ((hs ⊗ x)⊗ (hu ⊗ y))⊕ ((ht ⊗ x)⊗ (hu ⊗ y))

≃ (h{s,u} ⊗ x⊗ y)⊕ (h{t,u} ⊗ x⊗ y)

(h{s,u} × h{t,u})⊗ x⊗ y

≃ h{s⊕t,u} ⊗ x⊗ y

≃ hs⊕t ⊗ x⊗ hu ⊗ y.
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It follows that for any M -equivalence X Y and any object Z of the ∞-category
Fun(Aeff(C,C†, C†), E), the morphism

X ⊗ Z Y ⊗ Z

is an M -equivalence. �

3.8. In particular, if (C,C†, C†) is a left complete disjunctive triple, and if E⊗

a presentable symmetric monoidal additive ∞-category, we obtain a symmetric
monoidal ∞-category Mack(C,C†, C†;E)⊗, and, in light of [11], for any ∞-operad
O⊗, one obtains an equivalence

AlgO⊗(Mack(C,C†, C
†;E)⊗) ≃ GreenO⊗(C,C†, C

†;E).

4. Green stabilization

Now let us address the issue of multiplicative structures on the Mackey stabiliza-
tion, as constructed in [4, §7]. In particular, we aim to show that if E is an ∞-topos,
then the Mackey stabilization of a morphism of operads

Aeff(C,C†, C
†)⊗ E×

naturally admits the structure of a Green functor

Aeff(C,C†, C
†)⊗ Sp(E)∧.

4.1. Definition. Suppose (C,C†, C†) a cartesian disjunctive triple, suppose E an
∞-topos, and suppose

f : Aeff(C,C†, C
†)⊗ E× and F : Aeff(C,C†, C

†)⊗ Sp(E)⊗

morphisms of ∞-operads. Then a morphism of Aeff(C,C†, C†)⊗-algebras

η : f Ω∞ ◦ F
will be said to exhibit F as the Green stabilization of f if F is a Green functor,
and if, for any Green functor R : Aeff(C,C†, C†)⊗ Sp(E)⊗, the map

MapGreenE∞(C,C†,C†;Sp(E)⊗)(F,R) MapAlg
Aeff(C,C†,C†)⊗ (E×)(f,Ω

∞ ◦R)

induced by η is an equivalence.

The following result is essentially the same as [2, Pr. 2.1].

4.2. Proposition. Suppose (C,C†, C†) a cartesian disjunctive triple. There exists
a symmetric monoidal ∞-category DA(C,C†, C†)⊗ and a fully faithful symmetric
monoidal functor

j⊗ : Aeff(C,C†, C
†)⊗ DA(C,C†, C

†)⊗

with the following properties.
(4.2.1) The ∞-category DA(C,C†, C†) underlies DA(C,C†, C†)⊗, and the underly-

ing functor of j⊗ is the inclusion

j : Aeff(C,C†, C
†) DA(C,C†, C

†)

of [4, Nt. 7.2].
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(4.2.2) For any symmetric monoidal ∞-category E⊗ whose underlying ∞-category
admits all sifted colimits such that the tensor product preserves sifted col-
imits separately in each variable, the induced functor

AlgDA(C,C†,C†)⊗(E
⊗) AlgAeff(C,C†,C†)⊗(E

⊗)

exhibits an equivalence from the full subcategory spanned by those mor-
phisms of ∞-operads A whose underlying functor A : DA(C,C†, C†) E
preserves sifted colimits to the full subcategory spanned by those morphisms
of ∞-operads B whose underlying functor B : Aeff(C,C†, C†) E pre-
serves filtered colimits.

(4.2.3) The tensor product functor

⊗ : DA(C,C†, C
†)×DA(C,C†, C

†) DA(C,C†, C
†)

preserves all colimits separately in each variable.

Proof. The only part that is not a consequence of [19, Pr. 4.8.1.10 and Var. 4.8.1.11]
is the assertion that the tensor product functor

⊗ : DA(C,C†, C
†)×DA(C,C†, C

†) DA(C,C†, C
†)

preserves direct sums separately in each variable. This assertion holds for objects
of the effective Burnside category Aeff(C,C†, C†) thanks to the universality of co-
products in C; the general case follows by exhibiting any object of DA(C,C†, C†)
as a colimit of a sifted diagram of objects of Aeff(C,C†, C†) and using the fact that
both the tensor product and the direct sum commute with sifted colimits. �

In light of [2, Pr. 3.5] and [19, Pr. 6.2.4.14 and Th. 6.2.6.2], we now have the
following.

4.3. Proposition. Suppose (C,C†, C†) a disjunctive triple, suppose E an ∞-topos,
and suppose

f : Aeff(C,C†, C
†)⊗ E×

a morphism of ∞-operads. Then a Green stabilization of f exists. In particular, the
functor

Ω∞ ◦ − : Green(C,C†, C
†;Sp(E)⊗) AlgAeff(C,C†,C†)⊗(E

×)

admits a left adjoint that covers the left adjoint of the functor

Ω∞ ◦ − : Mack(C,C†, C
†;Sp(E)) Fun(Aeff(C,C†, C

†), E).

4.4. Example. Suppose (C,C†, C†) a cartesian disjunctive triple. Then the functor

Aeff(C,C†, C
†) Kan

corepresented by the terminal object 1 of C is the unit for the Day convolution
symmetric monoidal structure of Glasman, and hence it is an E∞ algebra in an
essentially unique fashion. Thus we can consider its Green stabilization

⊗ = ⊗
(C,C†,C†) : A

eff(C,C†, C
†)⊗ Sp∧,

whose underlying Mackey functor is the Burnside Mackey functor (C,C†,C†) of [4].
We call ⊗ the Burnside Green functor .

In a similar vein, we immediately have the following:
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4.5. Proposition. For any cartesian disjunctive triple (C,C†, C†), the functor

Aeff(C,C†, C
†)op Mack(C,C†, C

†;Sp)

given by the assignment X X is naturally symmetric monoidal. That is, for any
two objects X,Y ∈ C, one has a canonical equivalence

X ⊗ Y ≃ X×Y

4.5.1. Corollary. Suppose (C,C†, C†) a cartesian disjunctive triple. For any spec-
tral Mackey functor M thereon, write F (M,−) for the right adjoint to the functor

−⊗M : Mack(C,C†, C
†;Sp) Mack(C,C†, C

†;Sp).

Then for any object X ∈ C, the Mackey functor F (X ,M) is given by the assignment

Y M(X × Y ).

The following is now immediate.

4.6. Proposition. Suppose (C,C†, C†) a cartesian disjunctive triple. The Burn-
side Mackey functor (C,C†,C†) is the unit in the symmetric monoidal ∞-category
Mack(C,C†, C†;Sp)⊗. Consequently, the Burnside Green functor ⊗

(C,C†,C†) is the
initial object in the ∞-category GreenNΛ(F)(C,C†, C†;Sp⊗), and the forgetful func-
tor

Mod⊗(C,C†, C
†;Sp⊗) ∼ Mack(C,C†, C

†;Sp)
is an equivalence.

5. Duality

In this section, suppose C a disjunctive ∞-category that admits a terminal object.
Since the functor X X is symmetric monoidal, it follows immediately that every
representable Mackey functor X is strongly dualizable, and

(X)∨ ≃ DX

5.1. Notation. For any associative spectral Green functor R and for any object
X ∈ C, denote by RX the left R-module R ⊗ X , and denote by XR the right
R-module X ⊗R.

Of course for any left (respectively, right) R-module M , one has

Map(RX ,M) ≃ Ω∞M(X) (resp., Map(XR,M) ≃ Ω∞M(X) ).

5.2. Definition. For any associative spectral Green functor R on C, denote by
Perf ℓR the smallest stable subcategory of the ∞-category ModℓR that contains the
left R-modules RX (for X ∈ C) and is closed under retracts. Similarly, denote by
Perf rR the smallest stable subcategory of the ∞-category ModrR that contains the
right R-modules XR (for X ∈ C) and is closed under retracts.

The objects of Perf ℓR (respectively, Perf rR) will be called perfect left (resp.,
right) modules over R.

Now we obtain the following, which is a straightforward analogue of [19, Pr.
7.2.5.2].

5.3. Proposition. For any associative spectral Green functor R, a left R-module
is compact just in case it is perfect.
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Proof. For any X ∈ C, the functor corepresented by RX is the assignment M
Ω∞M(X), which preserves filtered colimits. Hence RX is compact, and thus any
perfect left R-module is compact.

Conversely, there is a fully faithful, colimit-preserving functor

F : Ind(Perf ℓR) ModR

induced by the inclusion Perf ℓR ModℓR. If this is not essentially surjective, there
exists a nonzero left R-module M such that for every R-module N in the essential
image of F , the group [N,M ] vanishes. In particular, for any integer n and any
object X ∈ C,

πnM(X) ∼= [RX [n],M ] ∼= 0,

whence M ≃ 0. �

The proof of the following is word-for-word identical to that of [19, Pr. 7.2.5.4].

5.4. Proposition. For any associative spectral Green functor R on C, a left R-
module M is perfect just in case there exists a right R-module M∨ that is dual to
M in the sense that the functor

Map(,M∨ ⊗R −) : ModℓR Kan

is the functor that M corepresents.

5.5. Example. Note that, in particular, for any object X ∈ C, one has

(RX)∨ ≃ DXR.

6. The Künneth spectral sequence

Let us note that the Künneth spectral sequence works in the Mackey functor
context more or less exactly as in the ordinary ∞-category of spectra. To this end,
let us first discuss t-structures on ∞-categories of spectral Mackey functors.

6.1. Proposition. Suppose (C,C†, C†) a disjunctive triple, and suppose A a stable
∞-category equipped with a t-structure (A≥0, A≤0). Then the two subcategories

Mack(C,C†, C
†;A)≥0 := Mack(C,C†, C

†;A≥0)

and
Mack(C,C†, C

†;A)≤0 := Mack(C,C†, C
†;A≤0)

define a t-structure on Mack(C,C†, C†;A).

Proof. Consider the functor L : Mack(C,C†, C†;A) Mack(C,C†, C†;A) given
by composition with τ≤−1; it is clear that L is a localization functor. Furthermore,
the essential image of L is the ∞-category Mack(C,C†, C†;A≤−1), which is closed
under extensions, since A≤−1 is. Now we apply [19, Pr. 1.2.1.16]. �

6.2. Note that if A a stable ∞-category equipped with a t-structure (A≥0, A≤0),
then for any disjunctive triple (C,C†, C†), the heart of the induced t-structure on
Mack(C,C†, C†;A) is given by

Mack(C,C†, C
†;A)♥ ≃ Mack(C,C†, C

†;A♥).

Furthermore, it is clear that many properties of the t-structure on A are in-
herited by the induced t-structure Mack(C,C†, C†;A): in particular, one verifies
easily that the t-structure on Mack(C,C†, C†;A) is left bounded, right bounded,
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left complete, right complete, compatible with sequential colimits, compatible with
filtered colimits, or accessible if the t-structure on A is so.

6.3. Example. For any disjunctive triple (C,C†, C†), the ∞-category of spectral
Mackey functors Mack(C,C†, C†;Sp) admits an accessible t-structure that is both
left and right complete whose heart is the abelian category Mack(C,C†, C†;NAb).
Observe that the corepresentable functors τ≤0

X are projective objects in the heart,
and thus the heart has enough projectives.

In particular, if G is a profinite group and if C is the disjunctive ∞-category
of finite G-sets, then the ∞-category MackG of spectral Mackey functors for G
admits an accessible t-structure that is both left and right complete, in which the
heart Mack♥

G is the nerve of the usual abelian category of Mackey functors for G.

6.4. Construction. Suppose A a stable ∞-category equipped with a t-structure.
Suppose (C,C†, C†) a disjunctive triple, and supposeX : NZ Mack(C,C†, C†;A)
a filtered Mackey functor with colimit X(+∞). Then we have the spectral sequence

Ep,qr := im

[
πp+q

(
X(p)

X(p− r)

)
πp+q

(
X(p+ r − 1)

X(p− 1)

)]

associated with X [19, Df. 1.2.2.9].
Note that this is a spectral sequence of A♥-valued Mackey functors. Since limits

and colimits of Mackey functors are defined objectwise, it follows that for any object
U ∈ Aeff(C,C†, C†), the value Ep,qr (U) is the spectral sequence (in A♥) associated
with the filtered object X(U) : NZ A.

6.5. In the setting of Cnstr. 6.4, assume that A admits all sequential colimits and
that the t-structure is compatible with these colimits. If X(n) ≃ 0 for n ≪ 0,
then the associated spectral sequence converges to a filtration on πp+q(X(+∞))
[19, 1.2.2.14]. That is:

◮ For any p and q, there exists r ≫ 0 such that the differential

dr : E
p,q
r Ep−r,q+r−1

r

vanishes.
◮ For any p and q, there exist a discrete, exhaustive filtration

· · · ⊂ F−1
p+q ⊂ F 0

p+q ⊂ F 1
p+q ⊂ · · · ⊂ πp+qX(+∞)

and an isomorphism Ep,q∞ ∼= F pp+q/F
p−1
p+q .

In more general circumstances, one can obtain a kind of “local convergence.” Sup-
pose again that A admits all sequential colimits, and that the t-structure is compati-
ble with these colimits. Now suppose that for every object U ∈ Aeff(C,C†, C†), there
exists n ≪ 0 such that X(n)(U) ≃ 0. Then for every object U ∈ Aeff(C,C†, C†),
the spectral sequence Ep,qr (U) converges to πp+q(X(+∞)(U)). In finitary cases (e.g.,
when C is the disjunctive ∞-category of finite G-sets for a finite group G), there is
no difference between the local convergence and the global convergence.

Better convergence results can be obtained when the filtered Mackey functor
is the skeletal filtration of a simplicial connective object Y∗ [19, Pr. 1.2.4.5]. In
this case, we do not need to assume that the t-structure on A is compatible with
sequential colimits, the associated spectral sequence is a first-quadrant spectral
sequence, and it converges to a length p+ q filtration on πp+q |Y∗|.
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Now, to construct the Künneth spectral sequence for Mackey functors, we can
follow very closely the arguments of Lurie [19, §7.2.1].

6.6. Lemma. Suppose (C,C†, C†) a disjunctive triple. Then the collection of corep-
resentable Mackey functors {X | X ∈ Aeff(C,C†, C†)} is a set of compact projective
generators for Mack(C,C†, C†;Sp≥0) in the sense of [16, Dfn. 5.5.2.3].

Proof. The corepresentable functors provide a set of compact projective generators
for the ∞-category Fun×(Aeff(C,C†, C†),Kan) because this category is precisely
PΣ(A

eff(C,C†, C†)op). The functor

Ω∞ ◦ − : Mack(C,C†, C
†;Sp≥0) Fun×(Aeff(C,C†, C

†),Kan)

preserves sifted colimits and is conservative, since Ω∞ : Sp≥0 Kan preserves
sifted colimits by [19, 1.4.3.9] and is conservative, and the inclusion of both sides
into all functors preserves sifted colimits (we use that Kan is cartesian closed). We
conclude by applying [19, 4.7.4.18]. �

To set up the spectral sequence we need to impose the hypotheses of strong
dualizability on the X . Because of this, we now work in the generality of C a
disjunctive ∞-category which admits a terminal object.

Suppose
R : Aeff(C)⊗ ×NΛ(F) Ass

⊗ Sp∧ ×NΛ(F) Ass
⊗

an associative Green functor, suppose M a right R-module, and suppose N a left
R-module. There is a comparison map

Torπ∗R
0 (π∗M,π∗N) π∗(M ⊗R N)

constructed as follows: given x ∈ πmM(U) and y ∈ πnN(V ), choose representatives
Σm(UR) M and Σn(RV ) N and take their smash product to obtain a map

Σm+n(U×V ) Σm+n(U×V )⊗R ≃ Σm(UR)⊗R Σn(RV ) M ⊗R N
and thus an element x⊗y ∈ πm+n(M⊗RN)(U×V ); this is suitably natural so that
it descends to a map out of the Day convolution tensor product π∗M ⊗π∗R π∗N
to π∗(M ⊗R N). This map is not usually an isomorphism. Instead, we construct a
spectral sequence that converges to π∗(M ⊗R N), in which this map appears as an
edge homomorphism.

Let S denote the class of left R-modules of the form ΣnRX for n ∈ Z and
X ∈ C. By [19, Pr. 7.2.1.4], there exists an S-free S-hypercovering P• N in the
(presentable) stable ∞-category ModℓR.

6.7. Lemma. For any S-hypercovering P• N , we have that |P•| ≃ N .

Proof. Let S≥n be the subset of S on Σm◦RX for m ≥ n. From our S-hypercovering
P• N , we obtain S≥n-hypercoverings τ≥nP• τ≥nN for every n ∈ Z. Since
the ΣnSX , X ∈ C constitute a set of projective generators for Mack(C;Sp≥n) by
Lm. 6.6, we have that |τ≥nP•| ≃ τ≥nN by the hypercompleteness of Kan. By the
right completeness of the t-structure, we deduce that |P•| ≃ N . �

By passing to the skeletal filtration of M ⊗R |P•|, we obtain a spectral sequence
{Ep,qr , dr}r≥1 that converges to πp+q(M ⊗R N). The complex (E∗,q

1 , d1) is the nor-
malized chain complex N∗(πq(M ⊗R P•)).

To proceed, we need to prove the following analogue of [19, Pr. 7.2.1.17].
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6.8. Lemma. If P is a direct sum of objects in S, then the map

Torπ∗R
0 (π∗M,π∗P ) π∗(M ⊗R P )

is an isomorphism.

Proof. Both sides commute with direct sums and shifts, so we reduce to the case
of P = RX . We claim first that for any spectral Mackey functor E,

π∗E ⊗ τ≤0
X ∼= π∗(E ⊗ X).

Since τ≤0
Y corepresents evaluation at Y for Ab-valued Mackey functors, and τ≤0

X

has dual τ≤0
DX , we have (π∗E ⊗ τ≤0

X)(Y ) ∼= (π∗E)(Y ×DX). Similarly, corepre-
sentability and strong dualizability on the level of the Sp-valued Mackey functors
implies that π∗(E ⊗ X)(Y ) ∼= (π∗E)(Y ×DX), so we conclude. Now we apply this
claim both for M and R to see that

π∗M ⊗π∗R π∗(R
X) ∼= π∗M ⊗π∗R (π∗R⊗ τ≤0

X)

∼= π∗M ⊗ τ≤0
X

∼= π∗(M ⊗ X)

∼= π∗(M ⊗R RX).

We leave the identification of the specified map with this isomorphism to the reader.
�

We thus obtain an isomorphism

Torπ∗R
0 (π∗M,π∗P•) ∼= π∗(M ⊗R P•).

As P• is an S-free S-hypercovering of N , N∗(π∗P•) is a resolution of π∗N by
projective π∗R-modules. It follows that the E2 page is given by

Ep,q2
∼= Torπ∗R

p (π∗M,π∗N)q.

As in [19, Cor. 7.2.1.23], we have an immediate corollary.

6.8.1. Corollary. Suppose C, R, M , and N as above. Suppose that R, M , and N
are all connective. Then M ⊗R N is connective, and one has an isomorphism of
ordinary Mackey functors

π0(M ⊗R N) ∼= π0M ⊗π0R π0N.

6.9. Example. If C is the category of finite G-sets for G a finite group, then our
Künneth spectral sequence recovers that of Lewis and Mandell in [15]. We refer
the reader there to a more extensive discussion of this spectral sequence in that
particular case.

7. Symmetric monoidal Waldhausen bicartesian fibrations

In [3], we define an O⊗-monoidal Waldhausen ∞-category for any ∞-operad O⊗

as an O⊗-algebra in the symmetric monoidal ∞-category Wald⊗
∞. We give two

equivalent fibrational formulations of this notion.

7.1. Definition. Suppose O⊗ an ∞-operad. An O⊗-monoidal Waldhausen ∞-
category consists of a pair cocartesian fibration [3, Df. 3.8]

p⊗ : X⊗ O⊗

such that the following conditions obtain.
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(7.1.1) The composite
X⊗ O⊗ NΛ(F)

exhibits X⊗ as an ∞-operad.
(7.1.2) The fiber p : X O over ∗ ∈ NΛ(F) is a Waldhausen cocartesian fibration.
(7.1.3) For any finite set I and any choice of inert morphisms {ρi : s si}i∈I

covering the inert morphisms I {i}, an edge η of X⊗
s is ingressive if and

only if, for every i ∈ I, the edge ρi,!(η) of Xsi is ingressive.
(7.1.4) For any finite set I, any morphism µ : s t of O⊗ covering the unique

active morphism I {ξ}, and any choice of inert morphisms {s si | i ∈
I} covering the inert morphisms I {i}, the functor of pairs

µ! :
∏

i∈I
Xsi ≃ X⊗

s Xt

is exact separately in each variable [2].
Dually, suppose O⊗ an ∞-anti-operad. Then a O⊗-monoidal Waldhausen

∞-category is a pair cartesian fibration

p⊗ : X⊗ O⊗

such that the following conditions obtain.
(7.1.5) The composition

X⊗ O⊗ NΛ(F)op

exhibits X⊗ as an ∞-anti-operad.
(7.1.6) The fiber p : X O over ∗ ∈ NΛ(F)op is a Waldhausen cartesian fibration.
(7.1.7) For any finite set I and any choice of inert morphisms {πi : s si}i∈I

covering the inert morphisms I {i}, an edge η of X⊗
s is ingressive if and

only if, for every i ∈ I, the edge π⋆i (η) of Xsi is ingressive.
(7.1.8) For any finite set I, any morphism µ : t s of O⊗ covering the opposite of

the unique active morphism I {ξ}, and any choice of inert morphisms
{si s}i∈I covering the inert morphisms I {i}, the functor of pairs

µ⋆ :
∏

i∈I
Xsi ≃ X⊗,s Xt

is exact separately in each variable.

Employing [19, Ex. 2.4.2.4 and Pr. 2.4.2.5] and [2, Lm 1.4], one deduces the
following.

7.2. Proposition. Suppose O⊗ (respectively, O⊗) an ∞-operad (resp., an ∞-anti-
operad). Then the functor

O⊗ Cat∞ (resp., the functor (O⊗)
op Cat∞ )

classifying an O⊗-monoidal Waldhausen ∞-category (resp., an O⊗-monoidal Wald-
hausen ∞-category) factors through an essentially unique morphism of ∞-operads

O⊗ Wald⊗
∞ (resp., the functor (O⊗)

op Wald⊗
∞ )

7.3. Definition. Now suppose (C,C†, C†) a left complete disjunctive triple. A sym-
metric monoidal Waldhausen bicartesian fibration

p⊠ : X⊠ C×

over (C,C†, C†) is a functor of pairs X⊠ (C×)♭ with the following properties.
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(7.3.1) The underlying functor p⊠ : X⊠ C× is an inner fibration.
(7.3.2) For any egressive morphism (φ, ω) : (I,X) (J, Y ) of C× (in the sense

of Nt. 2.1) and for any object Q of the fiber (X⊠)(J,Y ), there exists a p⊠-
cartesian morphism P Q covering (φ, ω).

(7.3.3) The composition

X⊠ C× NΛ(F)op

exhibits X⊠ as an ∞-anti-operad.
(7.3.4) The fiber p : X C over ∗ ∈ NΛ(F)op is a Waldhausen bicartesian fibra-

tion X C over (C,C†, C†).

7.4. This is a lot of data, so let’s unpack it a bit.
First, a symmetric monoidal Waldhausen bicartesian fibration

p⊠ : X⊠ C×

over (C,C†, C†) admits an underlying Waldhausen bicartesian fibration p : X C
over (C,C†, C†). This provides, for any object S ∈ C, a Waldhausen ∞-category
XS , and for any morphism φ : S T of C, it provides an exact “pushforward”
functor φ! : XS XT whenever φ is ingressive and an exact “pullback” functor
φ⋆ : XT XS whenever φ is egressive. These are compatible with composition,
and when φ is ingressive and (therefore) egressive, these two are adjoint.

There’s more structure here: for any finite set I and any I-tuple (Si)i∈I of objects
of C with product S, consider the cartesian edge

({ξ}, S) (I, SI)

of C× lying over the morphism {ξ} I of Λ(F)op corresponding to the unique
active morphism I {ξ} of Λ(F); it is of course egressive in X⊠. Hence there is
a functor

⊠
i∈I

:
∏

i∈I
XSi XS ,

exact separately in each variable. If (φi : Si Ti)i∈I is an I-tuple of morphisms
of C with product φ : S T then the square

∏
i∈I XTi XT

∏
i∈I XSi XS

⊠i∈I

∏
i∈I φ

⋆
i φ⋆

⊠i∈I

commutes.
When (C,C†, C†) is cartesian, this structure endows each fiber XS with a sym-

metric monoidal structure: indeed, for any finite set I, we may define
⊗

i∈I
:= ∆∗ ◦⊠

i∈I
,

where ∆: S SI is the diagonal. One sees easily that the commutativity of the
square above implies that any functor φ⋆ induced by a morphism φ : S T is sym-
metric monoidal in a natural way. Furthermore, a simple argument demonstrates
that the external product ⊠i∈I can be recovered from the symmetric monoidal
structures along with the pullback functors; for example, X ⊠ Y ≃ pr⋆1X ⊗ pr⋆2 Y .
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Now it follows from [19, Cor. 7.3.2.7] that if φ : S T is both ingressive and
egressive in C, then φ! extends to a lax symmetric monoidal functor X⊗

S X⊗
T .

7.5. Lemma. Suppose (C,C†, C†) a left complete disjunctive triple, and suppose

p⊠ : X⊠ C×

a symmetric monoidal Waldhausen bicartesian fibration over (C,C†, C†). Then the
inner fibration

p⊠ : X⊠ C×

is an adequate inner fibration [4, Df. 10.3] for the triple (C×, (C×)†, (C×)†) (Nt.
2.1).

Proof. The only condition of adequate inner fibrations that isn’t explicitly part
of the definition above is the assertion that for any ingressive morphism (φ, ω) :
(I,X) (J, Y ) of C× and for any object P of the fiber (X⊠)(I,X), there exists a
p⊠-cocartesian morphism P Q covering (φ, ω).

So suppose that (φ, ω) : (I,X) (J, Y ) is ingressive — i.e., that φ : J I is
a bijection and each morphism ωφ−1(i) : Xi Yφ−1(i) is ingressive —, and suppose
that P is an object of X⊠ that lies over (I,X). Then under the equivalence

(X⊠)I ≃
∏

i∈I
X{i},

the object P corresponds to a family (Pi)i∈I of objects such that Pi lies over Xi

for any i ∈ I. For each i ∈ I, select a p-cocartesian edge Pi Qφ−1(i) covering
ωφ−1(i). Now there is an essentially unique morphism P Q covering (φ, ω) that
corresponds under the equivalence above to the edges Pi Qφ−1(i), and it is easy
to see that it is p⊠-cocartesian. �

If (C,C†, C†) is a left complete disjunctive triple, and if p⊠ : X⊠ C× a sym-
metric monoidal Waldhausen bicartesian fibration for (C,C†, C†), then our goal is
now to equip the unfurling of X with the structure of a Aeff(C)⊗-monoidal Wald-
hausen structure. It will then follow that the corresponding Mackey functor is in
fact a commutative Green functor.

7.6. Construction. Suppose (C,C†, C†) a left complete disjunctive triple, and
suppose

p⊠ : X⊠ C×

a symmetric monoidal Waldhausen bicartesian fibration over (C,C†, C†). Then we
define Υ(X/(C,C†, C†))⊗ as the pullback

Υ(X⊠/(C×, (C×)†, (C×)
†))×Aeff(C×,(C×)†,(C×)†) A

eff(C,C†, C
†)⊗.

The inner fibration [4, Lm. 11.4]

Υ(X⊠/(C×, (C×)†, (C×)
†)) Aeff(C×, (C×)†, (C×)

†)

pulls back to an inner fibration

Υ(p)⊗ : Υ(X/(C,C†, C
†))⊗ Aeff(C,C†, C

†)⊗.

We call this the unfurling of the symmetric monoidal Waldhausen bicartesian
fibration p⊠.
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7.7. Suppose, for simplicity, that (C,C†, C†) is cartesian. Unwinding the definitions,
one sees that the objects of Υ(X/(C,C†, C†))⊗ are precisely the objects of X⊠.
These, in turn, can be thought of as triples (I, SI , PSI ) consiting of a finite set I,
an I-tuple SI := (Si)i∈I , and an object PSI of the fiber

(X⊗)SI ≃
∏

i∈I
XSi ,

which corresponds to an I-tuple (PSi)i∈I of objects of the various Waldhausen
∞-categories XSi . Now a morphism (J, TJ , QTJ ) (I, SI , PSI ) of the unfurling
Υ(X/(C,C†, C†))⊗ can be thought of as the following data:
(7.7.1) a morphism φ : J I of Λ(F);
(7.7.2) a collection of diagrams





Uφ(j)

Tj Sφ(j),

τj σφ(j)

∣∣∣∣∣∣∣∣
j ∈ φ−1(I)





of C such that for any j ∈ φ−1(I), the morphism σj : Uφ(j) Sφ(j) is
ingressive, and the morphism τj : Uφ(j) Tj is egressive; and

(7.7.3) a collection of morphisms
{
σφ(j),!τ

⋆
Ji

(

⊠
j∈Ji

QTj

)
PSi

∣∣∣∣∣ i ∈ I

}

in the various ∞-categories XSi , where τJi is the edge ({i}, Ui) (Ji, TJi)
corresponding to the tuple (τj)j∈Ji .

7.8. Theorem. Suppose (C,C†, C†) a left complete disjunctive triple, and suppose

p⊠ : X⊠ C×

a symmetric monoidal Waldhausen bicartesian fibration over (C,C†, C†). Then the
functor Υ(p)⊗ exhibits the ∞-category Υ(X/(C,C†, C†))⊗ as a Aeff(C,C†, C†)⊗-
monoidal Waldhausen ∞-category.

Proof. We first observe that, in light of [4, Pr. 11.6] and Lm. 7.5, the functor Υ(p)⊗

is a cocartesian fibration. Let us check that the composite cocartesian fibration

Υ(X/(C,C†, C
†))⊗ Aeff(C,C†, C

†)⊗ NΛ(F)

exhibits Υ(X/(C,C†, C†))⊗ as a symmetric monoidal ∞-category.
To this end, it suffices to show that for any finite set I and any I-tuple SI :=

(Si)i∈I of objects of C, the functor
∏

i∈I
χi,! : (X⊠)SI ≃ Υ(X/(C,C†, C

†))⊗SI

∏

i∈I
Υ(X/(C,C†, C

†))Si ≃
∏

i∈I
XSi

induced by the cocartesian edges covering the inert maps χi : I {i}+ is an
equivalence. But this morphism can be identified with

∏

i∈I


id! ◦ id⋆ ◦⊠

i∈{i}


 :

∏

i∈I
XSi

∏

i∈I
XSi ,

which is homotopic to the identity.
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Now for any finite set J , a morphism T S of Aeff(C,C†, C†)⊗ covering the
unique active morphism J {ξ} is represented by a collection of spans





U

Tj S.

φj ψ

∣∣∣∣∣∣∣∣
j ∈ J





The tensor product functor can therefore be written as

ψ! ◦ φ⋆J ◦⊠
j∈J

:
∏

j∈J
XTj ≃ XT XS ,

which is exact separately in each variable. �

In light of Pr. 7.2, we have the following.

7.8.1. Corollary. Suppose (C,C†, C†) a cartesian disjunctive triple that is either
left complete or right complete, and suppose p⊠ : X⊠ C× a symmetric monoidal
Waldhausen bicartesian fibration over (C,C†, C†). Then the cocartesian fibration
Υ(p)⊗ is classified by a Green functor

M⊗
p : Aeff(C,C†, C

†)⊗ Wald⊗
∞.

8. Equivariant algebraic K-theory of group actions

In this section, we answer a question of Akhil Mathew. Namely, for any Waldhau-
sen ∞-category C with an action of a finite group G, can one form an equivariant
algebraicK-theory spectrum KG(C) whose H-fixed point spectrum is the algebraic
K-theory of the homotopy fixed point ∞-category ChH? Furthermore, can one do
this in a lax symmetric monoidal fashion, so that if C is an algebra in Waldhau-
sen ∞-categories over an ∞-operad O⊗, then KG(C) is an algebra over O⊗ in
Mack(FG;Sp)? The answer to both of these questions is yes, and our framework
makes it an almost trivial matter to see how.

8.1. Construction. Suppose G a finite group. Let denote by Ffree
G ⊂ FG the full

subcategory spanned by those finite G-sets upon which G acts freely. Observe that
Ffree
G is the finite-coproduct completion of BG; that is, it is the free ∞-category with

finite coproducts generated by BG. Consequently,Aeff(Ffree
G ) is the free semiadditive

∞-category generated by BG; that is, evaluation at G/e defines an equivalence

Mack(Ffree
G ;A) ∼ Fun(BG,A).

At the same time, the subcategory Ffree
G ⊂ FG is clearly closed under coproducts,

and since Ffree
G is a sieve in FG, it follows that it is stable under pullbacks and binary

products as well. Consequently, we obtain a fully faithful inclusion

Aeff(Ffree
G ) Aeff(FG).

We thus obtain, for any semiadditive ∞-category A, a corresponding restriction
functor

Mack(FG;A) Mack(Ffree
G ;A).

If A is an addition presentable, then the restriction functor admits a right adjoint

BG : Fun(BG,A) Mack(FG;A),
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given by right Kan extension. We shall call this the Borel functor, since it assigns
to any “naïve” G-object the corresponding Borel-equivariant object.

Applying this when A = Wald∞ and apply algebraic K-theory, we obtain the
algebraic K-theory of group actions:

K ◦BG : Fun(BG,Wald∞) Mack(FG;Sp).

8.2. Proposition. The algebraic K-theory of group actions extends naturally to a
lax symmetric monoidal functor

K⊗ ◦B⊗
G : Fun(BG,Wald∞)⊗ Mack(FG;Sp)⊗.

for the objectwise symmetric monoidal structure relative to the symmetric monoidal
structure on Wald∞ [2] and the additivized Day convolution on spectral Mackey
functors.

Proof. Since K⊗ is lax symmetric monoidal [2], it suffices to show that for any
presentable semiadditive symmetric monoidal ∞-category E⊗, the Borel functor
BG extends to a symmetric monoidal functor

B⊗
G : Fun(BG,E)⊗ ≃ Mack(Ffree

G ;A)⊗ Mack(FG;E)⊗.

This will follow directly from [19], once one knows that the restriction functor

Mack(FG;E) Fun(BG,E)

extends to a symmetric monoidal functor

Mack(FG;E)⊗ Mack(Ffree
G ;A)⊗ ≃ Fun(BG,E)⊗.

For this, observe that since Ffree
G ⊂ FG is stable under binary products, the inclusion

Aeff(Ffree
G ) Aeff(FG)

extends to a symmetric monoidal functor

Aeff(Ffree
G )⊗ Aeff(FG)

⊗.

It thus suffices to note that for any free finite G-set V , the subcategory

(Aeff(Ffree
G )×Aeff(Ffree

G ))×Aeff(Ffree
G )A

eff(Ffree
G )/V ⊂ (Aeff (FG)×Aeff(FG))×Aeff(FG)A

eff(FG)/V

is cofinal. �

9. Equivariant algebraic K-theory of derived stacks

In this section, we construct two symmetric monoidal Waldhausen bicartesian
fibrations that extend the following two Waldhausen bicartesian fibrations intro-
duced in [4, §D]:

◮ the Waldhausen bicartesian fibration

Perfop ×Shvflat DM DM

for the left complete disjunctive triple (DM,DMFP,DM) of spectral De-
ligne–Mumford stacks, in which the ingressive morphisms are strongly proper
morphisms of finite Tor-amplitude, and all morphisms are egressive [4, Pr.
D.18], and
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◮ the Waldhausen bicartesian fibration

Perfop Shvflat

for the left complete disjunctive triple (Shvflat,Shvflat,QP,Shvflat) of flat
sheaves in which the ingressive morphisms are the quasi-affine representable
and perfect morphisms, and all morphisms are egressive [4, Pr. D.21].

These will give algebraic K-theory the structure of a commutative Green functor
for these two triples.

9.1. To begin, we let

Mod⊗ QCoh⊗

CAlgcn ×NΛ(F) Shvop
flat ×NΛ(F)

q p

be a pullback square in which q is the cocartesian fibration of [19, Th. 4.5.3.1],
and p is a cocartesian fibration classified by the right Kan extension of the functor
that classifies q. The objects of QCoh⊗ can be thought of as triples (X, I,MI)
consisting of a sheaf X : CAlgcn Kan(κ1) for the flat topology, a finite set I,
and an I-tuple MI = {Mi}i∈I of quasicoherent modules M over X .

9.2. We may now pass to the cocartesian ∞-operads to obtain a cocartesian fibra-
tion of ∞-operads

p⊔ : (QCoh⊗)⊔ (Shvop
flat ×NΛ(F))⊔ ≃ (Shvflat,×)

op ×NΛ(F) NΛ(F)⊔.

Now NΛ(F)⊔ NΛ(F) admits a section that carries any finite set I to the
pair (I, ∗I), where ∗I = {∗}i∈I . Let us pull back p⊔ along this section to obtain a
cocartesian fibration of ∞-operads

p⊠ : QCoh⊠ := (QCoh⊗)⊔ ×NΛ(F)⊔ NΛ(F) (Shvflat,×)
op.

9.3. Passing to opposites, we obtain a functor

(QCohop)⊠ := (QCoh⊠)op Shvflat,×

which
◮ restricts to a symmetric monoidal Waldhausen bicartesian fibration

(QCohop)⊠ ×Shvflat,× DM× DM×

that extends the Waldhausen bicartesian fibration of [4, Pr. D.10] for the
disjunctive triple of spectral Deligne–Mumford stacks, in which the ingres-
sive morphisms are relatively scalloped, and all morphisms are egressive,
and

◮ gives a symmetric monoidal Waldhausen bicartesian fibration

(QCohop)⊠ Shvflat,×

that extends the Waldhausen bicartesian fibration of [4, Pr. D.13] for the
disjunctive triple of flat sheaves, in which the ingressive morphisms are
quasi-affine representable, and all morphisms are egressive.
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9.4. At last, restricting to perfect modules, we obtain the desired symmetric mon-
oidal Waldhausen bicartesian fibrations

(Perfop)⊠ ×(Shvflat)× DM× DM×

for (DM,DMFP,DM) and

(Perf op)⊠ (Shvflat)×

for (Shvflat,Shvflat,QP,Shvflat).

Now, passing to the unfurling, we obtain the following pair of results.

9.5. Proposition. The Mackey functor

MDM : Aeff(DM,DMFP,DM) Wald∞

of [4, Cor. D.18.1] admits a natural structure of a commutative Green functor M⊗
DM.

In particular, the algebraic K-theory of spectral Deligne–Mumford stacks is naturally
a commutative spectral Green functor for (DM,DMFP,DM).

9.6. Proposition. The Mackey functor

MShvflat : A
eff(Shvflat,Shvflat,QP,Shvflat) Wald∞

of [4, Cor. D.21.1] admits a natural structure of a commutative Green functor
M⊗

Shvflat
. In particular, the algebraic K-theory of flat sheaves is naturally a com-

mutative spectral Green functor for (Shvflat,Shvflat,QP,Shvflat).

9.7. Construction. Suppose X a spectral Deligne–Mumford stack. As in [4, Nt.
D.23], we denote by FÉt(X) the subcategory of DM/X whose objects are finite
[18, Df. 3.2.4] and étale morphisms Y X and whose morphisms are finite and
étale morphisms over X . Observe that the fiber product − ×X − endows FÉt(X)
with the structure of a cartesian disjunctive ∞-category. We will abuse notation
and write Aeff(X)⊗ for the symmetric monoidal effective Burnside ∞-category of
FÉt(X).

Now the inclusion

(FÉt(X),FÉt(X),FÉt(X)) (DM,DMFP,DM)

is clearly a morphism of cartesian disjunctive triples, whence one can restrict the
commutative Green functor M⊗

DM above along the morphism of ∞-operads

Aeff(X)⊗ Aeff(DM,DMFP,DM)⊗

to a commutative Green functor

MX : Aeff(X)⊗ Wald⊗
∞.

Now if X is (say) a connected, noetherian scheme, then a choice of geometric
point x of X gives rise to an equivalence

Aeff(πét
1 (X, x))⊗ ≃ Aeff(X)⊗.

Applying algebraic K-theory, we obtain a commutative spectral Green functor for
the étale fundamental group:

K⊗
πét
1 (X,x)

(X) : Aeff(πét
1 (X, x))⊗ Sp⊗.

This commutative Green functor deserves the handle Galois-equivariant algebraic
K-theory.
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10. An equivariant Barratt–Priddy–Quillen Theorem

10.1. Notation. In this section, suppose (C,C†, C†) a cartesian disjunctive triple.

10.2. Recollection. Recall [4, Df. 13.5] that R(C) ⊂ Fun(∆2/∆{0,2}, C) is the full
subcategory spanned by those retract diagrams

S0 S1 S0;

such that the morphism S0 S1 is a summand inclusion. We endow R(C) with
the structure of a pair in the following manner. A morphism T S will be declared
ingressive just in case T0 S0 is an equivalence, and T1 S1 is a summand
inclusion. Write p for the functor R(C) C given by evaluation at the vertex
0 = 2:

[S0 S1 S0] S0.

Recall also that R(C,C†, C†) ⊂ R(C) is the full subcategory spanned by those
objects

S : ∆2/∆{0,2} C

such that for any complement S′
0 S1 of the summand inclusion S0 S1,

(10.2.1) the essentially unique morphism S′
0 1 to the terminal object of C is

egressive, and
(10.2.2) the composite S′

0 S1 S0 is ingressive.
We endow R(C,C†, C†) with the pair structure induced by R(C). We will abuse
notation by denoting the restriction of the functor p : R(C) C to the subcategory
R(C,C†, C†) ⊂ R(C) again by p.

We proved in [4, Th. 13.11] that p is a Waldhausen bicartesian fibration over
(C,C†, C†).

10.3. Construction. Recall that an object of the ∞-category R(C,C†, C†)× can be
described as pairs (I,X) consisting of a finite set I and a collectionX = {Xi | i ∈ I}
of objects of R(C,C†, C†) indexed by the elements of I. Accordingly, a morphism
(I,X) (J, Y ) of R(C,C†, C†)× can be described as a map J I+ of finite sets
and a collection 


Xi

∏

j∈Ji

Yj

∣∣∣∣∣∣
i ∈ I





of morphisms of R(C,C†, C†).
We now define a subcategory R(C,C†, C†)⊠ ⊂ R(C,C†, C†)× that contains

all the objects. A morphism (I,X) (J, Y ) of R(C,C†, C†)× is a morphism
of R(C,C†, C†)⊠ if and only if, for every i ∈ I, every nonempty proper subset
Ki ⊂ Ji, and every choice of a complement Y ′

j,0 Yj,1 of the summand inclusion
Yj,0 Yj,1, the square

∅ Xi,1

∏
j∈Ki

Yj,0 ×
∏
j∈Ji\Ki

Y ′
j,0

∏
j∈Ji

Yj,1,

in which ∅ is initial and the bottom morphism is the obvious summand inclusion,
is a pullback.
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Let us endow this ∞-category with a pair structure in the following manner. We
declare a morphism (I,X) (J, Y ) of R(C,C†, C†)⊠ to be ingressive just in case
the map J I+ represents an isomorphism in Λ(F), and, for every i ∈ I, the map
Xi Yφ(i) of R(C,C†, C†) is ingressive.

The following is now immediate.

10.4. Proposition. The functor

p⊠ : R(C,C†, C
†)⊠ C×

given by evaluation at 0 = 2 in ∆2/∆{0,2}exhibits R(C,C†, C†) as a symmetric
monoidal Waldhausen bicartesian fibration over (C,C†, C†).

10.5. Construction. Now we may the unfurling construction of [4, §11] to the sym-
metric monoidal Waldhausen bicartesian fibration p⊠ to obtain an Aeff(C,C†, C†)⊗-
monoidal Waldhausen ∞-category (in the sense of [2])

Υ(p)⊗ : Υ(R(C,C†, C
†)/(C,C†, C

†))⊗ Aeff(C,C†, C
†)⊗.

As we’ve demonstrated, Υ(p)⊗ is classified by an E∞ Green functor

M⊗
p : Aeff(C,C†, C

†)⊗ Wald⊗
∞

whose underlying functor is the Mackey functor

Mp : A
eff(C,C†, C

†) Wald∞

corresponding to the unfurling of the Waldhausen bicartesian fibration

R(C,C†, C
†) C

over (C,C†, C†).

In [2], we demonstrated that algebraic K-theory lifts in a natural fashion to
a morphism of ∞-operads, whence we may contemplate the commutative Green
functor

K⊗ ◦M⊗
p : Aeff(C,C†, C

†)⊗ Sp⊗.

Observe that by [4, Th. 13.12], the underlying Mackey functor

(C,C†,C†) := K ◦Mp

of K⊗ ◦ M⊗
p is the spectral Burnside Mackey functor for (C,C†, C†), as defined

in [4, Df. 8.1]. In particular, it is unit for the symmetric monoidal ∞-category
Mack(C,C†, C†;Sp), which of course admits an essentially unique E∞ structure.
Consequently, we deduce the following.

10.6. Theorem (Equivariant Barratt–Priddy–Quillen). The Green functor K⊗ ◦
M⊗

p is the spectral Burnside Green functor (C,C†,C†).

Of course, this result directly implies the original Barratt–Priddy–Quillen Theorem,
which states that the algebraicK-theory of the ordinary Waldhausen category F∗ of
pointed finite sets (in which the cofibrations are the monomorphisms) is the sphere
spectrum . Furthermore, the essentially unique E∞ structure on is induced by the
smash product of pointed finite sets.
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11. A brief epilogue about the Theorems of Guillou–May

Suppose G a finite group. Write OrthSpG for the underlying ∞-category of the
relative category of orthogonalG-spectra. The Equivariant Barratt–Priddy–Quillen
Theorem of Guillou–May [12] provides a similar description in OrthSpG of certain
mapping spectra. Note that this is not a priori related to Th. 10.6 when C = FG.
Nevertheless, a suitable comparison theorem (which of course Guillou–May provide
in [13]) offers an implication.

On the other hand, the proof of our result here, combined with work from
our forthcoming book [6], will allow us to reprove, using entirely different meth-
ods, the comparison result of Guillou–May. Indeed, if we can extend the functor
Σ∞

+ : FG OrthSpG to a suitable functor Aeff(FG) OrthSpG, then the Equi-
variant Barratt–Priddy–Quillen Theorem above and the Schwede–Shipley theorem
[20] together will imply the result of Guillou–May [13] providing the equivalence

SpG ≃ OrthSpG.

It is, however, difficult to construct the desired functor Aeff(FG) OrthSpG
directly, as this involves nontrivial homotopy coherence problems. However, in the
language of G-equivariant ∞-category theory, which we develop in the forthcom-
ing [6] provides a universal property for the G-equivariant effective Burnside ∞-
category. This will provide us with the desired functor, and we will easily deduce
the desired equivalence as a corollary.
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PARAMETRIZED HIGHER CATEGORY THEORY AND HIGHER
ALGEBRA: A GENERAL INTRODUCTION

CLARK BARWICK, EMANUELE DOTTO, SAUL GLASMAN, DENIS NARDIN,
AND JAY SHAH

Let k denote a field, and let E ⊇ k be a finite Galois extension thereof with Galois
group G. The algebraic K-groups Kn(k) and Kn(E), as defined by Quillen, together
exhibit some interesting structure. Since these groups are defined in terms of the
categories of finite-dimensional vector spaces (along with their additive structure),
the forgetful functor Vect(E) Vect(k) and the functor Vect(k) Vect(E)
given by X X ⊗k E give rise to homomorphisms

V : Kn(E) Kn(k) and F : Kn(k) Kn(E).

Ordinary Galois theory shows that the composite functor Vect(E) Vect(E)
given by Y Y ⊗k E can be described as the direct sum

⊕

g∈G

g : Vect(E) Vect(E),

where G acts in the obvious manner. Accordingly, we have an action of G on Kn(E)
for which both V and F are equivariant, and a formula

FV =
∑

g∈G

g.

Note that the equivariance of V implies that it factors through the orbits Kn(E)G,
and the equivariance of F implies that it factors through the fixed points Kn(E)G,
but these maps do not typically identify Kn(k) with either the orbits or the fixed
points. The data of Kn(k) is an added piece of structure; that is, Kn(k) cannot in
general be recovered from Kn(E) as a G-module.

But the problem is even deeper than this. Even if one considers all the K-groups
together as a single entity (by thinking of these groups as the homotopy groups of
a space or spectrum), one can construct a descent spectral sequence

E2
p,q = H−p(G,Kq(E)),

but this will not, as a rule, converge to the groups Kp+q(k). In other words, the space
or spectrum K(k) is not the homotopy fixed point space/spectrum of the action of
G on the space/spectrum K(E). Consequently, even knowing the homotopy type
K(E) with its action of G is insufficient to recover the groups Kn(k). This is the
descent problem in algebraic K-theory.

There is, of course, no need to consider the K-theories of E and k in isolation. One
can also include the information of the K-groups of all the various subextensions
E ⊇ L ⊇ k. In other words, for any subgroup H ≤ G, one can contemplate the K-
groups Kn(E

H) of the fixed field EH . These abelian groups each have conjugation
homomorphisms

cg : Kn(E
H) Kn(E

gHg−1

)
1
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for any g ∈ G. Additionally, for subgroups K,L ≤ H ≤ G, one again has the for-
getful functor Vect(EK) Vect(EH) and the functor Vect(EH) Vect(EL)
given by Y Y ⊗EH EL, so again one has homomorphisms

V H
K : Kn(E

K) Kn(E
H) and FH

L : Kn(E
H) Kn(E

L).

Again, a small amount of Galois theory reveals that these two homomorphisms
compose in the following manner:

FH
L V H

K =
∑

x∈L\G/K

V L
L∩(xKx−1)cxF

K
(x−1Lx)∩K : Kn(E

K) Kn(E
L).

And again, of course, the groups Kn(E
H) cannot be recovered from the G-module

Kn(E) or the homotopy type K(E) with its action of G.
Combined, this structure on the assignment H Kn(E

H) makes up what is
called a Mackey functor for G. As we see, this is strictly more structure than a G-
module. Similarly, the assignment H K(EH) is a spectral Mackey functor for G
in the sense of the first author [2]. This is strictly more structure than a spectrum
with a G-action. We call this object the G-equivariant K-theory of E over k.

In this monograph, we tease out the kind of structure on the categories Vect(EH)
that provides their K-theory with the structure of a spectral Mackey functor for G.
As a first approximation, we note that, because the category of subextensions of
E is equivalent to the category of transitive G-sets, the functors Y Y ⊗EH EL

together define what we call a G-category – a diagram of categories indexed on the
opposite of the orbit category OG of G. Let us write VectE⊇k for this G-category.

Of course, the G-category VectE⊇k is relatively simple: after all, if one thinks
of the action of G on Vect(E), then Vect(EH) is the category of E-vector spaces
equipped with a semilinear action of H . In other words, Vect(EH) is simply the
homotopy fixed point category for the action of H on Vect(E). So we might at first
contemplate Vect(E) with its G-action. However, the adjoints to the functors in
this G-category – the forgetful functors – contain extra information that compels
us to contemplate entire G-category structure.

For example, the forgetful functor Vect(E) Vect(k) is a kind of generalized
product of vector spaces: we regard it as indexed, not over a mere set, but over
the G-set G/e. To see why this is appropriate, first note that by the normal basis
theorem, if Y is an E-vector space with basis {vi}1≤i≤n, then there is an element
θ ∈ E such that Y has basis {gθvi}1≤i≤n,g∈G over k. But without choosing this
element, we would still be entitled to write

∏

α∈G/e

Y

for this k-vector space. In the same manner, the presence of all the other right
adjoints Vect(EH) Vect(EK) in this diagram of categories can be regarded as
the existence of various indexed products

∏

α∈K/H

Z

on this G-category. At the same time, since our field extensions are separable, these
right adjoints are all also left adjoints, and so we even think of this as endowing
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our G-category with indexed direct sums
⊕

α∈K/H

Z.

The point here is that the transfer structure on the equivariant algebraic K-
groups arises from the additional structure of indexed products or coproducts on
the G-category VectE⊇k. And this example refects a general principle: to get the
full structure of a Mackey functor on equivariant algebraic K-theory of E over k,
one must work not only with the diagram of categories indexed by Oop

G , but also
the G-direct sums thereupon.

The G-category VectE⊇k also carries a sophisticated multiplicative structure.
Of course, the tensor product over k provides an external product

Vect(EK)× Vect(EL) Proj fg(EK ⊗k E
L) ≃

∏

x∈L\G/K

Vect(E(x−1Lx)∩K).

In [9], we demonstrated that the external products provide the equivariant algebraic
K-groups with the structure of a graded Green functor, and, even better, they
provide the equivariant algebraic K-theory spectra with the structure of a spectral
Green functor.

However, there is a still richer multiplicative structure, whose impact on equi-
variant K-theory is studied here for the first time. Just as the usual norm of an
element of E is automatically Galois-invariant, we see that for any finite-dimensional
E-vector space V , the tensor power V ⊗G comes with canonical descent data. We
call the resulting k-vector space Nk

E(V ) the multiplicative norm from E to k. Quite
simply, Nk

E(V ) is the k-vector space (of dimension (dim V )#G) such that the set
Homk(N

k
E(V ),W ) is in bijection with the set of norm forms V ×G W ⊗k E for

E/k – i.e., k-multilinear maps

Φ: V ×G W ⊗k E

such that for any element (vh)h∈G ∈ V ×G, any element g ∈ G, and any element
λ ∈ E,

Φ((v′h)h∈G) = (gλ)Φ((vh)h∈G),

where

v′h =

{
λvg if h = g;

vh if h 6= g,

and
gΦ((vh)h∈G) = Φ((vgh)h∈G.

So, Nk
E(V ) is the dual of the k-vector space of norm forms V ×G E for E/k. In

particular, when k = R and E = C, then NR
C (V ) is precisely the dual space of the

R-vector space of hermitian forms on V .
More generally, there are multiplicative norms for any subgroups K ≤ L ≤ G.

Together with the external products, these multiplicative norms furnish VectE⊇k

with a G-symmetric monoidal structure. In effect, this provides tensor products
indexed over any finite G-set U =

∐
i∈I(G/Hi), which amount to functors

⊗

u∈U

:
∏

i∈I

Vect(EHi) Vect(k),

which are suitably associative and commutative.
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This additional structure on VectE⊇k descends to an analogous structure on the
equivariant algebraic K-theory of E over k. These provide the equivariant algebraic
K-theory of E over k with the full structure of a G-E∞-algebra.

Hill’s program

To tell this story, we pursue here the general theory of G-∞-categories. But we
are by no means the first to contemplate this possibility.

In their landmark solution of the Kervaire Invariant Problem [23], Mike Hill,
Mike Hopkins, and Doug Ravenel developed a perspective on equivariant stable
homotopy thery that centered on the study of indexed products, indexed coprod-
ucts, and indexed symmetric monoidal structures (incorporating their multiplicative
norms). They argued that these structures were fundamental to the basic structure
of equivariant stable homotopy theory.

In 2012, Hill presented (partly jointly with Hopkins) a sketch of a program to
rewire huge swaths of higher category theory in order to embed these structures into
the very fabric of the homotopy theory of homotopy theories. Hill sought a theory
of G-∞-categories and G-functors, along with a concomitant theory of internal
homs, G-limits, G-colimits, G-Kan extensions, etc. He furthermore conjectured that,
equipped with this technology, one could prove the following, which is an analogue
of the universal property of the ∞-category Top of spaces.

Theorem A. The G-∞-category Top
G

of G-spaces – whose value on an orbit
G/H is the ∞-category of H-spaces – is freely generated under G-colimits by the
contractible G-space; that is, for any G-∞-category D with all G-colimits, evalua-
tion on the generator defines an equivalence of G-∞-categories

FunLG

(
Top

G
, D

)
∼ D.

Here FunLG is the G-∞-category of G-colimit-preserving functors.

In this text, we develop all this machinery, and this is the first main theorem.
Recall that one may speak of semiadditive ∞-categories, in which finite products

and finite coproducts exist and coincide. In the same manner, Hill expected that one
may speak of G-semiadditive ∞-categories, in which finite G-products and finite
G-coproducts exist and coincide. Furthermore, the effective Burnside ∞-category
Aeff(F) of finite sets is equivalent to the ∞-category of finitely generated free E∞-
spaces, whence it is the free semiadditive ∞-category on one generator. Accordingly,
in equivariant higher category theory, we have the following.

Theorem B. The G-∞-category Aeff(G) – whose value on G/H is the effective
Burnside ∞-category of finite H-sets – is equivalent to the G-∞-category of finitely
generated free G-E∞-spaces. In other words, it is the free G-semiadditive G-∞-
category on one generator; that is, for any G-semiadditive G-∞-category A, evalu-
ation on the generator defines an equivalence of G-∞-categories

Fun⊕
G

(
Aeff(G), A

)
∼ A.

Here Fun⊕G is the G-∞-category of G-coproduct-preserving functors.
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As suggested by work of Andrew Blumberg [14], the G-stability of a G-∞-
category can be defined as ordinary stability along with G-semiadditivity. Conse-
quently, the two previous theorems, with some effort, together provide the following,
also conjectured by Hill:

Theorem C. The G-∞-category SpG of G-spectra – whose value on an orbit G/H

is the ∞-category SpH of genuine H-spectra – is the free G-stable G-∞-category
with all G-colimit on one generator; that is, for any G-stable G-∞-category E,
evaluation on the generator defines an equivalence of G-∞-categories

FunL
G

(
SpG, A

)
∼ A.

Going further, Hill also expected that the multiplicative norms of Hill–Hopkins–
Ravenel would be part of a new type of structure – a G-symmetric monoidal G-
∞-category. In effect, a G-symmetric monoidal G-∞-category is a G-∞-category
C along with tensor product functors over finite G-sets. In particular, one has a
functor

NG : C(G/e) C(G/G),

which is exactly the desired multiplicative norm.
Work of Hill and Hopkins [22] has already laid out the idea of G-symmetric

monoidal ordinary categories, but incorporating homotopy coherence into this sort
of structure is a taller order. The situation is roughly analogous to the situation with
the smash product in model categories of spectra: there are genuine obstructions
to making a G-symmetric monoidal structure maximally compatible with a model
category of genuine G-spectra. However, when we pass to the world of ∞-categories
as in [24], the situation becomes much cleaner: not only can one give an explicit,
homotopy invariant construction of the smash product on the ∞-category Sp of
spectra, but this smash product enjoys a universal property that characterizes it
up to a contractible space of choices.

We bring exactly this kind of conceptual clarity (and technical power) to the
study of homotopy coherent G-commutative structures in this text. We define the
notions of G-∞-operad and G-symmetric monoidal G-∞-category. We find that
G-products define G-symmetric monoidal structures on the G-∞-category Cat∞,G

of G-∞-categories and the G-∞-category Top
G

of G-spaces. The G-commutative
algebra objects of Cat∞,G are precisely the G-symmetric monoidal ∞-categories,
and the G-commutative algebra objects of Cat∞,G are precisely the G-E∞-spaces.

Similarly, there is a G-subcategory PrLG ⊂ Cat∞,G of G-presentable G-∞-cate-
gories and G-left adjoints. This too has a G-symmetric monoidal structure, but
it is not given by G-products; rather, the G-commutative algebra objects of PrLG
are precisely the G-symmetric monoidal ∞-categories that are presentable and in
which the tensor product preserves G-colimits separately in each variable.

Theorem D. The G-∞-category Top
G

is the unit in the G-symmetric monoidal G-
∞-category PrLG. In particular, it admits an essentially unique G-symmetric mon-
oidal structure in which the tensor product preserves G-colimits separately in each
variable, which is given by the G-products.

Even further, the full G-subcategory PrLG,st ⊂ PrLG spanned by the G-stable G-
presentable G-∞-categories inherits the G-symmetric monoidal structure, and we
have the following.
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Theorem E. The G-∞-category SpG is the unit object in the G-symmetric mon-
oidal G-∞-category PrLG,st. In particular, it admits an essentially unique G-symmetric
monoidal structure in which the tensor product preserves G-colimits separately in
each variable.

In particular, this provides a universal description of the Hill–Hopkins–Ravenel
multiplicative norm. With some work, this even provides a universal characteriza-
tion of an individual norm functor.

Theorem F. The norm functor NG : Sp SpG is the inital object of the ∞-
category

Fun⊗(Sp,SpG)×Fun⊗(Top,SpG) Fun
⊗(Top,SpG)ΣG,∞

+ ◦ΠG/,

where ΠG : Top TopG is the G-product, and Fun⊗ denotes the ∞-category of
symmetric monoidal functors.

In this text, we completely realize Hill’s vision, and we prove Theorems A–F.

Taking the G out of Genuine

Formally, one may now note that the orbit category OG of the group G plays a
much more significant role in these results than does G itself. In particular, although
the ∞-category SpG can be obtained by taking the ∞-category TopG and inverting
the representation spheres, our viewpoint regards the role of representation spheres
as incidental.

One is thus led to ask whether one might untether equivariant homotopy theory
from dependence upon a group. (We thank Haynes Miller for the pun of the section
heading.) That is, first, do Theorems A–F hold more generally? And, second, is
there any value in proving them in greater generality? The answer to both questions
turns out to be yes.

Indeed, when one examines the proofs of the results above, one finds that the
unstable results continue to hold when OG is replaced with any base ∞-category
T . The stable results require only very mild conditions on T ; in effect, one requires
the analogue of the Mackey decomposition theorem in T (“T is orbital ”) and a
condition that no nontrivial retracts exist (“T is atomic”). We can even extend this
further, and define an incompleteness class R on the orbital ∞-category T ; in effect,
this serves to place limits on the classes of transfers that exist in the corresponding
∞-category of spectra.

As it happens, there are many examples that make this generality worthwhile.
Here are a few.
1. As a mild extension of the example OG, consider a family F of subgroups of G

such that if K ≤ L lie in F , then any subgroup H ≤ G that is conjugate to a
subgroup H ′ such that K ≤ H ′ ≤ L also lies in F . Then the full subcategory
OG,F ⊆ OG is also an atomic orbital category. Such categories (along with
various inclusions of “closed” and “open” subcategories) appear naturally when
we contemplate the isotropy separation sequence in equivariant stable homotopy
theory.

2. Following Blumberg and Hill [15], any incomplete G-universe U gives rise to an
incompleteness class RU on OG, and this permits us to model G-spectra relative
to U .
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3. Furthermore, one can also work with orbit categories of profinite groups (where
the stabilizers are required to be open) and locally finite groups (where the
stabilizers are required to be finite). This provides extensions of equivariant
stable and unstable homotopy theory to these contexts.

4. Any ∞-groupoid (= Kan complex) X is atomic orbital. The corresponding ∞-
category of X-spaces is equivalent to the ∞-category of functors X Top;
likewise, the ∞-category of X-spectra is equivalent to the ∞-category of functors
X Sp. In other words, X-spaces are local systems of spaces over X , and X-
spectra are local systems of spectra over X . Consequently, this example actually
recovers parametrized homotopy theory as studied by Peter May and Johann
Sigurdsson [25]; in fact, this example was the inspiration for our title.

5. Combining the previous example with the ur-example, for any G-space X , one
can construct the total orbital ∞-category X. One sees that X-spaces are local
systems of G-spaces over X , and X-spectra are local systems of G-spectra over
X .

6. The cyclonic orbit 2-category O c©, whose objects are Q/Z-sets with finite sta-
bilizers, whose 1-morphisms are equivariant maps, and whose 2-morphisms are
certain intertwiners, is an orbital ∞-category [8]. The corresponding homotopy
theory of B-spectra is the homotopy theory of S1-equivariant spectra relative to
the family of finite subgroups. This is precisely the sort of equivariance that one
sees on topological Hochschild homology [6]. To construct the homotopy cate-
gory of cyclotomic spectra, one forms the fixed points of this homotopy theory
relative to the action of the monoid of open immersions from O c© into itself.

7. Generalizing the previous example are the multi-cyclonic orbit 2-categories which
control torus-equivariance and multi-cyclotomic structures, which appear natu-
rally on higher forms of topological Hochschild homology [5].

8. The 2-category Γ of finite connected groupoids and covering maps is atomic or-
bital. The corresponding homotopy theory of Γ-spectra is a variant of Stefan
Schwede’s global equivariant homotopy theory [27]. To get exactly Schwede’s
global equivariant homotopy theory (for finite groups) in our framework requires
a larger orbital ∞-category of finite connected groupoids equipped with an in-
completness class.

9. The category Surj≤n of finite sets of cardinality ≤ n and surjective maps is an
atomic orbital category. This one is extremely strange, however, as it doesn’t
have much at all to do with any groups. Nevertheless, the third author shows
in [21] that the corresponding homotopy theory of F≤n-spectra is equivalent
to the homotopy theory of n-excisive functors Sp Sp, generalizing Tom
Goodwillie’s classification of homogeneous functors. Indeed, it is the inclusion
of Surj≤n−1 into Surj≤n, combined with the complmentary inclusion of BΣn

into Surj≤n, that together reconstruct the recollement of n-excisive functors by
(n− 1)-excisive functors and n-homogeneous functors.

10. The ∞-categories Surj(R)≤n and Surj(C)≤n obtained from the topological cat-
egories of finite-dimensional inner product spaces (over R and C, respectively)
of dimension ≤ n and orthogonal projections are atomic orbital as well. Just
as stable homotopy theory parametrized on the orbital categories Surj≤n “con-
trols” the Goodwillie tower, so the stable homotopy theory parametrized on the
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orbital categories Surj(R)≤n “controls” the Weiss orthogonal calculus [29]. Like-
wise, stable homotopy theory parametrized on the orbital categories Surj(C)≤n

“controls” the unitary calculus. We hope to return to this point in future work.
11. Our framework also covers and extends a setting previously defined in work of

Bill Dwyer and Dan Kan, Emanuel Dror Farjoun, and Boris Chorny and Bill
Dwyer. In [19], Farjoun builds on work of [20] and defines a model structure
on the category of diagrams of spaces indexed on a small category I, called the
I-equivariant model structure, which depends on the “I-orbits”: the diagrams
I Top whose strict (= 1-categorical) colimit is equal to a point. In par-
ticular if I = G is a group these are precisely the G-orbits, and the resulting
homotopy theory is the fixed-points model structure on G-spaces. Moreover Far-
joun’s construction admits an Elmendorf–McClure theorem, in the sense that the
I-equivariant model structure is Quillen-equivalent to a presheaf category (on
the orbit category when the orbits are either small or complete). This result was
proved in different levels of generality in [20] and [17], and in full generality in the
more recent [16]. The category of I-orbits OI is an atomic orbital category, and
by the above mentioned Elmendorf–McClure theorem, Farjoun’s I-equivariant
model category is equivalent to our homotopy theory of OI -spaces. Our con-
struction exhibits the I-equivariant homotopy theory as a fiber of a full-fledged
OI-category, thus enabling one to exploit the full theory of OI -equivariant limits
and colimits.
Such a wealth of examples compels us to prove Theorems A–F in the generality

atomic orbital ∞-categories, and, where possible, we develop elements of the theory
in even greater generality.

Plan

This text consists of nine Exposés:
I. We introduce the basic elements of the theory of parametrized ∞-categories

and functors between them. Following the lessons of [13], these notions are
defined as suitable fibrations of ∞-categories and functors between them. We
give as many examples as we are able at this stage. Simple operations, such as
the formation of opposites and the formation of functor ∞-categories, become
slightly more involved in the parametrized setting, but we explain precisely
how to perform these constructions. All of these constructions can be per-
formed explicitly, without resorting to such acts of desperation as straighten-
ing. The key results of this Exposé are: (1) a universal characterization of the
T -∞-category of T -objects in any ∞-category, (2) the existence of an internal
Hom for T -∞-categories, and (3) a parametrized Yoneda lemma. [3]

II. We dive deep into the fundamentals of parametrized ∞-category theory in
the second Exposé. In particular, we construct parametrized versions of join
and slice, and use these to define parametrized colimits and limits as well as
parametrized left and right Kan extensions. At the heart of this is the difficult
but technically powerful result that, just as one may decompose colimits into
coproducts and geometric realizations in ∞-category theory, similarly one may
decompose parametrized colimits into parametrized coproducts and geometric
realizations in the ordinary sense. This has the effect of elevating parametrized
coproducts and products to a special status within the theory. Theorem A is
proved (and generalized) here. [28]
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III. We next introduce orbital ∞-categories, along with a host of examples. There
are actually different sorts of functor between orbital ∞-categories, and we
taxonomize these according to certain algebro-geometric intuitions. For any
orbital ∞-category T , we have a corresponding ∞-category SpT (even T -∞-
category) of T -spectra, which under our algebro-geometric analogy corresponds
roughly to an ∞-category of “quasicoherent sheaves on T .” The different sorts
of functors between orbital ∞-categories induce suitable functors between the
∞-categories of T -spectra, and these behave as the names suggest. Perhaps
most importantly, closed immersions of orbital ∞-categories admit open com-
plements, and these two functors induce a recollement of the corresponding
∞-category of spectra; this is how one obtains the isotropy separation sequence
and generalizations thereof. With a little care, we are able to extend all this to
the context of an orbital ∞-category equipped with an incompleteness class.
[7]

IV. In the fourth Exposé, we define semiadditive parametrized ∞-categories, and
we prove Theorem B. Then we use the work of Exposé II to show that
parametrized stability can be expressed as ordinary stability combined with
parametrized semiadditivity. This now makes it possible to prove Theorem C.
[26]

V. Next, we introduce the notion of parametrized Waldhausen ∞-categories. We
show that the algebraic K-theory of a Waldhausen T -∞-category naturally
carries the structure of a T -spectrum. [1]

VI. From here, we move toward the algebraic structures in parametrized higher
category theory. We introduce the notions of T -∞-operad and T -symmetric
monoidal ∞-category for an orbital ∞-category T , and we offer up numerous
examples. Perhaps most importantly, parametrized ∞-categories with all T -
coproducts (or, dually, T -products) inherit canonical T -symmetric monoidal
structures. [4]

VII. In the seventh Exposé, we prove that when T is an atomic orbital ∞-category,
the T -∞-category PrLT of T -presentable T -∞-categories admits a T -symmetric
monoidal structure analogous to the symmetric monoidal structure on pre-
sentable ∞-categories. Theorem A then implies, more or less directly, Theo-
rem D. Moreover, T -stable T -presentable T -∞-categories form a symmetric
monoidal localization of PrLT , and the localization is given by tensoring with
SpT . Theorem E follows immediately. Moreover, one deduces a different uni-
versal property of SpT , which is that it is, in effect, the result of inverting
the analogues of the permutation representation spheres in the T -symmetric
monoidal T -∞-category Top

G
. From this, we are able to deduce the universal

property of the norm (Theorem F). [12]
VIII. In the penultimate Exposé, we introduce the T -∞-category Mod(A) of mod-

ules over a T -E∞-algebra A (for an atomic orbital ∞-category T ). We show
that it is T -symmetric monoidal, and we describe how it transforms in both
A and T . [11]

IX. Finally, we return to the subject of equivariant algebraic K-theory, where
we show that the equivariant algebraic K-theory of a T -symmetric monoidal
Waldhausen T -∞-category admits the natural structure of a T -E∞ ring spec-
trum. This applies not only in the field case of the beginning of this introduc-
tion, but also to those forms of equivariant algebraic K-theory that arise in
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the work of Dustin Clausen, Akhil Mathew, Niko Naumann, and Justin Noel
[18] as well as the nascent subject of equivariant (derived) algebraic geometry.
[10]
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7 Stratified categories, geometric fixed points and a

generalized Arone-Ching theorem

Saul Glasman

November 22, 2017

Abstract

We develop a theory of Mackey functors on epiorbital categories which
simultaneously generalizes the theory of genuine G-spectra for a finite
group G and the theory of n-excisive functors on the category of spectra.
Using a new theory of stratifications of a stable ∞-category along a finite
poset, we prove a simultaneous generalization of two reconstruction theo-
rems: one by Abram and Kriz on recovering G-spectra from structure on
their geometric fixed point spectra for abelian G, and one by Arone and
Ching that recovers an n-excisive functor from structure on its deriva-
tives. We deduce a strong splitting theorem for K(n)-local G-spectra and
reprove a theorem of Kuhn on the K(n)-local splitting of Taylor towers.

1 Introduction

Equivariant stable homotopy theory has become notorious for its profusion of
fixed point functors. The most superficially arcane of these, the geometric fixed
points first defined in [LMS86, §II.9], also have the best formal properties. Let
G be a finite group and H a subgroup; let SpG be the ∞-category of genuine
G-spectra. Then the geometric H-fixed point spectrum, which we will regard
as a functor

ΦH : SpG → Sp,

is uniquely determined by the following properties:

1. ΦH commutes with all homotopy colimits, and

2. ΦH is compatible with the suspension spectrum functor in that the dia-
gram of functors

TopG SpG

Top Sp

Σ∞
+

(−)H ΦH

Σ∞
+

commutes.
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The following additional pleasant properties follow:

3. ΦH has a natural enhancement to a symmetric monoidal functor.

4. (Geometric fixed point Whitehead theorem) If E is aG-spectrum such that
ΦHE is contractible for all subgroupsH of G, then E itself is contractible.

This last property strongly suggests that it might be possible to present G-
spectra as diagrams of their geometric fixed point spectra, much as the spectral
Mackey functor approach of [GM11] and [Bar14] employs the genuine fixed point
spectra EH . Such a presentation would obviously be desirable, since there are
many spectra - for example, those arising as norms in the sense of [HHR09, §B.5]
- whose geometric fixed points are much more accessible than their genuine fixed
points. Some subtlety turns out to be required in this. For example, already
for G = C2, it’s easy to see that the spaces of natural transformations in both
directions between ΦG and the underlying spectrum, or identity fixed point,
functor Φ{e} are contractible. Nevertheless, it can be done, and in this paper,
we give a construction that accomplishes this and significantly more, drawing
together work of Abram and Kriz [AK13] and Arone and Ching [AC15], which
itself generalizes previous work of Bauer and McCarthy [BM03]. We stress
that this presentation gives a completely new model of G-spectra in which the
fundamental data are geometric fixed point spectra, their homotopical actions
by groups derived from G, and gluing data relating these. To motivate this
generalization, we’ll draw attention to an analogy between equivariant stable
homotopy theory and functor calculus, which was first pointed out to us by
Mike Hopkins. For G = C2 and a G-spectrum E, we have a natural cofiber
sequence, the norm cofibration sequence

EhG → EG → ΦGE.

On the other hand, suppose that F : Sp→ Sp is a reduced 2-excisive functor in
the sense of Goodwillie [Goo91]. Then the Taylor tower of F is simply a cofiber
sequence of functors

D2F → F → P1F

where D2F is the 2-homogeneous part of F and P1F is the 1-excisive approxi-
mation. Fixing a spectrum X , let’s specialize further to the case where E is the
indexed smash product X∧C2 and F is the functor

W : Sp→ Sp, W (T ) = (T∧C2)C2 ,

evaluated on X . Then the norm cofibration sequence and the Taylor tower
become equivalent cofiber sequences

(X∧C2)hC2 → (X∧C2)C2 → X.

This equivalence can be made into the basis for an equivalence of ∞-categories

SpC2 ≃ Fun2-exc(Sp,Sp)

2



between SpC2 and the category of reduced 2-excisive functors Sp → Sp under
which the identity fixed points correspond to the second derivative and the
geometric C2-fixed points correspond to the first derivative.

This coincidence suggests the existence of a systematic analogy between
Goodwillie derivatives and geometric fixed points. This paper develops a com-
mon context for the Goodwillie calculus of functors between stable∞-categories
and equivariant stable homotopy theory - that of Mackey functors on epiorbital
categories - which makes this analogy precise. In brief, n-excisive functors are
governed by the category F≤n

s of finite sets of cardinality at most n and surjec-
tive maps in precisely the same way as G-spectra are governed by the category
OG of transitive G-sets, and the visible equivalence of categories between F≤2

s

and OC2 accounts for the equivalence between SpC2 and Fun2-exc(Sp,Sp).
A beautiful presentation of n-excisive functors on spectra via structure on

their derivatives has been constructed by Arone and Ching in [AC15], and we
extend their result to our more general context, where it provides the desired
presentation of the ∞-category of G-spectra. Along the way, we develop a
formalism of stratified stable ∞-categories that encompasses, on the one hand,
the category of Mackey functors on a epiorbital category, and on the other
hand, monoidal stable ∞-categories equipped with a family of homological lo-
calizations, such as the category of p-local spectra with its chromatic filtration.
Our theorem will be a special case of a general reconstruction theorem for ob-
jects of stratified stable ∞-categories. In the context of families of homologi-
cal localizations, similar results have been obtained by Antoĺın-Camarena and
Barthel [ACB14]. In upcoming work, we plan to use this presentation to give an
explicit and homotopy-invariant description of the Hill-Hopkins-Ravenel norm.

The structure of the paper is as follows. In Section 2, we develop the theory
of epiorbital categories and their Mackey functors, culminating in the statement
and proof of our version, Theorem 2.38, of the Arone-Ching comonadicity theo-
rem [AC15, Theorem 3.13]. In Section 3, we define stratified stable∞-categories
(Definition 3.5) and give several examples, then state and prove the classifica-
tion of objects of a stratified stable∞-category (Theorem 3.21), in effect giving
a description of the category of coalgebras for the comonad of Section 2. We un-
pack the implications of our theorem for Cp-spectra in detail in Examples 3.29,
obtaining the classical description of Cp-spectra via the Tate fracture square.
Finally, in the short Section 4, we prove a strong and general splitting theorem
reminiscent of the tom Dieck splitting, Theorem 4.2, for Mackey functors valued
in K(n)-local spectra, recovering a result of Kuhn [Kuh04] on functor calculus.
We believe the G-spectrum case of this theorem to be new.

This project has benefited from conversations with Greg Arone, Clark Bar-
wick, Michael Ching, Jacob Lurie, Randy McCarthy and Tomer Schlank. A
significant part of the impetus for the paper came from a question posed by
Mike Hopkins to Clark Barwick. We thank Clark Barwick for emphasizing the
importance of the nonabelian derived category and describing how to deduce
Theorem 2.32 from Lemma 2.36. We thank David Ayala, Aaron Mazel-Gee and
Nick Rozenblyum for pointing out an erroneous hypothesis in Definition 3.5.
Finally, we wish to thank all of the participants of the Bourbon Seminar for
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generating and sustaining an environment of such productivity week after week.

2 Epiorbital categories and Mackey functors

Our Arone-Ching theorem will be applicable to a certain class of “generalized
equivariant homotopy theories” that encompasses the usual theory of genuineG-
spectra and the theory of n-excisive functors on spectra. Such a theory springs
from a “epiorbital category” with properties similar to the category of orbits
for a finite group G.

Definition 2.1. A epiorbital category or EOC is an essentially finite category
M satisfying the following condtions:

• Every morphism inM is an epimorphism.

• M admits pushouts and coequalizers; equivalently, M admits colimits
over finite connected diagrams.

Epiorbital categories have a strong directionality.

Definition 2.2. It follows immediately from Yoneda’s lemma that any endo-
morphism in a epiorbital category is an isomorphism, and so the set of isomor-
phism classes of objects ofM carries a natural partial order wherein [X ] ≥ [Y ]
if and only if the morphism setM(X,Y ) is nonempty. We’ll call this poset PM.

Example 2.3. Let G be a finite group. Then the orbit category OG, which is
defined as the category of sets with transitive G-action, is a EOC.

Example 2.4. IfG is a finite group andH a subgroup, then the full subcategory

OG/H ⊆ OG

spanned by those orbits on which H acts trivially is again a EOC. There’s no
clash of notation here, for if H happens to be normal, then OG/H is clearly just
the orbit category of the group G/H .

Example 2.5. Let Fs be the category of finite sets and surjective maps and let
F≤n

s be the full subcategory of Fs spanned by the sets of cardinality at most n.
Then F≤n

s is a EOC.

The following properties of epiorbital categories will be useful:

Lemma 2.6. LetM be a EOC, let K be any finite category and let ρ : K →M
be a functor. Then the overcategoryM/ρ is a EOC.

Proof. Immediate.

Lemma 2.7. Let M be a EOC. Then any connected component of M has a
final object.

4



Proof. We’ll show that any object of M whose isomorphism class is minimal
with respect to the natural partial order is final in its connected component.
Indeed, let T be such an object and let X an object in its connected component.
Then there’s a zigzag of morphisms

T
f1← Y1

g1→ Y2
f2← · · · fn← X.

By taking iterated pushouts, we can inductively replace this zigzag with a dia-
gram

T
f→ Y

g← X.

Moreover, by the choice of T , f must be an isomorphism, so there is a morphism
from X to T . Now suppose we have a pair of morphisms

f, g : X ⇒ T.

Then h, the coequalizer of f and g, is a morphism with source T , and therefore
an isomorphism. By composing with h−1, we see that f = g.

If C is any category, we’ll denote by C∐ the closure of C under formal finite
coproducts. By definition, C∐ is the full subcategory of Fun(Cop,Set) spanned
by the finite coproducts of representable functors. This is an operation we’ll
frequently want to perform on EOCs.

Example 2.8. O∐
G is equivalent to FG, the category of all finite G-sets, since

any finite G-set decomposes uniquely into orbits.

One very relevant property of FG is that it’s meaningful to take Mackey
functors over it: FG is disjunctive in the sense of [Bar14], so its effective Burn-
side∞-category Aeff (FG) can be formed and admits direct sums. We’ll quickly
recall these ideas.

Definition 2.9. Let C be an ∞-category which admits finite products and
coproducts and a zero object. We’ll say that C admits direct sums, or is semi-
additive, if for every pair of objects X,Y ∈ C, the natural map

X ∐ Y → X × Y

provided by the zero object is an equivalence.

Remark 2.10. It’s not hard to see that each mapping space of a semiadditive
∞-category naturally carries the structure of a commutative monoid space; the
term additive ∞-category is traditionally reserved for categories whose mapping
spaces are grouplike.

Definition 2.11. An ∞-category C is called disjunctive if

• C admits pullbacks and finite coproducts,

5



• for each finite set I and for each I-tuple (Xi)i∈I of objects of C, the
natural functor ∏

i

C/Xi
→ C/

∐
i Xi

is an equivalence of categories.

Let C be an ∞-category which admits pullbacks. Then one can construct
[Bar14, 3.6] an ∞-category Aeff (C), called the effective Burnside category of
C, whose objects are those of C, whose morphisms are spans

Z

X Y

in C, and where composition is performed by forming pullbacks.

Proposition 2.12. [Bar14, 4.3] If C is disjunctive, then Aeff (C) is semiaddi-
tive.

Example 2.13. A functor from Aeff (FG) to Ab which preserves direct sums
is precisely a Mackey functor in the sense of [tD73].

The content of the next lemma is that it’s meaningful to talk about Mackey
functors over arbitrary epiorbital categories:

Lemma 2.14. LetM be a epiorbital category. ThenM∐ is disjunctive.

Proof. The condition that

∏

i

C/Xi
→ C/∐

i Xi

is an equivalence is satisfied for any C of the form D∐, so we only need to show
thatM∐ admits pullbacks.

Let ρ : Λ2
2 →M∐ be a diagram

X

Y Z

inM∐. If any of X , Y or Z are empty then the pullback exists and is empty,
so let’s assume all are nonempty.

If Z decomposes nontrivially as a coproduct Z1

∐
Z2, we get a decomposition

of diagrams ρ = ρ1
∐

ρ2, and if each ρi admits a limit Wi, then W1

∐
W2 is a

limit of ρ. Thus it suffices to assume Z is representable.

6



On the other hand, if X decomposes nontrivially as X1

∐
X2, and if

W1 X1 W2 X2

Y Z, Y Z

are pullback diagrams, then

W1

∐
W2 X

Y Z

is a pullback diagram. After carrying out the same argument for Y , it’s enough
to assume that X , Y and Z are all representable - in other words, that ρ may
be lifted to a diagram ρ̃ : Λ2

2 →M.
But it now follows from Lemma 2.6 and Lemma 2.7 that ρ admits a limit,

since to give a limit of ρ inM∐ is, tautologically, to give a final object in each
connected component of the EOCM/ρ̃.

Definition 2.15. There is a more general notion of orbital ∞-category which
features centrally in the upcoming work [BDG+16]. An orbital ∞-category
is simply any ∞-category M for which M∐ admits pullbacks, from which it
follows thatM∐ is disjunctive. By Lemma 2.14, epiorbital categories are orbital.
Epiorbital categories are the focus of this paper, but some results will be stated
for general orbital ∞-categories.

Definition 2.16. If M is an orbital ∞-category, we’ll write Aeff (M) for the
effective Burnside category Aeff (M∐); we don’t expect this notation to cause
confusion. Aeff (M) is semiadditive, and if C is a semiadditive presentable ∞-
category, then we’ll denote by Mack(M,C) the category of C-valued Mackey
functors on M: the category of additive (i.e. direct-sum-preserving) functors
fromM to C. If C = Sp, then we’ll usually omit C and refer to the category
simply as Mack(M).

Example 2.17. WhenM is the orbit category OG, Mack(M) is the category
of spectral Mackey functors for G [Bar14], which is a model for the homotopy
theory of genuine G-spectra.

Example 2.18. The natural target of both the genuine fixed point functor (−)H
and the geometric fixed point functor ΦH (of which more anon) on Mack(OG)
is Mack(OG/H) (Example 2.4), even when H is not normal in G.

Theorem 2.19. WhenM is the category F≤n
s of Example 2.5, Mack(M,C)

is equivalent to the category of (reduced, filtered-colimit-preserving) n-excisive
functors from Sp to C. This equivalence has the property that if F : Sp → C
is n-excisive, if E is the corresponding Mackey functor and if S is a set, then

7



E(S) is equivalent to the S-indexed cross-effect of F evaluated on an S-indexed
set of spheres. In particular, if S has n-elements, then E(S) is equivalent to the
nth derivative DnF as spectra with Σn-action.

This equivalence is the subject of the separate paper [Gla16].

The following is a significant technical lemma that provides control over the
values of many universally defined Mackey functors, including the fixed points
of the free genuine equivariant G-spectrum on a spectrum with G-action.

Lemma 2.20. Suppose that A, B, C are semiadditive ∞-categories and φ :
A → B, F : A → C are additive functors. Suppose the left Kan extension
φ!F : B→ C exists. Then φ!F is additive.

Proof. We must verify that φ!F preserves zero objects and direct sums of pairs
of objects. The first is obvious, so let X,Y be objects of B. Then

φ!F (X ⊕ Y ) ≃ colim
(φ(Z)→X⊕Y )∈A×BB/X⊕Y

F (Z).

Let
a : (A×B B/X)× (A×B B/Y )→ A×B B/X⊕Y

be the functor with

a(φ(Z1)→ X,φ(Z2)→ Y ) = (φ(Z1 ⊕ Z2) ≃ φ(Z1)⊕ φ(Z2)→ X ⊕ Y ).

Then we claim that a is cofinal. Thus we must verify that for each object
k : φ(Z)→ X ⊕ Y of A×B B/X⊕Y , the overcategory

O := (A×B B/X)× (A×B B/Y )×A×BB/X⊕Y
(A×B B/X⊕Y )/k

is weakly contractible. Indeed, we claim that O has an initial object. An object
ofO is a pair (Z1, Z2) of objects of A together with a morphism δ : Z → Z1⊕Z2

and a commutative diagram

φ(Z) X ⊕ Y

φ(Z1 ⊕ Z2).

φ(δ)

k

Then the initial object of O is evidently the diagonal map ∆ : Z → Z ⊕ Z
together with the commutative diagram

φ(Z) X ⊕ Y

φ(Z ⊕ Z).

φ(∆)

k

kX⊕kY

8



Now there is a commutative diagram

(A×B B/X)× (A×B B/Y ) C

A×B B/X⊕Y ,

(F⊕F )

a F

allowing us, by our cofinality result, to rewrite

φ!F (X ⊕ Y ) ≃ colim
(φ(Z1)→X,φ(Z2)→Y )∈(A×BB/X)×(A×BB/Y )

F (Z1)⊕ F (Z2).

Now for any pair of functors b1, b2 : K → C, we have the commutation of
colimits

colim (b1 ⊕ b2) ≃ colim (b1)⊕ colim (b2).

In particular, if b2 is the constant functor valued at some object P , then

colim (b1 ⊕ b2) ≃ colim (b1)⊕ (P ⊗K),

and if K is weakly contractible, then

colim (b1 ⊕ b2) ≃ colim (b1)⊕ P.

Note that A ×B B/X is weakly contractible for every X ∈ B: indeed, the
essentially unique object

(0A, φ(0A) ≃ 0B → X)

is an initial object of A×B B/X . Hence

φ!F (X ⊕ Y ) ≃ colim
(φ(Z1)→X,φ(Z2)→Y )∈(A×BB/X)×(A×BB/Y )

F (Z1)⊕ F (Z2)

≃ colim
(φ(Z1)→X)∈A×BB/X

colim
(φ(Z2)→Y )∈A×BB/Y

F (Z1)⊕ F (Z2)

≃ colim
(φ(Z1)→X)∈A×BB/X

F (Z1)⊕ φ!F (Y )

≃ φ!F (X)⊕ φ!F (Y ).

If I and J are disjunctive ∞-categories and F : I → J is a functor which
preserves pullbacks and finite coproducts, then F clearly induces an additive
functor

Aeff (F ) : Aeff (I)→ Aeff (J).

So if C admits limits and colimits, we get functors

Aeff (F )!, A
eff (F )∗ : Mack(I,C)→Mack(J,C).

9



IfM is an orbital∞-category, we’ll call a full subcategoryN ofM downwardly-
closed if whenever X ∈ N and Y ∈ M with Map(X,Y ) nonempty, we also have
Y ∈ N . Equivalently, N = φ−1({1}) for some functor φ :M→ ∆1. Upwardly-
closed subcategories are defined dually.

There are plenty of examples of these: if M is epiorbital, then for any
X ∈ M, the full subcategory of M≤X ⊆ M spanned by those objects Y
with [Y ] ≤ [X ] is downwardly-closed. Note also that any downwardly-closed
subcategory of an orbital ∞-category is itself orbital, and any downwardly-
closed subcategory of an EOC is itself a EOC.

For the following few lemmas, we’ll letM be orbital, let N be a downwardly-
closed subcategory ofM and let T be its upwardly-closed complement.

Lemma 2.21. The inclusion iN : N∐ →M∐ admits a canonical retraction jN
which is right adjoint to iN .

Proof. By definition,M∐ is the full subcategory of Fun(Mop,Top) spanned by
coproducts of representables, and iN is given by left Kan extension. But since
the value of the functor represented by an object of T on any object of N is
empty, the restriction Fun(Mop,Set) to Fun(N op,Set) preserves coproducts of
representables. This is the desired retraction. (Note that orbitality ofM is not
required for this lemma to hold.)

We should think of jN as “formally set all objects of T to ∅”. We note that
jN preserves coproducts.

Definition 2.22. We define the geometric value at N functor

ΦN : Mack(M,C)→Mack(N ,C)

by the left Kan extension (Aeff (jN ))!.
The right adjoint of ΦN , the extension by zero from N functor, will be

denoted ΞN . For an object X of M, we’ll denote ΦM≤X by ΦX . If E is an
object of Mack(M,C), then we’ll write EΦX for the value of ΦXE on X , the
“geometric fixed point spectrum at X”.

Example 2.23. Let G be a finite group and let H ≤ G be a subgroup. IfM =
OG, then ΦG/H is the classical functor of geometric fixed points [Bar14, Example
B.6]. Here the usual notation would be ΦH , not ΦG/H , and we apologize for
the clash.

We have an equivalence

(OG)≤G/H ≃ OG/H

and so ΦG/H naturally takes values in Mack(OG/H), as previously claimed.

Example 2.24. If M = F≤n
s , and k < n, then ΞF≤k

s is the functor which

regards a k-excisive functor as an n-excisive functor, and its left adjoint ΦF≤k
s

is the k-excisive approximation functor.

10



Definition 2.25. Using the notation of Lemma 2.21, let Aeff (T ) be the effec-
tive Burnside category of (T )∐, or equivalently, the full subcategory of Aeff (M)
spanned by the objects of (T )∐. Let Aeff (iT ) be the inclusion of this full sub-
category.

Remark 2.26. Let G be a groupoid. We can form the effective Burnside cate-
gory Aeff (G), since any commutative square in a groupoid is a pullback square.
Moreover, there’s a natural equivalence of ∞-categories

cG : Aeff (G) ∼→ G

which maps the span

x
g← y

h→ z

to the morphism hg−1 : x → z. We’ll sometimes implicitly invoke this equiva-
lence.

If X is an object of M, let GX be the groupoid spanned by the isomor-
phism class of X . Form the effective Burnside category Aeff (G∐X) and let
iX : Aeff (GX) → Aeff (M≤X) be the inclusion. It follows from the direc-
tionality ofM≤X that iX is fully faithful.

Since there’s no room for meaningful transfer maps, we might guess that a
Mackey functor on a group G contains no more information than an object with
G-action. This is indeed the case, but the proof is technical and so we defer the
bulk of it to Appendix A.

Theorem 2.27. Let G be a groupoid. Then Aeff (G∐) is the free semiadditive
∞-category on G: for any semiadditive ∞-category C, the natural inclusion
induces an equivalence of categories

Fun⊕(Aeff (G∐),C)→ Fun(G,C).

We’ll use this equivalence implicitly from now on.
The class of Mackey functors left or right Kan extended from groupoids

is an interesting one. For instance, let G be a finite group and let X be a
spectrum with G-action, which by Theorem 2.27 we may regard as an object
of Mack(GG/e). Denote by i : G∐G/e →֒ FG the inclusion. Then the left Kan

extension ofX alongAeff (i) is the free genuine G-spectrum on X , often denoted
by

EG+ ∧X.

Similarly, the right Kan extension is the cofree genuine G-spectrum on X , also
known as

F (EG+, X).

We know from other models of G-spectra that for any subgroup H ≤ G,

(EG+ ∧X)H ≃ XhH , F (EG+, X)H ≃ XhH .

It would be desirable, however, to have a proof of these facts internal to our
framework. The following lemma is a more general version of this result:

11



Lemma 2.28. SupposeM is an orbital ∞-category and i : T →֒ M is the in-
clusion of an upwardly closed subcategory. Let C be a semiadditive∞-category
with all colimits, and let B ∈Mack(T ,C) be a Mackey functor. Then for any
Y ∈ M,

i!B(Y ) ≃ colim
M∐

/Y
×M∐T ∐

B.

Proof. For now, we content ourselves with a sketched proof and leave the details
as an exercise. This result will be assumed in some examples in Section 3 but
will not feature integrally in the results of the paper.

For the sake of avoiding the ambiguity that can precipitate from the use of
overcategory notation, we clarify our notation. Write

T ∐
/Y =M∐

/Y ×M∐ T ∐

and
(Aeff (T ))/Y = (Aeff (M))/Y ×Aeff (M) A

eff (T ).
Then we have

i!B(Y ) ≃ colim
(Aeff (T ))/Y

B.

The objects of (Aeff (T ))/Y are of the form

T ′

T Y.

f

We can define a functor V : T ∐
/Y → (Aeff (T ))/Y by

V (T → Y ) =




T

T Y


 .

The essential image of V comprises those diagrams for which f : T ′ → T is an
equivalence, and it can be shown that V is homotopic to the inclusion of the full
subcategory (Aeff (M))/Y spanned by such diagrams. Moreover, the inclusion

of (Aeff (M))/Y has a left adjoint φ with

φ




T ′

T Y


 ≃




T ′

T ′ Y


 .

Thus this inclusion is cofinal, which yields the result.
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Corollary 2.29. SupposeM is an epiorbital category andX ∈ M is a maximal
object. Let

iX : Aeff (GX)→ Aeff (M)

be the inclusion, let C be a semiadditive ∞-category with all colimits, and let
B ∈ Mack(GX ,C) be a Mackey functor, which by Theorem 2.27 is uniquely
determined by B(X) regarded as an object of C with Aut(X)-action. Then for
any Y ∈ M,

(iX)!B(Y ) ≃ (B(X)×HomM(X,Y ))hAut(X).

In particular, if Y is a final object,

(iX)!B(Y ) ≃ B(X)hAut(X).

Definition 2.30. Let M be an EOC and X ∈ M an object. The Taylor
coefficient at X functor is the functor DX : Mack(M,C)→ Fun(GX ,C) given
by i∗X ◦ ΦX .

Definition 2.31. Let M∼ be the maximal subgroupoid of M and define the
Taylor sequence functor

D : Mack(M,C)→ Fun(M∼,C)

by ∨

[X]

DX .

We’ll now enforce the hypothesis that C is stable for the remainder of the
section. This allows us to state the following important proposition, which
is a generalization of the “norm cofibration sequence” from equivariant stable
homotopy theory:

Theorem 2.32. Let N be a downwardly closed subcategory of an orbital ∞-
category M and T its upwardly closed complement. Denote the restriction
Aeff (iT )∗ and the left Kan extension Aeff (iT )! respectively by ΠT and ΓT .
There’s a cofiber sequence of functors Mack(M,C)→Mack(M,C)

ΓT ΠT ǫ→ Id
η→ ΞNΦN ,

where ǫ and η are the counit and unit of their respective adjunctions.

Theorem 2.32 has the following important equivalent form, whose theme is
that a Mackey functor contains no secret data not detected by its values:

Corollary 2.33. ΞN is fully faithful, and its essential image is the category
MackN (M,C) of Mackey functors onM supported on N .

13



Proof. If M ∈MackN (M,C), then evidently ΠT M is zero, and so the cofiber
sequence of Theorem 2.32 collapses to an equivalence

M ≃ ΞNΦNM,

which establishes the essential image of ΞN .
Since ΞN is visibly conservative, it follows for N ∈ Mack(N ,C), setting

M = ΞNN , that
N ≃ ΦNΞNN,

and the full faithfulness of ΞN follows by adjunction.

Remark 2.34. Observe that Corollary 2.33 also implies Theorem 2.32. Indeed,
it follows abstractly that the functor

M 7→ cof(ǫM )

is the localization into MackN (M,C). On the other hand, assuming that ΞN

is fully faithful, ΞNΦN is the localization into its essential image. By Corollary
2.33, these two localizations coincide, yielding 2.32.

Definition 2.35. LetDA(M) denote the nonabelian derived category ofAeff (M):
the category of product-preserving functors Aeff (M)→ Top [Lur09, Definition
5.5.8.8]. Equivalently, DA(M) is the category of Mackey functors onM valued
in the categoryCMon of commutative monoid spaces (see, for instance, [Gla16,
Remark 2.7]).

Let C and D be presentable ∞-categories. Recall that the category of
coproduct-preserving functors from C to D is denoted Fun∐(C,D), and that
the category of functors from C to D that preserve all colimits is denoted
FunL(C,D). Now for presentable C, by [Lur09, Proposition 5.5.8.15], there’s
an equivalence of categories

FunL(DA(M),C) ≃ Fun∐(Aeff (M),C).

If C is, in addition, semiadditive, this can be written as an equivalence

FunL(DA(M),C) ≃Mack(M,C). (∗)

Lemma 2.36. Theorem 2.32 holds when C = CMon.

Before proving Lemma 2.36, let’s deduce Theorem 2.32 from Lemma 2.36.
We know

ΦN : DA(M)→ DA(N )

is a localization. Under the equivalence of (∗), ΞN corresponds to

(ΦN )∗ : FunL(DA(N ),C)→ FunL(DA(M),C),

and by the universal property of a localization, (ΦN )∗ is fully faithful, and
objects of its essential image are functors which map ΦN -equivalences to equiv-
alences.

14



Now here’s where we use the stability of C: since a morphism in a stable
∞-category is an equivalence if and only if its fiber is zero, the objects of the
essential image of (ΦN )∗ are equivalently those functors which map objects in
the essential image of

ΓT : DA(T )→ DA(M)

to 0 ∈ C. But since the equivalence (∗) is given by the Yoneda embedding, and
since the diagram

Aeff (T ) DA(T )

Aeff (M) DA(M)

Aeff (iT )

∼

ΓT

∼

commutes, these correspond under (∗) to the objects of MackN (M,C). This
proves Corollary 2.33, and therefore Theorem 2.32.

Proof of Lemma 2.36. The proof of this lynchpin lemma is very technical, and
so we’ve relegated it to Appendix B. It’s not required reading for those who
don’t care to learn to make a very specific kind of sausage, but we note that
it’s our main point of contact with the combinatorics of the effective Burnside
category.

LetM be a EOC. For each X ∈ M, we may define functors

RX = ΞX ◦ (iX)∗

and
LX = ΞX ◦ (iX)!,

where (iX)! and (iX)∗ are left and right Kan extension respectively. Observe
that (iX)! and (iX)∗ are fully faithful, since they’re Kan extensions along a fully
faithful functor. Since we’ve already seen that ΞX is fully faithful, we conclude
that both LX and RX are fully faithful. Moreover, RX is right adjoint to the
Taylor coefficient functor DX .

Similarly, we can define

R =
∨

[X]

RX

and
L =

∨

[X]

LX

and R is right adjoint to the Taylor sequence functor D.

Proposition 2.37. L is a section of D; that is, D ◦ L is homotopic to the
identity.

15



Proof. We’ll use induction on the number of isomorphism classes of objects in
M. IfM is a groupoid, both L and D are already the identity. In general, let
X be a maximal object ofM. It’s clear that D ◦L is homotopic to the identity
when restricted to GX .

Then the morphism
(iX)!(iX)∗L→ L

is equivalent to the summand inclusion

LX →
∨

[Y ]

LY

and therefore by Theorem 2.32, we have a cofiber sequence

LX → L→ ΦM<XL

which shows that the left square in the diagram

Fun(M∼,C) Mack(M,C) Fun(M∼,C)

Fun(M∼
<X ,C) Mack(M<X ,C) Fun(M∼

<X ,C)

L

ΦM<X

D

L D

commutes. The right square commutes by construction, and the bottom com-
posite is homotopic to the identity by the induction hypothesis. By circumnav-
igating the diagram, we conclude that D ◦ L is homotopic to the identity when
restricted to GY for any Y 6= X .

The following is our Arone-Ching theorem in its general form.

Theorem 2.38. LetM be an epiorbital category. Then the adjunction (D,R)
is comonadic.

Proof. (D,R) is comonadic if and only if the natural transformation

t : Id→ Tot(Cobar(R,DR,D))

is an equvalence. We’ll closely follow Arone and Ching’s proof in [AC15]. This
involves showing, for each downwardly-closed subcategory N of M, that the
natural map

tN : ΞNΦN → Tot(ΞNΦNCobar(R,DR,D))

is an equivalence, by induction on the number of isomorphism classes of objects
in N . Since ΞMΦM is the identity functor, this will give the result.

So assume that tP is an equivalence for all P with at most k isomorphism
classes of objects, and suppose N has k+1 isomorphism classes of objects. Let
X be a maximal object of N and let N ′ = N \GX be the result of removing the
isomorphism class of X . The cofiber sequence of Theorem 2.32 gives a cofiber
sequence of functors

LXDX → ΞNΦN → ΞN ′
ΦN ′

,
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which in turn gives a map of cofiber sequences

LXDX Tot(LXDXCobar(R,DR,D))

ΞNΦN Tot(ΞNΦNCobar(R,DR,D))

ΞN ′
ΦN ′

Tot(ΞN ′
ΦN ′

Cobar(R,DR,D)).

tX

tN

tN
′

By the induction hypothesis, tN
′
is an equivalence, so it’ll suffice to show that

tX is an equivalence. This also starts the induction, since tN = tX if N = GX
is a connected groupoid. But now we observe that

DX = evXD

and so

Tot(LXDXCobar(R,DR,D)) ≃ Tot(LXevXDCobar(R,DR,D))

≃ Tot(LXevXCobar(DR,DR,D))

≃ LXevXD

≃ LXDX

by the usual extra codegeneracy argument. This completes the proof.

The next section aims to characterize the comonad DR.

3 Categories stratified along a poset

The categories Mack(M) forM a EOC, along with many other categories oc-
curing in nature, share a significant structural property: any object ofMack(M)
can be torn open by a series of fracture squares. More precisely, suppose that N
is a downwardly-closed subcategory, T is its upwardly-closed complement and
X ∈Mack(M). Then we’ll see that there’s a pullback square

X (iT )∗(iT )∗X

ΦNX ΦN (iT )∗(iT )∗X

To build a theory of how X might be recovered from such data, it’ll be helpful to
widen our scope. First it’s important to advertise a potential point of significant
notational confusion.
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Warning 3.1. When we regard a poset as a category in this paper, we will use
the opposite of the usual convention that there is a morphism from x to y if
x ≤ y. For us, the space of morphisms from x to y will be contractible if x ≥ y
and empty otherwise. We adopt this strange convention in order to preserve
intuitions about size of objects in our chief motivating examples of posets: the
posets of isomorphism classes of objects of the EOCs OG and F≤n

s .

Definition 3.2. Let P be a poset. An interval in P is a subset I ⊆ P such
that whenever x, y ∈ I and x < z < y, we have z ∈ I. If P is any poset, then
we denote by IP be the poset of intervals in P ordered by inclusion. If I and
J are a pair of intervals, we’ll write I ≺ J if I ∩ J = ∅ and there is no pair
(i ∈ I, j ∈ J) with i > j.

Note that the relation ≺ is not a partial order: for example, if p, q ∈ P are
incomparable, then both {p} ≺ {q} and {q} ≺ {p}.

Definition 3.3. Suppose C is a stable ∞-category. Let EC be the poset of
stable reflective subcategories of C, ordered by inclusion; equivalently, EC is the
opposite of the poset of exact localizations of C. Let P be a poset. Then a
pre-stratification of C along P is a map of posets

S : IP → EC.

Before we give the criteria that will qualify a pre-stratification as a stratifi-
cation, it’ll be useful to record an elementary fact about localizations.

Lemma 3.4. Given two localizations L1 and L2 on a stable∞-categoryC such
that L1L2 = 0, the following conditions are equivalent:

(1) The natural diagram

id L1

L2 L2L1
is a pullback square.

(2) The containment L2C ⊆ ker(L1) is an equality.

(3) L1 and L2 are jointly conservative.

Proof. The implication (1) ⇒ (3) is obvious. We’ll prove (3) ⇒ (2) ⇒ (1).
Suppose that L1 and L2 are jointly conservative; then if some

X ∈ ker(L1) \ L2C,

the localization map X → L2X is a non-equivalence which becomes an equiv-
alence after applying either L1 or L2, establishing (2). If we now denote by C
the fiber of id→ L1, then

im C ⊆ L2C
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(in fact, C is the coreflection into L2C). Now taking horizontal fibers in the
square diagram gives the morphism

C → L2C

which is an equivalence, establishing (1).

Definition 3.5. In the notation of Definition 3.3, let

LI : C→ C

be the localization functor corresponding toS(I). Then we callS a stratification
of C along P if the following conditions hold:

(1) S(P) = C,

(2) if I2 ≺ I1, then LI1LI2 = 0,

(3) and if I = I1
∐

I2, then LI1 and LI2 , viewed as localization functors on
S(I), satisfy the equivalent conditions of Lemma 3.4.

Remark 3.6. Since ∅ ≺ ∅, axiom (2) implies that S(∅) = {0}.
Remark 3.7. It follows from the latter two axioms that if I = I1

∐
I2 and

I2 ≺ I1, then S(I) is a recollement of S(I2) and S(I1) in the sense of [Lur12,
Definition A.8.1].

Remark 3.8. For most of this section we’ll assume that P is finite, but our main
result generalizes easily to certain infinite posets (Definition 3.30). n will usually
denote the cardinality of P . We’ll also assume that P is connected; it’s easy to
see that a category stratified along a disconnected poset decomposes naturally
as a direct sum of categories stratified along the connected components.

Next we’ll see some examples of stratifications. Suppose C is a presentable
symmetric monoidal stable∞-category whose tensor product preserves colimits
in each variable, so that we can talk about the homological localization with
respect to an object E ∈ C [Bou79]:

Recollection 3.9. An object F ∈ C is called E-acyclic if E ⊗ F is zero. An
object G ∈ C is called E-local if Map(F,G) is contractible for any E-acyclic
F . The E-local objects of C form a reflective subcategory LE , with associated
localization functor LE .

Let P be a poset and suppose we have an object Kp for each p ∈ P such that
anyKp-local object isKq-acyclic unless p ≥ q. We can define a pre-stratification
SK• of C along P by assigning to I the category of objects which are local with
respect to the object

∨
i∈I Ki.

Proposition 3.10. SK• is a stratification of SK•(P) = L∨
p∈P Kp

.

Proof. The proof will consist of two lemmas, and will use induction on the
cardinality of P .
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Lemma 3.11. Suppose E and F are such that any E-local object is F -acyclic.
Then the square of functors

LE∨F LF

LE LELF

f

g h

i

is a pullback square.

Proof. This fact is folklore, and cases of it go back to Bousfield and further.
The proof, which we now give, is simple.

g and h are both E-localizations, and therefore E-equivalences, and so the
total fiber of the square is E-acyclic. On the other hand, f is an F -equivalence,
and so is i because its source and target are both F -acyclic. Thus the total fiber
of the square is F -acyclic, and so E ∨ F -acyclic. But everything in the square
is E ∨ F -local, so the total fiber must also be E ∨ F -local, and hence zero.

Lemma 3.12. Suppose I ⊆ P is a proper interval and p ∈ P is such that
I ≺ {p}. Then any object E ∈ SK•(I) is Kp-acyclic.

Proof. The proof will use Theorem 3.21 (spoilers). By the induction hypothesis,
SK• restricts to a stratification of SK•(I) along I. Then the proof of Theorem
3.21 expresses E as a finite limit of objects which are Ki-local for some i ∈ I,
and thus Kp-acyclic. Therefore E is Kp-acyclic.

Remark 3.13. For this class of stratifications, in the case where P is totally
ordered, a theorem similar to Theorem 3.21 has appeared previously in [ACB14].

We’ll now give a pair of quick applications of Proposition 3.10.

Example 3.14. Fix a prime p. Then the MoravaK-theory spectraK(0), · · · ,K(n)
give rise to a stratification of the category of

∨n
i=0 K(i)-local spectra along

(Dn)op. (Recall that a spectrum is
∨n

i=0 K(i)-local if and only if it’s local with
respect to the Morava E-theory En.) The pullback squares in this stratification
include the famous chromatic fracture squares

LEn LKn

LEn−1 LEn−1LKn

which are the subject of Hopkins’ chromatic splitting conjecture [Hov93].
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Example 3.15. Let X be a scheme; let (Ui)0≤i≤n be locally closed subschemes
of X such U0 = X , U1 is an open subscheme of X , and for i ≥ 2, Ui is an open
subscheme of Ui−1 \ Ui−2. We say that the Ui form a stratification of X .

Let QC(X) be the stable ∞-category of quasicoherent complexes on X.
Then the structure sheaves OUi ∈ QC(X), 1 ≤ i ≤ n, satisfy the hypotheses of
Proposition 3.10 and so form a stratification of L⊕n

i=1 OUi
QC(X) along ∆n−1.

In the case where
n⋃

i=1

Ui = X,

this is a stratification of QC(X) itself.

Our other main source of examples of stratifications comes from the the-
ory developed in Section 2. We’ll be able to say something about orbital ∞-
categories and substantially more about epiorbital categories.

Let M be an orbital ∞-category, let N be a downwardly-closed subcate-
gory of M, and let T be its upwardly-closed complement. If C is a stable
∞-category with all limits and colimits, let Mack(M;C) be the category of C-
valued Mackey functors onM (Definition 2.16). We define a pre-stratification
SM of Mack(M,C) along ∆1 as follows:

• SM(∆1) = Mack(M,C),

• SM({1}) is the category MackT (M,C) of Mackey functors in the essen-
tial image of the right Kan extension from Mack(T ,C),

• SM({0}) is the category MackN (M,C) of Mackey functors supported
on N (see Corollary 2.33).

Proposition 3.16. SM is a stratification.

Proof. We must show that the square

idMack(M,C) L1

L0 L0L1

is a pullback square of endofunctors. But by taking vertical fibers and applying
Theorem 2.32, we’re reduced to showing that the natural map

ΓT ΠT → ΓT ΠT L1

is an equivalence, which is obvious.

Now suppose M is epiorbital, and let PM be the poset of isomorphism
classes inM (Definition 2.2).

21



Definition 3.17. We define a pre-stratification SM on Mack(M;C) as fol-
lows. If I ⊆ PM is any interval, let I be the corresponding full subcategory of
M. If I is downwardly-closed, then we define

SM(I) = MackI(M;C) (Corollary 2.33)

If J ⊆ PM is upwardly closed, then let MackJ (M,C) be the essential image
of the right Kan extension

Aeff (iJ )∗ : Mack(J ,C)→Mack(M,C).

We define
SM(J) = MackJ (M,C).

If I ⊆ PM is any interval, then we can write

I = I+ ∩ I−

where I+ is the smallest upwardly-closed set containing I and I− is, likewise,
the smallest downwardly-closed set containing I. Then we define

SM(I) = MackI+(M,C) ∩MackI−(M,C).

Proposition 3.18. SM is a stratification of Mack(M,C) along PM.

Proof. Clearly
SM(PM) = Mack(M,C).

We must verify (3) in Definition 3.5. Let I, I1, I2, be the full subcategories ofM
corresponding respectively to I, I1, I2, and let D be the smallest downwardly-
closed subcategory of M containing I. Then by passing to MackD(M,C) if
necessarily, we may assume that I1 is upwardly-closed.

Assume for a moment that I = PM. Then, as in the proof of Proposition
3.16, we conclude by taking fibers vertically and invoking Theorem 2.32. In
general, we note that

I2 = I ∩ (PM \ I1).
We know that the natural diagram

id LI1

LPM\I1 LPM\I1LI1

is a pullback square, and applying LI to the entire square gives the result.

We’ll now start setting up for our main result on the reconstruction of objects
in a stratified category from their atomic localizations.

Definition 3.19. Let P be a finite poset. Define P(P) to be the poset of
nonempty subsets T = {i1, i2, · · · , ik} of P , ordered by reverse inclusion.
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Definition 3.20. Let (C,S) be a stable ∞-category stratified along P . We
define an ∞-category CS as the full subcategory of Fun(P(P),C) spanned by
those functors

F : P(P)→ C

such that

• for each T ∈ P(P) and for each minimal element t ∈ T , F (T ) is in S({t});

• if e is an edge of P(P) of the form T → T ∪{p} where {p} ≺ T , then F (e)
exhibits F (T ∪ {p}) as the S({p})-localization of F (T ).

The following, describing how objects of a stratified category can be assem-
bled using higher fracture squares, is the main theorem of this section.

Theorem 3.21. There’s an equivalence of categories

d : C→ CS.

This equivalence will be constructed as an explicit zigzag in the course of the
proof.

The first step is to realize that we don’t have enough posets, and define some
more posets.

Definition 3.22. Let P′(P) be the set whose elements are nonempty sets
{I1, · · · , Ik} of nonempty, disjoint intervals in P such that for each pair of
indices i, j, either Ii ≺ Ij or Ij ≺ Ii. We’ll put a partial order on P′(P) by
letting

{I1, · · · , Ik} ≥ {J1, · · · , Jl}
if there exist distinct indices (i1, · · · , ik) such that Jij ⊆ Ij for each j.

If T ∈ P′(P) and I ∈ T , then we’ll call I ≺-minimal if for each J ∈ T with
J 6= I, I ≺ J . This doesn’t necessarily imply that there is no J ∈ T such
that J ≺ I. However, since ≺ is transitive, each T ∈ P′(P) has at least one
≺-minimal element.

Here’s a way of “coordinatizing” a poset.

Definition 3.23. A threading of a finite poset P is a filtration

∅ = P≤0 ⊆ P≤1 ⊆ · · · P≤n = P

such that for each i, P≤i is downwardly closed, and

|P≤i| = i.

We’ll fix, once and for all, a threading on P .
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Definition 3.24. Let Pm(P) be the subset of P′(P) containing those sets

T = {I1, · · · , Ik}

such that for each Ii, either |Ii| = 1 or

Ii = P≤i for some i ≤ m.

In particular, at most one of the Ii may have cardinality > 1, and if this occurs
then Ii must be a ≺-minimal element of T .

There’s an obvious isomorphism P1(P) ∼= P(P).

Definition 3.25. Let CS
m be the full subcategory of Fun(Pm(P)) spanned by

those functors
F : Pm(P)→ C

such that

• for each T = {I1, · · · , Ik} ∈ Pm(P) and for each Ii that is ≺-minimal in
T , F (T ) ∈ S(Ii);

• if e : T1 → T2 is an edge of Pm(P) of the form

{I1, I2, · · · , Ik} → {I1, I2, · · · , Jk}

with Ik ≺-minimal in T1 and Jk ⊆ Ik, then F (e) exhibits F (T2) as the
S(Jk)-localization of F (T1);

• if e : T1 → T2 is an edge of Pm(P) of the form

{I1, I2, · · · , Ik} → {I1, I2, · · · , Ik, Ik+1}

with Ik+1 ≺-minimal, then F (e) exhibits F (T2) as theS(Ik+1)-localization
of F (T1).

Proposition 3.26. If P has cardinality at most m, then the functor

eP : CS
m → C

given by evaluation at {P} is an equivalence of categories.

Proof. We’ll prove this by induction on m. If m = 1, there’s nothing to do.
If m = 2, then P ∼= ∆1 and we’ll label its elements 0 and 1, with 0 > 1 (this
is unfortunately necessitated by our conventions). Then CS

m is the category of
squares of the form

E E0

E1 E10
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in which E0 ∈ S(0), E1, E10 ∈ S(1) and the tailed arrows are localizations.
By the stratification axioms, all such squares are cartesian. Then the fact that
e∆1 : CS

m → C is an equivalence is discussed, in almost exactly these terms, in
the proof of [Lur12, Proposition A.8.11].

In general, let x ∈ P be the unique element of P\P≤n−1; then x is a maximal
element. For convenience, we’ll write Q for P≤n−1. Observe that we have an
isomorphism of posets

h : ∆1 × ((Pm(Q))⊳)→ Pm(P)

given by

h(0, c) = {P},
h(1, c) = {{x}},
h(0, T ) = T,

h(1, T ) = {{x}} ∪ T,

where c is the cone point.
Now C admits a stratification S′ along ∆1 wherein

S′(1) = S({x}), S′(0) = S(Q),

so that
φ∆1 : CS′

m → C

is an equivalence. On the other hand, S(Q) obviously inherits a stratification
S′′ along Q, and the functor

φQ : S(Q)S′′
m → S(Q)

is an equivalence.
Here’s what we deduce by combining these two equivalences. Let

K = Pm(∆1) ∐∆1 (Pm(Q)×∆1)

where we’ve glued the edge {0} → {0, 1} of Pm(∆1) to the edge {Q} × ∆1 of
Pm(Q)×∆1. Let C be the full subcategory Fun(K,C) spanned by those F for
which

F |Pm(∆1) ∈ CS′
m

and
F |Pm(Q)×{0}, F |Pm(Q)×{1} ∈ S(Q)S′′

m .

Then evaluation on {∆1} ∈ Pm(∆1) induces an equivalence of categories

e∆1 : C
∼→ C.

But
Pm(∆1) ∼= ∆1 ×∆1,
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and so
K ∼= (∆1 ∐{1} Pm(Q))×∆1.

For any simplicial set S, the inclusion

∆1 ∐{1} S →֒ S⊳

is inner anodyne, and so we get an inner anodyne composite

K →֒ ∆1 × ((Pm(Q))⊳) h→ Pm(P),

giving an equivalence of categories Fun(Pm(P),C) ≃ Fun(K,C), which restricts
to an equivalence of categories CS

m → C. Composing with e∆1 completes the
proof.

Proposition 3.27. For any P and any C stratified along P , the restriction
functor

rm : CS
m → CS

m−1

is an equivalence.

Proof. Let
κm : CS

m−1 → Fun(Pm(P),C)

be the right Kan extension functor. We claim that CS
m is equal to the essential

image of κm.
Indeed, let q be the unique element of P≤m \ P≤m−1. Suppose

T ∈ Pm(P) \ Pm−1(P).

Then T is of the form
{{p1}, · · · , {pk},P≤m}.

Let α : Λ2
2 → Pm−1(P) be the functor with

αT (0) = {{p1}, · · · , {pk}, {q}},
αT (1) = {{p1}, · · · , {pk},P≤m−1},
αT (2) = {{p1}, · · · , {pk}, {q},P≤m−1}.

Then α is coinitial in Pm−1(P)T/. Moreover, F : Pm(P) → C is an object of

CS
m if and only if

• F |Pm−1(P) ∈ CS
m−1, and

• for each T ∈ Pm(P) \ Pm−1(P), F (T ) ∈ S(P≤m) and the maps

F (T )→ F (αT (0)), F (T )→ F(αT (1))

are localizations.
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But by the stratification axiom, the latter condition is equivalent to the condi-
tion that the square

F (T ) F (αT (0))

F (αT (1)) F (αT (2))

be a pullback. This completes the proof.

If n = |P|, we now have equivalences of categories CS
n

∼→ C (Proposition
3.26) and CS

n
∼→ CS

1
∼= CS (inductively, using Proposition 3.27). This consi-

tutes a proof of Theorem 3.21.

Example 3.28. When C is the category SpG for a finite abelian group G, we
recover the statement of [AK13, Theorem 3], though in substantially different
language.

Example 3.29. Suppose p is a prime and M = OCp , so that P = ∆1. Then
Theorem 3.21 states, after unwinding the definition, that an object E of of
Mack(M) ≃ SpCp is given by the following data:

• A spectrum with Cp-action

E1 ∈ SM({{1}}) ≃ Fun(BCp,Sp),

the underlying spectrum of E;

• a spectrum
E0 ∈ SM({{0}}) ≃ Sp,

the Cp-geometric fixed point spectrum of E;

• and a map

E0 → L{0}E1 ≃ E
tCp

1

where (−)tG is the Tate spectrum, defined by the cofiber sequence

(−)hG → (−)hG → (−)tG.

The epiorbital category F≤2
s is visibly equivalent to OC2 , so an object

F ∈Mack(F≤2
s ) ≃ Fun2−exc(Sp,Sp)

is given by the same data as an object of SpC2 , but in this case, E1 and E0 are
interpreted as the second and first derivatives of F , respectively. This classifi-
cation of 2-excisive functors was first carried out in [AC15, §5].

27



We’ll close this section by saying a few words about what happens for infinite
posets. Let P be an infinite poset equipped with a system of finite subposets

∅ = P≤0 ⊆ P≤1 ⊆ · · · ⊆ P≤n ⊆ · · · ⊆ P
which is a threading in the sense that for each i, P≤i is downwardly closed and
has cardinality i, and ⋃

n

P≤n = P .

Definition 3.30. Suppose

0 = C0 ⊆ C1 ⊆ · · · ⊆ Cn ⊆ · · ·
is a sequence of stable ∞-categories such that Cn−1 is a reflective stable sub-
category of Cn for all n. Suppose we have, for each n, a stratification Sn of Cn

along P≤n, and that all of these are compatible in the sense that

Cn−1 = Sn(P≤n−1)

and Sn−1 is the induced stratification. Let

C∞ := lim
n

Cn

be the limit over the localization maps. We call this data a pro-stratification of
C∞ along P .

Then it follows from the proof of Theorem 3.21 that the diagram

Cn (Cn)
Sn
n CSn

n

Cn−1 (Cn−1)
Sn−1

n−1 C
Sn−1

n−1

LP≤n−1

eP≤n

∼ ∼

eP≤n−1

∼ ∼

commutes up to homotopy for every n. Taking the limit as n → ∞ gives an
equivalence

C∞ → lim
n

CSn
n =: CS

∞.

The limit CS
∞ can be described explicitly as follows. Let

P∞ = colim
n

P(Pn).

and
C∞ := colim

n
Cn

(which differs from C∞ in that we have taken the colimit over the inclusions
rather than the limit over the localizations). Then CS

∞ is the full subcategory
of Fun(P∞,C∞) spanned by those functors F for which

F |P(Pn) ∈ CSn
n .

Thus we have a description of C∞ in terms of (infinite) diagrams of maximally
local objects.
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Example 3.31. With P as above, let C be a symmetric monoidal presentable
stable∞-category and let (Kp)p∈P be a collection of objects of C such that any
Kp-local object is Kq-acyclic unless p ≥ q. Then letting

Cn = L∨
p∈P≤n

Kp
C

gives a pro-stratification of

C∞ = L∨
p∈P Kp

C

along P . In the case where P = Nop and Kn is the Morava K-theory K(n),
we have expressed the category of harmonic spectra in terms of diagrams of
K(n)-local spectra.

Example 3.32. Let

∅ =M0 ⊆M1 ⊆ · · · ⊆ Mn ⊆ · · · ⊆ M = colim
n
Mn

be a sequence of inclusions of EOCs giving rise to the threading

P0 ⊆ P1 ⊆ · · · ⊆ Pn ⊆ · · ·

on posets of isomorphism classes. Then M∐ is disjunctive and we may speak
of the category Mack(M,C) of additive functors from Aeff (M∐) into some
stable target category C. Letting

Cn = Mack(Mn,C)

gives a pro-stratification of Mack(M,C) along P .
Example 3.32 has a couple of interesting special cases:

Example 3.33. LetMn = F≤n
s . ThenM is the category Fs of all finite sets

and surjective maps, and Mack(M,C) is equivalent to the category of functors
F : Sp→ C which are weakly analytic in the sense that

F ≃ lim
n

PnF.

Example 3.34. Let G be a profinite group and letM be the category of finite
G-orbits. Then any threading of the poset P of isomorphism classes in M
gives a pro-stratification of Mack(M,C), which should be thought of a kind
of category of genuine G-objects in which only the fixed points under cofinite
subgroups are salient.

It’s worth noting that given a cofinal system of finite quotients (Hm)m∈N of
G, we could choose our threading so that for each m, there is some nm such
that

Mnm = OHm .

Thus
Mack(M,C) ≃ lim

G։H,H finite
Mack(OH ,C).
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4 K(n)-local theory

In this brief section, we’ll see that symmetry properties which emerge when one
works locally with respect to the Morava K-theories K(n) cause large chunks
of this theory to collapse. We’ll reprove a result of Kuhn on the K(n)-local
splitting of Taylor towers, and give a new tom Dieck-like splitting result for
K(n)-local G-spectra.

The following “chromatic blueshift” theorem is a consequence of the results
of [GS96] and [HS96]; it appears in roughly this form in [HL13], and as we shall
see, [Kuh04] is also highly relevant.

Theorem 4.1. Let G be a finite group and let E be a K(n)-local spectrum
with G-action. Then the transfer map

N : EhG → EhG

is a K(n)-local equivalence. Thus the Tate spectrum EtG is K(n)-acyclic.

Theorem 4.2. IfM is a epiorbital category and C is a stable∞-category such
that all Tate spectra are zero - for instance, the category of K(n)-local spectra
- then the comonad DR of Theorem 2.38 is the identity comonad, and so the
Taylor sequence functor

D : Mack(M,C)→ Fun(M∼,C)

is an equivalence.

Having got this far, the proof is fairly simple.

Proof. Let X be an object ofM and let iX once again denote the full inclusion
Aeff (GX) →֒ Aeff (M≤X), where GX is the full subcategory ofM spanned by
X . Let E ∈ Fun(GX ,C). Then for any Y ∈M≤X , the natural map

(iX)!(E)(Y )→ (iX)∗(E)(Y )

takes the form

⊕

f∈MapM(X,Y )/isomorphism

EhAutf (X) →
⊕

f∈MapM(X,Y )/isomorphism

EhAutf (X)

and is thus an equivalence, by our hypothesis. We deduce that for each X ∈M,

LX ≃ RX ,

and so
L ≃ R.

But DL ≃ id (Proposition 2.37) and so DR ≃ id. This completes the proof.
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Corollary 4.3. Any K(n)-local G-spectrum E (by which we mean a Mackey
functor valued in the K(n)-local category) satisfies a very strong tom Dieck
splitting property: we have an equivalence

E ≃
∨

H≤G/conjugacy

LG/HEΦH .

In particular, for each H ≤ G, we have a canonical decomposition

EH ≃
∨

(K≤H)/conjugacy in G

(
(EΦK)hW (H,K)

)

where W (H,K) is the relative Weyl group, defined as

W (H,K) := (NG(K) ∩H)/K.

Corollary 4.4 (Kuhn). Let F : Sp → Sp be an m-excisive functor taking
values in K(n)-local spectra. Then the Taylor tower for F splits: we have an
equivalence

F (X) ≃
m∨

i=0

DiF (X).

A The free semiadditive ∞-category on a group

This appendix is devoted to proving Theorem 2.27, which we restate here (with
slightly different notation) for convenience:

Theorem A.1. Let G be an (ordinary) groupoid. Then Aeff (G∐) is the free
semiadditive∞-category on G: for any semiadditive∞-category C, the natural
inclusion induces an equivalence of categories

Fun⊕(Aeff (G∐),C)→ Fun(G,C).

First, we note that we may assume G is connected. Indeed, having proved
this, the general case will follow from the fact that if (Mi)i∈I is an I-indexed
family of orbital categories, then

Aeff



(∐

I

Mi

)∐
 ≃

⊕

I

Aeff (M∐
i ).

We will further assume that our connected groupoid has only one object, and
denote the corresponding group, too, by G.

Now let’s get some notation out of the way. Let F∗ be the category of finite
pointed sets. If S ∈ F∗, denote by So the finite set S \ {∗}. If s ∈ So, denote
by χs : S → {s}+ the characteristic map at s:

χs(t) =

{
s t = s

∗ otherwise.
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Definition A.2. [Lur12, Remark 2.4.2.2] Let C be an ∞-category which
admits finite products. Recall that by definition, the category CMon(C) of
commutative monoids in C is the full subcategory of Fun(F∗,C) spanned by
those functors F satisfying the Segal condition: for each S ∈ F∗, the edges
F (S)→ F ({s}+) determine an equivalence

F (S) ≃
∏

s∈So

F ({s}+).

We’ll abbreviate CMon(Top) to CMon.

Now let’s begin the proof. First we note that G∐ is equivalent to the category
FrG of finite sets with free G-action.

Definition A.3. Let L(G) be the Lawvere theory of commutative monoids
with G-action: the full subcategory of Fun(G,CMon), which is equivalent to
CMon(Fun(G,Top)), spanned by the the essential image of F ⊆ Top under
the left adjoint of the forgetful functor Fun(G,CMon)→ Top.

Theorem A.4. There is an equivalence of categories between Aeff (FrG) and
L(G).

Proof. First let’s construct the functor. Fun(G,CMon) is a certain full subcat-
egory of Fun(G×F∗,Top), so we can do this by constructing a functor

Aeff (FrG)×G×F∗ → Top

adjointing over, and checking it makes sense on objects.
We’ll do the construction in two stages. First, note that we have a functor

Aeff (FrG)×Aeff (F)→ Aeff (FrG)

simply by taking objectwise products of staircase diagrams. We also have an
inclusion i : F∗ → Aeff (F) as follows: an n-simplex of F∗, given by a chain of
pointed maps

X0
f1→ X1

f2→ · · · fn→ Xn

maps to the staircase diagram (Aij)0≤i≤j≤n with

{
Aii = Xo

i i = j

Aij = (fjfj−1 · · · fi+1)
−1Xo

j i 6= j.

Functoriality is easily checked, as is the fact that all squares which ought to be
pullbacks are pullbacks. Composing these two and multiplying by G, we get a
map

µ : Aeff (FrG)×G×F∗ → Aeff (FrG)×G.

Next, we’ll define a functor Aeff (FrG)×G→ Top by defining a left fibration

κ : Aeff (FrG)+ ⋉G→ Aeff (FrG)×G.
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Here Aeff (FrG)+ ⋉G is itself the total space of a cocartesian fibration over G.
A vertex of Aeff (FrG)+ ⋉G is a free G-set U together with a finite set S and
a map of sets S → U . An edge of Aeff (FrG)+ ⋉ G with source a1 : S1 → U1

and target a2 : S2 → U2 is an element g ∈ G together with a diagram

S1 S2

U1 W

U2

g◦a1 q

a2

with higher simplices defined analogously. We define κ to be the map that
forgets S. To prove that κ is a left fibration, define Aeff (FrG)+ to be the fiber
of Aeff (FrG)+ ⋉G over the vertex of G. κ restricts to a map

Aeff (FrG)+ → Aeff (FrG)
which is actually isomorphic to the target map

t : Aeff (FrG)G/ → Aeff (FrG)
which is definitely a left fibration. Together with the fact that the preimage
under κ of an edge of G is an equivalence, this implies that κ itself is a left
fibration.

Let K be a functor Aeff (FrG) ×G → Top that classifies κ. We now have
a well-defined functor

σ : Aeff (FrG)→ Fun(G×F∗,Top)

defined by composing µ with K and then taking adjoints. For each free finite
G-set U , we must show that the functor

F∗ × {U} µ→ Aeff (FrG)→ Fun(G,Top)

is a commutative monoid. Unwinding the definitions shows that this is a con-
sequence of the fact that K preserves products. Moreover, one identifies σ(U)
with

(Σ)×U ,

where Σ =
∐

n≥0 Σn and G acts by permutation on the factors. This is equiv-
alent to the free commutative monoid in Fun(G,Top) on the set U/G. So σ
factors through a functor

α : Aeff (FrG)→ L(G).

From here, showing that α is an equivalence is the easy part. Essential
surjectivity is obvious. For full faithfulness, it suffices to show that α induces
an equivalence

α0 : MapAeff (FrG)(G,G)→ MapL(G)(Σ
×G,Σ×G)
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since all of the other relevant maps are products of some copies of this one.
Since G is a commutative monoid in Aeff (FrG) and Σ×G is a commutative

monoid in L(G), α0 underlies a map of commutative monoids, both of which are
easily seen to be equivalent as commutative monoids to Σ×G. Thus it’s enough
to check that α0 takes a set of free generators to a set of free generators. On
the left, we may take this set to be




G

G G

rg




g∈G

where rg is right multiplication by g. On the other hand, we may take our set
of generators on the right to be those automorphisms of Σ×G induced by right
multiplication by elements of g. Tracing through the definitions a final time,
we see that α0 maps the one set of generators to the other. This completes the
proof.

We have the functor G → Aeff (FrG) that takes, for example, a 2-simplex
(g, h) to the diagram

G

G G

G G G.

rg

rg rh

We have the composite

iG : G×F∗ → Aeff (FrG)×Aeff (F)→ Aeff (FrG).

Proposition A.5. iG is the universal commutative monoid with G-action,
which is to say the initial functor satisfying the Segal condition from G×F∗ to
a category with finite products.

Proof. First we must show that iG is indeed a commutative monoid. G doesn’t
make any difference here; we just need to show that i : F∗ → Aeff (F) satisfies
the Segal condition. This follows from the fact that the image of the inert map
χj : 〈n〉 → 〈1〉 is the span

[1]

[n] [1].

j

Now let U(G) be the universal category supporting a commutative monoid
with G-action. Since U(G) is the initial category under G×F∗ that takes certain

34



diagrams to limit diagrams, Proposition 5.3.6.2 of [Lur09] gives a prescription
for building it as the opposite of a full subcategory of a certain localization
S−1Psh((G×F∗)op) of the presheaf category Psh((G×F∗)op). Since we’re in
this business, let’s let Y : (G × F∗)op → Psh((G × F∗)op) denote the Yoneda
embedding.

In this case, the localization S is generated by the morphisms

∐

〈n〉o
Y (〈1〉)→ Y (〈n〉)

given by precomposition with the inert maps, and so localization is “Segalifi-
cation” and the local objects are exactly the commutative monoid spaces with
G-action. Thus U(G)op is the full subcategory of Fun(F∗×G,Top) spanned by
the Segalifications of ∐

〈n〉o
Y (〈1〉)

as n varies. But Y (〈1〉) is, by definition, left Kan extended along the inclusion

〈1〉 : ∗ → F∗ ×G

and so its Segalification is the free commutative monoid with G-action on one
generator. Since Segalification preserves coproducts, the other objects follow.

Now we’ve given an equivalence between U(G)op and L(G), and therefore
Aeff (FrG). We know that this category is canonically self-opposite, so we might
as well forget the op on U(G). Let’s show that this equivalence comes from iG.

Since Aeff (FrG) is semiadditive, specifying a commutative monoid with G-
action BG × F∗ → Aeff (FrG) is equivalent to specifying it on G × 〈1〉 (see
Corollary 2.4.3.10 of [Lur12]). Both iG and the universal commutative monoid
in U(G) takeG×〈1〉 to the G-setG with its right action on itself. This completes
the proof.

Corollary A.6. Let C be an ∞-category with finite products. Then pullback
along iG gives an equivalence

Fun×(Aeff (FrG),C)→ CMon(Fun(G,C)).

Proof. This is just a restatement of A.5.

We deduce Theorem 2.27 as the special case of A.6 where C is semiadditive.

B The proof of Lemma 2.36

Lemma B.1. Let C be an ∞-category, z : D → C the inclusion of a full
subcategory and X ∈ C an object. Let ⋆ denote the join of simplicial sets, and
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let

i0 : ∆0 → ∆0 ⋆ (∆n ×∆1)

i1 : ∆n × {0} → ∆0 ⋆ (∆n ×∆1)

i2 : ∆n × {1} → ∆0 ⋆ (∆n ×∆1)

be the natural inclusions. We define a simplicial set CX/D/ whose n-simplices
are maps α : ∆0 ⋆ (∆n ×∆1)→ C with

α ◦ i0 = X, α ◦ i1 ∈ Fun(∆n,D).

Then the map p2 : CX/D/ → C coming from precomposition with i2 is cocarte-
sian, and its cocartesian edges are those α for which the image of α ◦ i1 is an
equivalence. Moreover, the inclusion

λ : CX/ ×C D →֒ CX/D/

formed by precomposition with the collapse map ∆0 ⋆ (∆n ×∆1)→ ∆0 ⋆∆n is
coinitial, and therefore left anodyne [Lur09, Proposition 4.1.1.3].

Proof. First we show that any edge α for which α ◦ i1 is an equivalence is
cocartesian. This is the claim that any commutative diagram of the form

T2

T1 T3

X W2

W1 W3

∼

with T1 → T2 an equivalence can be completed to a diagram from ∆0 ⋆ (∆2 ×
∆1), which is clear by inspection. Since there are plenty of these edges, p2 is
cocartesian.

Now we tackle the coinitiality claim. In fact, we’ll show that λ admits a
right adjoint, which suffices. Let Λ→ ∆1 be the cocartesian fibration classified
by λ; an n-simplex of Λ is a map τ : ∆n → ∆1 together with a map

α :
(
∆0 ⋆

{
(i, j) ∈ ∆n ×∆1 | j = 0 or i ∈ τ−1(1)

})
→ C

We wish to show that α is also cartesian. In fact, we claim that an edge

T2 T3

X

W3
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of Λ over the nondegenerate edge of ∆1 is cartesian if T2 → T3 is an equivalence.
This is the claim that any commuting diagram of the form

T2

T1 T3

X

W3

∼

can be extended to a commuting diagram of the form

T2

T1 T3

X

W3,

∼

which, again, is clear.

We list some formal consequences of Lemma B.1.

Corollary B.2. LetCTop
X/D/ be a fibrant replacement forCX/D/ in the covariant

model structure over C, so that CTop
X/D/ → C is a left fibration and for each

object W ∈ C, the map

(CTop
X/D/)W → (CX/D/)W

is a Kan-Quillen weak equivalence. Then the functor classified by CTop
X/D/ is

equivalent to the restriction and left Kan extension z!z
∗Map(X,−) of the functor

corepresented by X .
Now let β : CX/D/ → CX/ be given on n-simplices by precomposition with

i0 ⋆ i2 : ∆0 ⋆∆n → ∆0 ⋆ (∆n ×∆1).

Since CX/ is a left fibration, we have a commutative diagram

CX/ ×C D CX/

CX/D/ CTop
X/D/ C.

λ

β

β′
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It follows that the counit map cX : z!z
∗Map(X,−)→ Map(X,−) is given, after

unstraightening, by β′.

Lemma B.3. Let W ∈ C and let f : X → W be a morphism in C. Then the
homotopy fiber of

cX,W : (z!z
∗Map(X,−))W → Map(X,W )

over f is given, up to weak equivalence, by the simplicial set ℧W,f whose n-
simplices are maps Z : ∆n+2 → C such that

• Z|∆{0,n+2} = f , and

• for each i with 0 < i < n+ 2, Z(i) ∈ D.

Proof. We know that the Joyal model structure is self-enriched, by using [Lur09,
Corollary 2.2.5.4] to deduce that the pushout-product of a trivial cofibration
with a cofibration is a trivial cofibration, and it follows that if K → L is any cofi-
bration of simplicial sets and E is a quasicategory, then Fun(L,E)→ Fun(K,E)
is a categorical fibration. Since β is formed from such a fibration by pullback,
β is also a categorical fibration.

The value of cX on W is given, up to weak equivalence, by the map

βW : (CX/D/)W → (CX/)W = HomL(X,W ).

Since the target of βW is a Kan complex and βW is a categorical fibration, it is a
cocartesian fibration [Lur09, Proposition 3.3.18], and since a fibrant replacement
for βW in the covariant model structure over HomL(X,W ) is automatically a
Kan fibration, the fibers of βW are its homotopy fibers.

By definition, the fiber βW,f over f ∈ HomL(X,W ) is the simplicial set
whose n-simplices are maps Z ′ : (∆0 ⋆ (∆n ×∆1))/(∆n × {1})→ C such that

• Z ′ ◦ i1 ⊆ D, and

• the (n + 1)-simplex Z ′ ◦ (i0 ⋆ i2) is the image of f under the rightmost
degeneracy; that is, it is the totally degenerate n-simplex of CX/ at f .

In other words, an n-simplex of βW,f is a map

Z ′′ : ∆0 ⋆ ((∆n ×∆1)/(∆n × {1}))

with Z ′′(∆n×{0}) ∈ Dn and Z ′′(∆0 ⋆((∆n×{1})/(∆n×{1})) = f . From here,
the proof that βW,f ≃ ℧W,f is a minor variant of the proof of [Lur09, Proposition
4.2.1.5].

We now immerse ourselves in the notation of Lemma 2.36, which we restate
here for convenience.
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Lemma B.4. Let M be an epiorbital category, N a downwardly closed sub-
category ofM and T its upwardly closed complement. Denote the restriction
Aeff (iT )∗ and the left Kan extension Aeff (iT )! respectively by ΠT and ΓT , and
similarly denote Aeff (jN )∗ and Aeff (jN )! by ΞN and ΦN respectively. Then
there’s a cofiber sequence of functors Mack(M,CMon)→Mack(M,CMon)

ΓT ΠT ǫ→ Id
η→ ΞNΦN ,

where ǫ and η are the counit and unit of their respective adjunctions.

Proof. Since all of the functors in this sequence are colimit-preserving, it suffices
to check that its value on each corepresentable Mackey functor is a cofiber
sequence. Let X ∈ Aeff (M) be an object and let f : X ← Y → W be a
morphism in Aeff (M). We’ll analyze the fiber ℧W,f of Lemma B.3.

For C an∞-category, let ÕC be the twisted arrow category of C (see [Bar14,

§2]) and let ÕC := Õop
C be its opposite. Then an n-simplex of ℧W,f is by

definition a functor
̺ : Õ∆n+2 →M∐

such the span
̺(0, 0)← ̺(0, n+ 2)→ ̺(n+ 2, n+ 2)

coincides with f and ̺(i, i) ∈ T ∐ for all i with 0 < i < n + 2. By the upward
closedness of T , the latter condition implices that ̺(i, j) ∈ T ∐ for all (i, j) 6=
(0, 0), (n+ 2, n+ 2), and in particular ℧W,f is empty unless Y ∈ T ∐. We claim
that if Y ∈ T ∐, then ℧W,f is contractible. In fact, let ΓW,f be the subsimplicial
set of ℧W,f whose n-simplices are those which factor through the morphism

γ : Õ∆n+2 → Õ∆n+2

γ(i, j) =





(0, 0) if (i, j) = (0, 0)

(n+ 2, n+ 2) if (i, j) = (n+ 2, n+ 2)

(0, n+ 2) otherwise.

If Y ∈ T ∐, then clearly ΓW,f
∼= ∗, and we claim that ΓW,f is a simplicial

deformation retract of ℧W,f . We’ll do this in two stages as follows. For each

integer k, let γL
k : Õ∆n+2 → Õ∆n+2

be defined by

γL
k (i, j) = (min(i − k, 0), j)

and dually, define γR
k : Õ∆n+2 → Õ∆n+2

by

γR
k (i, j) = (i,max(j + k, n+ 2)).

Let ΓL
W,f be the subsimplicial set of ℧W,f whose n-simplices factor through

γL
n+1, and define ΓR

W,f similarly; we will show that each of ΓL
W,f and ΓR

W,f is a
simplicial deformation retract of ℧W,f , and since

ΓW,f = ΓL
W,f ∩ ΓR

W,f ,
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this will complete the proof of the claim. We will prove the result for ΓR
W,f ; the

result for ΓL
W,f is, of course, entirely dual.

For each n, l with 0 ≤ l ≤ n+1, let τn,l : ∆
n → ∆1 be the unique map with

τ−1
n,l (0) = [0, · · · , n− l],

where we interpret [0,−1] as the empty interval. Then we define a map

Θ : ℧W,f ×∆1 → ℧W,f

on n-simplices by
(̺, τn,l) 7→ ̺ ◦ γR

l .

Then Θ1 is a retraction onto ΓR
W,f , so we have the required simplicial homotopy.

What we have proved so far is that

ǫcX : ΓT ΠT cX → cX ,

after evaluation on an object W , is homotopic to the inclusion of the connected
components of Map(X,W ) comprising those maps f : X ← Y → W with
Y ∈ Aeff (T ). What’s left is easy: ηcX (W ) is the natural map

MapAeff (M)(X,W )→ MapAeff (N )(j(X), j(W )),

which is just the projection away from the image of ǫcX (W ). This concludes
the proof of Lemma 2.36.
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PARAMETRIZED HIGHER CATEGORY THEORY

JAY SHAH

Abstract. We develop foundations for the theory of ∞-categories parametrized by a base ∞-
category. Our main contribution is a theory of indexed homotopy limits and colimits, which special-
izes to a theory of G-colimits for G a finite group when the base is chosen to be the orbit category

of G. We apply this theory to show that the G-∞-category of G-spaces is freely generated under
G-colimits by the contractible G-space, thereby affirming a conjecture of Mike Hill.
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1. Introduction

Motivation from equivariant homotopy theory: This paper lays foundations for a theory of∞-
categories parametrized by a base∞-category S. Our interest in this project originates in attempting
to locate the core homotopy theories of interest in equivariant homotopy theory - those of G-spaces
and G-spectra - within the appropriate ∞-categorical framework. To explain, let G be a finite group
and let us review the definitions of the ∞-categories of G-spaces and G-spectra, with a view towards
endowing them with universal properties.

Consider a category TopG of (nice) topological spaces equipped with G-action, with morphisms
given by the G-equivariant continuous maps. There are various homotopy theories that derive from
this category, depending on the class of weak equivalences that one chooses to invert. At one end,
we can invert the class W1 of G-equivariant maps which induce a weak homotopy equivalence of
underlying topological spaces, forgetting the G-action. If we let Spc denote the ∞-category of spaces
(i.e., ∞-groupoids), then inverting W1 obtains the ∞-category of spaces with G-action

TopG[W
−1
1 ] ≃ Fun(BG,Spc).

For many purposes, Fun(BG,Spc) is the homotopy theory that one wishes to contemplate, but here
we instead highlight its main deficiency. Namely, passing to this homotopy theory blurs the distinction
between homotopy fixed points and actual fixed points, in that the functor TopG Fun(BG,Spc)
forgets the homotopy types of the various spaces XH for H a nontrivial subgroup of G. Because
many arguments in equivariant homotopy theory involve comparing XH with the homotopy fixed

1



2 JAY SHAH

points XhH , we want to retain this data. To this end, we can instead let W be the class of G-
equivariant maps which induce an equivalence on H-fixed points for every subgroup H of G. Let
SpcG := TopG[W

−1]; this is the ∞-category of G-spaces.
Like with TopG[W

−1
1 ], we would like a description of SpcG which eliminates any reference to

topological spaces with G-action, for the purpose of comprehending its universal property. Elmendorf’s
theorem grants such a description: we have

SpcG ≃ Fun(Oop
G ,Spc),

where OG is the category of orbits of the group G. Thus, as an ∞-category, SpcG is the free
cocompletion of OG.

It is a more subtle matter to define the homotopy theory of G-spectra. There are at least three
possibilities:

(1) The ∞-category of Borel G-spectra, i.e. spectra with G-action: This is

SphG := Fun(BG,Sp),

which is the stabilization of Fun(BG,Spc).
(2) The ∞-category of ‘naive’ G-spectra, i.e. spectral presheaves on OG: This is

SpG := Fun(Oop
G ,Sp),

which is the stabilization of SpcG.
1

(3) The ∞-category of ‘genuine’ G-spectra, i.e. spectral Mackey functors on the category FG of
finite G-sets: Let Aeff(FG) be the effective Burnside (2, 1)-category of G, given by taking as
objects finite G-sets, as morphisms spans of finite G-sets, and as 2-morphisms isomorphisms
between spans. Then, the ∞-category of genuine G-spectra is defined to be

SpG := Fun⊕(Aeff(FG),Sp),

the ∞-category of direct-sum preserving functors from Aeff(FG) to Sp.2

The third possibility incorporates essential examples of cohomology theories for G-spaces, such as
equivariant K-theory, because G-spectra in this sense possess transfers along maps of finite G-sets,
encoded by the covariant maps in Aeff(FG). It is thus what homotopy theorists customarily mean by
G-spectra. However, from a categorical perspective it is a more mysterious object than the∞-category
of naive G-spectra, since it is not the stabilization of G-spaces. We are led to ask:

Question: What is the universal property of SpG? More precisely, we have an adjunction

Σ∞
+ : SpcG SpG :Ω∞

with the right adjoint given by taking Ω∞ : Sp Spc objectwise and restricting along the evident
map Oop

G Aeff(FG), and we would like a universal property for Σ∞
+ or Ω∞.

Put another way, what is the categorical procedure which manufactures SpG from SpcG?

The key idea is that for this procedure of ‘G-stabilization’ one needs to enforce ‘G-additivity’ over
and above the usual additivity satisfied by a stable ∞-category: that is, one wants the coincidence of
coproducts and products indexed not just by finite sets but by finite sets with G-action. Reflecting
upon the possible homotopical meaning of such a G-(co)product, we see that for a transitive G-set
G/H ,

∐
G/H and

∏
G/H should be interpreted to mean the left and right adjoints to the restriction

functor SpG SpH , i.e. the induction and coinduction functors, and G-additivity then becomes
the Wirthmüller isomorphism. In particular, we see that G-additivity is not a property that SpG can
be said to enjoy in isolation, but rather one satisfied by the presheaf SpG of ∞-categories indexed
by OG; here, for every G-orbit U , a choice of basepoint specifying an isomorphism U ∼= G/H yields

an equivalence SpG(U) ≃ SpH , and the functoriality in maps of orbits is that of conjugation and

1The usage of a subscript G to indicate presheaves on OG (whether valued in spaces or spectra) is consistent with
our later notation for the S-category of S-objects in an arbitrary ∞-category – see Construction 3.9.

2This is not the definition which first appeared in the literature for G-spectra, but it is equivalent to e.g. the
homotopy theory of orthogonal G-spectra by the pioneering work of Guillou-May [7]. For an ∞-categorical treatment,
see [1].
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restriction (in particular, recording the residual actions of the Weyl groups on SpH). Correspondingly,
we must rephrase our question so as to inquire after the universal property of the morphism of OG-
presheaves

Σ∞
+ : Spc

G
SpG,

where Σ∞
+ is objectwise given by genuine H-suspension ranging over all subgroups H ≤ G.

We now pause to observe that for the purpose of this analysis the groupG is of secondary importance
as compared to its associated category of orbits OG. Indeed, we focused on G-additivity as the
distinguishing feature of genuine vs. naive G-spectra, as opposed to the invertibility of representation
spheres, in order to evade representation theoretic aspects of equivariant stable homotopy theory.
In order to frame our situation in its proper generality, let us now dispense with the group G and
replace OG by an arbitrary ∞-category T . Call a presheaf of ∞-categories on T a T -category. The
T -category of T -spaces Spc

T
is given by the functor T op Cat∞, t 7→ Fun((T /t)op,Spc). Note

that this specializes to Spc
G

when T = OG because OH ≃ (OG)
/(G/H); slice categories stand in for

subgroups in our theory. With the theory of T -colimits advanced in this paper, we can then supply a
universal property for Spc

T
as a T -category. Write FunT for the internal hom in the ∞-category of

T -categories, which is cartesian closed.

1.1. Theorem. Suppose T is any ∞-category. Then Spc
T

is T -cocomplete, and for any T -category

E which is T -cocomplete, the T -functor of evaluation at the T -final object3

FunLT (SpcT , E) FunT (∗T , E) ≃ E
induces an equivalence from the T -category of T -functors Spc

T
E which strongly preserve T -

colimits to E. In other words, Spc
T
is freely generated under T -colimits by the final T -category.

1.2. Remark. The notion of T -cocompleteness needed for the theorem is slightly more elaborate than
one might naively expect. Namely, we say that a T -category C is T -cocomplete if for all t ∈ T , the
pullback of C to a T /t-category Ct (Notation 2.29) admits all (small) T /t-colimits (Definition 5.13).
Correspondingly, we say that a T -functor F : C D strongly preserves T -colimits if for all t ∈ T ,
the pulled-back T /t-functor Ft : Ct Dt preserves all T

/t-colimits (Definition 11.2).

When T = OG, this result was originally conjectured by Mike Hill.
To go further and define T -spectra, we need a condition on T so that it supports a theory of spectral

Mackey functors. We say that T is orbital if T admits multipullbacks, by which we mean that its finite
coproduct completion FT admits pullbacks. The purpose of the orbitality assumption is to ensure
that the effective Burnside category Aeff(FT ) is well-defined. Note that the slice categories T/t are

orbital if T is. We define the T -category of T -spectra SpT to be the functor T op Cat∞ given by

t 7→ Fun⊕(Aeff(FT/t
),Sp). We then have the following theorem of Denis Nardin concerning SpT from

[16], which resolves our question:

1.3. Theorem ([16, Theorem 7.4]). Suppose T is an atomic4 orbital ∞-category. Then SpT is T -
stable, and for any pointed T -category C which has all finite T -colimits, the functor of postcomposition
by Ω∞

(Ω∞)∗ : FunT−rex
T (C,SpT ) LinT (C,Spc

T
)

induces an equivalence from the ∞-category of T -functors C SpT which preserve finite T -colimits
to the ∞-category of T -linear functors C Spc

T
, i.e. those T -functors which are fiberwise linear

and send finite T -coproducts to T -products.

We hope that the two aforementioned theorems will serve to impress upon the reader the utility of
the purely ∞-categorical work that we undertake in this paper.

1.4. Warning. In contrast to this introduction thus far and the conventions adopted elsewhere (e.g.
in [16]), we will henceforth speak of S-categories, S-colimits, etc. for S = T op.

3We define ∗T to be the constant T -presheaf valued at ∗, which is the final object in the ∞-category of T -categories.
4This is an additional technical hypothesis which we do not explain here. It will not concern us in the body of the

paper.
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What is parametrized ∞-category theory? Roughly speaking, parametrized∞-category theory
is an interpretation of the familiar notions of ordinary or ‘absolute’ ∞-category theory within the
(∞, 2)-category of functors Fun(S,Cat∞), done relative to a fixed ‘base’∞-category S. By ‘interpre-
tation’, we mean something along the lines of the program of Emily Riehl and Dominic Verity [17],
which axiomatizes the essential properties of an (∞, 2)-category that one needs to do formal category
theory into the notion of an ∞-cosmos, of which Fun(S,Cat∞) is an example. In an ∞-cosmos, one
can write down in a formal way notions of limits and colimits, adjunctions, Kan extensions, and so
forth. Working out what this means in the example of Cat∞-valued functors is the goal of this pa-
per. In the classical 2-categorical setting, such limits and colimits are referred to as “indexed” limits
and colimits, so another perspective on this paper is that it extends indexed category theory to the
∞-categorical setting.

In contrast to Riehl–Verity, we will work within the model of quasi-categories and not hesitate
to use special aspects of our model (e.g., combinatorial arguments involving simplicial sets). We
are motivated in this respect by the existence of a highly developed theory of cocartesian fibrations
due to Jacob Lurie, which we review in §2. Cocartesian fibrations are our preferred way to model
Cat∞-valued functors, for two reasons:

(1) The data of a functor F : S Cat∞ is overdetermined vs. that of a cocartesian fibration
over S, in the sense that to define F one must prescribe an infinite hierarchy of coherence data,
which under the functor-fibration correspondence amounts to prescribing an infinite sequence
of compatible horn fillings.5 Because of this, specifying a cocartesian fibration (which one
ultimately needs to do in order to connect our theory to applications) is typically an easier task
than specifying the corresponding functor to Cat∞.

(2) The Grothendieck construction on a functor S Cat∞ is made visible in the cocartesian
fibration setup, as the total category of the cocartesian fibration. Many of our arguments involve
direct manipulation of the Grothendieck construction, in order to relate or reduce notions of
parametrized ∞-category theory to absolute ∞-category theory.

We have therefore tailored our exposition to the reader familiar with the first five chapters of [10]; the
only additional major prerequisite is the part of [12, App. B] dealing with variants of the cocartesian
model structure of [10, §3] and functoriality in the base.

Linear overview. Let us now give a section-by-section summary of the contents of this paper.

(§2) We define an S-category as a cocartesian fibration over S, and then collect some necessary
preliminaries on cocartesian fibrations and model structures on categories of marked simplicial
sets. In particular, we recapitulate Lurie’s theorem that establishes conditions under which
change-of-base adjunctions are Quillen (Theorem 2.24); this theorem will allow us to efficiently
verify the fibrancy of many of the simplicial set constructions introduced in this paper.

(§3) We first define and study the internal hom FunS(−,−) of S-categories (Definition 3.2). We
then recall the S-category of S-objects ES in an ∞-category E from [2] (Construction 3.9),
which computes the right adjoint to the forgetful functor [C S] 7→ C. When S = Oop

G and
E = Spc, this recovers the G-category of G-spaces Spc

G
.

(§4) We first introduce the S-join (− ⋆S −) (Definition 4.1), which in terms of presheaves computes
the fiberwise join. We then define and study two (canonically equivalent) S-slice constructions:
for a S-functor p : K C, we have S-undercategories C(p,S)/ and C

(p,S)/ and S-overcategories

C/(p,S) and C/(p,S). The ‘lower’ construction (Definition 4.17) is a direct generalization of
Joyal’s slice construction (cf. [10, Proposition 1.2.9.2]) and participates in a Quillen adjunction
with the S-join. The ‘upper’ construction (Definition 4.26) proceeds by taking an S-fiber of the
relevant map of S-functor categories. In practice, the upper S-slice is far easier to work with as
its definition is less bound up with the intricate combinatorics of the S-join (which need to be
thoroughly understood to even establish the fibrancy of the lower S-slice; cf. Proposition 4.11).
However, it is easier to establish the universal mapping property of the S-slice using its lower
incarnation (Proposition 4.25).

5It is for this reason that one speaks of straightening a cocartesian fibration to a functor.
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(§5) We initiate our study of S-colimits and S-limits by giving the basic definition 5.2, and then
discuss a few special cases: S-(co)limits in an S-category of S-objects, S-colimits indexed by
constant S-diagrams, and S-colimits indexed by S-points (i.e., S-coproducts). We then explain
how to deduce results about S-limits from S-colimits (or vice-versa) by means of the vertical
opposite construction (Corollary 5.25).

(§6) Our main goal in this section is to establish an S-analogue of Joyal’s cofinality theorem [10,
Theorem 4.1.3.1]: an S-functor C D is S-final if and only if it is fiberwise final6 (Theo-
rem 6.7). Our strategy is to control the functoriality encoded by the S-slice category in terms of

a construction, the twisted slice (Definition 6.5), fibered over the twisted arrow category Õ(S);
the right Kan extension of the latter will then obtain the former (Theorem 6.6). In fact, we
first do the same for the internal hom FunS itself (Equation 6.3.1). This may be thought of as
a refinement of the end formula for an ∞-category of natural transformations (cf. Remark 6.4).

(§7) In this brief section, we introduce the notions of S-fibration, S-(co)cartesian fibration, and
S-bifibration (Definition 7.1 and Definition 7.9). We also introduce the free S-(co)cartesian
fibration as an example (Definition 7.6).

(§8) We recall Lurie’s definition of a relative adjunction and specialize it to the notion of an S-
adjunction (Definition 8.3). We then prove a number of fundamental results about S-adjunctions
—most notably, the fact that a left S-adjoint preserve S-colimits (Corollary 8.9).

(§9) Given an S-cocartesian fibration φ : C D and an S-functor F : C E, we construct the
left S-Kan extension φ!F : D E, which will also call the D-parametrized S-colimit of F .
With our assumption on φ, we have that for every object x ∈ Ds, (φ!F )(x) is computed as the
Ss/-colimit of the restriction of F to the Ss/-fiber Cx; this is precisely analogous to the situa-
tion where the left Kan extension along a cocartesian fibration is computed by taking colimits
fiberwise. In order to construct φ!F , we need to solve the coherence problem of assembling the
individual Ss/-colimits of Fs : Cx Es (ranging over all x ∈ Ds) into a single S-functor out
of D. We introduce the S-pairing construction 9.1, and subsequently the D-parametrized slice
(Construction 9.8), to facilitate this. The problem of constructing φ!F then ultimately reduces
to choosing a section of a certain trivial Kan fibration defined in terms of the D-parametrized
slice (Theorem 9.15).

(§10) We define left S-Kan extensions in general (Definition 10.1) and prove the basic existence and
uniqueness result about them (Theorem 10.3). In contrast to the brutal simplex-by-simplex
approach taken in [10, §4.3.2] to the construction of Kan extensions (cf. [10, Lemma 4.3.2.13]),
we instead reduce to the solved coherence problem for D-parametrized S-colimits via factoring
the S-functor φ : C D to be extended along through the free S-cocartesian fibration on
it. We remark that, to our knowledge, the approach of §9 and §10 gave a novel7 and more
conceptual construction of Kan extensions even in the context of ordinary ∞-category theory.
Lurie has since independently written up a treatment of (relative) Kan extensions along these
lines in Kerodon [13, Tag 02Y1].

(§11) We recall the S-category of presheaves PS(−), prove the S-Yoneda lemma 11.1, discuss S-
mapping spaces, and establish the universal property of PS(−) as free S-cocompletion (Theo-
rem 11.5), thereby proving Theorem 1.1.

(§12) We prove two Bousfield-Kan style8 decomposition results that express an arbitrary S-colimit
as a geometric realization of either S-coproducts or S-space-indexed S-colimits (Theorem 12.13
and Theorem 12.6). The essential content behind such formulas lies in replacing a given diagram
C with one fibered over ∆op × S that possesses an S-final map to C. As a warmup, we first
explain how this goes when S is a point (Corollary 12.3 and Corollary 12.5); the resulting
formula appears to be new in the case of coproducts, whereas the case of spaces was first
obtained by Aaron Mazel-Gee in [15]. We then apply the S-Bousfield-Kan formula to show

6We write final and initial for what Lurie calls (left) cofinal and right cofinal, respectively.
7All these results date to 2017.
8By this, we mean to refer to generalizations of the classical formula for writing a colimit as a coequalizer of

coproducts, which were studied by Bousfield and Kan in the context of homotopy colimits with coequalizers replaced
by geometric realization.
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that, supposing Sop admits multipullbacks, an S-category is S-cocomplete if and only if it
admits all S-(co)products and geometric realizations (Corollary 12.15).

Notation and conventions. Let C be an ∞-category. We write

O(C) := Fun(∆1, C)

for the ∞-category of arrows in C. In this paper, we will frequently encounter fiber products of the
form

A×F,C,ev0 O(C)×ev1,C,G B

where F : A C and G : B C are functors. To avoid notational clutter, we adopt the
global convention that, unless otherwise decorated, fiber products with the source functor ev0 are to
be written on the left, and fiber products with the target functor ev1 are to written on the right.
Moreover, we will drop F and G from the notation if they are understood from context. For instance,
we would write the preceding expression as A×C O(C)×C B.

Acknowledgements. This paper is a lightly revised version of my thesis, which was originally part
of a joint project with my advisor Clark Barwick, Emanuele Dotto, Saul Glasman, and Denis Nardin.
I would like to thank them and the other participants of the Bourbon seminar - Lukas Brantner,
Peter Haine, Marc Hoyois, Akhil Mathew, and Sune Precht Reeh - for innumerable conversations and
mathematical inspiration, without which this work would not have been possible. I would also like to
thank the referee for writing an extremely detailed report that has helped to improve the readability
of this paper.

2. Cocartesian fibrations and model categories of marked simplicial sets

Let S be an ∞-category. In this section, we give a rapid review of the theory of cocartesian
fibrations and the surrounding apparatus of marked simplicial sets. This primarily serves to fix some
of our notation and conventions for the remainder of the paper; for a more detailed exposition of these
concepts, we refer the reader to [5]. In particular, the reader should be aware of our special notation
(Notation 2.29) for the S-fibers of a S-functor.

Cocartesian fibrations. We begin with the basic definitions:

2.1. Definition. Let π : X S be a map of simplicial sets. Then π is a cocartesian fibration if

(1) π is an inner fibration: for every n > 1, 0 < k < n and commutative square

Λnk X

∆n S,

π

the dotted lift exists.
(2) For every edge α : s0 → s1 in S and x0 ∈ X with π(x0) = s0, there exists an edge e : x0 → x1

in X with π(e) = α, such that e is π-cocartesian: for every n > 1 and commutative square

Λn0 X

∆n S

f

π

with f |∆{0,1} = e, the dotted lift exists.

Dually, π is a cartesian fibration if πop is a cocartesian fibration.
A cocartesian resp. cartesian fibration π : X S is said to be a left resp. right fibration if for

every object s ∈ S the fiber Xs is a Kan complex.
Now suppose π : X S and ρ : Y S are (co)cartesian fibrations. Then a map of (co)cartesian

fibrations f : X Y is a map of simplicial sets such that ρ◦f = π and f carries π-(co)cartesian edges
to ρ-(co)cartesian edges. The collection of cocartesian fibrations over S and maps thereof organize
into a subcategory Catcocart∞/S of the overcategory Cat∞/S .
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In this paper, owing to the importance of these notions we see fit to introduce more concise and
suggestive terminology for cocartesian fibrations and left fibrations over S.

2.2. Definition. An S-category resp. S-space C is a cocartesian resp. left fibration π : C S. An
S-functor F : C D between S-categories C and D is a map of cocartesian fibrations over S.

Given an S-category π : C S, an S-subcategory D ⊂ C is a subcategory such that the restriction
π|D is a cocartesian fibration and an edge in D is π|D-cocartesian if and only if it is π-cocartesian.
The inclusion functor then necessarily preserves cocartesian edges, so is an S-functor. We further say
that D is a full S-subcategory if D ⊂ C is in addition a full subcategory, or equivalently, for every
s ∈ S, Ds ⊂ Cs is a full subcategory.

2.3. Example (Arrow ∞-categories). The arrow ∞-category O(S) of S is cocartesian over S via the
target morphism ev1, and cartesian over S via the source morphism ev0. An edge

e : [s0 → t0] [s1 → t1]

in O(S) is ev1-cocartesian resp. ev0-cartesian if and only if ev0(e) resp. ev1(e) is an equivalence in S.
The fiber of ev0 : O(S) S over s is isomorphic to Lurie’s ‘alternative’ slice ∞-category Ss/.

Using our knowledge of the ev1-cocartesian edges, we see that ev1 restricts to a left fibration Ss/ S.
In the terminology of [10, Proposition 4.4.4.5], this is a corepresentable left fibration. We will refer to
the corepresentable left fibrations as S-points. Further emphasizing this viewpoint, we will often let s
denote Ss/.

To a beginner, the lifting conditions of Definition 2.1 can seem opaque. Under our standing as-
sumption that S is an ∞-category, we have a reformulation of the definition of cocartesian edge, and
hence that of cocartesian fibration, which serves to illuminate its homotopical meaning.

2.4. Proposition. Let π : X S be an inner fibration (so X is an ∞-category). Then an edge
e : x0 → x1 in X is π-cocartesian if and only if for every x2 ∈ X, the commutative square of mapping
spaces

MapX(x1, x2) MapX(x0, x2)

MapS(π(x1), π(x2)) MapS(π(x0), π(x2))

e∗

π π

π(e)∗

is homotopy cartesian.

With some work, Proposition 2.4 can be used to supply an alternative, model-independent definition
of a cocartesian fibration: we refer to Mazel-Gee’s paper [14] for an exposition along these lines.

2.5. Example ([10, §3.2.2]). Let Cat∞ denote the (large)∞-category of (small) ∞-categories. Then
there exists a universal cocartesian fibration U Cat∞, which is characterized up to contractible
choice by the requirement that any cocartesian fibration π : X S (with essentially small fibers)
fits into a homotopy pullback square

X U

S Cat∞.

π

Fπ

Concretely, one can take U to be the subcategory of the arrow category O(Cat∞) spanned by the
representable right fibrations and morphisms thereof.

As suggested by Example 2.5, the functor

Fun(S,Cat∞) Catcocart∞/S

given by pulling back U Cat∞ is an equivalence. The composition

Gr : Fun(S,Cat∞)
≃−→ Catcocart∞/S ⊂ Cat∞/S

is the Grothendieck construction functor. Since equivalences in Fun(S,Cat∞) are detected objectwise,
Gr is conservative. Moreover, one can check that Gr preserves limit and colimits, so by the adjoint
functor theorem Gr admits both a left and a right adjoint.
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2.6. Notation. Let
Fr ⊣ Gr ⊣ H

denote the left and right adjoints of Gr.

We call Fr the free cocartesian fibration functor (see also [6]): concretely, one has

Fr(X S) = X ×S O(S)
ev1−−→ S,

or as a functor s 7→ X ×S S/s with functoriality obtained from S/(−). The functor H can also be
concretely described using its universal mapping property: since Fr({s} ⊂ S) = Ss/, the fiber H(X)s
is given by Fun/S(Ss/, X), and the functoriality in S is obtained from that of S(−)/.

A model structure for cocartesian fibrations. We want a model structure which has as its
fibrant objects the cocartesian fibrations over a fixed simplicial set. However, it is clear that to define
it we need some way to remember the data of the cocartesian edges. This leads us to introduce marked
simplicial sets.

2.7. Definition. A marked simplicial set (X, E) is the data of a simplicial set X and a subset E ⊂ X1

of the edges of X , such that E contains all of the degenerate edges. We call E the set of marked edges
of X . A map of marked simplicial sets f : (X, E) (Y,F) is a map of simplicial sets f : X Y
such that f(E) ⊂ F .

2.8. Notation. We introduce notation for certain classes of marked simplicial sets. Let X be a
simplicial set.

• X♭ isX with only the degenerate edges marked. To avoid notational clutter, we will sometimes
suppress this notation and simply write X for X♭.

• X♯ is X with all of its edges marked.
• Suppose that X is an ∞-category. Then X∼ is X with its equivalences marked.
• Suppose that π : X S is an inner fibration. Then ♮X is X with its π-cocartesian edges

marked, and X♮ is X with its π-cartesian edges marked.
• Let n > 0. Let ♮∆

n resp. ♮Λ
n
0 denote ∆n resp. Λn0 with the edge {0, 1} marked (if it exists,

i.e. excluding ∆0 and Λ1
0 = {0}) along with the degenerate edges. Dually, let ∆n♮ resp. Λnn

♮

denote ∆n resp. Λnn with the edge {n− 1, n} marked.

Note that our choice of notation ♮∆
n and ♮Λ

n
0 is not meant to be interpreted as a special instance

of marking cocartesian edges (though the map ∆n ∆1 given by 0 7→ 0 and 1, ..., n 7→ 1 renders it
as such for the former); rather, we mean to indicate that the relevant lifting problem for a cocarte-
sian fibration as a marked simplicial set is to lift along the marked horn inclusion ♮Λ

n
0 ♮∆

n (cf.

Definition 2.9 below), and vice-versa for cartesian fibrations and Λnn
♮ ∆n♮.

For the rest of this section, fix a marked simplicial set (Z, E) where Z is an ∞-category and E
contains all of the equivalences in Z; in our applications, Z will generally be some type of fibration
over S. Let sSet+/(Z,E) denote the category of marked simplicial sets over (Z, E); following Lurie

[10, Notation 3.1.0.2], we will also denote sSet+/Z♯ more simply as sSet+/Z . We will frequently abuse

notation by referring an object π : (X,F) (Z, E) of sSet+/(Z,E) by its domain (X,F), or even just

by X .

2.9. Definition. An object (X,F) in sSet+/(Z,E) is (Z, E)-fibered9 if

(1) π : X Z is an inner fibration.
(2) For every n > 0 and commutative square

♮Λ
n
0 (X,F)

♮∆
n (Z, E),

9This differs from [12, Definition B.0.19], but nonetheless defines the correct class of anodyne morphisms [12, Defi-
nition B.1.1].
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a dotted lift exists. In other words, letting n = 1, π-cocartesian lifts exist over marked edges
in Z, and letting n > 1, marked edges in X are π-cocartesian.10

(3) For every commutative square

(Λ2
1)
♯ ∪(Λ2

1)
♭ (∆2)♭ (X,F)

(∆2)♯ (Z, E),

a dotted lift exists. In other words, marked edges are closed under composition.11

(4) Let Q = ∆0
∐

∆{0,2} ∆3
∐

∆{1,3} ∆0. For every commutative square

Q♭ (X,F)

Q♯ (Z, E),
a dotted lift exists. Since we assumed that E contains all equivalences in Z, this implies that
all equivalences in X are marked.

2.10. Example. Let π : X Z be an inner fibration. Comparing with Definition 2.1, it is clear
that (X,F) is Z♯-fibered if and only if π is a cocartesian fibration and (X,F) = ♮X . At the other
extreme, (X,F) is Z∼-fibered if and only if π is a categorical fibration and (X,F) = X∼.

Recall that a model structure, if it exists, is determined by its cofibrations and fibrant objects.
Collecting results of Lurie from [12, App. B], we now define a model structure on sSet+/(Z,E) with

cofibrations the monomorphisms and fibrant objects given by the (Z, E)-fibered objects.

2.11. Definition. Define functors12

MapZ(−,−) :sSet+/(Z,E)
op × sSet+/(Z,E) sSet

FunZ(−,−) :sSet+/(Z,E)
op × sSet+/(Z,E) sSet

by

Hom(A,MapZ(X,Y )) = Hom/(Z,E)(A
♯ ×X,Y ),

Hom(A,FunZ(X,Y )) = Hom/(Z,E)(A
♭ ×X,Y ).

2.12. Definition. A map f : A B in sSet+/(Z,E) is a cocartesian equivalence (with respect to

(Z, E)) if the following equivalent conditions obtain:

(1) For all (Z, E)-fibered X , f∗ : MapZ(B,X) MapZ(A,X) is an equivalence of Kan com-
plexes.

(2) For all (Z, E)-fibered X , f∗ : FunZ(B,X) FunZ(A,X) is an equivalence of ∞-categories.

2.13. Theorem ([12, Theorem B.0.20]). There exists a left proper combinatorial model structure on
the category sSet+/(Z,E), which we call the cocartesian model structure, such that:

(1) The cofibrations are the monomorphisms.
(2) The weak equivalences are the cocartesian equivalences.
(3) The fibrant objects are the (Z, E)-fibered objects.

Dually, we define the cartesian model structure on sSet+/(Z,E) to be the cocartesian model structure

on sSet+/(Z,E)op under the isomorphism given by taking opposites.

10Note that condition (2) already guarantees that X Z is a cocartesian fibration if E = Z1; however, one
additionally needs condition (4) to ensure that all of the π-cocartesian edges are marked in X.

11Strictly speaking, condition (3) by itself only guarantees that for any pair of composable marked edges, there exists
a composite that is again marked. One additionally needs condition (4) to ensure that all compositions of marked edges
are again marked.

12In [12, App. B], these functors are denoted as Map♯Z and Map♭Z respectively.
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2.14. Remark. The underlying ∞-category of sSet+/(Z,E) identifies as the subcategory of Cat∞/Z

on those isofibrations13 X Z that admit cocartesian lifts over E , and with morphisms preserving
cocartesian edges. In particular, passing to the closure of E under composition does not change the
underlying ∞-category.

We have the following characterization of the cocartesian equivalences between fibrant objects
(which is unsurprising, in light of the equivalence Catcocart∞/Z ≃ Fun(Z,Cat∞)).

2.15. Proposition ([12, Lemma B.2.4]). Let X and Y be fibrant objects in sSet+/(Z,E) equipped with

the cocartesian model structure, and let f : X Y be a map in sSet+/(Z,E). Then the following are

equivalent:

(1) f is a cocartesian equivalence.
(2) f is a homotopy equivalence, i.e. f admits a homotopy inverse: there exists a map g : Y X

and homotopies h : (∆1)♯ ×X X, h′ : (∆1)♯ × Y Y in sSet+/(Z,E) connecting g ◦ f to

idX and f ◦ g to idY , respectively.
(3) f is a categorical equivalence.
(4) For every (not necessarily marked) edge α : ∆1 Z, fα : ∆1 ×Z X ∆1 ×Z Y is a

categorical equivalence.

If every edge of Z is marked, then (4) can be replaced by the following apparently weaker condition:

(4') For every object z ∈ Z, fz : Xz Yz is a categorical equivalence.

We also have the following characterization of the fibrations between fibrant objects.

2.16. Proposition ([12, Proposition B.2.7]). Let Y = (Y,F) be a fibrant object in sSet+/(Z,E) equipped

with the cocartesian model structure, and let f : X Y be a map in sSet+/(Z,E). Then the following

are equivalent:

(1) f is a fibration.
(2) X is fibrant, and f is a categorical fibration.
(3) f is fibrant in sSet+/(Y,F).

2.17. Corollary. Suppose Z S is a cocartesian fibration. Then the cocartesian model structure
sSet+/♮Z coincides with the ‘slice’ model structure on (sSet+/S)/♮Z created by the forgetful functor to

sSet+/S equipped with its cocartesian model structure.

Proof. This immediately follows from Proposition 2.16. �
2.18. Example. Suppose that Z is a Kan complex. Then the cocartesian and cartesian model struc-
tures on sSet+/Z coincide. In particular, taking Z = ∆0, we will also refer to the cocartesian model

structure on sSet+ as the marked model structure. Since this model structure on sSet+ is unambigu-
ous, we will always regard sSet+ as equipped with it. Then the fibrant objects of sSet+ are precisely
the ∞-categories with their equivalences marked.

2.19. Example. Suppose that (Z, E) = Z∼. Then the cocartesian and cartesian model structures on
sSet+/Z∼ coincide. Moreover, we have a Quillen equivalence

(−)♭ : (sSetJoyal)/Z sSet+/Z∼ :U

where the functor U forgets the marking. In particular, (−)♭ sends categorical equivalences to marked
equivalences.

2.20. Example. The inclusion functor Spc ⊂ Cat∞ admits left and right adjoints B and ι, where B
is the classifying space functor that inverts all edges and ι is the ‘core’ functor that takes the maximal
sub-∞-groupoid. These two adjunctions are modeled by the two Quillen adjunctions

U : sSet+ sSetQuillen :(−)♯,
13Note that with this choice, the resulting subcategory is not stable under equivalence. One could alternatively

appeal to a homotopy-invariant notion of cocartesian fibration and instead replace isofibrations with functors – cf. [14],
which admits an obvious generalization to this setting.
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(−)♯ : sSetQuillen sSet+ :M.

Here M(X,E) is the maximal sub-simplicial set of X such that all of its edges are marked. In
particular, (−)♯ sends weak homotopy equivalences to marked equivalences.

2.21. Proposition ([12, Remark B.2.5]). The bifunctor

−×− : sSet+/(Z1,E1)
× sSet+/(Z2,E2)

sSet+/(Z1×Z2,E1×E2)

is left Quillen. Consequently, the bifunctors

MapZ(−,−) :sSet+/(Z,E)
op × sSet+/(Z,E) sSetQuillen

FunZ(−,−) :sSet+/(Z,E)
op × sSet+/(Z,E) sSetJoyal

are right Quillen, so sSet+/(Z,E) is both a sSetQuillen-enriched model category (with respect to MapZ)

and sSetJoyal-enriched model category (with respect to FunZ).

2.22. Remark. As explained in [17, Digression 1.2.13], by Proposition 2.21 the full subcategory of
sSet+/(Z,E) spanned by the fibrant objects is an example of an ∞-cosmos [17, Definition 1.2.1].

Finally, we explain how the formalism of marked simplicial sets can be used to extract the push-
forward functors implicitly defined by a cocartesian fibration. First, we need a lemma.

2.23. Lemma. For n > 0, the inclusion in : ∆n−1 ∼= ∆{0} ⋆∆{2,...,n}
♮∆

n is left marked anodyne.
Consequently, for a cocartesian fibration C S, the map

Fun(♮∆
n, ♮C) Fun(∆n−1, C)×Fun(∆n−1,C) Fun(∆

n, S)

induced by in is a trivial Kan fibration.

Proof. We proceed by induction on n, the base case n = 1 being the left marked anodyne map
∆{0}

♮∆
1 = (∆1)♯. Consider the commutative diagram

∆{0} ⋆ ∂∆n−2 ∆{0} ⋆∆{2,...,n}

(∆{0} ⋆ Λn−1
0 ,E) ♮Λ

n
0

♮∆
n

⋃
in−1

in

where E is the collection of edges {0, i}, 0 < i ≤ n (and the degenerate edges). The square is a
pushout, and by the inductive hypothesis, the lefthand vertical map is left marked anodyne. We
deduce that in is left marked anodyne. The second statement now follows because the lifting problem

A Fun(♮∆
n, ♮C)

B Fun(∆n−1, C)×Fun(∆n−1,C) Fun(∆
n, S)

transposes to

A× ♮∆
n

⋃
A×∆n−1

B ×∆n−1
♮C

B × ♮∆
n S

and the lefthand vertical map is left marked anodyne for any cofibration A B by [10, Proposi-
tion 3.1.2.3]. �
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The main case of interest in Lemma 2.23 is when n = 1, which shows that

Ococart(C) C ×S O(S)

is a trivial Kan fibration. Let

P : C ×S O(S) Ococart(C)

be a section that fixes the inclusion C ⊂ Ococart(C) (for this, note that C ⊂ C×SO(S) is a cofibration
as it is a monomorphism of simplicial sets). Then we say that P or the further composite P ′ = ev1 ◦P
is a cocartesian pushforward for C S. Given an edge α of S, P ′

α : Cs Ct is the pushforward
functor α! determined under the equivalence Catcocart∞/S ≃ Fun(S,Cat∞).

Functoriality in the base. Let π : X Z be a map of simplicial sets. Then the pullback functor
π∗ : sSet/Z sSet/X admits a left adjoint π!, given by postcomposing with π. In addition, since
sSet is a topos, π∗ also admits a right adjoint π∗, which may be thought of as the functor of relative
sections because Hom/X(A, π∗(B)) ∼= Hom/Z(A×X Z,B).

Now supposing that π is a map of marked simplicial sets, π∗, π!, and π∗ extend to functors of
marked simplicial sets over X or Y in an evident manner. We then seek conditions under which the
adjunctions π! ⊣ π∗ and π∗ ⊣ π∗ are Quillen with respect to the cocartesian model structures. To this
end, we have the following theorem of Lurie:

2.24. Theorem ([12, Theorem B.4.2]). Let

(Z, E) π←− (X,F) ρ−→ (X ′,F ′)

be a span of marked simplicial sets such that Z,X,X ′ are∞-categories and the collections of markings
contain all the equivalences.

(i) The adjunction

ρ! : sSet
+
/(X,F) sSet+/(X′,F ′) :ρ∗

is Quillen with respect to the cocartesian model structures.
(ii) Further suppose that

(1) For every object x ∈ X and marked edge f : z → π(x) in Z, there exists a locally
π-cartesian edge x0 → x in X lifting f .

(2) π is a flat categorical fibration.
(3) E and F are closed under composition.
(4) Suppose given a commutative diagram

x1

x0 x2

gf

h

in X where g is locally π-cartesian, π(g) is marked, and π(f) is an equivalence. Then f
is marked if and only if h is marked. (Note in particular that, taking f to be an identity
morphism, every locally π-cartesian edge lying over a marked edge is itself marked.)

Then the adjunction

π∗ : sSet+/(X,F) sSet+/(Z,E) :π∗

is Quillen with respect to the cocartesian model structures.

We formulated Theorem 2.24 as a theorem concerning a span Z
π←− X ρ−→ X ′ because in applications

we will typically be interested in the composite Quillen adjunction

ρ!π
∗ : sSet+/(Z,E) sSet+/(X′,F ′) :π∗ρ

∗.

Here are two examples.

2.25.Example (Pairing cartesian and cocartesian fibrations). Let π : X Z be a cartesian fibration.
Then the span

Z♯
π←− X♮ π−→ Z♯



PARAMETRIZED HIGHER CATEGORY THEORY 13

satisfies the hypotheses of Theorem 2.24. Now given a cocartesian fibration Y Z, define

F̃unZ(X,Y ) := (π∗π
∗)(♮Y → Z♯).

Then the fiber of F̃unZ(X,Y ) over an object z ∈ Z is Fun(Xz, Yz), and given a morphism α : z0 z1,
the pushforward functor

α! : Fun(Xz0 , Yz0) Fun(Xz1 , Yz1)

is given by precomposition in the source and postcomposition in the target. Note how this example
highlights the relevance of condition (1) in Theorem 2.24(ii).

2.26. Example (Right Kan extension). Let f : Y Z be a functor. We can apply Theorem 2.24 to
perform the operation of right Kan extension at the level of cocartesian fibrations. Consider the span

Z♯
ev0←−− (O(Z)×Z,f Y )♯

prY−−→ Y ♯.

Then the conditions of Theorem 2.24 are satisfied, so we obtain a Quillen adjunction

(prY )!(ev0)
∗ : sSet+/Z sSet+/Y :(ev0)∗(prY )

∗.

In addition, the map C×Z Y ♯ C×Z O(Z)♯×Z Y ♯ induced by the identity section ι : Z O(Z) is
a cocartesian equivalence in sSet+/Y for C Z fibrant in sSet+/Z , by [3, Lemma 9.8]. Consequently,

the induced adjunction of ∞-categories

(prY )!(ev0)
∗ : Catcocart∞/Z Catcocart∞/Y :(ev0)∗(prY )

∗

is equivalent to

f∗ : Fun(Z,Cat∞) Fun(Y,Cat∞) :f∗
under the straightening/unstraightening equivalence (which is natural with respect to pullback).

Note that as a special case, if Z = ∆0 we recover the formula FunY (Y
♯, ♮C) ≃ lim FC of [10,

Corollary 3.3.3.2] (where C Y is a cocartesian fibration and FC : Y Cat∞ the corresponding
functor). Indeed, this construction of the right Kan extension of a cocartesian fibration is suggested
by that result and the pointwise formula for a right Kan extension.

Finally, we will use the following two observations concerning the interaction of Theorem 2.24 with
compositions and homotopy equivalences of spans (which we also recorded in [5]).

2.27. Lemma. Suppose we have spans of marked simplicial sets

X0
π0←− Z0

ρ0−→ X1

and

X1
π1←− Z1

ρ1−→ X2

which each satisfy the hypotheses of Theorem 2.24. Then the span

Z0
pr0←−− Z0 ×X1 Z1

pr1−−→ Z1

also satisfies the hypothesis of Theorem 2.24.14 Consequently, we obtain a Quillen adjunction

(ρ1 ◦ pr1)!(π0 ◦ pr0)∗ : sSet+/X0
sSet+X2

:(π0 ◦ pr0)∗(ρ1 ◦ pr1)∗,

which is the composite of the Quillen adjunction from sSet+/X0
to sSet+/X1

with the one from sSet+/X1

to sSet+/X2
.

Proof. The assertion that the span satisfies the hypotheses of Theorem 2.24 is by inspection. The other
assertion that the Quillen adjunction factors as a composite follows from the base-change isomorphism
ρ∗0π1,∗ ∼= pr0,∗ ◦ pr∗1. �

14However, one should beware that the “long” span

X0 Z0 ×X1
Z1 X2

may fail to satisfy the hypotheses of Theorem 2.24, because the composition of locally cartesian fibrations may fail to
again be locally cartesian; this explains the roundabout formulation of the statement.
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2.28. Lemma. Suppose a morphism of spans of marked simplicial sets

Z

X Z ′ X ′

π ρ
f

π′ ρ′

where ρ!π
∗ and (ρ′)!(π′)∗ are left Quillen with respect to the cocartesian model structures on X and

X ′. Suppose moreover that f is a homotopy equivalence in sSet+/X′ , so that there exists a homotopy

inverse g and homotopies
h : id ≃ g ◦ f and k : id ≃ f ◦ g.

Then the natural transformation ρ!π
∗ (ρ′)!(π′)∗ induced by f is a cocartesian equivalence on all

objects, and, consequently, the adjoint natural transformation (π′)∗(ρ′)∗ π∗ρ∗ is a cocartesian
equivalence on all fibrant objects.

Proof. The homotopies h and k pull back to show that for all X C, the map

idX ×C f : X ×C K X ×C L
is a homotopy equivalence with inverse idX ×C g. The last statement now follows from [8, Corol-
lary 1.4.4(b)]. �
Parametrized fibers. In this brief subsection, we record notation for the S-fibers of an S-functor.

2.29. Notation. Given an S-category π : D S and an object x ∈ D, define

Ox→(D) := {x} ×D O(D).

For the full subcategory of cocartesian edges Ococart(D) ⊂ O(D), also define

x := {x} ×D Ococart(D).

Given an S-functor φ : C D, define

Cx := x×D,φ C.
Note that by definition, the objects of x are π-cocartesian edges in D with source x. Then by

the right cancellative property of π-cocartesian edges [10, Lemma 2.4.2.7], the morphisms in x are
2-simplices of cocartesian edges with source x, hence x is an S-space (via the map ev1 : x S). In
fact, by Lemma 12.10, ev1 : x Sπx/ is a trivial fibration, so we may think of x as an ‘S-point’ of
D.

In view of this, we will also regard Cx as a Sπx/-category (and we will sometimes be cavalier about

the distinction between x and Sπx/). Note however, that the functor x D is canonical in our setup,
whereas we need to make a choice of cocartesian pushforward to choose a S-functor Sπx/ D that
selects x ∈ D.

3. Functor categories

Let S be an ∞-category. Then Fun(S,Cat∞) is cartesian closed, so it possesses an internal hom.
As a basic application of Theorem 2.24, we will define this internal hom at the level of cocartesian
fibrations over S.

3.1. Proposition. Let C S be a cocartesian fibration. Let ev0, ev1 : O(S)×S C S denote the
source and target maps. Then the functor

(ev1)!(ev0)
∗ : sSet+/S sSet+/O(S)♯×S♮C

sSet+/S

is left Quillen with respect to the cocartesian model structures.

Proof. We verify the hypotheses of Theorem 2.24 as applied to the span S♯
ev0←−− O(S)♯×S ♮C ev1−−→ S♯.

By [10, Corollary 2.4.7.12], ev0 is a cartesian fibration and an edge e in O(S)×S C is ev0-cartesian if
and only if its projection to C is an equivalence. (1) thus holds. (2) holds since cartesian fibrations
are flat categorical fibrations. (3) is obvious. (4) follows from the stability of cocartesian edges under
equivalence. �
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3.2. Definition. In the statement of Proposition 3.1, let

FunS(C,−) := (ev0)∗(ev1)
∗ : sSet+/S sSet+/S .

We will also write this as FunS(♮C,−) if we wish to emphasize the marking.

Proposition 3.1 implies that if D S is a cocartesian fibration, FunS(C,D) S is a cocartesian
fibration. Unwinding the definitions, we see that an object of FunS(C,D) over s ∈ S is a Ss/-functor

Ss/ ×S C Ss/ ×S D,

and a cocartesian edge of FunS(C,D) over an edge e : ∆1 S is a ∆1 ×S O(S)-functor

∆1 ×S O(S)×S C ∆1 ×S O(S)×S D.

Our first goal is to prove that the construction FunS(C,−) implements the internal hom at the
level of underlying ∞-categories. To this end, we have the following lemma and proposition.

3.3. Lemma. Let ι : S O(S) be the identity section and regard O(S)♯ as a marked simplicial set
over S via the target map. Then

(1) For every marked simplicial set X S and cartesian fibration C S,

idX × ι× idC : X ×S C♮ X ×S O(S)♯ ×S C♮

is a cocartesian equivalence in sSet+/S.

(1') For every marked simplicial set X S and cartesian fibration C S,

ι× idC : X ×S C♮ Fun((∆1)♯, X)×S C♮

is a cocartesian equivalence in sSet+/S, where the marked edges in Fun((∆1)♯, X) are the

marked squares in X.
(2) For every marked simplicial set X S and cocartesian fibration C S,

idC × ι× idX : ♮C ×S X ♮C ×S O(S)♯ ×S X

is a homotopy equivalence in sSet+/S.

Proof. (1) Because − ×S C♮ preserves cocartesian equivalences, we reduce to the case where C = S.
By definition, X X ×S O(S)♯ is a cocartesian equivalence if and only if for every cocartesian

fibration Z S, Map♯S(X ×S O(S)♯, ♮Z) Map♯S(X, ♮Z) is a trivial Kan fibration. In other
words, for every monomorphism of simplicial sets A B and cocartesian fibration Z S, we
need to provide a lift in the following commutative square

B♯ ×X ⊔
A♯×X(A♯ ×X)×S O(S)♯ ♮Z

(B♯ ×X)×S O(S)♯ S♯

φ

Define h0 : O(S)♯× (∆1)♯ O(S)♯ to be the adjoint to the map O(S)♯ O(O(S))♯ obtained
by precomposing by the map of posets ∆1 × ∆1 ∆1 which sends (1, 1) to 1 and the other
vertices to 0. Precomposing φ by idA♯×X × h0, define a homotopy

h : (A♯ ×X)×S O(S)♯ × (∆1)♯ ♮Z

from φ|A♯×X ◦ prA♯×X to φ|(A♯×X)×SO(S)♯ . Using h and φ|B♯×X , define a map

ψ : B♯ ×X
⊔

A♯×X
(A♯ ×X)×S O(S)♯ Fun((∆1)♯, ♮Z)
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such that ψ|B♯×X is adjoint to φ|B♯×X ◦ prB♯×X and ψ|(A♯×X)×SO(S)♯ is adjoint to h. Then we

may factor the above square through the trivial fibration Fun((∆1)♯, ♮Z) ♮Z×SO(S)♯ to obtain
the commutative rectangle

B♯ ×X ⊔
A♯×X(A♯ ×X)×S O(S)♯ Fun((∆1)♯, ♮Z) ♮Z

(B♯ ×X)×S O(S)♯ ♮Z ×S O(S)♯ S♯.

ψ e1

≃ψ̃

φ|
B♯×X

×id

e1

The dotted lift ψ̃ exists, and e1 ◦ ψ̃ is our desired lift.
(1') Repeat the argument of (1) with Fun((∆1)♯, X) in place of O(S)♯.
(2) Let p : C S denote the structure map and let P be a lift in the commutative square

♮C Fun((∆1)♯, ♮C)

♮C ×S O(S)♯ ♮C ×S O(S)♯.

ιC

(e0,O(p))≃

=

P

Let
g = (e1 × idX) ◦ (P × idX) : ♮C ×S O(S)♯ ×S X ♮C ×S X

and note that g is a map over S. We claim that g is a marked homotopy inverse of f = idC×ι×idX .
By construction, g ◦ f = id. For the other direction, define

h0 : Fun((∆1)♯, ♮C)× (∆1)♯ Fun((∆1)♯, ♮C)

as the adjoint of the map Fun((∆1)♯, ♮C) Fun((∆1 ×∆1)♯, ♮C) obtained by precomposing by
the map of posets ∆1 ×∆1 ∆1 which sends (0, 0) to 0 and the other vertices to 1. Define

h : ♮C ×S O(S)♯ ×S X × (∆1)♯ ♮C ×S O(S)♯ ×S X
as the composite ((e0,O(p))×X)◦ (h0×X)◦ (P × idX×(∆1)♯). Then h is a homotopy over S from
id to f ◦ g.

�

3.4. Proposition. Let C,C′, D S be cocartesian fibrations and let F : C C′ be a monomor-
phism of cocartesian fibrations over S (so preserving cocartesian edges). For all marked simplicial sets
Y over S, the map

FunS(♮D,FunS(♮C
′, Y )) FunS(♮D ×S ♮C

′, Y )×FunS(♮D×S♮C,Y ) FunS(♮D,FunS(♮C, Y ))

which precomposes by F is a trivial Kan fibration.

Proof. From the defining adjunction, for all X,Y ∈ sSet+/S we have a natural isomorphism

FunS(X,FunS(♮C, Y )) ∼= FunS(X ×S O(S)♯ ×S ♮C, Y )

of simplicial sets. Since FunS(−,−) is a right Quillen bifunctor, the assertion reduces to showing that

♮D ×S ♮C
′ ⊔

♮D×S♮C

♮D ×S O(S)♯ ×S ♮C ♮D ×S O(S)♯ ×S ♮C
′

is a trivial cofibration in sSet+/S , which follows from Lemma 3.3(2). �

In Proposition 3.4, letting C = ∅ and Y = ♮E for another cocartesian fibration E S, we deduce
that FunS(C

′,−) is right adjoint to C′×S− as an endofunctor of Fun(S,Cat∞). Further setting D =
S, we deduce that the category of cocartesian sections of FunS(♮C, ♮E) is equivalent to FunS(♮C, ♮E).
We will employ the following notation to explicitly track objects under this correspondence.

3.5. Notation. Given a map f : ♮C ♮E, let σf denote the cocartesian section S♯ FunS(♮C, ♮E)

given by adjointing the map O(S)♯ ×S ♮C
prC−−→ ♮C

f−→ ♮E.

We next study varying the second variable in the construction FunS(−,−).
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3.6. Lemma. Let C D be a fibration of marked simplicial sets over S.

(1) Let K S be a cocartesian fibration. Then

FunS(♮K,C) FunS(♮K,D)×D C
is a fibration in sSet+/S.

(2) The map

FunS(S
♯, C) FunS(S

♯, D)×D C

is a trivial fibration in sSet+/S.

Proof. Let i : A B be a map of marked simplicial sets. For (1), we use that if i is a trivial
cofibration, then

B
⊔

A

A×S O(S)♯ ×S ♮K B ×S O(S)×S ♮K

is a trivial cofibration, which follows from Proposition 3.1. For (2), we use that if i is a cofibration,
then

B
⊔

A

A×S O(S)♯ B ×S O(S)

is a trivial cofibration, which follows from Lemma 3.3(1). �

The following proposition indicates that we can promote the conclusion FunS(S,−) ≃ id (as an
endofunctor of Fun(S,Cat∞)) of Proposition 3.4 to the level of cocartesian model structures. It will
not be used in the sequel and is included only for illustrative purposes.

3.7. Proposition. The Quillen adjunction

−×S O(S)♯ : sSet+/S sSet+/S :FunS(S
♯,−)

is a Quillen equivalence.

Proof. We first check that for every cocartesian fibration C S, the counit map

FunS(S
♯, ♮C)×S O(S)♯ ♮C

is a cocartesian equivalence. By Lemma 3.3(1), it suffices to show that

FunS(S
♯, ♮C) ♮C

is a trivial marked fibration, which follows from Lemma 3.6(2) (taking D = S). We now complete
the proof by checking that − ×S O(S)♯ reflects cocartesian equivalences: i.e., given the commutative
square

A B

A×S O(S)♯ B ×S O(S)♯.

if the lower horizontal map is a cocartesian equivalence over S (with respect to the target map) then
the upper horizontal map is a cocartesian equivalence over S. But the vertical maps are cocartesian
equivalences by Lemma 3.3(1). �

The construction FunS(−,−) does not make homotopical sense when the first variable is not fibrant,
so it does not yield a Quillen bifunctor. Nevertheless, we can say the following about varying the first
variable.

3.8. Proposition. Let K, L, and C be fibrant marked simplicial sets over S, let f : K L be a
map and let

f∗ : FunS(L,C) FunS(K,C)

denote the induced map.

(1) Suppose that f is a cocartesian equivalence over S. Then f∗ is a cocartesian equivalence over
S.

(2) Suppose that f is a cofibration. Then f∗ is a fibration in sSet+/S.
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Proof. (1): It suffices to check that for all s ∈ S, f∗ induces a categorical equivalence between the
fibers over s, i.e. that

FunS((S
s/)♯ ×S L,C) FunS((S

s/)♯ ×S K,C)
is a categorical equivalence. Our assumption implies that (Ss/)♯×SK (Ss/)♯×SL is a cocartesian
equivalence over S, so this holds.

(2): For any trivial cofibration A B in sSet+S , we need to check that

A×S O(S)×S L
⊔

A×SO(S)×SK

B ×S O(S)×S K B ×S O(S)×S L

is a trivial cofibration in sSet+/S . By Proposition 3.1, − ×S O(S) ×S K preserves trivial cofibrations

and ditto for L. The result then follows. �

A final word on notation: since FunS(−,−) is only homotopically meaningful (and fibrant) when
both variables are fibrant, we will henceforth cease to denote the markings on the variables.

S-categories of S-objects. For the convenience of the reader, we briefly review the construction
and basic properties of the S-category of S-objects in an ∞-category C. This is a construction, at
the level of marked simplicial sets, of the right adjoint to the Grothendieck construction functor15

GrU : Catcocart∞/S Cat∞, (C S) 7→ C.

This material is originally due to Denis Nardin in [3, §7].

3.9. Construction ([3, Definition 7.4]). The span

S♯ O(S)
♮

∆0ev0 ρ

defines a right Quillen functor (ev0)∗ρ∗ : sSet+ sSet+/S , which sends an ∞-category E to

F̃unS(O(S), E × S) (cf. Example 2.25). This is the S-category of objects in E, which we will de-
note by ES .

The next proposition shows that the functor E 7→ ES indeed implements the right adjoint to GrU .

3.10. Proposition. Suppose C a S-category and E an ∞-category. Then we have an equivalence

ψ : FunS(C,ES)
≃−→ Fun(C,E)

Proof. Consider the commutative diagram

C∼ O(S)
♮

∆0 .

♮C S♯

∆0

Given an ∞-category E, travelling along the outer span (i.e., pulling back and then pushing forward)
yields Fun(C,E), travelling along the two inner spans yields FunS(C,ES), and the comparison functor

ψ is induced by the map ι : C∼
♮C ×S O(S)♮. By [3, Proposition 6.2], ι is a homotopy equivalence

in sSet+/S . Therefore, combining Lemma 2.27 and Lemma 2.28, we deduce the claim. �

3.11. Notation. Given a S-functor p : C ES , let p
† : C E denote the corresponding functor

under the equivalence of Proposition 3.10.

15We write GrU to distinguish from Notation 2.6.
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3.12. Example. Let E = Spc or Cat∞. Then Spc
S
resp. Cat∞,S is the S-category of S-spaces

resp. S-categories. In particular, suppose E = Spc and S = Oop
G . Then we also call Spc

Oop
G

the

G-∞-category of G-spaces. Note that the fiber of this cocartesian fibration over a transitive G-set
G/H is equivalent to the ∞-category of H-spaces Fun(Oop

H ,Spc), and the pushforward functors are
given by restriction along a subgroup and conjugation.

3.13. Remark. Let C be an S-category and π : X C a left fibration. Then π straightens to a
functor F : C Spc, which under the equivalence of Proposition 3.10 corresponds to a S-functor
F ′ : C Spc

S
. We will say that π S-straightens to F ′. Similarly, if π is a cocartesian fibration,

then π S-straightens to a S-functor valued in Cat∞,S .

4. Join and slice

The join and slice constructions are at the heart of the ∞-categorical approach to limits and col-
imits. In this section, we introduce relative join and slice constructions and explore their homotopical
properties.

The S-join.

4.1. Definition. Let ι : S × ∂∆1 S ×∆1 be the inclusion. Define the S-join to be the functor

(− ⋆S −) := ι∗ : sSet/S×∂∆1 sSet/S×∆1 .

Define the marked S-join to be the functor

(− ⋆S −) := ι∗ : sSet+
/S♯×(∂∆1)♭

sSet+
/S♯×(∆1)♭

.

4.2. Notation. Given X,Y marked simplicial sets over S, we will usually refer to the structure maps
to S by π1 : X S, π2 : Y S, and π : X ⋆S Y S. Explicitly, a (i+ j+1)-simplex λ of X ⋆S Y
is the data of simplices σ : ∆i X , τ : ∆j Y , and λ′ : ∆i ⋆∆j S such that the diagram

∆i ∆i ⋆∆j ∆j

X S Y

σ λ′ τ

π1 π2

commutes; we then have that λ′ = π ◦λ. We will sometimes write λ = (σ, τ) so as to remember the
data of the i-simplex of X and the j-simplex of Y in the notation. If given an n-simplex of X ⋆S Y ,
we will indicate the decomposition of ∆n given by the structure map to ∆1 as ∆n0 ⋆∆n1 (with either
side possibly empty).

4.3. Proposition. Let ι : S × ∂∆1 S ×∆1 be the inclusion. Then

(a) ι∗ : sSet/S×∂∆1 sSet/S×∆1 is a right Quillen functor.

(b) ι∗ : sSet+
/S♯×(∂∆1)♭

sSet+
/S♯×(∆1)♭

is a right Quillen functor.

Consequently, if X and Y are categorical resp. cocartesian fibrations over S, then X ⋆S Y is a
categorical resp. cocartesian fibration over S, with the cocartesian edges given by those in X and Y .

Proof. For (b), we verify the hypotheses of Theorem 2.24(ii). All of the requirements are immediate
except for (1) and (2).

(1): Let (s, i) be a vertex of S♯ × (∂∆1)♭, i = 0 or 1. Let f : (s′, i′) (s, i) be a marked edge in
S♯ × (∆1)♭. Then i′ = i and f viewed as an edge in S♯ × (∂∆1)♭ is locally ι-cartesian.

(2): It is obvious that ∂∆1 ∆1 is a flat categorical fibration, so by stability of flat categorical
fibrations under base change, S × ∂∆1 S ×∆1 is a flat categorical fibration.

(a) also follows from (2) by [12, Proposition B.4.5]. By (a), if X and Y are categorical fibrations
over S, X⋆S Y is a categorical fibration over S×∆1. The projection map S×∆1 S is a categorical
fibration, so X⋆S Y is also a categorical fibration over S. By (b), if X and Y are cocartesian fibrations
over S, ♮X ⋆S ♮Y is fibrant in sSet+

/S♯×(∆1)♭
. Since S♯ × (∆1)♭ is marked as a cocartesian fibration

over S, ♮X ⋆S ♮Y is marked as a cocartesian fibration over S. �
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We have the compatibility of the relative join with base change.

4.4. Lemma. Let f : T S be a functor and let X and Y be (marked) simplicial sets over S. Then
we have a canonical isomorphism

(X ⋆S Y )×S T ∼= (X ×S T ) ⋆T (Y ×S T ).

Proof. From the pullback square

T × ∂∆1 T ×∆1

S × ∂∆1 S ×∆1

ιT

f×id f×id

ιS

we obtain the base-change isomorphism f∗(ιS)∗ ∼= (ιT )∗f∗. �

In [10, §4.2.2], Lurie introduces the relative ‘diamond’ join operation ⋄S, which we now recall.
Given X and Y marked simplicial sets over S, define

X ⋄S Y = X ⊔X×SY×{0} X ×S Y × (∆1)♭ ⊔X×SY×{1} Y.

There is a comparison map

ψ(X,Y ) : X ⋄S Y X ⋆S Y = ι∗(X,Y ),

adjoint to the isomorphism ι∗(X ⋆S Y ) ∼= (X,Y ).

4.5. Lemma. Let X be a marked simplicial set. Then ψ(X,S) : X ⋄S S♯ X ⋆S S
♯ is a cocartesian

equivalence in sSet+/S. Dually, if X is in addition fibrant, then ψ(S,X) : S♯ ⋄S X S♯ ⋆S X is a

cocartesian equivalence in sSet+/S.

Proof. We first address the map ψ(X,S). By left properness of the cocartesian model structure, the

defining pushout for X ⋄SS♯ is a homotopy pushout. By Theorem 4.16,16 −⋆SS♯ preserves cocartesian
equivalences. Therefore, choosing a fibrant replacement for X and using naturality of the comparison
map ψ(X,S), we may reduce to the case that X is fibrant. Then we have to check that

X × {1} X × (∆1)♭

S♯ X ⋆S S
♯

is a homotopy pushout square. Since this is a square of fibrant objects, this assertion can be checked

fiberwise, in which case it reduces to the equivalence Xs ⋄∆0 ≃−→ X✄ of [10, Proposition 4.2.1.2].
The second statement concerning ψ(S,X) follows by the same type of argument, but without the

reduction step. �

4.6. Warning. In general, ψ(X,Y ) is not a cocartesian equivalence. As a counterexample, consider

S = ∆1, X = {0}, and Y = {1}. Then ψ(X,Y ) is the inclusion of X ⋄S Y ∼= ∆{0} ⊔ ∆{1} into

X ⋆S Y ∼= ∆1, which is not a cocartesian equivalence over ∆1.

We will later need the following strengthening of the conclusion of Proposition 4.3.

4.7. Proposition. (1) Let C,C′, D S be inner fibrations and let C,C′ D be functors over S.
Then C ⋆D C

′ S is an inner fibration.

(2) Let C,C′, D S be S-categories and let C,C′ D be S-functors. Then C ⋆D C′ S
is a S-category with cocartesian edges given by those in C or C′, and C ⋆D C′ D is a
S-functor.

16Note there is no circularity since Lemma 4.5 is only later referenced in this paper at the beginning of §9.



PARAMETRIZED HIGHER CATEGORY THEORY 21

Proof. (1) Let 0 < k < n. We need to solve the lifting problem

Λnk C ⋆D C′

∆n S.

λ0

λ

Let λ : ∆n D be a lift in the commutative square

Λnk D

∆n S.

λ

Define λ using the data (λ0|∆n0 , λ0|∆n1 , λ). Then λ is a valid lift.
(2) Consider C ⋆D C

′ as a marked simplicial set with marked edges those in ♮C or in ♮C
′. We need to

solve the lifting problem

♮Λ
n
0 C ⋆D C

′

♮∆
n S.

λ0

λ

Let λ : ∆n D be a lift in the commutative square

♮Λ
n
0 ♮D

♮∆
n S.

λ

Define λ using the data (λ0|∆n0 , λ0|∆n1 , λ). Then λ is a valid lift. Finally, note that we may
obviously lift against classes (3) and (4) of [10, Definition 3.1.1.1]. We conclude that C⋆DC

′ S
is fibrant in sSet+/S , hence an S-category with cocartesian edges as marked.

�

Since the S-join is defined as a right Kan extension, it is simple to map into. In the other direction,
we can offer the following lemma.

4.8. Lemma. Let C, C′, D, and E be S-categories and let C,C′ D be S-functors. Then

FunS(C ⋆D C
′, E) FunS(C,E) × FunS(C

′, E)

is a bifibration [10, Definition 2.4.7.2]. Consequently,

FunS(C ⋆D C
′, E) FunS(C,E)

is a cartesian fibration with cartesian edges those sent to equivalences in FunS(C
′, E), and

FunS(C ⋆D C
′, E) FunS(C

′, E)

is a cocartesian fibration with cocartesian edges those sent to equivalences in FunS(C
′, E).

Proof. By inspection, the span

(∆1)♭
π←− ♮(C ⋆D C

′)
π′
−→ S♯

satisfies the hypotheses of Theorem 2.24. Therefore, π∗π′∗(♮E S) is a categorical fibration over ∆1.
The claim now follows from [10, Proposition 2.4.7.10], and the consequence from [10, Lemma 2.4.7.5]
and its opposite. �
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The Quillen adjunction between S-join and S-slice. Our next goal is to obtain a relative join
and slice Quillen adjunction. To this end, we need a good understanding of the combinatorics of the
relative join (Proposition 4.11). We prepare for the proof of that proposition with a few lemmas.

4.9. Lemma. Let i, l ≥ −1 and j, k ≥ 0. Then the map

∆i ⋆∆j ⋆ ∂∆k ⋆∆l
⊔

∆j⋆∂∆k⋆∆l

∆j+k+l+2 ∆i+j+k+l+3

is inner anodyne.

Proof. Let f : ∆j−1 ∆i ⋆∆j−1 and g : Λk+1
0 ∆k+1. The map in question is f ⋆ g ⋆∆l, so is

inner anodyne by [10, Lemma 2.1.2.3]. �

By [10, Lemma 2.1.2.4], the join of a left anodyne map and an inclusion is left anodyne. We need
a slight refinement of this result:

4.10. Lemma. Let f : A0 A be a cofibration of simplicial sets.

(1) Let g : B0 B be a right marked anodyne map between marked simplicial sets. Then

f ♭ ⋆ g : A♭0 ⋆ B
⊔

A♭
0⋆B0

A♭ ⋆ B0 A♭ ⋆ B

is a right marked anodyne map.
(2) Let g : B0 B be a left marked anodyne map between marked simplicial sets. Then

g ⋆ f ♭ : B ⋆ A♭0
⊔

B0⋆A♭
0

B0 ⋆ A
♭ B ⋆ A♭

is a left marked anodyne map.

Proof. We prove (1); the dual assertion (2) is proven by a similar argument. f lies in the weakly
saturated closure of the inclusions im : ∂∆m ∆m, so it suffices to check that i♭m ⋆ g is right
marked anodyne for the four classes of morphisms enumerated in [10, Definition 3.1.1.1]. For g :
(Λni )

♭ (∆n)♭, 0 < i < n, i♭m ⋆ g obtained from an inner anodyne map by marking common edges,

so is marked right anodyne. For g : Λnn
♮ ∆n♮, i♭m ⋆ g is Λn+m+1

n+m+1

♮
∆n+m+1♮, so i♭m ⋆ g is marked

right anodyne. For the remaining two classes, i♭m⋆g is the identity because no markings are introduced
when joining two marked simplicial sets. �

The following proposition reveals a basic asymmetry of the relative join, which is related to our
choice of cocartesian fibrations to model functors.

4.11. Proposition. Let K be a marked simplicial set over S.

(1) For every marked left horn inclusion ♮Λ
n
0 ♮∆

n over S, the induced map

K ⋆S (♮Λ
n
0 ×S O(S)

♮
) K ⋆S (♮∆

n ×S O(S)
♮
)

is left marked anodyne, where the pullbacks ♮Λ
n
0 ×S O(S)♮ and ♮∆

n ×S O(S)♮ are formed with
respect to the source map e0 and are regarded as marked simplicial sets over S via the target
map e1.

(1') For every left horn inclusion Λn0 ∆n over S, the induced map

∆n ×S O(S)
⊔

Λn
0 ×SO(S)

K ⋆S (Λn0 ×S O(S)) K ⋆S (∆n ×S O(S))

is an inner anodyne map.
(2) Let e0 : C S be a cartesian fibration over S and let e1 : C S be any map of simplicial

sets. For every inner horn inclusion Λnk ∆n, 0 < k < n over S, the induced map

K ⋆S (Λnk ×S C) K ⋆S (∆n ×S C)
is inner anodyne, where the pullbacks Λnk ×S C and ∆n ×S C are formed with respect to e0
and are regarded as simplicial sets over S via e1.
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(3) For every marked right horn inclusion Λnn
♮ ∆n♮ over S, the induced map

K ⋆S Λnn
♮ K ⋆S ∆n♮

is right marked anodyne.

Proof. Let I be the set of simplices of K endowed with a total order such that σ < σ′ if the dimension
of σ is less than that of σ′, where we view the empty set as a simplex of dimension −1. Let J be the
set of epimorphisms χ : ∆j ∆n−1 endowed with a total order such that χ < χ′ if the dimension
of χ is less than that of χ′. Order I × J by (σ, χ) < (σ′, χ′) if σ < σ′ or σ = σ′ and χ < χ′. For any
simplex τ : ∆j ∆n, we let rk(τ) be the pullback

∆rk(τ)0 ∆n−1

∆j ∆n

rk(τ)

dk

τ

We will let ι denote the map under consideration. We first prove (1). Given σ ∈ I and χ ∈ J , let
Xσ,χ be the sub-marked simplicial set of K ⋆S (♮∆

n ×S O(S)♮) on K ⋆S (♮Λ
n
0 ×S O(S)♮) and simplices

(σ′, τ ′) : ∆i ⋆∆j K ⋆S (∆n ×S O(S)) not in K ⋆S (Λn0 ×S O(S)) with (σ′, r0(e0 ◦ τ ′)) ≤ (σ, χ). If
(σ, χ) < (σ′, χ′), then we have an obvious inclusion Xσ,χ Xσ′,χ′ , and we let

X<(σ,χ) = (♮Λ
n
0 ×S O(S)

♮
)
⋃

(∪(σ′,χ′)<(σ,χ)Xσ′,χ′).

Since K ⋆S (♮∆
n ×S O(S)

♮
) = colim(σ,χ)∈I×J Xσ,χ, in order to show that ι is left marked anodyne

it suffices to show that X<(σ,χ) Xσ,χ is left marked anodyne for all (σ, χ) ∈ I × J . We will say
that a simplex of Xσ,χ is new if it does not belong to X<(σ,χ).

Let σ : ∆i K be an element of I and χ : ∆j ∆n−1 an element of J . Let λ = (σ, τ) :
∆i ⋆∆j K ⋆S (∆n ×S O(S)) be any nondegenerate new simplex of Xσ,χ, so r0(e0 ◦ τ) = χ. Let
χ̄ : ∆j+1 ∆n be the unique epimorphism with r0(χ̄) = χ and let e : ∆1 ∆n ×S O(S) be a
cartesian edge over {0, 1} with e(1) = τ(0). The inclusion (∆1)♯

⊔
∆0 ∆j

♮∆
j+1 is right marked

anodyne, so we have a lift τ̄ in the following diagram

∆1
⊔

∆0 ∆j ∆n ×S O(S)

∆j+1 ∆n.

e ∪ τ

χ̄

τ̄

By Lemma 4.10,

∆i ⋆∆j
⊔

∆j

♮∆
j+1 ∆i ⋆ ♮∆

j+1

is right marked anodyne. Using that (e1 ◦ τ̄ )(e) is an equivalence, we obtain a lift

∆i ⋆∆j
⊔

∆j ♮∆
j+1 S∼

∆i ⋆ ♮∆
j+1

πλ ∪ e1 τ̄

which allows us to define λ̄ : ∆i ⋆ ∆j+1 K ⋆S (∆n ×S O(S)) extending λ and τ̄ . Then λ̄ is a
nondegenerate new simplex of Xσ,χ and every face of λ̄ except for λ = di+1(λ̄) lies in X<(σ,χ). We
may thus form the pushout

⊔
λ(Λ

i+j+2
i+1 , {i+ 1, i+ 2}) X<(σ,χ)

⊔
λ(∆

i+j+2, {i+ 1, i+ 2}) X<(σ,χ),1

which factors the inclusion X<(σ,χ) X(σ,χ) as the composition of a left marked anodyne map and
an inclusion (there is one further complication involving markings: in the special case n = 1, σ = ∅,
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j = 1, we may have that λ = τ is a marked edge, i.e. an equivalence over 1. Then the edges of τ̄ are
all marked, so we should form the pushout via maps (Λ2

0)
♯ (∆2)♯, which are left marked anodyne

by [10, Corollary 3.1.1.7]).
Now for the inductive step suppose that we have defined a sequence of left marked anodyne maps

X<(σ,χ) . . . X<(σ,χ),m ⊂ X(σ,χ)

such that for all 0 < l ≤ m all new nondegenerate simplices in X(σ,χ) of dimension i + l + j lie in
X<(σ,χ),l and admit an extension to a i + l + j + 1-simplex with the edge {i + l, i + l + 1} marked
in X<(σ,χ),l, and no new nondegenerate simplices of dimension > i + l + j + 1 lie in X<(σ,χ),l. Let
λ = (σ, τ) be any new nondegenerate i + m + j + 1-simplex not in X<(σ,χ),m. For 0 ≤ l < m let
λl = (σ, τl) be a nondegenerate i +m + j + 1-simplex in X<(σ,χ),m with di+m(λl) = di+l+1(λ) and
edge {i+m, i+m+ 1} marked. τ and τ0, ..., τm−1 together define a map

τ ′ : Λm+1
m+1 ⋆∆

j−1 ∆n ×S O(S)

where the domain of τ is the subset {0, ...,m − 1,m + 1, ...,m + j + 1} and the domain of τl is the

subset {0, ..., l̂, ...,m+ j+1}. Observe that the map Λm+1
m+1

♮
⋆∆j−1 ∆m+1♮ ⋆∆j−1 is right marked

anodyne, since it factors as

Λm+1
m+1

♮
⋆∆j−1 ∆m+1♮

⊔

Λm+1
m+1

♮

Λm+1
m+1

♮
⋆∆j−1 ∆m+1♮ ⋆∆j−1

where the first map is obtained as the pushout of the right marked anodyne map Λm+1
m+1

♮
∆m+1♮

along the inclusion Λm+1
m+1

♮
Λm+1
m+1

♮
⋆∆j−1 and the second map is obtained by marking a common

edge of an inner anodyne map. Let χ̄ : ∆m+j+1 ∆n be the unique epimorphism with r0(χ̄) = χ.
Then we have a lift τ̄ in the following commutative diagram

Λm+1
m+1 ⋆∆

j−1 ∆n ×S O(S)

∆m+1 ⋆∆j−1 ∆n.

τ ′

χ̄

τ̄

By Lemma 4.10, the map

∆i ⋆ Λm+1
m+1

♮
⋆∆j−1

⊔

Λm+1
m+1

♮
⋆∆j−1

∆m+1♮ ⋆∆j−1 ∆i ⋆∆m+1♮ ⋆∆j−1

is right marked anodyne. Since (e1◦ τ̄)({m,m+1}) is an equivalence, we may extend (∪lπλl)∪πλ∪e1τ̄
to a map ∆i+m+j+2 S, which defines a nondegenerate (i + m + j + 2)-simplex λ̄ with λ as its
(i+m+1)th face and which extends τ̄ . By construction every other face of λ̄ lies in X<(σ,χ),m. Thus
we may form the pushout

⊔
λ(Λ

i+m+j+2
i+m+1 , {i+m+ 1, i+m+ 2}) X<(σ,χ),m

⊔
λ(∆

i+m+j+2, {i+m+ 1, i+m+ 2}) X<(σ,χ),m+1

and complete the inductive step (again, there is one further complication involving markings: in the
special case i = −1, n = 1, j = 0, m = 1, we may have that λ is marked. Then every edge of
λ̄ is marked since (Λ2

2)
♯ (∆2)♯ is right marked anodyne, and we form the pushout along maps

(Λ2
1)
♯ (∆2)♯). Passing to the colimit, we deduce that X<(σ,χ) Xσ,χ is marked left anodyne,

which completes the proof.
For (1'), simply observe that if i > −1 we are attaching along inner horns.
We now modify the above proof to prove (2). Let Xσ,χ be the sub-simplicial set of K ⋆S (∆

n×S C)
on K ⋆S (Λnk ×S C) and simplices (σ′, τ ′) : ∆i ⋆∆j K ⋆S (∆n ×S C) not in K ⋆S (Λnk ×S C) with
(σ′, rk(e0 ◦ τ ′)) ≤ (σ, χ). Let X<(σ,χ) = (K ⋆ (Λnk ×S C))

⋃
(∪(σ′,χ′)<(σ,χ)Xσ′,χ′). We will show that

X<(σ,χ) Xσ,χ is inner anodyne for all (σ, χ) ∈ I × J .
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Let σ : ∆i K be an element of I, χ : ∆j ∆n−1 an element of J , and let k′ be the first
vertex of χ with χ(k′) = k. Let λ = (σ, τ) : ∆i ⋆∆j K ⋆S (∆n ×S C) be any nondegenerate new
simplex of Xσ,χ, so rk(e0 ◦ τ) = χ. Let χ̄ : ∆j+1 ∆n be the unique epimorphism with rk(χ̄) = χ.
Combining [10, Lemma 2.1.2.3] and Lemma 4.10, we see that the inclusion

dk′ : ∆
j = ∆k′−1 ⋆∆j−k′ ∆k′−1 ⋆ ♮∆

j−k′+1

is right marked anodyne, so we have a lift τ̄ in the following diagram

∆j ∆n ×S C

∆j+1 ∆n

τ

χ̄

τ̄

where τ̄ ({k′, k′ + 1}) is a cartesian edge. By Lemma 4.9, ∆i ⋆ ∆j
⊔

∆j ∆j+1 ∆i ⋆∆j+1 is inner
anodyne. We thus obtain an extension

∆i ⋆∆j
⊔

∆j ∆j+1 S

∆i ⋆∆j+1

πλ ∪ e1 τ̄

which allows us to define λ̄ : ∆i⋆∆j+1 K⋆S (∆
n×SC) extending λ and τ̄ . Then λ̄ is nondegenerate

and every face of λ̄ except for λ = di+k′+1(λ̄) lies in X<(σ,χ). We may thus form the pushout

⊔
λ Λ

i+j+2
i+k′+1 X<(σ,χ)

⊔
λ∆

i+j+2 X<(σ,χ),1

which factors the inclusion X<(σ,χ) X(σ,χ) as the composition of an inner anodyne map and an
inclusion.

Now for the inductive step suppose that we have defined a sequence of inner anodyne maps

X<(σ,χ) ... X<(σ,χ),m ⊂ X(σ,χ)

such that for all 0 < l ≤ m all new nondegenerate simplices in X(σ,χ) of dimension i + l + j lie in
X<(σ,χ),l and admit an extension to a i+ l+j+1-simplex such that the edge {i+k′+ l, i+k′+ l+1} is
sent to a cartesian edge of ∆n×S C, and no new nondegenerate simplices of dimension > i+ l+ j +1
lie in X<(σ,χ),l. Let λ = (σ, τ) be any new nondegenerate i+m+ j +1-simplex not in X<(σ,χ),m. For
0 ≤ l < m let λl = (σ, τl) be a nondegenerate i+m+ j + 1-simplex in X<(σ,χ),m with di+m+k′ (λl) =
di+l+k′+1(λ). τ and τ0, ..., τm−1 together define a map

τ ′ : ∆k′−1 ⋆ Λm+1
m+1 ⋆∆

j−k′−1 ∆n ×S C
where the domain of τ is the subset {0, ..., k′ +m− 1, k′ +m+ 1, ...,m+ j + 1} and the domain of τl

is the subset {0, ..., k̂′ + l, ...,m+ j + 1}. The map

∆k′−1 ⋆ Λm+1
m+1

♮
⋆∆j−k′−1 ∆k′−1 ⋆∆m+1♮ ⋆∆j−k′−1

is ∆k′−1 joined with a right marked anodyne map, so is right marked anodyne by Lemma 4.10. Let
χ̄ : ∆m+j+1 ∆n be the unique epimorphism with rk(χ̄) = χ. Then we have a lift τ̄ in the following
commutative diagram

∆k′−1 ⋆ Λm+1
m+1 ⋆∆

j−k′−1 ∆n ×S C

∆m+j+1 ∆n

τ ′

χ̄

τ̄

such that τ̄ ({k′ +m, k′ +m+ 1}) is a cartesian edge. By Lemma 4.9, the map

∆i ⋆∆k′−1 ⋆ ∂∆m ⋆∆j−k′ ⊔

∆k′−1⋆∂∆m⋆∆j−k′
∆m+j+1 ∆i+m+j+2
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is inner anodyne. Therefore, we may extend (∪lπλl) ∪ πλ ∪ e1τ̄ to a map ∆i+m+j+2 S, which
defines a nondegenerate (i +m + j + 2)-simplex λ̄ with λ as its (i + k′ +m + 1)th face and which
extends τ̄ . By construction every other face of λ̄ lies in X<(σ,χ),m. Thus we may form the pushout

⊔
λ Λ

i+m+j+2
i+k′+m+1 X<(σ,χ),m

⊔
λ∆

i+m+j+2 X<(σ,χ),m+1

and complete the inductive step. Passing to the colimit, we deduce that X<(σ,χ) Xσ,χ is inner
anodyne, which completes the proof.

We finally modify the above proof to prove (3). Given σ ∈ I and χ ∈ J , let Xσ,χ be the sub-

marked simplicial set of K ⋆S ∆n♮ on K ⋆S Λnn
♮ and simplices (σ′, τ ′) : ∆i ⋆∆j K ⋆S ∆n♮ not in

K ⋆S Λnn
♮ with (σ′, rn(τ ′)) ≤ (σ, χ). Let X<(σ,χ) = (K ⋆S Λnn

♮)
⋃
(∪(σ′,χ′)<(σ,χ)Xσ′,χ′). We will show

that X<(σ,χ) Xσ,χ is right marked anodyne for all (σ, χ) ∈ I × J .
Let σ : ∆i K be an element of I and χ : ∆j ∆n−1 an element of J . Let λ = (σ, τ) :

∆i ⋆∆j K ⋆S ∆
n♮ be any nondegenerate new simplex of Xσ,χ, so rn(τ) = χ. Let χ̄ : ∆j+1 ∆n

be the unique epimorphism with rn(χ̄) = χ. By Lemma 4.9, the inclusion

∆i ⋆∆j
⊔

∆j

∆j+1 ∆i ⋆∆j+1

is inner anodyne, so we have an extension in the following diagram

∆i ⋆∆j
⊔

∆j ∆j+1 S

∆i ⋆∆j+1

πλ ∪ π2χ̄

which allows us to define λ̄ : ∆i ⋆∆j+1 K ⋆S ∆n♮ extending λ and χ̄. Then λ̄ is nondegenerate
and every face of λ̄ except for λ = di+j+2(λ̄) lies in X<(σ,χ). We may thus form the pushout

⊔
λ Λ

i+j+2
i+j+2

♮
X<(σ,χ)

⊔
λ∆

i+j+2♮ X<(σ,χ),1

which factors the inclusion X<(σ,χ) X(σ,χ) as the composition of a right marked anodyne map and
an inclusion.

Now for the inductive step suppose that we have defined a sequence of right marked anodyne maps

X<(σ,χ) ... X<(σ,χ),m ⊂ X(σ,χ)

such that for all 0 < l ≤ m all new nondegenerate simplices in X(σ,χ) of dimension i + l + j lie in
X<(σ,χ),l and admit an extension to a i + l + j + 1-simplex, and no new nondegenerate simplices of
dimension > i+ l+j+1 lie in X<(σ,χ),l. Let λ = (σ, τ) be any new nondegenerate i+m+j+1-simplex
not in X<(σ,χ),m. For 0 < l ≤ m let λl = (σ, τl) be a nondegenerate i+m+ j+1-simplex in X<(σ,χ),m

with di+m+j+1(λl) = di+j+l+1(λ) (note that τl = τ). By Lemma 4.9, the map

∆i ⋆∆j ⋆ ∂∆m
⊔

∆j⋆∂∆m

∆j ⋆∆m ∆i ⋆∆j ⋆∆m

is inner anodyne. Therefore, we may extend πλ ∪ (∪lπλl) to a map ∆i+j+m+2 S and define a

(i + j +m + 2)-simplex λ̄ of K ⋆∆n♮ with di+j+m+2λ̄ = λ and di+j+l+1λ̄ = λ + l. By construction
every face of λ̄ except for λ lies in X<(σ,χ),m. Thus we may form the pushout

⊔
λ Λ

i+j+m+2
i+j+m+2

♮
X<(σ,χ),m

⊔
λ∆

i+j+m+2♮ X<(σ,χ),m+1
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and complete the inductive step. Passing to the colimit, we deduce that X<(σ,χ) Xσ,χ is right
marked anodyne, which completes the proof. �

4.12. Remark. The proof of Proposition 4.11 can be adapted to show that for any cartesian fibration
C S, ♮Λ

n
0 ×S C♮ ♮∆

n ×S C♮ is marked left anodyne (in the σ = ∅ case, we only use that
e0 : O(S) S is a cartesian fibration). As well, letting K = ∅, part (2) of Proposition 4.11 shows
that Λnk ×S C ∆n×SC is inner anodyne. This refines the theorem that marked left anodyne maps
resp. inner anodyne maps pullback to cocartesian equivalences resp. categorical equivalences along
cartesian fibrations.

For later use, we state a criterion for showing that a functor is left Quillen.

4.13. Lemma. Let M and N be model categories and let F : M N be a functor which preserves
cofibrations. Let I be a weakly saturated [10, Definition A.1.2.2] subset of the trivial cofibrations in M

such that for every object A ∈ M, we have a map f : A A′ where f ∈ I and A′ is fibrant. Then
F preserves trivial cofibrations if and only if

(1) For every f ∈ I, F (f) is a trivial cofibration.
(2) F preserves trivial cofibrations between fibrant objects.

Proof. The ‘only if’ direction is obvious. For the other direction, let A B be a trivial cofibration
in M. We may form the diagram

A B

A′ A′ ⊔
AB (A′ ⊔

AB)′

where the vertical and lower right horizontal arrows are in I. Then our two assumptions along
with the two-out-of-three property of the weak equivalences shows that F (A) F (B) is a trivial
cofibration. �

4.14. Lemma. Let K be a simplicial set over S. Then

K ⋆S −,− ⋆S K : sSet/S sSetK//S

are left adjoints. Similarly, for K a marked simplicial set over S,

K ⋆S −,− ⋆S K : sSet+/S sSet+K//S

are left adjoints.

Proof. We will prove that K ⋆S − is a left adjoint in the unmarked case and leave the other cases to
the reader. Let F denote K⋆S− and define a functor G : sSetK//S sSet/S by letting G(K C)
be the simplicial set over S which satisfies

Hom/S(∆
n, G(K C)) = HomK//S(K ⋆S ∆n, C);

this is evidently natural in K C. Define a unit map η : id GF on objects X by sending
σ : ∆n X to K ⋆S σ : K ⋆S ∆n K ⋆S X , which corresponds to ∆n G(K ⋆S X). Define a
counit map η : FG id on objects K C by sending λ = (σ, τ) : ∆i ⋆∆j K ⋆S G(K C)

to ∆i ⋆ ∆j (σ,id)−−−→ K ⋆S ∆j τ ′
−→ C, where τ ′ corresponds to τ : ∆j G(K C). Then it is

straightforward to verify the triangle identities, so F is adjoint to G. �

For the following pair of results, endow sSet+/S with the cocartesian model structure and sSet+K//S =

(sSet+/S)K/ with the model structure created by the forgetful functor to sSet+/S .

4.15. Theorem. Let K be a marked simplicial set over S. The functor

K ⋆S (−×S O(S)♯) : sSet+/S sSet+K//S

is left Quillen.
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Proof. We will denote the functor in question by F . First observe that F is the composite of the three
left adjoints e∗0, e1!, and K ⋆S −, so F is a left adjoint. F evidently preserve cofibrations, so it only
remains to check that F preserves the trivial cofibrations. We first verify that F preserves the left
marked anodyne maps. Since F preserves colimits it suffices to check that F preserves a collection of
morphisms which generate the left marked anodyne maps as a weakly saturated class. We verify that
F preserves the four classes of maps enumerated in [10, Definition 3.1.1.1].

(1): For ι : (Λnk )
♭ (∆n)♭, 0 < k < n, the underlying map of simplicial sets of F (ι) is inner

anodyne by Proposition 4.11. F (ι) is obtained by marking common edges of an inner anodyne map,
so is left marked anodyne.

(2): For ι : ♮Λ
n
0 ♮∆

n, we observe that the map

K ⋆S (♮Λ
n
0 ×S O(S)♯)

⊔

K⋆S(♮Λn
0 ×SO(S)♮)

K ⋆S (♮∆
n ×S O(S)

♮
) K ⋆S (♮∆

n ×S O(S)♯)

in the case n = 1 is marked left anodyne, since every marked edge in the codomain factors as a
composite of two marked edges in the domain, and is the identity if n > 1. It thus suffices to show

that K ⋆S (♮Λ
n
0 ×S O(S)

♮
) K ⋆S (♮∆

n ×S O(S)
♮
) is left marked anodyne, which is the content of

part 1 of 4.11.
(3) and (4): In both of these cases one has a map of marked simplicial sets A B whose underlying

map is an isomorphism of simplicial sets. Then

A F (A)

B F (B)

is a pushout square, so F (A) F (B) is left marked anodyne if A B is.
Next, let f : ♮C ♮D be a cocartesian equivalence between cocartesian fibrations over S. Let

g : ♮D ♮C be a homotopy inverse of f , so that there exists a homotopy h : ♮C × (∆1)♯ ♮C over
S from idC to g ◦ f . Define a map

φ : (K ⋆S (♮C ×S O(S)♯))× (∆1)♯ K ⋆S ((♮C ×S O(S)♯)× (∆1)♯)

by sending a (i + j + 1)-simplex (λ, α) given by the data σ : ∆i K, τ : ∆j
♮C ×S O(S)♯,

π ◦ λ : ∆i+j+1 ∆1, α : ∆i+j+1 ∆1 to a i + j + 1-simplex λ′ given by the data σ, (τ, α ◦ ι),
π ◦ λ where ι : ∆j ∆i ⋆∆j is the inclusion. It is easy to see that φ restricts to an isomorphism on
(K ⋆S (♮C ×S O(S)♯)) × ∂∆1. We deduce that F (h) ◦ φ is a homotopy from F (g ◦ f) to the identity.
A similar argument concerning a chosen homotopy from f ◦ g to idD shows that F (f) is a cocartesian
equivalence.

Finally, invoking Lemma 4.13 completes the proof. �

4.16. Theorem. Let K be a marked simplicial set over S. The functor

− ⋆S K : sSet+/S sSet+K//S

is left Quillen.

Proof. As with the proof of Theorem 4.15, the proof will be an application of Lemma 4.13. We
first verify that − ⋆S K preserves the four classes of left marked anodyne maps enumerated in [10,
Definition 3.1.1.1]. (1) is handled by the dual of part (2) of Proposition 4.11. (2) is handled by the
dual of part (3) of Proposition 4.11. (3) and (4) are handled as in the proof of Theorem 4.15. Finally,
the case of A B a cocartesian equivalence between fibrant objects is also handled as in the proof
of Theorem 4.15. �

4.17. Definition. Let K,C S be marked simplicial sets over S and let p : K C be a map over
S. Define the marked simplicial set C(p,S)/ S as the value of the right adjoint to K⋆S (−×SO(S)♯)
on K C S in sSet+K//S . By Theorem 4.15, if C S is a S-category, then C(p,S)/ S is a

S-category. We will refer to C(p,S)/ as a S-undercategory of C.



PARAMETRIZED HIGHER CATEGORY THEORY 29

Dually, define the marked simplicial set C/(p,S) S as the value of the right adjoint to − ⋆S
(K ×S O(S)♯) on K C S in sSet+K//S . By Theorem 4.16 applied to K ×S O(S)♯, if C S

is a S-category, then C/(p,S) S is a S-category. We will refer to C/(p,S) as a S-overcategory of C.

In the sequel, we will focus our attention on the S-undercategory and leave proofs of the evident
dual assertions to the reader.

Functoriality in the diagram. We now study the functoriality of the S-undercategory with respect
to the diagram category. Given maps f : K L and p : L X of marked simplicial sets over S,
we have an induced map X(p,S)/ X(pf,S)/, which in terms of the functors that X(p,S)/ and X(pf,S)/

represent is given by precomposing L ⋆S (A×S O(S)♯) X by f ⋆S id.
Recall that for a category M admitting pushouts and a map f : K L, we have an adjunction

f! : MK/ ML/ :f∗

where f!(K X) = X
⊔
K L and f∗(L

p−→ X) = p ◦ f . If M is a model category and MK/, ML/ are
provided with the model structures induced from M, then (f!, f

∗) is a Quillen adjunction. Moreover,
if M is a left proper model category and f is a weak equivalence, then (f!, f

∗) is a Quillen equivalence.

4.18. Proposition. Let f : K L be a cocartesian equivalence in sSet+/S. Let C be a S-category

and let p : L ♮C be a map. Then ♮C(p,S)/ ♮C(pf,S)/ is a cocartesian equivalence in sSet+/S.

Proof. Let F = f! ◦ (K ⋆S (− ×S O(S)♯)) and let F ′ = L ⋆S (− ×S O(S)♯). Let G and G′ be the
right adjoints to F and F ′, respectively. Let α : F F ′ be the evident natural transformation and

let β : G′ G be the dual natural transformation, defined by G′ ηG′−−→ GFG′ GαG′
−−−−→ GF ′G′ Gǫ′−−→

G. Then βC : ♮C(p,S)/ ♮C(pf,S)/ is the map under consideration. By Theorem 4.16, αX is a

cocartesian equivalence for all X ∈ sSet+/S . Therefore, by [8, Corollary 1.4.4(b)], βC is a cocartesian

equivalence. �

4.19. Proposition. Consider a commutative diagram of marked simplicial sets

K C

L D

i q
p

where i is a cofibration and q is a fibration.

(1) The map
C(p,S)/ C(pi,S)/ ×D(qpi,S)/

D(qp,S)/

is a fibration.
(2) Let K = ∅ and D = S♯. Then the map

C(p,S)/ C(pi,S)/
∼= FunS(S

♯, C)

is a left fibration (of the underlying simplicial sets).

Proof. (1) Given a trivial cofibration A B, we need to solve lifting problems of the form

L ⋆S (A×S O(S)♯)
⊔
K⋆S(A×SO(S)♯)K ⋆S (B ×S O(S)♯) C

L ⋆S (B ×S O(S)♯) D.

But the lefthand map is a trivial cofibration by Theorem 4.15.
(2) We need to solve lifting problems of the form

(∆n)♭ ×S O(S)♯
⊔

(Λn
i )

♭ K ⋆S ((Λni )
♭ ×S O(S)♯) C

K ⋆S ((∆n)♭ ×S O(S)♯) S
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where 0 ≤ i < n. But the lefthand map is a trivial cofibration by Proposition 4.11 (1') and (2).
�

Combining (2) of the above proposition with Lemma 3.6 (2) (which supplies a trivial marked
fibration FunS(S

♯, C) C), we obtain a map C(p,S)/ C which is a marked fibration and a left
fibration, and such that for any f : K L, the triangle

C(p,S)/ C(pf,S)/

C

commutes.

The universal mapping property of the S-slice. Because the S-join and slice Quillen adjunction
is not simplicial, we do not immediately obtain a universal mapping property characterizing the S-
slice. Our goal in this subsection is to supply such a universal mapping property (Proposition 4.25).
We first recall how to slice Quillen bifunctors. Suppose V is a closed symmetric monoidal category
and M is enriched, tensored, and cotensored over V. Denote the internal hom by

Hom(−,−) : Mop ×M V.

Define bifunctors

Homx/(−,−) : Mop
x/ ×Mx/ V

Hom/x(−,−) : Mop
/x ×M/x V

on objects f : x a, g : x b and f ′ : a x, g′ : b x to be pullbacks

Homx/(f, g) Hom(a, b) Hom/x(f
′, g′) Hom(a, b)

1 Hom(x, b) 1 Hom(a, x)

f∗

g

g′∗
f ′

and on morphisms in the obvious way (we abusively denote by g : 1 Hom(x, b) the map corre-
sponding to g under the natural isomorphisms Hom(1,Hom(x, b)) ∼= Hom(1 ⊗ x, b) ∼= Hom(x, b), and
likewise for f ′). It is easy to see that Homx/ and Hom/x preserve limits separately in each variable.

4.20. Lemma. In the above situation let M be a model category and P be a monoidal model category.
If Hom(−,−) is a right Quillen bifunctor, then Homx/(−,−) and Hom/x(−,−) are right Quillen
bifunctors, where we endow Mx/ and M/x with the model structures created by the forgetful functor
to M.

Proof. We prove the assertion for Homx/(−,−), the proof for Hom/x(−,−) being identical. Let

i : a b and f : c d be morphisms in Mx/ (so they are compatible with the structure maps
πa, ..., πd). In the commutative diagram

Homx/(πb, πc) Hom(b, c)

Homx/(πa, πc)×Homx/(πa,πd) Homx/(πb, πd) Hom(a, c)×Hom(a,d) Hom(b, d)

1 Hom(x, c)

it is easy to see that the lower square and the rectangle are pullback squares, so the upper square is
a pullback square. It is now clear that if Hom(−,−) is a right Quillen bifunctor, then Homx/(−,−)
is as well. �
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We apply Lemma 4.20 to the bifunctors

MapK//S(−,−) :sSet+K//S
op × sSet+K//S sSetQuillen

FunK//S(−,−) :sSet+K//S
op × sSet+K//S sSetJoyal

induced by MapS(−,−) and FunS(−,−).
4.21. Lemma. Let K, A, and B be simplicial sets and define a map

A× (K ⋆ B) K ⋆ (A×B)

by sending the data (∆n A,∆k K,∆n−k−1 B) of a n-simplex of A× (K ⋆B) to the data
(∆k K,∆n−k−1 A×B) of a n-simplex of K ⋆ (A×B). Then

φ : A× (K ⋆ B)
⊔

A×K
K K ⋆ (A×B)

is a categorical equivalence.

Proof. Recall [10, Proposition 4.2.1.2] that there is a map

ηX,Y : X ⋄ Y = X
⊔

X×Y×{0}
X × Y ×∆1

⊔

X×Y×{1}
Y X ⋆ Y

natural in X and Y which is always a categorical equivalence. Thus

f = (A× ηK,B) ⊔ idK : A× (K ⋄B)
⊔

A×K
K A× (K ⋆ B)

⊔

A×K
K

is a categorical equivalence. The domain is isomorphic to K ⋄ (A × B), and it is easy to check that
the map ηK,A×B is the composite

K ⋄ (A×B)
f−→ A× (K ⋆ B)

⊔

A×K
K

φ−→ K ⋆ (A×B).

Using the 2 out of 3 property of the categorical equivalences, we deduce that φ is a categorical
equivalence. �

4.22. Lemma. For all L ∈ sSet+/S, we have a natural equivalence

φ : FunS(L, ♮C(p,S)/)
≃−→ FunK//S(K ⋆S (L×S O(S)♯), ♮C).

Proof. Define bisimplicial sets X,Y : ∆op sSet by

Xn = MapK//S(K ⋆S ((∆n)♭ × L×S O(S)♯), ♮C)

Yn = Map(∆n,FunK//S(K ⋆S (L ×S O(S)♯), ♮C))

∼= MapK//S((∆
n)♭ × (K ⋆S (L×S O(S)♯)

⊔

(∆n)♭×K
K, ♮C).

and define a map of bisimplicial sets Φ : X Y by precomposing levelwise by the map

gL,n : (∆n)♭ × (K ⋆S (L×S O(S)♯))
⊔

(∆n)♭×K
K K ⋆S ((∆n)♭ × L×S O(S)♯)

adjoint as a map over S×∆1 to the identity over S×∂∆1. Taking levelwise zero simplices then defines
the map φ, which is clearly natural in L, K, and C. By Theorem 4.16, taking a fibrant replacement
of K we may suppose that K is fibrant. We first check that X and Y are complete Segal spaces.
By [9, Theorem 4.12], Y is a complete Segal space as it arises from a ∞-category. For X , since
MapK//S(−,−) is a right Quillen bifunctor, we only have to observe that:

• Every monomorphism A B of simplicial sets induces a cofibration

K ⋆S (A♭ × L×S O(S)♯) K ⋆S (B♭ × L×S O(S)♯)

so X is Reedy fibrant.
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• The spine inclusion ιn : Sp(n) ∆n induces a trivial cofibration

K ⋆S (Sp(n)♭ × L×S O(S)♯) K ⋆S ((∆n)♭ × L×S O(S)♯);

ιn is inner anodyne, so this follows from Theorem 4.15 and [10, Proposition 3.1.4.2].
• The map π : E ∆0 where E is the nerve of the contractible groupoid with two elements

induces a cocartesian equivalence

K ⋆S (E♭ × L×S O(S)♯) K ⋆S (L×S O(S)♯);

π♭ is a cocartesian equivalence (as the composite of E♭ E♯ and E♯ ∆0), so this also
follows from Theorem 4.15 and [10, Proposition 3.1.4.2].

We next prove that Φ is an equivalence in the complete Segal model structure. For this, we will
prove that each map gL,n is a cocartesian equivalence in sSet+/S . Both sides preserves colimits as a

functor of L (valued in sSet+K//S), so by left properness and the stability of cocartesian equivalences

under filtered colimits we reduce to the case L is an m-simplex with some marking. In particular,
(∆m)♭ ×S O(S)♯ S is fibrant in sSet+/S . By [10, Theorem 4.2.4.1] we may check that the square

of fibrant objects

(∆n)♭ ×K K

(∆n)♭ × (K ⋆S ((∆m)♭ ⋆S O(S)♯)) K ⋆S ((∆n)♭ × (∆m)♭ ×S O(S)♯)

is a homotopy pushout square in the underlying∞-categoryCatcocart∞,S ≃ Fun(S,Cat∞), where colimits
are computed objectwise. In other words, we may check that for every s ∈ S, the fiber of the square
over s is a homotopy pushout square in sSet, which holds by Lemma 4.21. Pushing out along
the cofibration (∆m)♭ ×S O(S)♯ L ×S O(S)♯ and using left properness, we deduce that gL,m is
a cocartesian equivalence. Finally, we invoke [9, Theorem 4.11] to deduce that φ is a categorical
equivalence. �
4.23. Lemma. Let L S be a cocartesian fibration. Then idK ⋆ ιL : K ⋆S ♮L K ⋆S (♮L×S O(S)♯)
is a cocartesian equivalence in sSet+/S.

Proof. By Theorem 4.16, taking a fibrant replacement of K we may suppose that K is fibrant. By
Proposition 13.4, it suffices to show that for every s ∈ S, K∼

s ⋆ L∼
s K∼

s ⋆ (♮L ×S (S/s)♯) is a

marked equivalence in sSet+. Observe that the cartesian equivalence {s} (S/s)♯ pulls back by
the cocartesian fibration ♮L S♯ to a marked equivalence L∼

s ♮L×S(S/s)♯. Then by Theorem 4.15
for S = ∆0, K∼

s ⋆− preserves marked equivalences, which concludes the proof. �
4.24. Notation. Suppose we have a commutative square of S-categories and S-functors

K D

C M.

G

F π

ρ

Define FunK//M,S(C,D) to be the pullback

FunK//M,S(C,D) FunS(C,D)

S FunS(K,M).

(F∗,π∗)

σπG

If K = ∅, we will also denote FunK//M,S(C,D) as Fun/M,S(C,D). If M = S, we will write

FunK//S(C,D) in place of FunK//S,S(C,D).

Note that by Proposition 3.8 and Proposition 2.16, the defining pullback square is a homotopy
pullback square if F is a monomorphism and π is a categorical fibration.

4.25. Proposition. Let K,L,C be S-categories and let p : K C, q : L C be S-functors.
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(1) We have an equivalence

ψ : FunS(L,C(p,S)/)
≃−→ FunK//S(K ⋆S L,C).

(2) We have an equivalence

ψ′ : FunS(L,C/(q,S))
≃−→ FunL//S(K ⋆S L,C)

(3) We have equivalences

Fun/C,S(L,C(p,S)/) FunK⊔L//S(K ⋆S L,C) Fun/C,S(K,C/(q,S)).
ψq

≃
ψ′

p

≃

Proof. (1) Define the S-functor ψ as follows: suppose given a marked simplicial set A and a map
A FunS(L,C(p,S)/) over S. This is equivalently given by the datum of a map

fA : ♮K ⋆S ((A×S O(S)♯ ×S ♮L)×S O(S)♯) ♮C

under K and over S. Let

♮K
⊔

A×SO(S)♯×S♮K

(A×S O(S)♯)×S (♮K ⋆S (♮L×S O(S)♯)) K ⋆S (A×S O(S)♯ ×S ♮L×S O(S)♯)

be the map over S × ∆1 adjoint to the identity over S × ∂∆1. Precomposing fA by this and
ιL : ♮L ♮L×S O(S)♯ on that factor defines the desired map A FunK//S(K ⋆S L,C).

Now to check that ψ is an equivalence, we may work fiberwise and combine Lemma 4.22 and
Lemma 4.23.

(2) This follows by a parallel argument to the proof of (1).
(3) We prove that ψq is an equivalence; a parallel argument will work for ψ′

p. FunK⊔L//S(K ⋆S L,C)
fits into a diagram

FunK⊔L//S(K ⋆S L,C) FunK//S(K ⋆S L,C) FunS(K ⋆S L,C)

S FunK//S(K
⊔
L,C) FunS(K

⊔
L,C)

S FunS(K,C)

σp⊔q

σp

in which every square is a pullback square. The map ψq is then defined to be the pullback of the
map of spans

FunS(L,C(p,S)/) FunS(L,C) S

FunK//S(K ⋆S L,C) FunK//S(K
⊔
L,C) S

ψ p⊔−

σq

=

in which the vertical arrows are equivalences. By Proposition 4.19 and FunS(L,−) being right
Quillen, the top left horizontal arrow is a S-fibration, and by Proposition 3.8, the bottom left
horizontal arrow is a S-fibration. It follows that ψq is an equivalence.

�
In light of Proposition 4.25, we have evident ‘alternative’ S-slice S-categories, whose definition

more closely adheres to the intuition that a slice category is a category of extensions.

4.26. Definition. Let p : K C be a S-functor. We define the alternative S-undercategory

C(p,S)/ := FunK//S(K ⋆S S,C).

Similarly, we define the alternative S-overcategory

C/(p,S) := FunK//S(S ⋆S K,C).

4.27. Corollary. Let p : K C and q : L C be S-functors.
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(1) We have equivalences C(p,S)/
≃−→ C(p,S)/ and C/(q,S)

≃−→ C/(q,S).

(2) We have an equivalence Fun/C,S(L,C
(p,S)/) ≃ Fun/C,S(K,C

/(q,S)) through a natural zig-zag.

Proof. For (1), let L = S and K = S in Proposition 4.25(1) and (2), respectively. For (2), combine
the preceding (1) and Proposition 4.25(3). �

4.28. Warning. When S = ∆0, the alternative S-undercategory C(p,S)/ ∼= {p}×Fun(K,C)Fun(K
✄, C)

differs from Lurie’s alternative undercategory Cp/. However, we have a comparison functor

{p} ×Fun(K,C) Fun(K
✄, C) Cp/

which is a categorical equivalence and which factors through the categorical equivalence Cp/ Cp/

of [10, Proposition 4.2.1.5].

Slicing over and under S-points. We give a smaller model for slicing over and under S-points in
an S-category C.

4.29. Notation. Suppose C an S-category. Let

OS(C) := F̃unS(S ×∆1, C) ∼= S ×O(S) O(C)

denote the fiberwise arrow S-category of C. Given an object x ∈ C, let
C/x := OS(C)×C x , Cx/ := x×C OS(C).

4.30. Proposition. Let x ∈ C be an object and denote by ix : x Cx the x-functor defined by x.
We have natural equivalences of x-categories

Cx
/(x,ix) ≃ C/x

Cx
/(ix,x) ≃ Cx/.

Proof. For any functor S′ S and S-category C, OS(C)×SS′ ∼= OS′(C×SS′). Therefore, OS(C)×C
x ∼= Ox(Cx) ×Cx x and likewise for x ×C OS(C). Changing base to x, we may suppose S = x and
ix = i : S C is any S-functor. The identity section S O(S) induces a morphism of spans

S FunS(S,C) FunS(S ×∆1, C)

S C F̃unS(S ×∆1, C)

σi

=

i

with the vertical maps equivalences. Taking pullbacks now yields the claim (where we use the isomor-
phism S ⋆S S ∼= S ×∆1 to identify the upper pullback with the S-slice category in question). �

4.31. Proposition. We have a natural equivalence Cx/ ≃ Cx/ of left fibrations over C.

Proof. Using the marked left anodyne map ♮Λ
2
1 ♮∆

2 and the map of Lemma 2.23 for n = 2, we
obtain a span

Fun(♮∆
2, ♮C)

Fun((∆{0,1})♯, ♮C)×C{1} Fun(∆{1,2}, C) Fun(∆{0,2}, C)×S{0,2} Fun(∆2, S).

≃ ≃

Pulling back via {x} ×C{0} − on the left and − ×S{1,2} S on the right, and using that the inclusion
∆{0,2} ∆2 ∪∆{1,2} ∆0 is a categorical equivalence, we get

{x} ×C{0} Fun(♮∆
2, ♮C)×S{1,2} S

Cx/ Cx/.

≃ ≃

�
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5. Limits and colimits

In this section, we introduce S-colimits and study their basic properties. We then study the
correspondence between S-colimits and S-limits through the vertical opposite construction of [4].

5.1. Definition. Let C be a S-category and σ : S C be a cocartesian section. We say that σ is a
S-initial object if σ(s) is an initial object for all objects s ∈ S. Dually, σ is a S-final object if σ(s) is
a final object for all s ∈ S.
5.2. Definition. Let K and C be S-categories. Let p : K ⋆S S C be an extension of a S-functor
p : K C. From the commutativity of the diagram

S FunS(K ⋆S S,C)

S FunS(K,C)

σp

=

σp

(recall Notation 3.5 for σ(−)) we see that σp defines a cocartesian section of C(p,S)/ (Definition 4.26),
which we also denote by σp. We say that p is a S-colimit diagram if σp is a S-initial object. If p is a
S-colimit diagram, then p|S : S C is said to be a S-colimit of p. If S admits an initial object s,
we will also identify the S-colimit with its value on s.

Dually, substituting S⋆SK for K⋆SS leads in a parallel way to the definition of an S-limit diagram
and an S-limit.

5.3. Remark. In view of the comparison result Corollary 4.27, we could also use the S-slice category
C(p,S)/ to make the definition of a S-colimit diagram. This would yield some additional generality,

in that C(p,S)/ is defined for an arbitrary marked simplicial set K. However, the construction C(p,S)/

is easier to relate to functor categories, which we need to do to show that the left adjoint to the
restriction along K ⊂ K ⋆S S computes colimits (a special case of Corollary 9.16).

5.4. Remark. Suppose K and C are∞-categories, and write π : K ∗ for the map to a point. One
may define the K-indexed colimit ‘globally’ as the (partially defined) left adjoint π! to the restriction
functor π∗ : C Fun(K,C). Given a diagram p : K C that admits an extension to a colimit
diagram p : K✄ C with cone point {v}, one then has p|{v} ≃ π!(p).

To establish a parallel picture for S-colimits, we will first need to introduce the concept of S-
adjunctions (Definition 8.3). If we now let K and C be S-categories and π : K S denote the
structure map, we will show that if for all s ∈ S, Cs admits Ks-indexed Ss/-colimits, then the
restriction S-functor π∗ : C FunS(K,C) admits a left S-adjoint π! such that

(π!)s : FunSs/(Ks, Cs) Cs

computes the Ss/-colimit (Theorem 10.5 in the special case φ = π). Furthermore, taking cocartesian
sections of this S-adjunction then yields an adjunction, which we may abusively denote as

π! : FunS(K,C) FunS(S,C) :π∗,

in which π! computes the S-colimit.
In proving some of the assertions in this subsection (Corollary 5.9, Proposition 5.11, and Propo-

sition 5.12), it will be convenient to have this relationship between S-colimits and S-adjunctions
established. We note that there is no danger of circularity here since the proof of Theorem 10.5 (or
its simpler predecessor Theorem 9.15) doesn’t use any of the remainder of this subsection (which,
apart from S-(co)limits in an S-category of S-objects, is only devoted to working out special classes
of diagrams in the theory).

There are a couple instances where the notion of S-colimit specializes to a notion of ordinary
category theory. For example, we have the following pair of propositions computing S-colimits and
S-limits in an S-category of objects CS as left or right Kan extensions in C; the asymmetry in their
formulations arises due to working with cocartesian fibrations instead of cartesian fibrations to model
S-categories. In the statements, recall Notation 3.11 for the meaning of (−)†.
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5.5. Proposition. Let p : K ⋆S S CS be a S-functor extending p : K CS. Suppose further
that a left Kan extension of p† : K C to a functor K ⋆S S C exists. Then the following are
equivalent:

(1) p is a S-colimit diagram.
(2) p† is a left Kan extension of p†.
(3) p†|K✄

s
is a colimit diagram for all s ∈ S.

Proof. (2) and (3) are equivalent because left Kan extensions along cocartesian fibrations are computed
fiberwise. Suppose (3). To prove (1), we want to show that for every s ∈ S, ps is an initial object

in ((CS)
(p,S)/)s. But ((CS)

(p,S)/)s is equivalent to the fiber of Fun(Ks ⋆s s, C) Fun(Ks, C) over

p†|Ks , so to prove the claim it suffices to show that the functor p†|Ks is a left Kan extension of p|Ks .

This holds by the equivalence of (2) and (3) for Ss/.
Conversely, suppose (1). Since we supposed that a left Kan extension of p† exists, left Kan ex-

tensions of p†|Ks all exist and any initial object in the fiber of Fun(Ks ⋆s s, C) Fun(Ks, C) over

p†|Ks is a left Kan extension of p†|Ks , necessarily a fiberwise colimit diagram (we need this hypothesis
because Kan extensions as defined in [10, §4.3.2] are always pointwise Kan extensions). This implies
(3). �

5.6. Proposition. Let p : S ⋆S K CS be a S-functor extending p : K CS. Suppose further
that a right Kan extension of p† : K C to a functor S ⋆S K C exists. Then the following are
equivalent:

(1) p is a S-limit diagram.
(2) p† is a right Kan extension of p†.
(2') p†|s⋆sKs is a right Kan extension of p†|Ks for all s ∈ S.
(3) p†|K✁

s
is a limit diagram for all s ∈ S.

Proof. We first observe that because the inclusion S S ⋆S K is left adjoint to the structure map
S ⋆S K S of the cocartesian fibration,

(S ⋆S K)s/ ≃ Ss/ ×S (S ⋆S K) ∼= s ⋆s Ks.

The equivalence of (2) and (2') now follows from the formula for a right Kan extension. Also, if we
view K✁

s as mapping to S ⋆S K via {s} ⋆ Ks s ⋆s Ks S ⋆S K where the first map is adjoint

to ({s} s, id), then (2) and (3) are also equivalent by the same argument. Finally, (2') implies (1)
by definition, and (1) implies (2') under our additional assumption that a right Kan extension of p†

exists (for the same reason as given in the proof of Proposition 5.5). �

If S is a Kan complex, then the notion of S-colimit reduces to the usual notion of colimit.

5.7. Proposition. Let S be a Kan complex. Then a S-functor p : K⋆SS C is a S-colimit diagram
if and only if for every object s ∈ S, p|s : (Ks)

✄ Cs is a colimit diagram.

Proof. If S is a Kan complex, then for every s ∈ S, Ss/ is a contractible Kan complex. Therefore, for
all s ∈ S we have (C(p,S)/)s ≃ {ps} ×Fun(Ks,Cs) Fun(K

✄
s , Cs), which proves the claim. �

We say that K is a constant S-category if it is equivalent to S × L for L an ∞-category. We have
an isomorphism L✄ × S (L × S) ⋆S S (defined as a map over S × ∆1 to be the adjoint to the
identity on (L× S, S)).
5.8. Proposition. A S-functor p : L✄×S C is a S-colimit diagram if and only if for every object
s ∈ S, ps : L✄ Cs is a colimit diagram.

Proof. Observe that

(C(p,S)/)s = {ps} ×Fun
Ss/ (L×Ss/,Cs) FunSs/(L✄ × Ss/, Cs) ≃ {ps} ×Fun(L,Cs) Fun(L

✄, Cs).

Therefore, σp : S C(p,S)/ is S-initial if and only if for all s ∈ S, {ps} ∈ {ps}×Fun(L,Cs)Fun(L
✄, Cs)

is an initial object, which is the claim. �
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5.9. Corollary. Suppose C is a S-category such that Cs admits all colimits for every object s ∈ S
and the pushforward functors α! : Cs Ct preserve all colimits for every morphism α : s→ t in S.
Then C admits all S-colimits indexed by constant diagrams.

Proof. First suppose that S has an initial object s. Suppose that p : L× S C is a S-functor. Let
ps : L

✄ Cs be a colimit diagram extending ps. Let p : L
✄×S C be a S-functor corresponding

to ps under the equivalence FunS(L
✄ × S,C) ≃ Fun(L✄, Cs), which we may suppose extends p. By

Proposition 5.8, p is a S-colimit diagram.
The general case now follows from Theorem 9.15, taking φ : C D to be L× S S. �
We now turn to the example of corepresentable fibrations.

5.10. Definition. Let s ∈ S be an object and let K be an Ss/-category which is equivalent to a
coproduct of corepresentable fibrations

∐

i∈I
Sαi/ ≃

∐

i∈I
Sti/

∐
α∗

i−−−→ Ss/

for {αi : s→ ti}i∈I a collection of morphisms in S. Let p : K C ×S Ss/ be a Ss/-functor, so p is
precisely the data of objects {xi ∈ Cti}i∈I . Let p : K ⋆Ss/ Ss/ C ×S Ss/ be a Ss/-colimit diagram
extending p, and let y = p(v) ∈ Cs for v = ids the cone point. Then we say that y is the S-coproduct
of {xi}i∈I along {αi}i∈I , and we adopt the notation y =

∐
αi
xi.

Our choice of terminology is guided by the following result, which shows that a Ss/-colimit of a
Ss/-functor p : Sα/ ≃ St/ C obtains the value of a left adjoint to the pushforward functor α! on
p(t). In the case of S = Oop

G , C = Spc
G

or SpG, and K = Oop
H , this is the induction or indexed

coproduct functor from H to G.

5.11. Proposition. Let C be a S-category, let α : s→ t be a morphism in C, and let π : M ∆1 be
a cartesian fibration classified by the pushforward functor α! : Cs Ct. Let p : St/ C ×S Ss/
be a Ss/-functor and let x = p(idt) ∈ Ct. Then the data of a Ss/-colimit diagram extending p yields
a π-cocartesian edge e in M with d0(e) = x and lifting 0→ 1.

Proof. Let p : St/ ⋆Ss/ Ss/ C ×S Ss/ be a Ss/-colimit diagram extending p. Let y = p(ids) and
let f ′ : ∆1 St/ ⋆Ss/ Ss/ be the edge connecting idt to α. We may suppose that M is given by the
relative nerve of α!, so that edges in M over ∆1 are given by commutative squares

{1} Cs

∆1 Ct.

α!

Then let e be the edge in M determined by y and f = p ◦ f ′ : x→ α!y. By definition, d0(e) = x.
We claim that e is π-cocartesian. This holds if and only if for every y′ ∈ Cs the map

MapCs
(y, y′) MapCt

(x, α!y
′)

induced by f is an equivalence. But the local variant of the adjunction of Theorem 10.5 implies this
(passing to global sections). �
S-coproducts also satisfy a base-change condition. This is awkward to articulate in general, because

the pullback of a corepresentable fibration along another need not be corepresentable. However, if
we impose the additional hypothesis that T = Sop admits multipullbacks, then a pullback of a
corepresentable fibration decomposes as a finite coproduct of corepresentable fibrations. In this case,
we have the following useful reformulation of the base-change condition. Recall from the introduction
that we let FT denote the finite coproduct completion of T . Let X ⊂ O(FT ) be the full subcategory
on those arrows whose source lies in T and consider the span

(FT )
♯ ev1←−− ♮X

ev0−−→ T ♯.

This satisfies the dual of the hypotheses of Theorem 2.24, so

C× := (ev0)∗(ev1)
∗((C∨)

♮
)
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is a cartesian fibration over FT (with the cartesian edges marked), where C∨ T is the dual cartesian
fibration of [4]. Unwinding the definitions, given a finite T -set U =

∐
i si, we have that the fiber

(C×)U ≃ FunT (
∐

i

T /si, C∨) ≃
∏

i

Csi

(where FunT (−,−) denotes those functors over T that preserve cartesian edges), and given a morphism
of T -sets α : U V , the pullback functor α∗ : (C×)U (C×)V is induced by restriction.

5.12. Proposition. C admits finite S-coproducts if and only if π : C× FT is a Beck-Chevalley
fibration, i.e. π is both cocartesian and cartesian, and for every pullback square

W V ′

U V

α′

β′ β

α

in FT , the natural transformation

(∗) (α′)!(β
′)∗ β∗α!

adjoint to the equivalence (β′)∗α∗ ≃ (α′)∗β∗ is itself an equivalence.

Proof. By Theorem 10.5, C admits finite S-coproducts if and only if for every finite collection of
morphisms {αi : s→ ti}, the restriction functor

(
∐

αi)
∗ : FunS(S

s/, C) FunS(
∐

i

Sti/, C)

admits a left S-adjoint, in which case that left S-adjoint is computed by the S-coproduct along the αi.
This in turn is immediately equivalent to π being additionally cocartesian and (∗) being an equivalence
for α =

∐
αi :

∐
ti → s and all morphisms β : s′ → s in T . Finally, note that the apparently more

general case of (∗) being an equivalence for any pullback square is actually determined by this, because
any map α : U =

∐
ti → V =

∐
sj is the data of f : I → J and {αij : sj → ti}i∈f−1(j), whence

α∗ = (αij)
∗ :

∏
j Csj

∏
i Cti , etc. yields a decomposition of the map (∗) in terms of the ‘basic’

squares that we already handled. �

We conclude this subsection by introducing a bit of useful terminology.

5.13. Definition. Let C be a S-category. We say that C is S-cocomplete if, for every object s ∈ S
and Ss/-diagram p : K Cs (with K fiberwise small), p admits a Ss/-colimit.

5.14. Remark. Suppose that E is S-cocomplete. Then taking D = S in Theorem 9.15, E admits all
(small) S-colimits. However, the converse may fail: if we suppose that E admits all S-colimits, then
any Ss/-diagram Ks Es pulled back from a S-diagram K E admits a Ss/-colimit; however,

not every Ss/-diagram need be of this form.

Vertical opposites. In this subsection we study the vertical opposite construction of [4], with the
goal of justifying our intuition that the theory of S-limits can be recovered from that of S-colimits,
and vice-versa (Corollary 5.25). We first recall the definition of the twisted arrow ∞-category from
[1, §2].

5.15. Definition. Given a simplicial set X , we define Õ(X) to be the simplicial set whose n-simplices
are given by the formula

Õ(X)n := Hom((∆n)op ⋆∆n, X).

If X is an ∞-category, then Õ(X) is the twisted arrow ∞-category of X .

5.16. Warning. By definition, Õ(X) comes equipped with a source functor ev0 : Õ(X) Xop and

a target functor ev1 : Õ(X) X . In other words, twisted arrows are contravariant in the source
and covariant in the target. This convention is opposite to that in [12], but agrees with [4].
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5.17. Recollection. Suppose X T a cocartesian fibration. Then the simplicial set Xvop is defined
to have n-simplices

♮Õ(∆
n) ♮X

(∆n)♯ T ♯.

ev1

The forgetful mapXvop T is a cocartesian fibration with cocartesian edges given by Õ(∆1)♯ ♮X .

For every t ∈ T , we have an equivalence (Xt)
op ≃−→ (Xvop)t implemented by the map which precom-

poses by ev0 : ♮Õ(∆
n) ((∆n)op)♭, which is an equivalence in sSet+.

Dually, suppose Y T a cartesian fibration. Then the simplicial set Y vop is defined to have
n-simplices

(Õ(∆n)op)
♮

Y ♮

(∆n)♯ T ♯.

evop
0

and similarly the forgetful map Y vop T is a cartesian fibration with fibers (Y vop)t
≃←− (Yt)

op.
As a warning, note that the definition of the underlying simplicial set of (−)vop changes depending
on whether the input is a cocartesian or cartesian fibration; in particular, the notation is potentially
ambiguous for a bicartesian fibration. We will not apply (−)vop to bicartesian fibrations in this paper.

Define a functor Õ′(−) : sSet+/S sSet+/S by

Õ′(A
π−→ S) = (Õ(A),EA)

π◦ev1−−−−→ S

where an edge e is in EA just in case ev0(e) is marked in Aop. Note that Õ(−) preserves colimits

since it is defined as precomposition by ∆op (rev⋆id)op−−−−−−→ ∆op, and from this it easily follows that Õ′(−)
also preserves colimits. By the adjoint functor theorem, Õ′(−) admits a right adjoint, which we label
(−)vop; this agrees with the previously defined (−)vop for cocartesian fibrations ♮X S♯.

5.18. Proposition. The adjunction

Õ′(−) : sSet+/S sSet+/S :(−)vop

is a Quillen equivalence with respect to the cocartesian model structure on sSet+/S.

Proof. We first prove the adjunction is Quillen by employing the criterion of Lemma 4.13. Consider
the four classes of maps which generate the left marked anodyne maps:

(1) i : Λnk ∆n, 0 < k < n: By [1, Lemma 12.15], Õ(Λnk ) Õ(∆n) is inner anodyne, so Õ′(i)
is left marked anodyne.

(2) i : ♮Λ
n
0 ♮∆

n: We can adapt the proof of [1, Lemma 12.16] to show that Õ′(i) is a cocarte-

sian equivalence in sSet+/S (even though it fails to be left marked anodyne). The basic fact

underlying this is that a right marked anodyne map is an equivalence in sSet+, so in sSet+/S
if it lies entirely over an object; details are left to the reader.

(3) i : K♭ K♯ for K a Kan complex: Because Õ(K) Kop ×K is a left fibration, Õ(K) is

then again a Kan complex. It follows that Õ′(i) is left marked anodyne.
(4) (Λ2

1)
♯ ∪Λ2

1
(∆2)♭ (∆2)♯: Obvious from the definitions.

It remains to show that for a trivial cofibration f : ♮X ♮Y between fibrant objects, Õ′(f) is again

a trivial cofibration. Since Õ(X) Õ(Y ) is a map of cocartesian fibrations over S and the marking

on Õ′(−) contains these cocartesian edges, by Proposition 13.4 it suffices to show that for every object
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s ∈ S, Õ′(X)s Õ′(Y )s is an equivalence in sSet+. We have a commutative square

Õ′(X)s Õ′(Y )s

X♯
s Y ♯s

fs

where the vertical maps are left fibrations and the bottom map is an equivalence in sSet+. Therefore,

the map X♯
s×Y ♯

s
Õ′(Y )s Õ′(Y )s is an equivalence in sSet+. Applying Proposition 13.4 once more,

we reduce to showing that for every object x1 ∈ X , Õ′(X)x1 Õ′(Y )f(x1) is an equivalence in sSet+.
Now employing the source maps, we have a commutative square

Õ′(X)x1 Õ′(Y )f(x1)

Xop♮ Y op♮fop

where the vertical maps are left fibrations and the bottom horizontal map is a cartesian equiv-

alence in sSet+/Sop . Therefore, the map Xop ×Y op Õ′(Y )s Õ′(Y )s is a cartesian equivalence.

By a third application of Proposition 13.4, we reduce to showing that for every object x0 ∈ X ,

Õ′(X)(x0,x1) Õ′(Y )(f(x0),f(x1)) is an equivalence. But now both sides are endowed with the maximal

marking and the map is equivalent to MapX(x0, x1)
f∗−→ MapY (f(x0), f(x1)), which is an equivalence

by assumption.
The fact that this Quillen adjunction is an equivalence follows immediately from [4, Theorem 1.4].

�

5.19. Lemma. Let C S be a cocartesian fibration.

(1) Let f : S′ S be a functor. Then we have an isomorphism f∗(Cvop) ∼= f∗(C)vop.
(2) Let g : S T be a cartesian fibration and let C be a S-category. Then there is a T -functor

χ : g∗(C)vop g∗(Cvop) natural in C which is an equivalence.

Proof. (1) is obvious from the definitions. For (2), the map χ is defined as follows: an n-simplex of
g∗(C)vop over σ ∈ Tn is given by the data of a commutative diagram

♮Õ(∆
n)×T ♯ S♯ ♮C

(∆n ×T S)♯ S♯
g∗σ

and precomposition by the obvious map Õ(∆n×T S) Õ(∆n)×T S yields an n-simplex of g∗(Cvop).
We now show that for all t ∈ T , χt is a categorical equivalence. Because χt is obtained by taking

levelwise 0-simplices of the map of complete Segal spaces

MapS(♮Õ(∆
•)× S♯t , ♮C) MapS(♮Õ(∆

•)× Õ(St)
♯, ♮C),

it suffices to show that for all n, ♮Õ(∆
n) × Õ(St)

♯
♮Õ(∆

n) × S♯t is a cocartesian equivalence in

sSet+/S . As a special case of Proposition 6.3, Õ(St)
♯ S♯t is a cocartesian equivalence in sSet+/St

,

so the claim follows. �

5.20. Lemma. The map evop : (Õ(∆n)op)
♮

(∆n)♯ × ((∆n)op)♭ is left marked anodyne.

Proof. For convenience, we will relabel Õ(∆n)op as the nerve of the poset In with objects ij, 0 ≤ i ≤
j ≤ n and maps ij kl for i ≤ k and j ≤ l. Then an edge ij → kl is marked in In just in case j = l,
and the map evop becomes the projection ρn : In (∆n)♯× (∆n)♭, ij 7→ (i, j). Let fn : (∆n)♭ In
be the map which sends i to 0i. Then ρn ◦ fn : {0}× (∆n)♭ (∆n)♯× (∆n)♭ is left marked anodyne,
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so by the right cancellativity of left marked anodyne maps it suffices to show that in is left marked
anodyne. For this, we factor fn as the composition

(∆n)♭ = In,−1 In,0 . . . In,n = In

where In,k ⊂ In is the subcategory on objects ij, i = 0 or j ≤ k (and inherits the marking from In),
and argue that each inclusion gk : In,k ⊂ In,k+1 is left marked anodyne. For this, note that gk fits
into a pushout square

{0} × (∆k+1)♭
⋃

{0}×(∆k)♭(∆
n−k−1)♯ × (∆k)♭ (∆n−k−1)♯ × (∆k+1)♭

In,k In,k+1
gk

with the upper horizontal map marked left anodyne. �

5.21.Construction. Suppose T an∞-category,X,Z T cocartesian fibrations, Y T a cartesian
fibration, and a map µ : ♮X ×T Y ♮ ♮Z of marked simplicial sets over T . We define a map

µvop : ♮X
vop ×T Y vop♮

♮Z
vop

by the following process:
Let Jn be the nerve of the poset with objects ij, 0 ≤ i ≤ n, −n ≤ j ≤ n and −j ≤ i and maps

ij → kl if i ≤ k, j ≤ l. Mark edges ij kl if j = l. Let In ⊂ Jn be the subcategory on ij with j ≥ 0
and I ′n ⊂ Jn be the subcategory on ij with j ≤ 0; also give In, I

′
n the induced markings. We have an

inclusion (∆n)♯ Jn given by i 7→ i0 which restricts to inclusions (∆n)♯ In, (∆
n)♯ I ′n and

induces a map γn : In ∪(∆n)♯ I
′
n ⊂ Jn.

Define auxiliary (unmarked) simplicial sets Z ′ T by Hom/T (∆
n, Z ′) = Hom/T (Jn, ♮Z) and

Z ′′ T by Hom/T (∆
n, Z ′′) = Hom/T (In ∪(∆n)♯ I

′
n, ♮Z), where Jn ∆n via ij 7→ i. We have

a map r : Z ′ Z ′′ given by restriction along the γn, which we claim is a trivial fibration. By a
standard reduction, for this it suffices to show that γn is left marked anodyne. Indeed, this follows from
Lemma 5.20 applied to In (∆n)♯ ×∆n and the observation that the map ∆n ×∆n ∪∆n I ′n Jn
is inner anodyne, whose proof we leave to the reader.

Define also a map Z ′ Zvop over T by restriction along the map ♮Õ(∆
n) Jn which sends ij

to jn if i = 0 and j(−i) otherwise. Finally, define a map Xvop ×T Y vop Z ′′ over T as follows: a
map ∆n Xvop ×T Y vop is given by the data

♮Õ(∆
n) ♮X

(∆n)♯ T ♯

,

(Õ(∆n)op)
♮

Y ♮

(∆n)♯ T ♯.

We have isomorphisms ♮Õ(∆
n) ∼= I ′n and (Õ(∆n)op)

♮ ∼= In, and obvious retractions In∪(∆n)♯I
′
n In, I

′
n

given by collapsing the complementary part onto ∆n. Using this, we may define

In ∪(∆n)♯ I
′
n ♮X ×T Y ♮ ♮Z

which is an n-simplex of Z ′′.
Choosing a section of r, we may compose these maps to define µvop, which is then easily checked

to also preserve the indicated markings. For example, µvop on edges is given by




x11

x00 x01,

y01 y11

y00




7→




µ(x11, y11)

µ(x00, y01) µ(x01, y11)

µ(x00, y00) α!µ(x00, y00)




7→




µ(x11, y11)

µ(x00, y00) α!µ(x00, y00)
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where α!µ(x00, y00) is a choice of pushforward for the edge α in T that the diagrams are vertically
over.

5.22. Lemma. Let C T be a cartesian fibration and let D T be a cocartesian fibration. There

exists a T -equivalence ψ : F̃unT (C,D)vop F̃unT (C
vop, Dvop).

Proof. We have a map µ : F̃unT (C,D)×TC D adjoint to the identity. Employing Construction 5.21
on µ and then adjointing, we obtain our desired T -functor ψ. A chase of the definitions then shows that
for all objects t ∈ T , ψt is homotopic to the known equivalence Fun(Ct, Dt)

op ≃ Fun(Cop
t , Dop

t ). �

5.23. Lemma. Let K and L be S-categories. Then there exists a S-equivalence

ψ : (K ⋆S L)
vop ≃−→ Lvop ⋆S K

vop

over S ×∆1.

Proof. Note that (S×∆1)vop ∼= S×(∆1)op. View (K⋆SL)
vop as lying over S×∆1 via the isomorphism

(∆1)op ∼= ∆1. Since (K ⋆S L)
vop
0
∼= Lvop and (K ⋆S L)

vop
1
∼= Kvop, we have our S-functor ψ as adjoint

to the identity over S × ∂∆1. Fiberwise, ψs is homotopic to the known isomorphism (Ks ⋆ Ls)
op ∼=

Lop
s ⋆ Kop

s , so ψ is an equivalence. �

5.24. Proposition. Suppose S-categories K and C.

(1) The adjoint of the vertical opposite of the evaluation map induces a equivalence

FunS(K,C)
vop ≃−→ FunS(K

vop, Cvop).

(2) Suppose a S-functor p : K C. We have equivalences

(C(p,S)/)vop ≃ (Cvop)/(p
vop,S), (C/(p,S))vop ≃ (Cvop)(p

vop,S)/.

Proof. (1) Recall from 6.3.1 the equivalence FunS(K,C) ≃ π∗π′∗{K,C}S . By Lemma 5.22 and
Lemma 5.19(1),

{K,C}vopS ≃ {Kvop, Cvop}S .
By Lemma 5.19(1) and (2),

π∗π
′∗{K,C}vopS ≃ (π∗π

′∗{K,C}S)vop.

Combining these equivalences supplies an equivalence FunS(K,C)
vop ≃ FunS(K

vop, Cvop). It is
straightforward but tedious to verify that the adjoint of the vertical opposite of the evaluation
map FunS(K,C)

vop ×S Kvop Cvop is homotopic to this equivalence.
(2) Combine (1), Lemma 5.23, Proposition 5.18 (which shows in particular that (−)vop is right

Quillen), and the definition of the S-slice category.
�

5.25. Corollary. Let p : S ⋆S K C be a S-functor. Then p is a S-limit diagram if and only if
pvop : Kvop ⋆S S Cvop is a S-colimit diagram.

This allows us to deduce statements about S-limits from statements about S-colimits, and vice-
versa. For this reason, we will primarily concentrate our attention on proving statements concerning
S-colimits (and eventually, S-left Kan extensions), leaving the formulation of the dual results to the
reader.

5.26. Warning. Even with Corollary 5.25, it seems difficult to deduce Proposition 5.6 concerning
S-limits in an S-category of objects CS directly from Proposition 5.5 on S-colimits in CS . This is
because the formation of vertical opposites CS 7→ (CS)

vop doesn’t intertwine with any operation at
the level of the ∞-category C.
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6. Assembling S-slice categories from ordinary slice categories

Suppose a S-functor p : K C. For every morphism α : s → t in S, we have a functor
pα : Ks Ct, and we may consider the collection of ‘absolute’ slice categories Cpα/ and examine the
functoriality that they satisfy. For this, we have the following basic observation: given a morphism
f : t→ t′, covariant functoriality of slice categories in the target yields a functor Cpα/ Cpfα/, and
given a morphism g : s′ → s, contravariant functoriality in the source yields a functor Cpα/ Cpαg/.
Elaborating, we will show in this section that there exists a functor

F := F (p : K C) : Õ(S) Cat∞

out of the twisted arrow category Õ(S) such that F (α) ≃ Cpα/, which encodes all of this functoriality

(Definition 6.5). Moreover, the right Kan extension of F along the target functor Õ(S) S is
C(p,S)/ (Theorem 6.6). We will end with some applications of this result to the theory of cofinality
and presentability (Theorem 6.7 and Remark 6.11).

We first record a cofinality result which implies that the values of a right Kan extension along

ev1 : Õ(S) S are computed as ends.

6.1. Lemma. The functor Õ(Ss/) Õ(S)×S Ss/ is initial.

Proof. Let (α : u t, β : s t) be an object of Õ(S)×S Ss/. We will prove that

C = Õ(Ss/)×
Õ(S)×SSs/ (Õ(S)×S Ss/)/(α,β)

is weakly contractible. An object of C is the data of an edge

s

x y

f g

h

in Ss/, which we will abbreviate as f h g, and an edge



x y

u t

h

γδ
α

,
s y

t

g

β
γ




in Õ(S)×S Ss/, which we will abbreviate as (h, g)
(δ,γ)

(α, β).

Let C0 ⊂ C be the full subcategory on objects c = ((f h g), (h, g)
(δ,γ)

(α, β)) such that γ is
a degenerate edge in Ss/. We will first show that C0 is a reflective subcategory of C by ver-
ifying the first condition of [10, Proposition 5.2.7.8]. Given an object c of C, define c′ to be

((f γh β), (γh, β)
(δ,idt)(α, β)) and let e : c c′ be the edge given by




f g

f β

h

γidf

γh

,
(h, g) (γh, β)

(α, β)

(idx,γ)

(δ,γ)) (δ,idt))


 .

We need to show that for all d = ((f ′ h′
β), (h′, β)(δ

′,id)
(α, β)) ∈ C0, MapC(c

′, d) e∗ MapC(c, d) is
a homotopy equivalence. The space MapC(c, d) lies in a commutative diagram

MapC(c, d) Map
Õ(Ss/)(f

h g, f ′ h′
β)

Map(Õ(S)×SSs/)/(α,β)
((h, g), (h′, β)) Map

Õ(S)×SSs/((h, g), (h
′, β))

∆0 Map
Õ(S)×SSs/((h, g), (α, β))

(δ′,id)∗

(δ,γ)
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where the two squares are homotopy pullback squares. We also have the analogous diagram for
MapC(c

′, d), and the map e∗ is induced by a natural transformation of these diagrams. The assertion
then reduces to checking that the upper square in the diagram

Map
Õ(Ss/)(f

γh β, f ′ h′
β) Map

Õ(Ss/)(f
h g, f ′ h′

β)

Map
Õ(S)×SSs/((γh, β), (α, β)) Map

Õ(S)×SSs/((h, g), (α, β))

MapSs/(β, β) MapSs/(g, β)

(idf ,γ)
∗

(idx,γ))
∗

γ∗

is a homotopy pullback square. Since (idx, γ) and (idf , γ) are ev1-cocartesian edges in Õ(S) and

Õ(Ss/) respectively, the lower and outer squares are homotopy pullback squares (where we implicitly
use that the map (δ′, id) covers the identity in Ss/ to identify the long vertical maps with those induced
by ev1), and the claim is proven.

To complete the proof, we will show that c = (β = β, (idt, β)
(α,idt)(α, β)) is an initial object in C0.

Let d ∈ C0 be as above. In the diagram

∆0 Map
Õ(Ss/)(β = β, f ′ h′

β)

∆0 Map
Õ(S)×SSs/((idt, β), (α, β)) Map

Õ(S)(idt, α)

∆0 MapSs/(β, β) MapS(t, t)

(h′,idβ)

(α,idt)

idβ

we need to show that the upper square is a homotopy pullback square in order to prove that

MapC(c, d) ≃ ∗. The fiber of Õ(S) over t ∈ S is equivalent to (S/t)
op; in particular, idt is an

initial object in the fiber over t. Therefore, the two outer squares are both homotopy pullbacks. Since
the lower right square is a homotopy pullback, this shows that all squares in the diagram are homotopy
pullbacks, as desired. �

Let K be an S-category. Let Jn be the poset with objects ij for 0 ≤ i ≤ j ≤ 2n + 1 which has
a unique morphism ij kl if and only if k ≤ i ≤ j ≤ l. Let In ⊂ Jn be the full subcategory on
objects ij such that i ≤ n. In view of the isomorphisms

Jn ∼= Õ(∆2n+1) ∼= Õ((∆n)op ⋆∆n),

the In and Jn extend to functors

I• ⊂ J• ∼= Õ((∆•)op ⋆∆•) : ∆ sSet.

Viewing In and Jn as marked simplicial sets where ij kl is marked just in case k = i, we moreover
have functors to sSet+. Define the simplicial set X : ∆op Set to be the functor

HomsSet+(I•, ♮K)×Hom(I•,S) Hom((∆•)op ⋆∆•, S)
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where I• ⊂ J• (∆•)op ⋆∆• is given by the target map. An n-simplex of X is thus the data of a
diagram

knn kn(n+1) . . . kn(2n+1)

. .
. ...

... . . .
...

k11 . . . k1n k1(n+1) . . . k1(2n+1)

k00 k01 . . . k0n k0(n+1) . . . k0(2n+1)

where the horizontal edges are cocartesian in K and the vertical edges lie over degeneracies in S.
Declare an edge e in X to be marked if the corresponding map I1 ♮K sends all edges to marked

edges. We have a commutative square of marked simplicial sets

X Õ(S)♯

(K∨)♮ (Sop)♯

ev0

where K∨ = (Kvop)op Sop is the dual cartesian fibration and the map X K∨ is defined by
restricting In K to I ′n K (where I ′n is the full subcategory of In on ij with j ≤ n). Let ψ
denote the resulting map from X to the pullback.

6.2. Lemma. ψ : X (K∨)♮ ×(Sop)♯ Õ(S)
♯ is a trivial fibration of marked simplicial sets.

Proof. Since any lift of a marked edge in (K∨)♮×(Sop)♯ Õ(S)
♯ to an edge in X is marked, it suffices to

prove that the underlying map of simplicial sets is a trivial fibration.
We first show that I ′n ⊂ In is left marked anodyne. Let In,k ⊂ In be the full subcategory on objects

ij with i ≤ k and similarly for I ′n,k. For 0 ≤ k < n we have a pushout decomposition

((∆n−k)op)♭ × (∆k)♯
⋃

((∆n−k−1)op)♭×(∆k)♯
((∆n−k−1)op)♭ × (∆n+k+1)♯ I ′n,n−k

⋃
I′
n,n−k−1

In,n−k−1

((∆n−k)op)♭ × (∆n+k+1)♯ In,n−k,

and the lefthand map is left marked anodyne by [10, Proposition 3.1.2.3]. It thus suffices to show that

I ′n,0 ∼= (∆n)♯ In,0 ∼= (∆2n+1)♯

is left marked anodyne, and this is clear.
We now explain how to solve the lifting problem

∂∆n X

∆n K∨ ×Sop Õ(S).

To supply the dotted arrow we must provide a lift in the commutative square

∂In ∪∂I′n I ′n ♮K

In S♯.

f
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where ∂In = ∪
[n−1]⊂[n]

In−1 as a simplicial subset of In and likewise for ∂I ′n. Then since I ′n ∂In∪∂I′n
I ′n and I ′n In are left marked anodyne, f is a cocartesian equivalence in sSet+/S , and the lift

exists. �

For all s ∈ S, we have trivial cofibrations is : Ks
≃ (K∨)s, and thus commutative squares

Ks Õ(S)

K∨ Sop.

ids

ev0

From this we obtain a cofibration

ι :
⊔

s∈S
Ks K∨ ×Sop Õ(S).

We have an explicit lift ι′ of ι to X , where Ks X is given by precomposition by In ∆n,
ij 7→ n− i.

By Lemma 6.2, there exists a lift σ in the commutative square

⊔
s∈S Ks X

K∨ ×Sop Õ(S) K∨ ×Sop Õ(S).

ι′

ι ψ

=

σ

Let χ : X K be the functor induced by ∆n In, i 7→ (n − i)(n + i). Define the twisted
pushforward

P̃ : K∨ ×Sop Õ(S) K

to be the map over S given by the composite χ ◦ σ. Then for every object α : s t in Õ(S),

P̃α ◦ is : Ks Kt is a choice of pushforward functor over α, which is chosen to be the identity if
α = ids.

6.3. Proposition. For all A ∈ sSet/S,

P̃ ×S idA : (K∨)
♮ ×(Sop)♯ Õ(S)

♯ ×S A♯ ♮K ×S A♯

is a cocartesian equivalence in sSet+/A.

Proof. Let (Z,E) denote the marked simplicial set (K∨)♮ ×(Sop)♯ Õ(S)
♯. Viewing Z as Õ(S) ×Sop×S

(K∨ × S), we see that Z S is a cocartesian fibration with the cocartesian edges a subset of E.
Moreover, every edge in E factors as a cocartesian edge followed by an edge in E in the fiber over

S. By Proposition 13.4, it suffices to verify that for all s ∈ S, P̃s is a cocartesian equivalence in

sSet+. Since ids is an initial object in Õ(S)×S {s}, the inclusion of the fiber (K∨)∼s ⊂ (Zs, Es) is a

cocartesian equivalence in sSet+ by [10, Lemma 3.3.4.1]. We chose P̃ so as to split the inclusion of
Ks in Z, so this completes the proof. �
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Consider the commutative diagram

O(S)♯ ×S ♮K

O(S)♯ ×ev1,S,ev1 ((K
∨)♮ ×Sop Õ(S)♯) (K∨)♮ ×Sop Õ(S)♯ (K∨)♮ × S♯ S♯

O(S)♯ ×ev1,S,ev1 Õ(S)
♯ Õ(S)♯ (Sop)♯ × S♯

S♯.

ev0

ev1

pr

pr

idO(S)×S P̃
id×ev1

pr

prS

q∨×id

π′

π

ev

Here, π = ev0 ◦ prO(S) and π′ = pr
Õ(S). Since K∨ Sop is a cartesian fibration, by Theorem 2.24

(q∨ × id)∗ is right Quillen. Therefore, given a S-category C, we obtain a Õ(S)-category

{K,C}S := (ev∗ ◦(q∨ × id)∗ ◦ pr∗S)(♮C).
Moreover, we saw in Example 2.26 that π∗π′∗ is right Quillen and computes right Kan extension along

ev1 : Õ(S) S. Finally, the map idO(S) ×S P̃ induces a S-functor

(6.3.1) θ : FunS(K,C) π∗π
′∗{K,C}S,

natural in K and C. By Proposition 6.3 applied to A = Ss/ for all s ∈ S, θ is an equivalence.

6.4. Remark. As a corollary, the global sections of {K,C}S are equivalent to FunS(K,C). If we
knew that under the straightening functor St, {K,C}S was equivalent to the composite

Õ(S) Sop × S StS(K)op×StS(C)−−−−−−−−−−−→ Catop∞ ×Cat∞
Fun−−→ Cat∞,

then this would yield another proof of the end formula for the ∞-category of natural transformations,
as proven in [6, §6]. As we manage to always stay within the environment of cocartesian fibrations,
this identification is not necessary for our purposes.

6.5. Definition. Given a S-functor p : K C and a choice of twisted pushforward P̃ for K, define

the cocartesian section ωp : Õ(S) {K,C}S to be the adjoint to

p ◦ P̃ : K∨♮ ×Sop Õ(S)♯ ♮K ♮C.

For objects [α : s→ t] in Õ(S), ωp(α) ∈ Fun((K∨)s, Ct) is the functor

pt ◦ P̃α : (K∨)s Kt Ct.

Define the twisted slice Õ(S)-category to be

C (̃p,S)/ := Õ(S)×{K,C}S
{K ⋆S S,C}S .17

Note that the fiber of C (̃p,S)/ over an object [α : s→ t] is Cpt◦P̃α/.

We now connect the constructions C (̃p,S)/ and C(p,S)/. A check of the definitions reveals that
θ ◦ σp = π∗π′∗(ωp) for the canonical cocartesian section σp : S FunS(K,C). We thus have a
morphism of spans

S FunS(K,C) FunS(K ⋆S S,C)

S π∗π′∗{K,C}S π∗π′∗{K ⋆S S,C}S

σp

= ≃ ≃

π∗π
′∗(ωp)

with all objects fibrant and the right horizontal maps fibrations by a standard argument. Taking
pullbacks, we deduce:

17We omit the dependence on P̃ from the notation.
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6.6. Theorem. We have an equivalence

π∗π
′∗(C (̃p,S)/) ≃ C(p,S)/.

In other words, the right Kan extension of C (̃p,S)/ along the target functor ev1 : Õ(S) S is
equivalent to C(p,S)/.

Proof. Our interpretation of this equivalence is by Example 2.26. �
Relative cofinality. Let us now apply Theorem 6.6. We have the S-analogue of the basic cofinality
result [10, Proposition 4.1.1.8].

6.7. Theorem. Let f : K L be a S-functor. The following conditions are equivalent:

(1) For every object s ∈ S, fs : Ks Ls is final.
(2) For every S-functor p : L C, the functor f∗ : C(p,S)/ C(pf,S)/ is an equivalence.
(3) For every S-colimit diagram p : L ⋆S S C, p ◦ f✄ : K ⋆S S C is a S-colimit diagram.

Proof. (1) ⇒ (2): Factoring f as the composition of a cofibration and a trivial fibration, we may
suppose that f is a cofibration, in which case we may choose compatible twisted pushforward functors

P̃K and P̃L. Let p : L C be a S-functor. Precomposition by f yields a Õ(S)-functor f̃∗ :

C (̃p,S)/ C (̃pf,S)/. Passing to the fiber over an object α : s t, the compatibility of P̃K and P̃L
implies that the diagram

(K∨)s Kt

(L∨)s Lt Ct

(P̃K)α

(f∨)s ft
(pf)t

(P̃L)α pt

commutes and that
(f̃∗)α = (f∨)∗s : C

pt◦(P̃L)α/ C(pf)t◦(P̃K)α/.

By [10, Corollary 4.1.1.10], (f∨)s is final, so by [10, Proposition 4.1.1.8], (f∨)∗s is an equivalence.

Consequently, f̃∗ is an equivalence. Now by Theorem 6.6, f∗ is an equivalence.
(2) ⇒ (3): Immediate from the definition.
(3)⇒ (1): Let s ∈ S be any object and ps : L

✄
s Spc a colimit diagram. Let p : (L⋆SS)s Spc

be a left Kan extension of ps along the full and faithful inclusion L✄
s ⊂ (L ⋆S S)s. By transitivity of

left Kan extensions, p is a left Kan extension of its restriction to Ls. By Proposition 5.5, under the

equivalence Fun(L,Spc) ≃ FunS(L,SpcS), p is a Ss/-colimit diagram. By assumption, p ◦ (f✄)s is a

Ss/-colimit diagram. By Proposition 5.5 again, ps ◦ fs is a colimit diagram, as desired. �
6.8. Definition. Let f : K L be a S-functor. We say that f is S-final if it satisfies the equivalent
conditions of Theorem 6.7. We say that f is S-initial if fvop is S-final.

6.9. Example. Let F : C D :G be a S-adjunction (Definition 8.3). Then F is S-initial and G
is S-final.

6.10. Remark. Let C,D be S-categories and F : C D an S-functor.

(1) Suppose F is fiberwise a weak homotopy equivalence. Then F is a weak homotopy equivalence
by [10, Proposition 4.1.2.15], [10, Proposition 4.1.2.18], and [10, Proposition 3.1.5.7].

(2) Suppose F is S-final. Then F is final. Indeed, for any diagram p : D Spc, we have that

colim
d∈D

p(d) ≃ colim
s∈S

colim
d∈Ds

p(d) ≃ colim
s∈S

colim
c∈Cs

pF (c) ≃ colim
c∈C

pF (c).

(3) Suppose F is S-initial. Then F is initial. To show this, by (the dual of) [10, Theorem 4.1.3.1]
it suffices to show that for every d ∈ D, C ×D D/d is weakly contractible. Let s be the image
of d in S. By Lemma 10.9, the inclusion Cs×Ds (Ds)

/d C×DD/d is final, so in particular
is a weak homotopy equivalence. Hence the desired conclusion follows by our assumption that
F is S-initial and [10, Theorem 4.1.3.1] again.

We conclude by using the twisted slice Õ(S)-category to give a criterion for the presentability of
the S-slice.
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6.11. Remark (Presentability of the parametrized slice). Suppose the functor S Cat∞ classifying

the cocartesian fibration C S factors through PrR, i.e. C S is a right presentable fibration. For
any X a presentable∞-category and diagram f : A X , Xf/ is again presentable and the forgetful

functor Xf/ X creates limits and filtered colimits. Therefore, the twisted slice Õ(S)-category

C (̃p,S)/ is a right presentable fibration. Since the forgetful functor PrR Cat∞ creates limits, by
Theorem 6.6 we deduce that C(p,S)/ is a right presentable fibration. In particular, in every fiber there
exists an initial object. However, these initial objects may fail to be preserved by the pushforward
functors. In fact, even if we assume that C S is both left and right presentable, C may fail to be
S-cocomplete.

7. Types of S-fibrations

In this section we introduce some additional classes of fibrations which are all defined relative to
S.

7.1. Definition. Let φ : C D be an S-functor. We say that φ is an S-fibration if it is a categorical
fibration. We then say that φ is an S-cocartesian fibration if it is an S-fibration such that for every
object s ∈ S, φs : Cs Ds is a cocartesian fibration, and for every square in C

xs xt

ys yt

h

f g

k

with h and k φ-cocartesian edges over φ(h) = φ(k) : s t, if f is a φs-cocartesian edge then g is
a φt-cocartesian edge.

Dually, we say that φ is an S-cartesian fibration if it is an S-fibration such that for every object
s ∈ S, φs : Cs Ds is a cartesian fibration, and for every square in C labeled as above, but now
with h and k φ-cartesian edges over φ(h) = φ(k) : s t, if f is a φs-cartesian edge then g is a
φt-cartesian edge.

Equivalently, φ : C D is S-(co)cartesian if it is a categorical fibration, fiberwise a (co)cartesian
fibration, and for every edge in S, the cocartesian pushforward along that edge preserves (co)cartesian
edges in the fibers. We formulate our definition as above so as to avoid having to make any ‘straight-
ening’ constructions such as choosing pushforward functors.

7.2. Remark. Declare a morphism of S-cocartesian fibrations [C
φ

D] [C′ φ′
D′] to be a

commutative square of S-functors

C C′

D D′

F

φ φ′

G

in which for all s ∈ S, Fs sends φs-cocartesian edges to φ′s cocartesian edges. Let Ococart.fib(Catcocart∞/S )
be the∞-category of S-cocartesian fibrations and morphisms thereof. Then one has the straightening
equivalence

Ococart.fib(Catcocart∞/S ) ≃ Fun(S,Ococart.fib(Cat∞)).

7.3. Remark. φ : C D is a S-fibration if and only if φ : ♮C ♮D is a marked fibration.

7.4. Remark. In view of [10, Proposition 2.4.2.11], [10, Lemma 2.4.2.7], and [10, Proposition 2.4.2.8],
φ : C D is an S-cocartesian fibration if and only if φ is a cocartesian fibration. However, there is
no corresponding simplification of the definition of an S-cartesian fibration.

7.5. Lemma. Let φ : C D be a S-cartesian fibration and let f : x y be a φs-cartesian edge in
Cs. Then f is a φ-cartesian edge.
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Proof. The property of being φ-cartesian may be checked after base-change to the 2-simplices of D.
Consequently, we may suppose that S = ∆1 and s = {1}. We have to verify that for every object
w ∈ C we have a homotopy pullback square

MapC(w, x) MapC(w, y)

MapD(φw, φx) MapD(φw, φy).

f∗

φ∗ φ∗
φ(f)∗

If w ∈ C0, for any choice of cocartesian edge w w′ over 0 1, the square is equivalent to

MapC1
(w′, x) MapC1

(w′, y)

MapD1
(φw′, φx) MapD1

(φw′, φy).

f∗

φ∗ φ∗
φ(f)∗

Hence we may suppose that w ∈ C1, in which case the square is a homotopy pullback square since f
is a φ1-cartesian edge. �

We next discuss an important example of S-(co)cartesian fibrations. Recall (Notation 4.29) the
fiberwise arrow S-category OS(D). Fix φ : C D a S-functor.

7.6. Definition. The free S-cocartesian and free S-cartesian fibrations on φ are the S-functors

Frcocart(φ) := ev1 ◦ pr2 : C ×D OS(D) D,

Frcart(φ) := ev0 ◦ pr1 : OS(D)×D C D.

7.7. Proposition. Frcocart(φ) is a S-cocartesian fibration. Dually, Frcart(φ) is a S-cartesian fibration.

Proof. We prove the second assertion, the proof of the first being similar but easier. First note
that OS(D) ×D C is a subcategory of O(D) ×D C stable under equivalences. Therefore, since ev0 :
O(D) ×D C D is a cartesian fibration, Frcart(φ) is a categorical fibration. Moreover, for every
object s ∈ S, Frcart(φ)s : O(Ds) ×Ds Cs is the free cartesian fibration on φs : Cs Ds. It remains
to show that for every square

(a→ φx, x) (b→ φy, y)

(a′ → φx′, x′) (b′ → φy′, y′)

h

f g

k

in OS(D) ×D C with the horizontal edges cocartesian over S and the left vertical edge Frcart(φ)s-
cartesian, the right vertical edge is Frcart(φ)t-cartesian. This amounts to verifying that y → y′ is an
equivalence in Ct. The above square yields a square

x y

x′ y′

h

f g

k

in C with x → x′ an equivalence and the horizontal edges cocartesian over S, from which the claim
follows. �

We conclude this section with an observation about the interaction between S-joins and S-cocartesian
fibrations which will be used in the sequel.

7.8. Lemma. Let C, C′, and D be S-categories and let φ, φ′ : C,C′ D be S-functors. If φ and φ′

are S-(co)cartesian, then φ ⋆ φ′ : C ⋆D C
′ D is S-(co)cartesian.

Proof. This is an easy corollary of Proposition 4.7. �
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7.9. Definition. We say that a S-functor F : C D×S E is a S-bifibration if for all objects s ∈ S,
Fs is a bifibration. Observe it is then automatic that prD F is S-cartesian and prE F : C E is
S-cocartesian.

7.10. Example. The S-functor

FunS(K ⋆S L,C) FunS(K,C)×S FunS(L,C)

is a S-bifibration by Lemma 4.8. In particular, for a S-functor p : K C, the S-functors
C(p,S)/ C and C/(p,S) C are S-cocartesian resp. S-cartesian.

8. Relative adjunctions

In [12, §7.3.2], Lurie introduces the notion of a relative adjunction.

8.1. Definition ([12, Definition 7.3.2.2]). Suppose given categorical fibrations q : C S, p : D S
and functors F : C D, G : D C over S. Suppose there exists a natural transformation
u : idC GF such that

(1) u exhibits F as a left adjoint to G, and
(2) q(u) is the identity transformation from q to itself.

Then we say that the adjunction F ⊣ G is a relative adjunction with respect to S.

8.2. Recollection. By [12, Proposition 7.3.2.5], relative adjunctions are stable under base-change; in
particular, they restrict to adjunctions over every fiber.

8.3. Definition. Let C and D be S-categories. We call a relative adjunction (with respect to S)

F : C D :G

an S-adjunction if F and G are S-functors.

We prove some basic results about S-adjunctions in this section. Let us first reformulate the
definition of a relative adjunction in terms of a correspondence. Let F : C D be a S-functor. By
the relative nerve construction, F defines a cocartesian fibration M ∆1 by prescribing, for every
∆n ∼= ∆n0 ⋆∆n1 ∆1, the set Hom∆1(∆n,M) to be the collection of commutative squares

∆n0 C

∆n D

F

for n1 ≥ 0, and setting Hom∆1(∆n,M) = Hom(∆n, C) for n1 = −1. Moreover, the structure maps
for C and D to S define a functor M S by sending ∆n M to ∆n D S if n1 ≥ 0, and
∆n C S if n1 < 0. Then M is a S-category, M S ×∆1 is a S-cocartesian fibration, and
F admits a right S-adjoint if and only if M S ×∆1 is a S-cartesian fibration.

8.4. Proposition. Let F : C D :G be a S-adjunction and let I be a S-category. Then we have
adjunctions

F∗ : FunS(I, C) FunS(I,D) :G∗
G∗ : FunS(C, I) FunS(D, I) :F ∗

Proof. LetM S×∆1 be the S-functor obtained from F . We first produce the adjunction F∗ ⊣ G∗.
Invoking Theorem 2.24 on the span

(∆1)
π←− ♮I × (∆1)♯

π′
−→ S♯ × (∆1)♯

we deduce that π∗π′∗ : sSet+/(S♯×(∆1)♯) sSet+/(∆1)♯ is right Quillen. Let N = π∗π′∗(M). Then

N ∆1 is a cocartesian fibration classified by the functor

F∗ : FunS(I, C) FunS(I,D).

Now invoking Theorem 2.24 on the span

((∆1)♯)op
ρ←− (I∼ × (∆1)♯)op

ρ′−→ (S∼ × (∆1)♯)op
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we deduce that with respect to the cartesian model structures ρ∗ρ′∗ : sSet+/(S∼×(∆1)♯) sSet+/(∆1)♯

is right Quillen. Let N ′ = ρ∗ρ′∗M . Since G is right S-adjoint to F , N ′ ∆1 is a cartesian fibration
classified by the functor

G∗ : Fun/S(I,D) Fun/S(I, C)

where we view I, C,D as categorical fibrations over S. N is a subcategory of N ′, and the cartesian
edges e in N ′ with d0(e) ∈ N are in N . Hence N ∆1 is also a cartesian fibration classified by the
functor

G∗ : FunS(I,D) FunS(I, C).

We now produce the adjunction G∗ ⊣ F ∗ by similar methods. Let E0 be the collection of edges
e : x y in M such that e admits a factorization as a cocartesian edge over S followed by a
cartesian edge in the fiber. Note that since M S×∆1 is a S-cartesian fibration, E0 is closed under
composition of edges. Invoking Theorem 2.24 on the span

(∆1)♯
µ←− (M,E0)

µ′
−→ S♯ × (∆1)♯

we deduce that µ∗µ′∗ : sSet+/(S♯×(∆1)♯) sSet+/(∆1)♯ is right Quillen. Let P = µ∗µ′∗(♮I × (∆1)♯).

Then P ∆1 is a cocartesian fibration classified by the functor

G∗ : FunS(C, I) FunS(D, I).

Let E1 be the collection of edges e : x y in M such that e is a cocartesian edge over an
equivalence in S. Now invoking Theorem 2.24 on the span

((∆1)♯)op
ν←− (M,E1)

op ν′
−→ (S∼ × (∆1)♯)op

we deduce that with respect to the cartesian model structures ν∗ν′∗ : sSet+
/(S∼×(∆1)♯)

sSet+
/(∆1)♯

is

right Quillen. Let P ′ = ν∗ν′∗(I∼× (∆1)♯). P ′ ∆1 is a cartesian fibration with P as a subcategory.
One may check that P ∆1 inherits the property of being a cartesian fibration, which is classified
by the functor F ∗ : FunS(D, I) FunS(C, I). �

8.5. Corollary. Let F : C D :G be a S-adjunction and let I be a S-category. Then we have
S-adjunctions

F∗ : FunS(I, C) FunS(I,D) :G∗
G∗ : FunS(C, I) FunS(D, I) :F ∗

Proof. By Proposition 8.4, for every s ∈ S
F∗ : FunSs/(I ×S Ss/, C ×S Ss/) FunSs/(I ×S Ss/, D ×S Ss/) :G∗

is an adjunction, and similarly for the contravariant case. �

To state the next corollary, it is convenient to introduce a definition.

8.6. Definition. Suppose π : C D a S-fibration. Define the∞-category SectD/S(π) of S-sections
of π to be the pullback

SectD/S(π) FunS(D,C)

∆0 FunS(D,D).

π∗

idD

Define the S-category SectD/S(π) to be the pullback

SectD/S(π) FunS(D,C)

S FunS(D,D).

π∗

σidD

We will often denote SectD/S(π) by SectD/S(C), the S-functor π being left implicit.

Note that for any object s ∈ S, the fiber SectD/S(π)s is isomorphic to SectDs/s(πs).
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8.7. Corollary. Let p : C E and q : D E be S-fibrations. Let F : C D :G be an
adjunction relative to E where F and G are S-functors. Then for any S-category I,

F∗ : FunS(I, C) FunS(I,D) :G∗

is an adjunction relative to FunS(I, E). In particular, taking I = E and the fiber over the identity,
we deduce that

F∗ : SectE/S(p) SectE/S(q) :G∗
is an adjunction, and also that

F∗ : SectE/S(p) SectE/S(q) :G∗

is a S-adjunction.

Proof. The proof of Proposition 8.4 shows that the unit for the adjunction F∗ ⊣ G∗ is sent by p∗ to a
natural transformation through equivalences. �
8.8. Lemma. Let F : C D :G be a S-adjunction. For every S-functor p : K D, we have a
homotopy pullback square in sSet+/S

C/(Gp,S) D/(p,S)

C D

evC
0 evD

0

F

where the upper horizontal map is defined to be the composite C/(Gp,S)
F−→ C/(FGp,S)

ǫ(p)!−−−→ D/(p,S).
Dually, for every S-functor p : K D, we have a homotopy pullback square in sSet+/S

D(Fp,S))/ C(p,S)/

D C.

evD
1 evC

1

G

where the upper horizontal map is defined to be the composite D(Fp,S))/ G−→ C(GFp,S)/ η(p)∗−−−→ C(p,S)/.

Proof. We prove the first assertion; the second then follows by taking vertical opposites. We first
explain how to define the map ǫ(p)!. Choose a counit transformation ǫ : D × ∆1 D for F ⊣
G such that πD ◦ ǫ is the identity natural transformation from πD to itself. Then ǫ ◦ (p × id) is
adjoint to a S-functor ǫ(p) : S × ∆1 FunS(K,D) with ǫ(p)0 = σFGp and ǫ(p)0 = σp. Because
FunS(S⋆SK,D) D×SFunS(K,D) is an S-bifibration, from ǫ(p) we obtain a pushforward S-functor
ǫ(p)! : D

/(FGp,S) D/(p,S) compatible with the source maps to D.
We need to check that for every object s ∈ S, passage to the fiber over s yields a homotopy

pullback square of ∞-categories. Because (D/(p,S))s ∼= (D
/(ps,s)
s )s, we may replace S by Ss/ and

thereby suppose that s is an initial object in S.
Let r : {s} ⋆ S S be a left Kan extension of the identity S S. By the formula for a left

Kan extension, r(s) is an initial object in S, which without loss of generality we may suppose to be s.
Using r ◦ (id⋆πK) as the structure map for {s}⋆K over S, define φ′ : {s}⋆ ♮K {s}⋆S ♮K as adjoint

to the identity over S × ∂∆1. It is easy to show that φ′ is a trivial cofibration in sSet+/S . Moreover,

since the inclusion {s} S♯ is a trivial cofibration, {s} ⋆S ♮K S♯ ⋆S ♮K is a trivial cofibration in

sSet+/S by Theorem 4.16. Let φ be the composition of these two maps. Then because FunS(−,−) is
a right Quillen bifunctor, φ∗ : FunS(S

♯ ⋆S ♮K, ♮D) FunS({s} ⋆ ♮K, ♮D) is a trivial Kan fibration.
We further claim that the inclusion j : FunS({s} ⋆ ♮K, ♮D) Ds ×D Fun({s} ⋆ K,D) ×Fun(K,D)

FunS(♮K, ♮D) is an equivalence. Indeed, we have the pullback square

FunS({s} ⋆ ♮K, ♮D) Ds ×D Fun({s} ⋆ K,D)×Fun(K,D) FunS(♮K, ♮D)

∆0 {s} ×S Fun({s} ⋆ K, S)×Fun(K,S) {πK}
r◦(id⋆πK)
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and the term in the lower right is contractible since it is equivalent to the full subcategory Fun′({s} ⋆
K, S) ⊂ Fun({s} ⋆ K, S) of functors which are left Kan extensions of πK .

Now taking the pullback of the composition j ◦ φ∗ over {p}, we obtain an equivalence

(D/(p,S))s Ds ×D D/p.

Similarly, we have an equivalence

(C/(Gp,S))s Cs ×C C/Gp.
Since F ⊣ G is in particular an adjunction, by [10, Lemma 5.2.5.5]C/Gp C×DD/p is an equivalence.
Taking the fiber over s, we deduce the claim. �

8.9.Corollary. Let F : C D :G be a S-adjunction. Then F preserves S-colimits and G preserves
S-limits.

Proof. Let p : K⋆SS C be a S-colimit diagram. To show that Fp is a S-colimit diagram, it suffices
to prove that the restriction map D(Fp,S)/ D(Fp,S)/ is an equivalence. We have the commutative
square

D(Fp,S)/ C(p,S)/ ×C D

D(Fp,S)/ C(p,S)/ ×C D
(here we suppress some details about the naturality of ǫ(−)!). The righthand vertical map is an
equivalence by assumption, and the horizontal maps are equivalences by Lemma 8.8. Thus the lefthand
vertical map is an equivalence. �

Free S-(co)cartesian fibrations revisited. With the theory of S-adjunctions, we can now establish
a key property of the free S-(co)cartesian fibration (Definition 7.6). Let φ : C D be an S-functor
and define S-functors

ι0 : C C ×D OS(D), ι1 : C OS(D)×D C
via the commutative square

C OS(D)

C D

= evi

φ

where the upper horizontal map is the composite C ι OS(C) OS(D).

8.10. Proposition. ι0 is left S-adjoint to prC . Dually, ι1 is right S-adjoint to prC .

Proof. We prove the first assertion, the proof of the second being similar. To prove that we have a
relative S-adjunction ι0 ⊣ prC , we must prove that for each s ∈ S we have an adjunction (ι0)s ⊣ (prC)s.
So suppose that S = ∆0. Since prC ◦ι0 = id, it suffices by [10, Proposition 5.2.2.8] to check that the
identity is a unit transformation: that is, for every x ∈ C and (y, φy → a) ∈ C ×D O(D),

prC : MapC×DO(D)((x, idφx), (y, φy → a)) MapC(x, y)

is an equivalence. Under the fiber product decomposition

MapC×DO(D)((x, idφx), (y, φy → a)) ≃ MapC(x, y)×MapD(φx,φy) MapO(D)((idφx), (φy → b))

the map prC is projection onto the first factor. The adjunction ι : D O(D) :ev0 obtained by
exponentiating the adjunction i0 : {0} ∆1 :p implies that

MapO(D)((idφx), (φy → b)) MapD(φx, φy)

is an equivalence, so the claim follows. �
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8.11. Remark (Universal property of the free S-cocartesian fibration). Let φ : C D be an S-
functor and ψ : E D be an S-cocartesian fibration. Then we would like to show that the restriction
functor

Funcocart/D (C ×D OS(D), E) Fun/D,S(C,E) = S ×σφ,FunS(C,D),ψ∗ FunS(C,E)

is an equivalence of∞-categories.18 We prove this as [18, Example 3.8] as an application of the theory
of parametrized factorization systems.

9. Parametrized colimits

In this section, we first introduce a parametrized generalization of Lurie’s pairing construction [10,
Corollary 3.2.2.13]. We then employ it to study D-parametrized S-(co)limits. This material recovers
and extends [10, §4.2.2] (in view of Lemma 4.5). It is a precursor to our study of Kan extensions.

An S-pairing construction.

9.1. Construction. Let p : C S, q : D S be S-categories and let φ : C D be a S-functor.
Let π, π′ : Ococart(D)×DC D be given by π = ev0 ◦ pr1, π′ = ev1 ◦ pr1. Let E denote the collection
of edges e in Ococart(D) ×D C such that π(e) is q-cocartesian and pr2(e) is p-cocartesian (so π′(e) is
q-cocartesian). Then the span

♮D
π←− (Ococart(D)×D C,E)

π′
−→ ♮D

defines a functor
π∗π

′∗ : sSet+/♮D sSet+/♮D.

For a S-category E and a S-functor ψ : E D, define

(F̃unD/S(C,E) ♮D) := π∗π
′∗(♮E

ψ
♮D).

9.2. Lemma. Let q : D S be a S-category.

(1) ev0 : Ococart(D) D is a cartesian fibration, and an edge e in Ococart(D) is ev0-cartesian if
and only (evS,1 ◦q)(e) is an equivalence in S. In particular, if ev0(e) is q-cocartesian, then e
is ev0-cartesian if and only if ev1(e) is an equivalence in D.

(2) If f : x y is an edge in D such that q(f) is an equivalence, then there exists a ev0-
cocartesian edge e over f . Moreover, an edge e over f is ev0-cocartesian if and only if it is
ev0-cartesian.

Proof. ev0 : Ococart(D) D factors as

Ococart(D) D ×S O(S) D

where the first functor is a trivial fibration and the second is a cartesian fibration, as the pullback of
evS,0 : O(S) S. Thus ev0 is a cartesian fibration with cartesian edges as indicated. Moreover, since
evS,0 : O(S) S is a categorical fibration, the second claim follows from [12, Proposition B.2.9]. �

We have designed our construction so that for any object x ∈ D and cocartesian section Sqx/ D,

the fiber of F̃unD/S(C,E) D over x is equivalent to FunSqx/(C×DSqx/, E×DSqx/). For this reason,
we think of F̃unD/S(−,−) as the parametrized generalization of the pairing construction F̃unD(−,−),
to which it reduces when S = ∆0.

9.3. Theorem. Notation as in Construction 9.1, F̃unD/S(C,E) enjoys the following functoriality:

(1) If φ is either a S-cartesian fibration or a S-cocartesian fibration and ψ is a categorical fibra-

tion, then F̃unD/S(C,E) S is a S-category with cocartesian edges marked as indicated in

Construction 9.1, and F̃unD/S(C,E) D is a categorical fibration.

(2) If φ is a S-cartesian fibration and ψ is a S-cocartesian fibration, then F̃unD/S(C,E) D is
a S-cocartesian fibration.

18We use Remark 7.4 to simplify the appearance of the lefthand side, which would otherwise be denoted as
Funcocart

/D,S
(C ×D OS(D), E).
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(3) If φ is a S-cocartesian fibration and ψ is a S-cartesian fibration, then F̃unD/S(C,E) D is
a S-cartesian fibration.

Proof. (1) It suffices to check that Theorem 2.24 applies to the span

♮D
π←− (Ococart(D)×D C,E) π′

−→ ♮D.

In the remainder of this proof we will verify that Ococart(D)×DC D is a flat categorical fibra-
tion. For condition (4) we appeal to Lemma 9.2. The rest of the conditions are easy verifications.

(2) By Lemma 9.2 and 7.5, π : Ococart(D) ×D C D is a cartesian fibration (hence flat) with an
edge e π-cartesian if and only if pr1(e) is ev0-cartesian and pr2(e) is φ-cartesian. Let E′ be the
collection of edges e in Ococart(D)×ev1,DC such that for any π-cartesian lift e′ of π(e), the induced
edge d1(e) d1(e

′) is in E. Note that since φ is S-cartesian (and not just fiberwise cartesian),
E′ is closed under composition. Invoking Theorem 2.24 on the span

D♯ π←− (Ococart(D)×D C,E′)
π′
−→ D♯

we deduce that
π∗π

′∗ : sSet+/D sSet+/D

is right Quillen. Note that there is no conflict of notation with the functor π∗π′∗ defined before
on sSet+/♮D since E ⊂ E′ and the two restrict to the same collections of marked edges in the fibers

of π. Since S-cocartesian fibrations are cocartesian fibrations over D (Remark 7.4), we conclude.
(3) First note that π factors as a cocartesian fibration followed by a cartesian fibration, so is flat. Let

F be the collection of edges f in D such that q(f) is an equivalence. By Lemma 9.2, we have that
π : Ococart(D) ×ev1,D C D admits cocartesian lifts of edges in F. Let E′′ be the collection of
those π-cocartesian edges. Invoking Theorem 2.24 on the span

(D,F)op
ρ←− (Ococart(D)×D C,E′′)op

ρ′−→ (D,F)op,

where ρ = πop and ρ′ = π′op, we deduce that with respect to the cartesian model structures

ρ∗ρ
′∗ : sSet+/(D,F) sSet+/(D,F)

is right Quillen. We have that F̃unD/S(C,E) is a full subcategory of ρ∗ρ′∗(ψ). Moreover, the com-

patibility condition in the definition of a S-cartesian fibration ensures that F̃unD/S(C,E) D

inherits the property of being fibrant in sSet+/(D,F). Another routine verification shows that

F̃unD/S(C,E) D is indeed S-cartesian.
�

9.4. Lemma. Let C C′ be a monomorphism between S-cartesian or S-cocartesian fibrations over
D and let E D be a S-fibration. Then the induced functor

F̃unD/S(C
′, E) F̃unD/S(C,E)

is a categorical fibration.

Proof. Given a trivial cofibration A B in sSetJoyal, we need to solve the lifting problem

A F̃unD/S(C
′, E)

B F̃unD/S(C,E).

This diagram transposes to

A×D Ococart(D)×D C′ ⋃
A×DOcocart(D)×DC

B ×D Ococart(D)×D C E

B ×D Ococart(D)×D C′ D.
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By the proof of Theorem 9.3, Ococart(D)×D C D is a flat categorical fibration. Therefore, by [12,
Proposition B.4.5] the left vertical arrow is a trivial cofibration in sSetJoyal. �

For later use, we analyze some degenerate instances of the S-pairing construction.

9.5. Lemma. There is a natural equivalence F̃unD/S(D,E)
≃−→ E of S-categories over D.

Proof. The map is induced by the identity section ιD : D Ococart(D) fitting into a morphism of
spans

♮D

♮D (Ococart(D),E) ♮D.

= =
ιD

By Lemma 3.3(1'), ιD is a cocartesian equivalence in sSet+/S via the target map. Since the cocartesian

model structure on sSet+/♮D is created by the forgetful functor to sSet+/S , the assertion follows. �

9.6. Lemma. Let C′ D′ be a cartesian fibration of ∞-categories and let E′ be a S-category. For
all s ∈ S, there is a natural equivalence

F̃unD′×S/S(C
′ × S,D′ × E′)s

≃−→ F̃unD′(C′, D′ × E′
s)

of cartesian fibrations over D′.

Proof. The lefthand side is defined using the span

(D′)♯ × {s} ((D′)♯ × {s})×D′×S (Ococart(D′ × S)×D′ C′,E′) S♯

with E′ as in the proof of Theorem 9.3. Cocartesian edges (over S) in D′×S are precisely those edges
which become equivalences when projected to D′, so Ococart(D′×S) ∼= Fun((∆1)♯, (D′)∼)×O(S), and
the identity section ιD′ : D′ Fun((∆1)♯, (D′)∼) is a categorical equivalence. Therefore, the map

(D′ × Ss/)♯ ((D′)♯ × {s})×D′×S (Ococart(D′ × S),E)
induced by ιD′ is a cocartesian equivalence in sSet+/S . Since C

′×S D′×S is a cartesian fibration,

it follows that

(C′)
♮ × (Ss/)♯ ((D′)♯ × {s})×D′×S (Ococart(D′ × S)×D′ C′,E′)

is also a cocartesian equivalence in sSet+/S . Finally, using the inclusion C′ × {s} C′ × Ss/, we
obtain a morphism from the span

(D′)♯ (C′)♮ {s} ⊂ S♯

through a cocartesian equivalence in sSet+/S . This yields the equivalence of the lemma. �

Directly from the definition, we have that for an object x ∈ D, the fiber F̃unD/S(C,E)x is isomor-

phic to Funx(Cx, Ex). We now proceed to identify the S-fiber F̃unD/S(C,E)x.

9.7. Proposition. There is a x-functor

ǫ∗ : F̃unD/S(C,E)x Funx(Cx, Ex)

which is a cocartesian equivalence in sSet+/x.

Proof. We first define the x-functor ǫ∗. The data of maps of marked simplicial sets

A ♮F̃unD/S(C,E)x

A ♮Funx(Cx, (E ×S D)x)

over x is identical to the data of maps

A×x x♯ ×D (Ococart(D),E) ×D ♮C ♮E

A×x O(x)♯ ×ev1 ◦ ev1,D ♮C ♮E
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over ♮D (where E is the collection of edges e in Ococart(D) such that ev0(e) and ev1(e) are cocartesian).
We have a commutative square

O(x)♯ x♯

(Ococart(D),E) ♮D

ev0

O(ev1) ev1

ev0

which defines the functor ǫ : O(x) x ×D Ococart(D), and this in turn induces the functor ǫ∗. To
show that ǫ∗ is a cocartesian equivalence, it will suffice to show that ǫ is a trivial fibration, for then a
choice of section σ and homotopy σ ◦ ǫ ≃ id will furnish a strong homotopy inverse to ǫ∗ in the sense
of [10, Proposition 3.1.3.5]. Since we have a pullback diagram

O(x) D ×Fun(∆1,D) Fun(∆
1 ×∆1, D)

x×D Ococart(D) Fun(Λ2
1, D)

ǫ ǫ′

it will further suffice to show that ǫ′ is a trivial Kan fibration. ǫ′ factors as the composition

D ×Fun(∆1,D) Fun(∆
1 ×∆1, D)

ǫ′′−→ Fun(∆2, D)
ǫ′′′−−→ Fun(Λ2

1, D)

where ǫ′′ is defined by precomposing by the inclusion i : ∆2 ∆1×∆1 which avoids the degenerate
edge for objects in D ×Fun(∆1,D) Fun(∆

1 ×∆1, D), and ǫ′′′ is precomposition by Λ2
1 ∆2. ǫ′′′ is a

trivial fibration since Λ2
1 ∆2 is inner anodyne. To argue that ǫ′′ is a trivial fibration, first note that

ǫ′′ inherits the property of being a categorical fibration from i∗ : Fun(∆1 ×∆1, D) Fun(∆2, D).
Define an inverse σ′′ by precomposing by the unique retraction r : ∆1 × ∆1 ∆2 chosen so that
r◦i = id. Then σ′′ is a section of ǫ′′ and one can write down an explicit homotopy through equivalences
of the identity functor on D ×Fun(∆1,D) Fun(∆

1 ×∆1, D) to σ′′ ◦ ǫ′′, so ǫ′′ is a trivial fibration. �

D-parametrized slice. We now study another slice construction defined using the S-pairing con-
struction.

9.8. Construction. Let φ : C D be a S-cocartesian fibration, let E D be a S-fibration, and
let F : C E be a S-functor over D. Then F defines a section S-functor

τF : D F̃unD/S(C,E)

as adjoint to the functor Ococart(D) ×ev1,D C C
F−→ E. Define

E(φ,F )/S := D ×
τF ,F̃unD/S(C,E)

F̃unD/S(C ⋆D D,E)

and let π(φ,F ) denote the projection E(φ,F )/S D.

Given an object x ∈ D, the functor τF : D F̃unD/S(C,E) induces via pullback a x-functor

τFx : x F̃unD/S(C,E)x.

We also have the x-functor

σFx : x Funx(Cx, Ex)

adjoint to

O(x)×x Cx
pr2−−→ Cx

Fx−−→ Ex.

An inspection of the definition of the comparison functor ǫ∗ of 9.7 shows that the triangle

x F̃unD/S(C,E)x

Funx(Cx, Ex)

τFx

σFx
ǫ∗
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commutes. Recalling the definitions

(E(φ,F )/S)x = x×
F̃unD/S(C,E)x

F̃unD/S(C ⋆D D,E)x,

(Ex)
Fx/x = x×Funx(Cx,Ex) Funx(Cx ⋆x x,Ex),

we therefore obtain a comparison x-functor

ψ : (E(φ,F )/S)x (Ex)
Fx/x.

9.9. Corollary. The functor ψ is a cocartesian equivalence in sSet+/x.

Proof. By [10, Proposition 3.3.1.5], we have to verify that ψ induces a categorical equivalence on the
fibers. But after passage to the fiber over an object e = [x y] in x, by Lemma 4.8 ψe is a functor
between two pullback squares in which one leg is a cartesian fibration. Therefore, by Proposition 9.7
and [10, Corollary 3.3.1.4], ψe is a categorical equivalence. �

9.10. Proposition. Setup as in Construction 9.8, suppose in addition that E D is a S-cartesian
fibration. Then π(φ,F ) : E

(φ,F )/S D is a S-cartesian fibration.

Proof. By Lemma 9.4, π(φ,F ) is a categorical fibration. By Theorem 9.3, Lemma 9.4, and Lemma 4.8,
the functor

(ι∗C)s : F̃unD/S(C ⋆D D,E)s F̃unD/S(C,E)s

over Ds satisfies the hypotheses of [10, Proposition 2.4.2.11], hence is a locally cartesian fibration. To
then show that (ι∗C)s is a cartesian fibration, it suffices to check that for every square

[
G : Cx ⋆x x Ex

] [
G′ : Cy ⋆y y Ey

]

[
H : Cx ⋆x x Ex

] [
H ′ : Cy ⋆y y Ey

]

in F̃unD/S(C⋆DD,E)s lying over an edge e : x y in Ds, if the horizontal edges are cartesian lifts
over e and the right vertical edge is (ι∗C)s,y-cartesian, then the left vertical edge is (ι∗C)s,x-cartesian.
In other words, if we let e! : Cx ⋆x x Cy ⋆y y and e∗ : Ey Ex denote choices of pushforward and

pullback functors, then we want to show that given G ≃ e∗ ◦G′ ◦ e!, H ≃ e∗ ◦H ′ ◦ e!, and G′|y ≃ H ′|y,
we have that G|x ≃ H |x. But this is clear. We deduce that (π(φ,F ))s, being pulled back from (ι∗C)s,
is a cartesian fibration.

For the final verification, let us abbreviate objects

(x ∈ D,
[
G : Cx ⋆x x Ex

]
: G|Cx = Fx) ∈ E(φ,F )/S

as
[
G : Cx ⋆x x Ex

]
, the restriction to Cx equaling Fx being left implicit. We must check that

given a square

x x′

y y′

α̃x

e e′

α̃y

in D lying over α : s t with the vertical edges in the fiber and the horizontal edges cocartesian
lifts of α, and given a lift of that square to a square

[
G : Cx ⋆x x Ex

] [
G′ : Cx′ ⋆x′ x′ Ex′

]

[
H : Cy ⋆y y Ey

] [
H ′ : Cy′ ⋆y′ y′ Ey′

]

in E(φ,F )/S with the horizontal edges cocartesian lifts of α and the left vertical edge (π(φ,F ))s-cartesian,
then the right vertical edge is (π(φ,F ))t-cartesian. We will once more translate this compatibility
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statement into a more obvious looking one so as to conclude. Let e!, e
∗, e′!, e

′∗ be defined as above.
Let α∗ : x′ x, α∗ : y′ y be choices of pullback functors (e.g. the first sends a cocartesian edge
f : x′ z to f ◦ α̃x : x z), and also label related functors by α∗. Then the cocartesianness of
the horizontal edges amounts to the equivalences G′ ≃ G ◦α∗ and H ′ ≃ H ◦α∗, and the cartesianness
of the left vertical edge amounts to the equivalence G|x ≃ (e∗ ◦H ◦ e!)|x. Our desired assertion now
is implied by the homotopy commutativity of the diagram

x′ x Ex

y′ y Ey

α∗

e′! e!

G|x

α∗ H|y
e∗

(the content being in the commutativity of the first square), for this demonstrates that G′|x′ ≃
(e′∗ ◦H ′ ◦ e′!)|x′ . �
9.11. Lemma. Let p : W S, q : D S be S-categories and let π : W D be a S-fibration
such that for every object s ∈ S, πs is a cartesian fibration.

(1) Suppose that:
(a) For every object x ∈ D, there exists an initial object in Wx.
(b) For every p-cocartesian edge w → w′ in W , if w is an initial object in Wπ(w), then w

′ is
an initial object in Wπ(w′).

Let W ′ ⊂ W be the full simplicial subset of W spanned by those objects w ∈ W which are
initial in Wπ(w) and let π′ = π|W ′ . Then W ′ is a full S-subcategory of W and π′ is a trivial
fibration.

(2) Let σ : D W be a S-functor which is a section of π. Then σ is a left adjoint of π relative
to D if and only if, for every object x ∈ D, σ(x) is an initial object of Wx.

Proof. (1) Condition (b) ensures that W ′ is a S-subcategory of W . By [10, Proposition 2.4.4.9],
for every object s ∈ S, π′

s is a trivial fibration. In particular, π′ is S-cocartesian fibration (the
compatibility condition being vacuous since all edges in W ′

s are π′
s-cocartesian). By Remark 7.4,

π′ is a cocartesian fibration. As a cocartesian fibration with contractible fibers, π′ is a trivial
fibration.

(2) Since relative adjunctions are stable under base change, if σ is a left adjoint of π relative to D,
passage to the fiber over x ∈ D shows that σ(x) is an initial object of Wx. Conversely, if for all
x ∈ D, σ(x) is an initial object of Wx, then by [10, Proposition 5.2.4.3], σs is left adjoint to πs
for all s ∈ S. Since σ is already given as a S-functor, this implies that σ is S-left adjoint to π; in
particular, σ is left adjoint to π. The existence of σ implies the hypotheses of (1), so σ is fully
faithful. Now by definition, σ is left adjoint to π relative to D.

�
We now connect the construction F̃unD/S(−,−) with FunS(−,−). To this end, consider the com-

mutative diagram

O(S)♯ ×S ♮C

O(S)♯ ×S (Ococart(D)×D C,E) (Ococart(D)×D C,E) S♯

O(S)♯ ×S ♮D ♮D

S♯,

i

prD

ev0

where the map i is induced by the identity section D Ococart(D).
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9.12. Lemma. i is a homotopy equivalence in sSet+/S (considered over S via p : C S).

Proof. Define a map h′ : O(S) ×S Ococart(D) Fun(∆1,O(S) ×S Ococart(D)) to be the product of
the following three maps:

(1) Choose a lift σ

Fun(∆{0,1}, S) Fun(∆2, S)

Fun(Λ2
1, S) Fun(Λ2

1, S)

s1

∼

=

σ

and let ∆1×∆1 ∆2 be the unique map so that the induced map Fun(∆2, S) Fun(∆1×
∆1, S) ∼= Fun(∆1,O(S)) sends (s t u) to [s t] [s u]. Use these two maps
to define

O(S)×S Ococart(D)×D C O(S)×S O(S) ∼= Fun(Λ2
1, S) Fun(∆1,O(S)).

(2) Use the unique map ∆1 × ∆1 ∆1 which sends (0, 0) to 0 and all other vertices to 1 to
define

O(S)×S Ococart(D)×D C Ococart(D) Fun(∆1,Ococart(D)).

(3) The degeneracy map s0 : C Fun(∆1, C) defines

O(S)×S Ococart(D)×D C C Fun(∆1, C).

Then h′ is adjoint to a map of marked simplicial sets over S

h : (∆1)♯ × O(S)♯ ×S (Ococart(D)×D C,E) O(S)♯ ×S (Ococart(D)×D C,E)
such that h0 = id and h1 factors as a composition

O(S)♯ ×S (Ococart(D)×D C,E)
r−→ O(S)♯ ×S ♮C

i−→ O(S)♯ ×S (Ococart(D)×D C,E)
where r is defined by

O(S)♯ ×S (Ococart(D)×D C,E) Fun(Λ2
1, S)

♯ ×S ♮C
d1◦σ−−−→ O(S)♯ ×S ♮C.

Our choice of σ ensures that r ◦ i = id, completing the proof. �

Note that for any S-fibration π : X D, the S-category SectD/S(π) defined in 8.6 may be

identified with (ev0)∗(prD)
∗(♮X

π
♮D). Combining Lemma 9.12, Lemma 2.27, and Lemma 2.28, we

see that if E is a S-category and C D is S-cocartesian or S-cartesian, then the map induced by i

i∗ : SectD/S(F̃unD/S(C,E ×S D)) FunS(C,E)

is a equivalence of S-categories. Moreover, a chase of the definitions reveals that for every S-functor
F : C E, we have an identification

i∗ ◦ SectD/S(τF×φ) = σF : S FunS(C,E).

We thus have a morphism of spans

S SectD/S(F̃unD/S(C,E ×S D)) SectD/S(F̃unD/S(C ⋆D D,E ×S D))

S FunS(C,E) FunS(C ⋆D D,E).

SectD/S(τF×φ)

= ≃ ≃
σF

The right horizontal maps are S-fibrations by Lemma 9.4 and [3, Proposition 9.11(2)], so taking
pullbacks yields an equivalence

(9.12.1) SectD/S((E ×S D)(φ,F×φ)/S) ≃ S ×σF ,FunS(C,E) FunS(C ⋆D D,E).

We are now prepared to introduce the main definition of this section.
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9.13. Definition. Let φ : C D be a S-cocartesian fibration. A S-functor F : C ⋆D D E is a
D-parametrized S-colimit diagram if for every object x ∈ D, the x-functor F |Cx⋆xx : Cx ⋆x x Es
is a s-colimit diagram.

9.14. Proposition. Let φ : C D be a S-cocartesian fibration, let F : C E be a S-functor, and
let F : C ⋆D D E be a D-parametrized S-colimit diagram extending F . Then the section

idS × σF : S S ×σF ,FunS(C,E) FunS(C ⋆D D,E)

is a S-initial object.

Proof. Combine Equation 9.12.1, Lemma 9.11(2), and Corollary 8.7. �

We have the following existence and uniqueness result for D-parametrized S-colimits.

9.15. Theorem. Let φ : C D be a S-cocartesian fibration and let F : C E be a S-functor.
Suppose that for every object x ∈ D, the s-functor F |Cx : Cx Es admits a s-colimit. Then

there exists a D-parametrized S-colimit diagram F : C ⋆D D E extending F . Moreover, the full
subcategory of {F} ×FunS(C,E) FunS(C ⋆D D,E) spanned by the D-parametrized S-colimit diagrams
coincides with that spanned by the initial objects.

Proof. By Proposition 9.10 and Corollary 9.9, the functor

π(φ,F×φ) : (E ×S D)(φ,F×φ)/S D

is a S-cartesian fibration with x-fibers equivalent to (Es)
(F |Cx ,s)/. Our hypothesis ensures that the

conditions of Lemma 9.11(1) are satisfied, so π(φ,F×φ) admits a section σ which is a S-functor that

selects an initial object in each fiber. The resulting S-functor D F̃unD/S(C⋆DD,E×SD) covering

τF×φ is adjoint to a S-functor F : C ⋆D D E extending F , which is a D-parametrized S-colimit
diagram. Having proven existence, the second statement now follows from Proposition 9.14. �

Theorem 9.15 also admits the following ‘global’ consequence.

9.16. Corollary. Let φ : C D be a S-cocartesian fibration and E be an S-category. Suppose
that for every s ∈ S and x ∈ Ds, Es admits all Ss/-colimits of shape Cx. Then U : FunS(C ⋆D
D,E) FunS(C,E) admits a left S-adjoint L which is a section of U such that for every object
F : Cs Es, L(F ) is a Ds-parametrized Ss/-colimit diagram.

Proof. By Example 7.10, Theorem 9.15 and the stability of parametrized colimit diagrams under base
change, the conditions of Lemma 9.11(1) are satisfied for U . Thus U admits a section L which selects
an initial object in each fiber, necessarily a parametrized colimit diagram. By Lemma 9.11(2), L is a
left adjoint of U relative to FunS(C,E); in particular, L is S-left adjoint to U . �

Application: Functor categories.

9.17. Proposition. Let K, I, and C be S-categories.

(1) Suppose that for all s ∈ S, Cs admits all Ks-indexed colimits. p : K ⋆S S FunS(I, C) is a
S-colimit diagram if and only if, for every object x ∈ I over s,

Ks ⋆s s
ps−→ Funs(Is, Cs)

evx−−→ Cs

is a Ss/-colimit diagram.
(2) A S-functor p : K FunS(I, C) admits an extension to a S-colimit diagram p if for all

x ∈ I, evx ◦ps admits an extension to a Ss/-colimit diagram.

Proof. We prove (1), the proof for (2) being similar. Let

p′ : (K ×S I) ⋆I I ∼= (K ⋆S S)×S I C

be a choice of adjoint of p under the equivalence

FunS(K ⋆S S,FunS(I, C)) ≃ FunS((K ⋆S S)×S I, C).
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By Theorem 9.15 applied to the S-cocartesian fibration K ×S I I and the hypothesis on C, there
exists an I-parametrized S-colimit diagram p′′ extending p′ = p′|K×SI . By Proposition 9.14, p′′ defines
an S-initial object in

S ×FunS(K×SI,C) FunS((K ×S I) ⋆I I, C) ≃ FunS(I, C)
(p,S)/

so its adjoint is a S-colimit diagram. For the ‘if’ direction, supposing that p is a S-colimit diagram,
then by the uniqueness of S-initial objects, p′′ is equivalent to p′. Then evx ◦ps is equivalent to p′′x,

which is a Ss/-colimit diagram by definition of I-parametrized S-colimit diagram. For the ‘only if’
direction, supposing that all the evx ps are Ss/-colimit diagrams, we get that p′ is a I-parametrized

S-colimit diagram, so is equivalent to p′′. �

9.18. Corollary. Suppose C is S-cocomplete and I is a S-category. Then FunS(I, C) is S-cocomplete.

10. Kan extensions

We now combine the theory of S-colimits parametrized by a base S-category D and that of free
S-cocartesian fibrations to establish the theory of left S-Kan extensions.

10.1. Definition. Suppose a diagram of S-categories

C E

D

F

φ
G

η

where by the ‘2-cell’ η we mean exactly the datum of a S-functor η : C ×∆1 E restricting to F
on 0 and G ◦ φ on 1. Let

G′ : (C ×D OS(D)) ⋆D D
πD D G E,

let

θ : (C ×D OS(D))×∆1 E

be the natural transformation adjoint to G∗ : C ×D OS(D) OS(E), let

η′ : (C ×D OS(D))×∆1 C ×∆1 η E

be the natural transformation obtained from η, and let θ′ = θ ◦ η′ be a choice of composition in
FunS(C ×D OS(D), E). Let

r : FunS((C ×D OS(D)) ⋆D D,E) FunS(C ×D OS(D), E)

denote the restriction functor. By Lemma 4.8, we may select a r-cartesian edge e in FunS((C ×D
OS(D)) ⋆D D,E) with d0(e) = G′ covering θ′, chosen so that e|D is degenerate. Let G′′ = d1(e).

We say that G is a left S-Kan extension of F along φ if G′′ is a D-parametrized S-colimit diagram.

10.2. Remark. The following are equivalent:

(1) G is a left S-Kan extension of F along φ.
(2) For all s ∈ S, Gs is a left Ss/-Kan extension of Fs along φs.

(3) For all s ∈ S and x ∈ Ds, G|x : x Es is a left Ss/-Kan extension of F |Cx : Cx Es
along φx : Cx x.

In other words, our notion of S-Kan extension generalizes the concept of pointwise Kan extensions.

We can bootstrap Theorem 9.15 to prove existence and uniqueness of left S-Kan extensions.

10.3. Theorem. Let φ : C D and F : C E be S-functors. Suppose that for every object
x ∈ D, the Ss/-functor

C ×D D/x Cs
Fs Es

admits a Ss/-colimit. Then there exists a left S-Kan extension G : D E of F along φ, uniquely
specified up to contractible choice.
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Proof. We spell out the details of existence and leave the proof of uniqueness to the reader. By
Theorem 9.15, there exists a D-parametrized S-colimit diagram

F : (C ×D OS(D)) ⋆D D E

extending C ×D OS(D) C F E. Let G = F |D. Define a map

h : C ×∆1 (C ×D OS(D)) ⋆D D

over D ×∆1 as adjoint to (C
(id,ιφ)

C ×D OS(D), C φ D) and let η = F ◦ h, so that η is a natural
transformation from F to G ◦ φ.

We claim that η exhibits G as a left Kan extension of F along φ. To show this, we will exhibit
a r-cartesian edge e from F to G′ such that the restriction r(e) of e to C ×D OS(D) is a choice of
composition θ ◦ η′. Define

e′ : (C ×D OS(D)) ⋆D D ×∆1 (C ×D OS(D)) ⋆D D

over D × ∆1 as adjoint to (id, πD), and let e = F ◦ e′, so that e is an edge from F to G′. Since
(πD)|D = idD, e|D is a degenerate edge in FunS(D,E), so e is r-cartesian.

To finish the proof, we need to introduce a few more maps. Define

α = (prC , α
′) : C ×D OS(D)×∆1 C ×D OS(D)

where α′ is adjoint to

C ×D OS(D) OS(D) = F̃unS(S ×∆1, D)min∗
F̃unS(S ×∆1 ×∆1, D).

Here min : ∆1 ×∆1 ∆1 is the functor which takes the minimum. Define

β : C ×D OS(D)×∆1 OS(D)×∆1 ev D.

Use α and β to define

γ : C ×D OS(D)×∆1 ×∆1 (C ×D OS(D)) ⋆D D

so that on objects (c, φc
f→ d), γ sends ∆1 ×∆1 to the square

(c, φc = φc) φc

(c, φc
f→ d) d.

(id,f) f

Then F ◦ γ defines a square

F ◦ prC G ◦ φ ◦ prC

F ◦ prC G′.

η′

= θ

r(e)

in FunS(C ×D OS(D), E), which proves that r(e) ≃ θ ◦ η′. �

We also have the Kan extension counterpart to Corollary 9.16.

10.4. Definition. Let φ : C D be a S-functor and E a S-category. We say that E admits the
relevant S-colimits for φ if for every s ∈ S and x ∈ Ds, Es admits all Ss/-colimits of shape C×DD/x.

10.5. Theorem. Let φ : C D be a S-functor and E a S-category. Suppose that E admits the
relevant S-colimits for φ. Then the S-functor

φ∗ : FunS(D,E) FunS(C,E)

given by restriction along φ admits a left S-adjoint φ! such that for every S-functor F : C E, the
unit map F φ∗φ!F exhibits φ!F as a left S-Kan extension of F along φ.
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Proof. Factor φ as the composition

C ιC C ×D OS(D) i (C ×D OS(D)) ⋆D D
πD D.

Then φ∗ factors as the composition

FunS(D,E)
π∗
D FunS((C ×D OS(D)) ⋆D D,E) i∗ FunS(C ×D OS(D), E)

ι∗C FunS(C,E).

By Proposition 8.10 and Corollary 8.5, pr∗C is left S-adjoint to ι∗C . Since iD is right S-adjoint to πD,
by Corollary 8.5 again i∗D is left S-adjoint to π∗

D. By Corollary 9.16, i∗ admits a left S-adjoint L
which extends functors to D-parametrized S-colimit diagrams. Let φ! be the composite of these three
functors. The proof of Theorem 10.3 shows that φ!(F ) is as asserted. �

The next proposition permits us to eliminate the datum of the natural transformation η from the
definition of a left S-Kan extension when φ is fully faithful.

10.6. Proposition. Suppose φ : C D is the inclusion of a full S-subcategory. Then for any
left S-Kan extension G of F : C E along φ, η is a natural transformation through equivalences.
Consequently, G is homotopic to a functor F : D E which is both an extension of F and a left
S-Kan extension (with the natural transformation F F ◦ φ = F chosen to be the identity).

Proof. Let G′′ : (C ×D OS(D)) ⋆D D E be as in the definition of a left S-Kan extension. Because
D-parametrized S-colimit diagrams are stable under restriction to S-subcategories,

(G′′)C : (C ×D OS(D)×D C) ⋆C C E

is a C-parametrized S-colimit diagram. The additional assumption that C is a full S-subcategory has
the consequence that (C×DOS(D)×DC) ∼= OS(C). Also, for any object x ∈ C, the inclusion x-functor
ix : x C/x is x-final, using the first criterion of Theorem 6.7. Therefore, OS(C) ⋆C C

πC C F E

is a C-parametrized S-colimit diagram extending OS(C)
ev0 C F E, so (G′′)C ≃ F ◦ πC .

The map h in the proof of Theorem 10.3 factors as

C ×∆1 h′
OS(C) ⋆C C (C ×D OS(D)) ⋆D D.

We have the chain of equivalences

η ≃ G′′ ◦ h ≃ F ◦ πC ◦ h′ = F ◦ prC ,
proving the first assertion. For the second assertion, use that

(♮D × {1}) ∪♮C×{1} (♮C × (∆1)♯) ♮D × (∆1)♯

is a cocartesian equivalence in sSet+/S to extend (G, η) to a homotopy between G and an extension

F , which is then necessarily a left S-Kan extension. �
10.7. Corollary. Suppose φ : C D a fully faithful S-functor and E a S-cocomplete S-category.
Then the left S-adjoint φ! to the restriction S-functor φ∗ exists and is fully faithful.

Proof. Combine Theorem 10.5 and Proposition 10.6. �

As expected, S-colimit diagrams are examples of S-left Kan extensions.

10.8. Proposition. Suppose φ : C D a S-cocartesian fibration and F : C ⋆DD E a S-functor
extending F : C E. Then F is a D-parametrized S-colimit diagram if and only if F is a S-left
Kan extension of F .

Proof. We may check the assertion objectwise onD, so let x ∈ Ds. Consider the commutative diagram

Cx Cs

C ×C⋆DD (C ⋆D D)/x Es.

θ Fs

prC

The value of a D-parametrized colimit of F on x is computed as the Ss/-colimit of (Fs)|Cx , and that

of a S-left Kan extension of F as the Ss/-colimit of Fs ◦ prC . Therefore, it suffices to prove that θ is
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x-final. Let f : x → y be an object in x, i.e. a cocartesian edge in D, which lies over s t. Then
θf is equivalent to the inclusion

Cy ∼= Cy ×(Cy)✄ ((Cy)
✄)/{∞} Ct ×Ct⋆DtDt (Ct ⋆Dt Dt)

/y.

Applying Lemma 10.9 to the map Ct Ct ⋆Dt Dt of cocartesian fibrations over Dt, we deduce that
θf is final. �

10.9. Lemma. Let X Y be a map of cocartesian fibrations over Z and let y ∈ Y be an object over

z ∈ S. Then the inclusion Xz ×Yz Y
/y
z X ×Y Y /y is final.

Proof. By the dual of [12, Lemma 3.4.1.10], X ×Y Y /y Z/z is a cocartesian fibration. We have a
pullback square

Xz ×Yz Y
/y
z X ×Y Y /y

{z} Z/z.
idz

Since the bottom horizontal map is final and cocartesian fibrations are smooth, the top horizontal
map is final. �

As with S-colimits, S-left Kan extensions reduce to the usual notion of left Kan extension when
taken in a S-category of objects.

10.10. Proposition. Suppose a diagram of S-categories

C ES

D ·

F

φ
G

η

The following are equivalent:

(1) G is a left S-Kan extension of F along φ.
(2) G† is a left Kan extension of F † along φ.
(3) For all objects s ∈ S, G†|Ds is a left Kan extension of F †|Cs along φs.

Proof. We first prove that (1) and (2) are equivalent. Factor φ : C D through the free S-cocartesian
fibration on φ:

φ : C
ιC−→ C ×D OSD

Frcocart(φ)−−−−−−→ D.

Since ιC is S-left adjoint to prC , it is also left adjoint. Therefore, the S-left Kan extension resp. the
left Kan extension of F resp. F † along ιC is computed by F ◦ prC resp. F † ◦ prC . By transitivity of
Kan extensions, we thereby reduce to the case that φ is S-cocartesian. The claim now follows easily
by combining Proposition 5.5 and Proposition 10.8.

We next prove that (2) and (3) are equivalent. For this, it suffices to observe that for all objects

d ∈ D over some s ∈ S, Cs ×Ds D
/d
s C ×D D/d is final by Lemma 10.9 applied to C D. �

11. Yoneda lemma

By Proposition 5.5, Spc
S
is S-cocomplete, so by Corollary 9.18, the S-category of presheaves

PS(C) := FunS(C
vop,Spc

S
)

is S-cocomplete. The S-Yoneda embedding j : C PS(C) was constructed in [3, §10] via S-

straightening the left fibration ÕS(C) Cvop×S C given fiberwise by twisted arrows. It was shown
there that j is fully faithful [2, Theorem 10.4]. In this section, we first prove the S-Yoneda lemma
and then establish the universal property of PS(C) as the free S-cocompletion of C.

11.1. Lemma (S-Yoneda lemma). Let j : C PS(C) denote the S-Yoneda embedding. Then the
identity on PS(C) is a S-left Kan extension of j along itself.
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Proof. By Proposition 9.17, it suffices to show that for every s ∈ S and object x ∈ Cs, evx :
Ps(Cs) Spc

s
is a Ss/-left Kan extension of evx js. To ease notation, let us replace Ss/ by S

and suppose that s ∈ S is an initial object.
We claim that (evx j)

† : C Spc is homotopic to MapC(x,−). By definition of the S-Yoneda
embedding, (evx j)

† classifies the left fibration

ev1 : ÕS(C)x→ C

pulled back from ÕS(C) Cvop×SC via the cocartesian section σ : S Cvop defined by σ(s) = x.

By [10, Proposition 4.4.4.5], it suffices to show that idx is an initial object in ÕS(C)x→. For this,
because s ∈ S is an initial object we reduce to checking that for all edges α : s→ t, the pushforward

of idx by α is an initial object in the fiber (ÕS(C)x→)t. But this fiber is equivalent to Õ(Ct)α!x→ ≃
(Ct)

α!x/.
Applying Proposition 10.10, we reduce to showing that for all t ∈ S, (evx)†|PS(C)t is a left Kan

extension of (evx j)
†|Ct . Note that for y any cocartesian pushforward of x over the essentially unique

edge s→ t, we have both that (evx j)
†|Ct is homotopic to MapCt

(y,−) and (evx)
†|PS(C)t is homotopic

to evy (regarding y as an object in Cvop
t ). The inclusion

Ct PS(C)t ≃ Fun(Cvop
t ,Spc)

factors through P(Ct) with P(Ct) Fun(Cvop
t ,Spc) left adjoint to precomposition by the inclusion

i : Cop
t Cvop

t . By the usual Yoneda lemma for ∞-categories, evy : P(Ct) Spc is the left Kan

extension of MapCt
(y,−). The left Kan extension of evy to PS(C)t is then given by precomposition

by i, so is again evy. �

To state the universal property of PS(C), we need to introduce a bit of terminology.

11.2. Definition. Let F : C D be a S-functor. We say that F strongly preserves S-(co)limits if
for all s ∈ S, Fs preserves Ss/-(co)limits.

11.3. Remark. If F strongly preserves S-colimits then F preserves S-colimits. However, the converse
is not necessarily true.

11.4.Notation. Suppose that C andD are S-cocomplete S-categories. Let FunLS(C,D) denote the full

subcategory of FunS(C,D) on the S-functors F which strongly preserve S-colimits. Let FunLS(C,D)

denote the full S-subcategory of FunS(C,D) with fibers FunLSs/(C,D) over s ∈ S.
11.5. Theorem. Let E be a S-cocomplete S-category. Then restriction along the S-Yoneda embedding
defines equivalences

FunLS(PS(C), E)
≃−→ FunS(C,E)

FunLS(PS(C), E)
≃−→ FunS(C,E)

with the inverse given by S-left Kan extension.

We prepare for the proof of Theorem 11.5 with some necessary results concerning S-mapping spaces.
Recall that given an ∞-category C, we have a number of equivalent options for describing mapping
spaces in C. The relevant ones to consider for us are:

(1) Straightening the left fibration Õ(C) Cop × C, we obtain the mapping space functor

MapC(−,−) : Cop × C Spc;

(2) Fixing an object x ∈ C, straightening the left fibration Cx/ C also yields the functor

MapC(x,−) : C Spc;

(3) Fixing objects x, y ∈ C, we have that the space MapC(x, y) is given by

{x} ×C O(C)×C {y}.
Likewise, given a S-category C, we have these possibilities:
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(1) The S-functor

Map
C
(−,−) : Cvop ×S C Spc

S

given by the S-straightening of ÕS(C) Cvop ×S C;
(2) Fixing an object x ∈ C, we have the left fibration Cx/ = x ×C OS(C) C, which S-

straightens to

Map
C
(x,−) : C Spc

S
;

(3) Fixing an object x ∈ C, we have the left fibration Cx/ C, which S-straightens to

Map
C
(x,−) : C Spc

S
;

(4) Fixing objects x ∈ C and y ∈ Cs, we have the Ss/-space

Map
C
(x, y) = x×C OS(C)×C y y ≃ Ss/.

In the proof of Lemma 11.1, we showed that (1) and (3) were equivalent, and by Proposition 4.31,
(2) and (3) are equivalent. Finally, (2) specializes to (4) by definition. We are thus justified in our
abuse of notation when we interchangeably refer to any of these options by Map

C
(−,−).

Our next goal is to prove that Map
C
(−,−) preserves S-limits in the second variable, and dually,

takes S-colimits in the first variable to S-limits. For this, we need a few lemmas.

11.6. Lemma. Let F : X Y be a map of S-cocartesian or S-cartesian fibrations over an S-category
C. The following are equivalent:

(1) F is an equivalence.
(2) For all s ∈ S and Ss/-functors Z Cs,

Fun/Cs,Ss/(Z,Xs) Fun/Cs,Ss/(Z, Ys)

is an equivalence.
(3) For all s ∈ S and c ∈ Cs,

Fun/Cs,Ss/(c,Xs) Fun/Cs,Ss/(c, Ys)

is an equivalence.
(4) For all c ∈ C, Fc : Xc Yc is an equivalence.

If X and Y are S-left or S-right fibrations over C, then all instances of Fun can be replaced by Map.19

Proof. (1) ⇒ (2): If F is an equivalence, so is Fs for all s ∈ S. The map in question is then induced
by a map of pullbacks through equivalences in which two matching legs are S-fibrations, so is an
equivalence.
(2) ⇒ (3) is obvious.
(3) ⇒ (4): Given c ∈ Cs, take fibers over {s} ∈ s and note that

Fun/Cs,Ss/(c,Xs)s ≃ Fun/Cc
({c}, Xs) ≃ Xc.

(4)⇒ (1): We must check that Fs is an equivalence for all s ∈ S, for which it suffices to check fiberwise
over Cs by the hypothesis. �

11.7. Lemma. Let q : S⋆SK Spc
S
be a S-functor which extends q : K Spc

S
. Let X S⋆SK

be a left fibration which is an unstraightening of q†, and let X = X ×S⋆SK K. Then q is a S-limit
diagram if and only if the restriction S-functor

R : Map
/S⋆SK,S

(S ⋆S K,X) Map
/S⋆SK,S

(K,X) ∼= Map
/K,S

(K,X)

is an equivalence.

Proof. In view of [10, Corollary 3.3.3.4], Rs is a map from the limit of q†|s⋆sKs to the limit of q†|Ks

induced by precomposition on the diagram. But by Proposition 5.6, q is a S-limit diagram if and only
if q† is a right Kan extension of q†, in which case both of the limits in question are equivalent to q†(s).
The assertion now follows. �

19Map refers here to the maximal sub-left fibration of Fun and not the S-mapping space functor.
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11.8. Proposition. Let p : S ⋆S K C be a S-functor. The following are equivalent:

(1) p is a S-limit diagram.
(2) For all s ∈ S and c ∈ Cs,

Map
Cs

(c, ps(−)) : s ⋆s Ks Spc
Ss/

is a Ss/-limit diagram.
(3) For all s ∈ S and c ∈ Cs,

Map
/Cs,Ss/

(c, C
/(ps,S

s/)
s ) Map

/Cs,Ss/
(c, C

/(ps,S
s/)

s )

is an equivalence.

Moreover, if the above conditions obtain, then

Map
/Cs,Ss/(c, C

/(ps,S
s/)

s ) ≃ Map
Cs
(c, ps(v))

where v is the cone point {s} ∈ s ⋆s Ks.

Proof. (2) ⇔ (3): We will show that the statements match after fixing c ∈ Cs. To ease notation, let
us replace Ss/ by S and suppose that s ∈ S is an initial object. By Lemma 11.7 and using that Cc/

is the S-unstraightening of Map
C
(c,−), Map

C
(c, p(−)) is a S-limit diagram if and only if

Map
/C,S

(S ⋆S K,C
c/) Map

/C,S
(K,Cc/)

is an equivalence. By Corollary 4.27, this map is equivalent by a zig-zag to the map

Map
/C,S

(c, C/(p,S)) Map
/C,S

(c, C/(p,S)).

The assertion now follows. The last assertion also follows in view of the equivalence C/(p,S) ≃ C/p(v)
and Map

/C,S
(c, C/p(v)) ≃ c×C C/p(v) ≃ Map

C
(c, p(v)).

(1) ⇔ (3): This follows from Lemma 11.6 applied to C/(p,S) C/(p,S), which is a map of S-right
fibrations over C. �

11.9. Corollary. Let F : C D be a S-functor. Then

(1) F strongly preserves S-limits if and only if for all s ∈ S and d ∈ Ds,

Map
Ds

(d, Fs(−)) : Cs Spc
Ss/

preserves Ss/-limits.
(2) F strongly preserves S-colimits if and only if for all s ∈ S and d ∈ Ds,

Map
Ds

(Fs(−), d) = Map
Dvop

s
(d, F vop

s (−)) : Cvop
s Spc

Ss/

preserves Ss/-limits.

11.10. Corollary. Let C be a S-category. The Yoneda embedding j : C PS(C) strongly preserves
and detects S-limits.

Proof. Combine Proposition 11.8 and Proposition 9.17. �

Proof of Theorem 11.5. By Theorem 10.5, we have a S-adjunction

j! : FunS(C,E) FunS(PS(C), E) :j∗

with j∗j! ≃ id and the essential image of j! spanned by the left Ss/-Kan extensions ranging over all
s ∈ S. By Proposition 8.4, taking cocartesian sections yields an adjunction

j! : FunS(C,E) FunS(PS(C), E) :j∗

again with j∗j! ≃ id and the essential image of j! spanned by the left S-Kan extensions. Both
assertions will therefore follow if we prove that for a S-functor F : PS(C) E, F strongly preserves
S-colimits if and only if F is a left S-Kan extension of its restriction f = F |C .
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For the ‘only if’ direction, because idPS(C) is a S-left Kan extension of j by the S-Yoneda lemma
11.1, F = F ◦ idPS(C) is a left S-Kan extension as it is the postcomposition of idPS(C) with a strongly
S-colimit preserving functor.

For the ‘if’ direction, we use the criterion of Corollary 11.9. Replacing Ss/ by S and suppos-
ing that s ∈ S is an initial object, we reduce to showing that for all x ∈ Es, Map

E
(F (−), x) :

PS(C)
vop Spc

S
preserves S-limits. We first observe that F vop is a S-right Kan extension (of fvop),

hence so is Map
E
(F (−), x) = Map

Evop
(x,−)◦F vop as the postcomposition of a S-right Kan extension

with a strongly S-limit preserving functor. However, by the vertical opposite of the S-Yoneda lemma,
for any S-functor G : Cvop Spc

S
, the strongly S-limit preserving S-functor Map

PS(C)
(−, G) is a

S-right Kan extension of G. Applying this for G = Map
E
(f(−), x), we conclude. �

12. Bousfield–Kan formula

In this section, we prove two decomposition formulas for S-colimits which resemble the classical
Bousfield–Kan formula for computing homotopy colimits. We first study the situation when S = ∆0.

12.1. Notation. Let K be a simplicial set and let ∆/K be the nerve of the category of simplices of
K. We denote the first vertex map by υK : ∆op

/K K and the last vertex map by µK : ∆/K K.

By [10, Proposition 4.2.3.14], µK is final. Unfortunately, this is the wrong direction for the purposes
of obtaining a Bousfield–Kan type formula, since ∆/K is a cartesian fibration over ∆. To rectify this
state of affairs, we prove that υK is in fact final.

12.2. Proposition. Let K be a simplicial set. Then the first vertex map υK : ∆op
/K K is final.

Equivalently, the last vertex map µKop is initial.

Proof. Note that υK is natural in K and that ∆op
/(−) : sSet sSet preserves colimits. Recall from

[10, Proposition 4.1.2.5] that a map f : X Y is final if and only if it is a contravariant equivalence
in sSet/Y . It follows that the class of final maps is stable under filtered colimits, so we may suppose
that K has finitely many nondegenerate simplices. Using left properness of the contravariant model
structure, by induction we reduce to the assertion for K = ∆n. But in this case υK is final by the
proof of [10, Variant 4.2.3.15] (which proves the result when K is the nerve of a category).

For the second assertion, we note that the reversal isomorphism ∆/Kop ∼= ∆/K interchanges µKop

and (υK)op. �
12.3. Corollary (Bousfield–Kan formula). Suppose that C admits (finite) coproducts. Then for a
(finite) simplicial set K and a map p : K C, the colimit of p exists if and only if the geometric
realization ∣∣∣∣

⊔
x∈K0

p(x)
⊔
α∈K1

p(α(0))
⊔
σ∈K2

p(σ(0)) . . .

∣∣∣∣
exists, in which case the colimit of p is computed by the geometric realization.

Proof. The fibers of the cocartesian fibration πK : ∆op
/K ∆op are the discrete sets Kn. Therefore,

the left Kan extension of p ◦ υK along πK exists. By Proposition 12.2, colim p ≃ colim p ◦ υK , and the
latter is computed as the colimit of (πK)!(p ◦ υK) by the transitivity of left Kan extensions. �

We also have a variant of Cor 12.3 where the coproducts over Kn are replaced by colimits indexed
by the spaces Map(∆n,K). To formulate this, we need to introduce some auxiliary constructions. Let
ξ : W ∆op be the opposite of the relative nerve of the inclusion ∆ sSet; this is a cartesian
fibration which is an explicit model for the tautological cartesian fibration over ∆op pulled back from
the universal cartesian fibration over Catop∞ . Let λ : ∆op W be the ‘first vertex’ section of ξ which
sends an n-simplex ∆a0 ← ...← ∆an to the n-simplex

∆n ... ∆{n−1,n} ∆{n}

∆a0 ... ∆an−1 ∆an

(λa)0 (λa)n−1 (λa)n

of W specified by (λa)i(0) = 0 for all 0 ≤ i ≤ n.
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For an ∞-category C, let ZC = F̃un∆op(W,C ×∆op) and let Z ′
C ⊂ ZC be the sub-simplicial set on

the simplices σ such that every edge of σ is cocartesian (with respect to the structure map to ∆op), so
that Z ′

C ∆op is the maximal sub-left fibration in ZC ∆op. Define a ∆op-functor ∆op
/C ZC

as adjoint to the map ∆op
C ×∆op W C which sends an n-simplex

∆n ... ∆{n−1,n} ∆{n}

∆a0 ... ∆an−1 ∆an

C

(λa)0 (λa)n−1 (λa)n

τ

to τ ◦ (λa)0 ∈ Cn. Note that since ∆op
/C ∆op is a left fibration, this functor factors through Z ′

C .

Define a ‘first vertex’ functor ΥC : ZC C by precomposition with ι (using the isomorphism

F̃un∆op(∆op, C ×∆op) ∼= C ×∆op). We then have a factorization of the first vertex map as

∆op
/C Z ′

C ZC C.
ΥC

12.4. Proposition. The functors ΥC and Υ′
C = (ΥC)|Z′

C
are final.

Proof. We first prove that ΥC is final by verifying the hypotheses of [10, Theorem 4.1.3.1]. Let c ∈ C.
The map ZC C is functorial in C, so we have a map ZCc/

ZC ×C Cc/. We claim that this
map is a trivial Kan fibration. Unwinding the definitions, this amounts to showing that for every
cofibration A B of simplicial sets over ∆op, we can solve the lifting problem

B ∪A A×∆op W Cc/

B ×∆op W C.

Since the class of left anodyne morphisms is right cancellative, we may suppose A = ∅. It thus
suffices to prove that λB = B ×∆op λ : B B ×∆op W is left anodyne for any map of simplicial
sets B ∆op. Observe that even though λ is not a cartesian section, it is a left adjoint relative to
∆op to ξ by [12, Proposition 7.3.2.6] and the uniqueness of adjoints, since on the fibers it restricts to
the adjunction {0} ∆n. Consequently, for any ∞-category B and functor B ∆op, by [12,
Proposition 7.3.2.5] λB is a left adjoint, hence left anodyne. From this, we deduce the general case by
using the characterization in [10, Proposition 4.1.2.1] of the left anodyne maps X Y as the trivial
cofibrations in sSet/Y equipped with the covariant model structure. Indeed, arguing as in the proof
of Proposition 12.2, by induction on the nondegenerate simplices of B we reduce to the known case
B = ∆n.

We next prove that ZC is weakly contractible if C is, which will conclude the proof for ΥC . For
this, another application of (the opposite of) [12, Proposition 7.3.2.6] shows that the ∆op-functor
C × ∆op ZC defined by precomposition by ξ is a left adjoint relative to ∆op to the functor
(ΥC , id∆op), because it restricts to the adjunction ι : C Fun(∆n, C) :ev0 on the fibers. Hence,
|ZC | ≃ |C ×∆op| ≃ |C|, and the latter is contractible by hypothesis.

We employ the same strategy to show that Υ′
C is final. Since Cc/ C is conservative, the trivial

Kan fibration above restricts to yield a trivial Kan fibration Z ′
Cc/

Z ′
C ×C Cc/. Thus it suffices to

show that Z ′
C is weakly contractible if C is. By (the opposite of) [6, Proposition 7.3], the cocartesian

fibration Z ′
C ∆op is classified by the functor

∆op iop−−→ Cat∞
Map(−,C)−−−−−−→ Spc.

Let R denote the right adjoint to the colimit-preserving functor L : Fun(∆op,Spc) Cat∞ left
Kan extended from the inclusion i : ∆ ⊂ Cat∞; R sends an∞-category to its corresponding complete
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Segal space. Then R(C) ≃ Map(−, C)◦iop. For any X• ∈ Fun(∆op,Spc), we have colimX ≃ |L(X•)|,
hence

colimR(C) ≃ |(L ◦R)(C)| ≃ |C|,
where L ◦ R ≃ id by [11, Corollary 4.3.16]. By [10, Corollary 3.3.4.6], |Z ′

C | ≃ colimR(C), so we
conclude that |Z ′

C | is contractible. �

The following corollary was previously proven by Mazel-Gee in [15].

12.5.Corollary (Bousfield–Kan formula, ‘simplicial’ variant). Suppose that C admits colimits indexed
by spaces. Then for any ∞-category K and functor p : K C, the colimit of p exists if and only if
the geometric realization

∣∣∣∣∣ colim
x∈Map(∆0,K)

p(x) colim
α∈Map(∆1,K)

p(α(0)) colim
σ∈Map(∆2,K)

p(σ(0)) . . .

∣∣∣∣∣

exists, in which case the colimit of p is computed by the geometric realization.

Proof. Using Proposition 12.4, we may repeat the proof of Corollary 12.3, now using the span

∆op ← Z ′
K

Υ′
K−−→ K.

�

We now proceed to relativize the above picture, starting with the map ΥC . Let C S be a
S-category. Define the map

ΥC,S : F̃un∆op×S/S(W × S,∆op × C) C

to be the composition of the map to F̃un∆op×S/S(∆
op×S,∆op×C) given by precomposition by λ×idS ,

together with the equivalence of Lemma 9.5 of this to ∆op ×C and the projection to C. Define Υ′
C,S

to be the restriction of ΥC,S to the maximal sub-left fibration (with respect to ∆op × S).
12.6. Theorem. The S-functors ΥC,S and Υ′

C,S are S-final.

Proof. For every object s ∈ S, we have a commutative diagram

F̃un∆op×S/S(W × S,∆op × C)s F̃un∆op×S/S(∆op × S,∆op × C)s Cs

F̃un∆op(W,∆op × Cs) F̃un∆op(∆op,∆op × Cs) ∼= ∆op × Cs Cs

(λ×idS)∗s

(ΥC,S)s

≃ ≃ =

λ∗

ΥCs

prCs

where the left two vertical maps are given by the natural categorical equivalences of Lemma 9.6;
the only point to note is that the equivalences of Lemma 9.5 and Lemma 9.6 coincide when the
first variable is trivial. By Proposition 12.4, ΥCs is final, so (ΥC,S)s is final. By the S-cofinality
Theorem 6.7, ΥC,S is S-final. A similar argument shows that Υ′

C,S is S-final. �

The process of relativizing υC is considerably more involved. We begin with some preliminaries on
the relative nerve construction. Let J be a category.

12.7. Lemma. The adjunctions

FJ : sSet/N(J) Fun(J, sSet) :NJ

F+
J : sSet+/N(J) Fun(J, sSet+) :N+

J

of [10, §3.2.5] are simplicial.



PARAMETRIZED HIGHER CATEGORY THEORY 73

Proof. Let K : J sSet denote the constant functor at a simplical set K. We have an obvious map
χK : N(J)×K NJ(K) natural in K and hence a map

(ηX , χK ◦ pr) : X ×K NJ(FJX ×K) ∼= NJFJX ×NJ(K)

natural in X and K. We want to show the adjoint

θX,K : FJ(X ×K) FJ(X)×K
is an isomorphism. Both sides preserve colimits separately in each variable, so we may suppose X =
∆n J and K = ∆m. By [10, Example 3.2.5.6], FI(I)(−) ∼= N(I/−), and by [10, Remark 3.2.5.8],
for any functor f : I J , the square

sSet/N(I) sSet/N(J)

Fun(I, sSet) Fun(J, sSet)

f!

FI FJ

f!

commutes. Letting I = ∆n ×∆m and f : I J be the structure map, we have

FI(∆
n ×∆m)(k, l) ∼= (∆n)/k × (∆m)/l ∼= ∆k ×∆l.

Factoring f as ∆n ×∆m g−→ ∆n h−→ J , we then have

g!FI(∆
n ×∆m)(k) ∼= ∆i ×∆m.

Let G = g!FI(∆
n ×∆m), so that FJ(∆

n ×∆m)(j) ∼= (h!G)(j). Then

(h!G)(j) ∼= colim
∆n×JJ/j

(
(k, h(k)→ j) 7→ ∆k

)
×∆m ∼= FJ(∆

n)(j)×∆m

and one can verify that θX,K implements this isomorphism. For the assertion about F+
J ⊣ N+

J , recall

that the simplicial tensor sSet × sSet+ sSet+ is given by (K,X) 7→ K♯ ×X . Consequently, in
the above argument we may simply replace ∆m by (∆m)♯ to conclude. �

Since N+
J (S♯) = N(J)× S♯, the adjunction F+

J ⊣ N+
J lifts to an adjunction

F+
J,S : sSet

+
/N(J)×S Fun(J, sSet+/S) :N+

J,S

between the overcategories. Moreover, for any functor f : T S, the square

Fun(J, sSet+/S) sSet+/N(J)×S

Fun(J, sSet+/T ) sSet+/N(J)×T ,

N+
J,S

f∗ (id×f)∗

N+
J,T

commutes.

12.8. Proposition. Equip sSet+/N(J)×S with the cocartesian model structure and Fun(J, sSet+/S) with

the projective model structure, where sSet+/S has the cocartesian model structure. Then the adjunction

F+
J,S : sSet

+
/N(J)×S Fun(J, sSet+/S) :N+

J,S

is a Quillen equivalence.

Proof. We first prove that the adjunction is Quillen. Because this is a simplicial adjunction between
left proper simplicial model categories, it suffices to show that F+

J,S preserves cofibrations and N+
J,S

preserves fibrant objects. Observe that the slice model structure on

sSet+/N(J)×S
∼= (sSet+/N(J))/(N(J)×S)♯

is a localization of the cocartesian model structure. Similarly, the slice model structure on

Fun(J, sSet+/S)
∼= Fun(J, sSet+)/S♯

is a localization of the projective model structure, since the trivial fibrations for the two model
structures coincide and postcomposition by π! : sSet

+
/S sSet+ gives a Quillen left adjoint between
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the projective model structures. Since the lift of a Quillen adjunction L : M N :R to the

adjunction L̃ : M/R(x) N/x :R̃ is Quillen for the slice model structures, we deduce that F+
J,S

preserves cofibrations.
Now suppose F : J sSet+/S is fibrant. Since S is an ∞-category, F → S is a fibration in

Fun(J, sSet). Hence NJ,S(F ) N(J)×S is a categorical fibration. We verify that it is a cocartesian
fibration (with every marked edge cocartesian) by solving the lifting problem (n ≥ 1)

♮Λ
n
0 N+

J,S(F )

♮∆
n (N(J)× S)♯.

(j•,s•)

Unwinding the definitions, this amounts to solving the lifting problem

♮Λ
n
0 F (jn)

♮∆
n S♯,s•

and the dotted lift exists because F (jn) is cocartesian over S with the cocartesian edges marked.
Finally, it is easy to see that marked edges compose and are stable under equivalence. We conclude
that N+

J,S(F ) is fibrant in sSet
+
/N(J)×S .

To prove that the Quillen adjunction is a Quillen equivalence, we will show that the induced
adjunction of ∞-categories

F′+
J,S : N((sSet+/N(J)×S)

◦) N(Fun(J, sSet+/S)
◦) :N ′+

J,S

is an adjoint equivalence, where N ′+
J,S is the simplicial nerve of N+

J,S and F′+
J,S is any left adjoint to

N ′+
J,S . We first check that N ′+

J,S is conservative. Indeed, for this we may work in the model category:

for a natural transformation α : F → G in Fun(J, sSet+/S), N
+
J,S(F ) N+

J,S(G) on fibers is given

by F (j)s G(j)s, hence if F,G are fibrant and N+
J,S(α) is an equivalence then α is as well. It now

suffices to show that the unit transformation η : id N ′+
J,SF

′+
J,S is an equivalence. We have the known

equivalence N((sSet+/N(J)×S)
◦) ≃ Fun(N(J)× S,Cat∞) so it further suffices to check that the map

(id× is)∗ (id× is)∗N ′+
J,SF

′+
J,S ≃ N ′+

J i∗sF
′+
J,S

is an equivalence for all s ∈ S, is : {s} S the inclusion. Equivalently, since F+
J ⊣ N+

J is a Quillen
equivalence by [10, Proposition 3.2.5.18], we must show that the adjoint map

F′+
J i

∗
s (id× is)∗F′+

J,S

is an equivalence. This statement is in turn equivalent to the adjoint map

θ : N ′+
J,S(is)∗ (id× is)∗N ′+

J

being an equivalence. Recall that for a functor f : T S, f∗ : Fun(T,Cat∞) Fun(S,Cat∞) is
induced by π∗ρ∗ : sSet+/T sSet+/S for the span

S♯ (O(S)×S T )♯ T ♯
ρπ

with π given by evaluation at 0 and ρ projection to T . Moreover, for a functor id×f : U×T U×S,
we may elect to use the span

(U × S)♯ (U × O(S)×S T )♯ (U × T )♯id×ρid×π

to model (id× f)∗. Letting f = is, we see that θ is induced by the map

N+
J,Sπ∗ρ

∗ (id× π)∗N+
J,Ss/ρ

∗ ∼= (id× π)∗(id× ρ)∗N+
J .
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where the first map is adjoint to the isomorphism (id × π)∗N+
J,S
∼= N+

J,Ss/π
∗. Direct computation

reveals that this map is an equivalence on fibrant F : J sSet+. �

We now return to the situation of interest. Let C be a S-category with structure map π : C S.
We first extend our existing notation x for objects x ∈ C.

12.9. Notation. For an n-simplex σ of C, define

σ = {σ} ×Fun(∆n×{0},C) Fun((∆
n)♭ × (∆1)♯, ♮C)×Fun(∆n×{1},S) S.

12.10. Lemma. There exists a map bσ : σ {πσ(n)} ×S O(S) = Sπσ(n)/ which is a trivial Kan
fibration.

Proof. First define a map b′σ : σ πσ to be the pullback of the map

(e0,O(π))∗ : Fun(∆n,Ococart(C)) C∆n ×S∆n Fun(∆n,O(S))

over {σ} and S. Since (e0,O(π)) is a trivial Kan fibration, so is b′σ. Next, let K be the pushout
∆n × {0} ∪{n}×{0} {n} ×∆1. We claim that the map Fun(∆n,O(S))×S∆n S Fun(K,S) induced

by K ⊂ ∆n×∆1 is a trivial Kan fibration. For a monomorphism A B, we need to solve the lifting
problem

A Fun(∆n,O(S))×S∆n S

B Fun(K,S).

This transposes to

A×∆n
⋃
A×{n}B × {n} O(S)

B ×∆n S

ev0

and the lefthand map is right anodyne by [10, Corollary 2.1.2.7], hence the dotted lift exists as ev0 is
a cartesian fibration. Now define b′′σ to be the pullback

πσ = {πσ} ×S∆n Fun(∆n,O(S))×S∆n S {πσ} ×S∆n Fun(K,S) ∼= Sπσ(n)/;

this is also a trivial Kan fibration. Finally, let bσ = b′′σ ◦ b′σ. �

We will regard σ as a Sπσ(n)/ or S-category via bσ. We also have a target map σ C∆n

induced
by ∆n × {1} ⊂ ∆n ×∆1. This covers the target map Sπσ(n)/ S and is a S-functor.

Define a functor FC : ∆op sSet+/S on objects [n] by

FC([n]) =
⊔

σ∈Cn

σ♯

and on morphisms α : [m]→ [n] by the map σ σα induced by precomposition by α : ∆m ∆n.

12.11. Remark. The map σ σ(n) is compatible with the maps bσ and bσ(n) of Lemma 12.10,

hence is a categorical equivalence (in fact, a trivial Kan fibration). Consequently, given a morphism

f : x → y in C, by choosing an inverse to f
≃−→ y we obtain a map f∗ : y x, unique up to

contractible choice. Moreover, if f lies over an equivalence, then f x is a trivial Kan fibration, so
we also obtain a map f! : x y.

In order to define the S-first vertex map N+
∆op,S(FC) C, we need to introduce a few preliminary

constructions. Let An ⊂ O(∆n) be the sub-simplicial set where a k-simplex x0y0 → ... → xkyk is in
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An if and only if xk ≤ y0. For the reader’s aid we draw a picture of the inclusion An ⊂ O(∆n) for
n = 2, where dashed edges are not in A2:

00

01 11

02 12 22.

12.12. Lemma. The inclusion An O(∆n) is inner anodyne.

Proof. In this proof we adopt the notation [x0y0, ..., xkyk] for a k-simplex of O(∆n). Let E be the
collection of edges [ab, xy] in O(∆n) where x > b, and choose a total ordering ≤ on E such that if we
have a factorization

ab xy

a′b′ x′y′

then [a′b′, x′y′] ≤ [ab, xy]. Index edges in E by I = {0, ..., N}. Define simplicial subsets An,i of
O(∆n) such that An,i is obtained by expanding An to contain every k-simplex [x0y0, ..., xkyk] with
[x0y0, xkyk] in E<i. We will show that each inclusion An,i An,i+1 is inner anodyne. We may
divide the nondegenerate k-simplices [x0y0, x1y1, ..., xkyk] in An,i+1 but not in An,i into six classes:

• A1: x1y1 6= x0(y0 + 1) and y1 > y0.
• A2: x1y1 = x0(y0 + 1).
• B1: x1y1 = (x0 + 1)y0, y2 > y0, and x2y2 6= (x0 + 1)(y0 + 1).
• B2: x1y1 = (x0 + 1)y0 and x2y2 = (x0 + 1)(y0 + 1).
• C1: x1y1 6= (x0 + 1)y0 and y1 = y0.
• C2: x1y1 = (x0 + 1)y0 and y2 = y0.

We have bijections between classes of form 1 and classes of form 2 given by

• A: [x0y0, x1y1, ..., xkyk] 7→ [x0y0, x0(y0 + 1), x1y1, ..., xkyk].
• B: [x0y0, x0 + 1y1, x2y2, ..., xkyk] 7→ [x0y0, (x0 + 1)y0, (x0 + 1)(y0 + 1), x2y2, ..., xkyk].
• C: [x0y0, x1y1, ..., xkyk] 7→ [x0y0, (x0 + 1)y0, x1y1, ..., xkyk].

Moreover, this identifies simplices in a class of form 1 as inner faces of simplices in the corresponding
class of form 2. Let P be the collection of pairs τ ⊂ τ ′ of nondegenerate k−1 and k-simplices matched
by this bijection. Choose a total ordering on P where pairs are ordered first by the dimension of the
smaller simplex, and then by A < B < C, and then randomly. Let J = {0, ...,M} be the indexing set
for P . We define a sequence of inner anodyne maps

An,i = An,i,0 An,i,1 ... An,i,M+1 = An,i+1

such that An,i,j+1 is obtained from An,i,j by attaching the jth pair τ ⊂ τ ′ along an inner horn. For
this to be valid, we need the other faces of τ ′ to already be in An,i,j . The ordering on E was chosen
so that the outer faces of τ ′ are in An,i. The argument for the inner faces proceeds by cases:

• τ ′ is in class A2: The other inner faces are also in class A2 since they contain x0(y0 + 1),
hence were added at some earlier stage.

• τ ′ is in class B2: The other inner faces of [x0y0, (x0 +1)y0, (x0 +1)(y0 +1), x2y2, ..., xkyk] are
all in class B2, except for [x0y0, (x0 + 1)(y0 + 1), x2y2, ..., xkyk], which is in class A1. Both of
these were added at an earlier stage.

• τ ′ is in class C2: The other inner faces are in class C2 or B1 since they contain (x0 + 1)y0,
hence were added at some earlier stage.

�
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Let En ⊂ (An)1 ⊂ O(∆n)1 be the subset of edges x0y0 → x1y1 where y0 = y1. Define simplicial
sets C′ and C′′ to be the pullbacks

C′
• Hom((O(∆•), E•), ♮C)

Hom(∆•, S) Hom(O(∆•), S)
ev∗

0

,

C′′
• Hom((A•, E•), ♮C)

Hom(∆•, S) Hom(A•, S).
ev∗

0

We now show that the map C′ C′′ induced by precomposition by A• O(∆•) is a trivial
Kan fibration. Indeed, in order to solve the lifting problem

∂∆n C′

∆n C′′

we must supply a lift

An
⋃

∪An−1

(
⋃
O(∆n−1)) C

O(∆n) S

and the left vertical map is a trivial cofibration by Lemma 12.12. Let σ : C′′ C′ be any section.
Also let δ : C′ C be the map induced by precomposition by the identity section ∆• O(∆•).

Define a map υC,S : N+
∆op,S(FC) C over S as follows: the data of an n-simplex of N+

∆op,S(FC)
consists of

• an n-simplex ∆a0 ← ...← ∆an in ∆op (so we have maps fij : ∆
aj ∆ai for i ≤ j);

• an n-simplex s• : ∆n S;
• a choice of a0-simplex σ0 ∈ Ca0 ;
• for 0 ≤ i ≤ n, a map γi : ∆

i σi, where σi = σ0 ◦ f0i
such that for all 0 ≤ i ≤ j ≤ n, the diagram

∆i σi

∆j σj

S

γi

{0,...,i}⊂[j] f∗
ij

γj

(s•)|{0,...,j}

commutes. Let γi : ∆
i ×∆ai ×∆1 C denote the adjoint map.

We now define a map An C to be that uniquely specified by sending for all 0 ≤ k ≤ n the
rectangle ∆k ×∆n−k ⊂ An given by 00 7→ 0k and k(n− k) 7→ kn to

∆k ×∆n−k id×(λa)k−−−−−−→ ∆k ×∆ak × {1} γi|{1}−−−−→ C

where the maps (λa)k are obtained from the first vertex section of W ∆op restricted to a•
as before. One may check that the composite An C S factors as An ∆n s•−→ S, so this
defines a n-simplex of C′′. This procedure is natural in ∆n ∈ ∆, so yields a map N+

∆op,S(FC) C′′.
Finally, postcomposition by δ ◦ σ : C′′ C define our desired map υC,S . By Proposition 12.8,

N+
∆op,S(FC)

π′
−→ S is an S-category with an edge π′-cocartesian if and only if it is degenerate when

projected to ∆op. These edges are evidently sent to π-cocartesian edges in C, so υC is a S-functor.

12.13. Theorem. The S-first vertex map υC,S : N+
∆op,S(FC) C is fiberwise a weak homotopy

equivalence. Moreover, υC,S is S-final if either C S is a left fibration, or S is equivalent to the
nerve of a 1-category.
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Proof. Let t ∈ S be an object and it : {t} S the inclusion. Then N+
∆op,S(FC)t

∼= N+
∆op(i∗tFC). We

have a map

N+
∆op(i

∗
tFC) ∆op

/C
∼= N+

∆op(C•)

of left fibrations over ∆op induced by the natural transformation i∗tFC C• which collapses each
σ ×S {t} to a point. Moreover, this natural transformation is objectwise a Kan fibration, so the map
itself is a left fibration. Also define a map

N+
∆op(i

∗
tFC) (S/t)op

as follows: in the above notation, the γ0 map in the data of an n-simplex (a•, γi : ∆i σi ×S {t})
yields a map πγ0 : ∆a0 O(S)×S {t} = S/t, and we send the n-simplex to

∆n (λarev)0−−−−−→ (∆a0)op
(πγ0)

op

−−−−→ (S/t)op

where arev• is (∆a0)op ← ...← (∆an)op. Using these maps we obtain a commutative square

N+
∆op(i∗tFC) Cop ×Sop (S/t)op

∆op
/C Cop.

µop
C

We claim that the map

θC,t : N
+
∆op(i

∗
tFC) (∆op

/C)×Cop (C ×S S/t)op

is a categorical equivalence. Since θC,t is a map of left fibrations over ∆op
/C , it suffices to check that

for every object σ ∈ ∆op
/C , the map on fibers

σ ×S {t} (Sop)t/ ×Sop {πσ(n)} ≃ {πσ(n)} ×S S/t

is a homotopy equivalence. But this is the pullback of the trivial Kan fibration of Lemma 12.10 over
{t}.

We next define a map N+
∆op(i∗tFC) S/t by sending (a•, γi) to πγ0 ◦ (λa)0. Then the outer

rectangle

N+
∆op(i∗tFC) C ×S S/t S/t

∆op
/C C S

υ′
C,t

υC π

commutes so we obtain the dotted map υ′C,t.
Next, we choose a section P of the trivial Kan fibration Ococart(C) C×SO(S) which restricts to

the identity section on C. P restricts to a map Pt : C ×S S/t Ococart(C)×S {t}, and it is tedious
but straightforward to construct a homotopy between the composition (ev1 Pt) ◦ υ′C,t and (υC,S)t.

Finally, we define a map υ′′C,t : ∆
op
/C×SS/t N+

∆op(i∗tFC) as follows: given an n-simplex

∆a0 . . . ∆an

C ×S S/t
τ0 τn

let σi = prC ◦τi, and define γi : ∆
i σi ×S {t} as the composition of the projection to ∆0 and the

adjoint of the map Pt ◦ τi. Then (a•, γi) assembles to yield an n-simplex of N+
∆op(i∗tFC).

Unwinding the definitions of the various maps, we identify the composition υ′C,t ◦ υ′′C,t as given by

υC×SS/t , and the composition θC,t ◦ υ′′C,t as given by the map ∆op
/ prC

to the factor ∆op
/C and the map
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(µC×SS/t)op to the factor (C ×S S/t)op. By Proposition 12.2 and the fact that final maps pull back
along cocartesian fibrations, we deduce that in

∆op
/C×SS/t ∆op

/C ×Cop (C ×S S/t)op (C ×S S/t)op

the long composition and the second map are both final. Consequently, θC,t ◦ υ′′C,t is a weak

homotopy equivalence. Moreover, if S is equivalent to the nerve of a 1-category then θC,t ◦ υ′′C,t is
a categorical equivalence, as may be verified by checking that the map is a fiberwise equivalence
over ∆op

/C . Since θC,t is a categorical equivalence, υ′′C,t is then a weak homotopy equivalence resp. a

categorical equivalence. Since υC×SS/t is final, υ′C,t is then a weak homotopy equivalence resp. final.

For the last step, let jt : Ct C ×S S/t denote the inclusion. As the inclusion of the fiber over a
final object into a cocartesian fibration, jt is final. (ev1 Pt)◦jt = idCt , so by right cancellativity of final
maps, ev1 Pt is final. We conclude that (υC,S)t is a weak homotopy equivalence resp. final. In addition,
if C S is a left fibration, (υC,S)t has target a Kan complex, so is final by [12, Lemma 2.3.4.6].
Invoking the S-cofinality Theorem 6.7, we conclude the proof. �

12.14. Remark. The above proof that the S-first vertex map υC,S is final in special cases hinges upon
the finality of the map θC,t ◦ υ′′C,t. We believe, but are currently unable to prove, that this map is
always final.

We conclude this section with our main application to decomposing S-colimits.

12.15. Corollary. Suppose that Sop admits multipullbacks. Then C is S-cocomplete if and only C
admits all S-coproducts and geometric realizations.

Proof. We prove the if direction, the only if direction being obvious. Let K be a Ss/-category and
p : K Cs a Ss/-diagram. First suppose that K Ss/ is a left fibration. Consider the diagram

N+
∆op,Ss/(FK) K Cs

∆op × Ss/.

υ
K,Ss/

ρ

p

By Theorem 12.13, the Ss/-colimit of p is equivalent to that of p◦υK,Ss/ . Since ρ is S-cocartesian, by

Theorem 9.15 the Ss/-left Kan extension of p◦υK,Ss/ along ρ exists provided that for all n ∈ ∆op and

f : s→ t, the St/-colimit exists for (p◦υK,Ss/)(n,f). To understand the domain of this map, note that

because the pullback of ρ along f∗ : ∆op×St/ ∆op×Ss/ is given by N+
∆op,St/(f

∗FK), the assump-

tion that Sop admits multipullbacks ensures that the (n, f)-fibers of ρ decompose as coproducts of

representable left fibrations. Therefore, these colimits exist since C is assumed to admit S-coproducts.
Now by transitivity of left Ss/-Kan extensions, the Ss/-colimit of p ◦ υK,Ss/ is equivalent to that of
ρ!(p ◦ υK,Ss/), and this exists since C is assumed to admit geometric realizations.

Now suppose that K Ss/ is any cocartesian fibration. Consider the diagram

ιF̃un∆op×Ss/(W × Ss/,∆op ×K) K Cs

∆op × Ss/.

Υ′
K,Ss/

ρ′

p

By Theorem 12.6, the Ss/-colimit of p is equivalent to that of p ◦ Υ′
K,Ss/ . By Proposition 9.7, the

(n, f)-fiber of ρ′ is equivalent to ιFunSt/(∆n × St/,K ×Ss/ St/), which in any case remains a left

fibration. We just showed that for all t ∈ S, Ct admits St/-colimits indexed by left fibrations. We are

thereby able to repeat the above proof in order to show that the Ss/-colimit of p exists. �
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13. Appendix: Fiberwise fibrant replacement

In this appendix, we formulate a result (Proposition 13.4) which will allow us to recognize a map
as a cocartesian equivalence if it is a marked equivalence on the fibers. We begin by introducing a
marked variant of Lurie’s mapping simplex construction.

13.1. Definition. Suppose a functor φ : [n] sSet+, A0 ... An. Define M(φ) to be the
simplicial set which is the opposite of the mapping simplex construction of [10, §3.2.2], so that a m-
simplex of M(φ) is given by the data of a map α : ∆m ∆n together with a map β : ∆m Aα(0).
Endow M(φ) with a marking by declaring an edge e = (α, β) of M(φ) to be marked if and only if β
is a marked edge of Aα(0). Note that if each Ai is given the degenerate marking, then the marking on
M(φ) is that of [10, Notation 3.2.2.3].

13.2. Lemma. Suppose η : φ ψ is a natural transformation between functors [n] sSet+ such
that for all 0 ≤ i ≤ n, ηi : Ai Bi is a cocartesian equivalence. Then M(η) : M(φ) M(ψ) is a
cocartesian equivalence in sSet+/∆n.

Proof. Using the decomposition of M(φ) as the pushout

M(φ′) ∪A0×∆n−1 A0 ×∆n

for φ′ : A1 ... An, this follows by an inductive argument in view of the left properness of
sSet+/∆n . �

13.3. Construction. Let X ∆n be a cocartesian fibration, let σ be a section of the trivial Kan
fibration Ococart(X) X×∆n O(∆n) which restricts to the identity section on X , and let P = ev1 ◦σ
be the corresponding choice of pushforward functor. For 0 ≤ i < n, define fi : Xi × ∆1 X by
P ◦(idXi×f ′

i) where f
′
i : ∆

1 O(∆n) is the edge (i = i) (i i+1), and let φ : X∼
0 ... X∼

n

be the sequence obtained from the fi×{1}. We will explain how to produce a map M(φ) X over
∆n via an inductive procedure. Begin by defining the map M(φ)n = Xn Xn to be the identity.
Proceeding, observe that M(φ) is the pushout

X0 ×∆{1,...,n} X0 ×∆n

M(φ′) M(φ)

γ

with φ′ the composable sequence X1 ... Xn and the map γ given by X0 × ∆n−1 X1 ×
∆n−1 M(φ′). Given a map g′ :M(φ′) X over ∆n−1, we have a commutative square

X0 ×∆1 ∪X0×∆{1} X0 ×∆{1,...,n} X

X0 ×∆n ∆n,

(f0, g
′ ◦ γ)

and the left vertical map is inner anodyne by [10, Lemma 2.1.2.3] and [10, Corollary 2.3.2.4]. Thus a
dotted lift exists and we may extend g′ to g :M(φ) X .

Note that gi is the identity for all 0 ≤ i ≤ n. Therefore, if we instead take the marking on M(φ)
which arises from the degenerate marking on the Xi, then g is (the opposite of) a quasi-equivalence
in the terminology of [10, Definition 3.2.2.6], hence a cocartesian equivalence in sSet+/∆n by [10,

Proposition 3.2.2.14]. Now by Lemma 13.2, g with the given marking is a cocartesian equivalence.
This construction of M(φ) X enjoys a convenient functoriality property: given a cofibration

F : X Y between cocartesian fibrations over ∆n, we may first choose σX as above, and then define
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σY to be a lift in the diagram

(X ×∆n O(∆n)) ∪X Y Ococart(Y )

Y ×∆n O(∆n) Y ×∆n O(∆n).

(F ◦ σX , ι)

∼

=

σY

Consequently, we obtain compatible pushforward functors and a natural transformation η : φX φY ,
which yields, by a similar argument, a commutative square

M(φX) M(φY )

X Y.

M(η)

F

where the vertical maps are cocartesian equivalences in sSet+/∆n .

13.4. Proposition. Let p : X S and q : Y S be cocartesian fibrations over S and let F :
X Y be a S-functor. Suppose collections of edges EX , EY of X, Y such that

(1) EX resp. EY contains the p resp. q-cocartesian edges;
(2) For E0

X ⊂ EX the subset of edges which are either p-cocartesian or lie in a fiber, we have that
(X,E0

X) ⊂ (X,EX) is a cocartesian equivalence in sSet+/S, and ditto for Y ;

(3) F (EX) ⊂ EY ;
(4) For all s ∈ S, Fs : (Xs, (EX)s) (Ys, (EY )s) is a cocartesian equivalence in sSet+.

Let X ′ = (X,EX), Y ′ = (Y,EY ), and F
′ : X ′ Y ′ be the map given on underlying simplicial sets

by F . Then for all simplicial sets U and maps U S, F ′
U is a cocartesian equivalence in sSet+/U .

Proof. Without loss of generality, we may assume that an edge e is in EX if and only if either e is
p-cocartesian or p(e) is degenerate, and ditto for EY . First suppose that F is a trivial fibration in
sSet+/S and for all s ∈ S, F ′

s reflects marked edges. Then F ′ is again a trivial fibration because F ′

has the right lifting property against all cofibrations. For the general case, factor F as X
G−→ Z

H−→ Y
where G is a cofibration and H is a trivial fibration, and let Z ′ = (Z,EZ) for EZ the collection of
edges e where e is in EZ if and only if H(e) is in EY . Then for all s ∈ S, Z ′

s Y ′
s is a trivial fibration

in sSet+, so as we just showed H ′ : Z ′ Y ′ is a trivial fibration. We thereby reduce to the case
that F is a cofibration.

Let U denote the collection of simplicial sets U such that for every map U S, F ′
U is a cocartesian

equivalence in sSet+/U . We need to prove that every simplicial set belongs to U. For this, we will

verify the hypotheses of [10, Lemma 2.2.3.5]. Conditions (i) and (ii) are obvious, condition (iv) follows
from left properness of the cocartesian model structure and [12, Proposition B.2.9], and condition (v)
follows from the stability of cocartesian equivalences under filtered colimits and [12, Proposition B.2.9].
It remains to check that every n-simplex belongs to U, so suppose S = ∆n. Let

M(φX) M(φY )

X Y

M(η)

F

be as in Construction 13.3. Let φ′X be the sequence X ′
0 ... X ′

n, where the maps are the same
as in φX , and similarly define φ′Y and η′. Then we have pushout squares

M(φX) M(φ′X)

X X ′′

,

M(φY ) M(φ′Y )

Y Y ′′
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with all four vertical maps cocartesian equivalences in sSet+/∆n . Here we replace X ′ by X ′′, which has

the same underlying simplicial set X but more edges marked with X ′ ⊂ X ′′ left marked anodyne, so
that the vertical maps M(φ′X) X ′′ are defined and the squares are pushout squares (again, ditto
for Y ′′). Note that F defines a map F ′′ : X ′′ Y ′′.

Finally, we have the commutative square

M(φ′X) M(φ′Y )

X ′′ Y ′′.

M(η′)

F ′′

By assumption, η′ : φ′X φ′Y is a natural transformation through cocartesian equivalences in sSet+.
By Lemma 13.2, M(η′) is a cocartesian equivalence in sSet+/∆n . We deduce that F ′′, hence F ′, is as
well. �
13.5. Remark. By a simple modification of the above arguments, we may further prove that for any
marked simplicial set A S, F ′

A is a cocartesian equivalence in sSet+/A. We leave the details of this

to the reader.
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PARAMETRIZED HIGHER CATEGORY THEORY II: UNIVERSAL
CONSTRUCTIONS

JAY SHAH

Abstract. We develop parametrized generalizations of a number of fundamental concepts in the theory of
∞-categories, including factorization systems, free fibrations, exponentiable fibrations, relative colimits and
relative Kan extensions, filtered and sifted diagrams, and the universal constructions Ind and PΣ.
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1. Introduction

In this paper, we continue our development of the foundations of parametrized (i.e., indexed) higher
category theory from [Sha21]. Let T be an ∞-category.

1.1. Definition. A T-∞-category is a cocartesian fibration C Top. Given two T-∞-categories C and
D, a T-functor F : C D is a morphism of cocartesian fibrations, i.e., a functor over Top that preserves
cocartesian edges.

1.2. Warning. In [Sha21], we set S = Top and instead spoke of S-∞-categories as cocartesian fibrations
C S. As this is purely an issue of nomenclature, we will not hesitate in referring to results from [Sha21]
with our opposite convention in force.

The basic idea of parametrized higher category theory is to develop a theory of ∞-categories internal
to the (∞, 2)-category of T-∞-categories. The most fundamental new complication that arises is that of
a broader notion of point; points should now be thought of as encompassing all the corepresentable left
fibrations over Top. For example, taking T = OG to be the orbit category of a finite group, the theory of
G-colimits essentially amalgamates the usual theory of colimits together with that of coproducts indexed
by G-orbits.1 Our original motivation for this project lay in the necessity of having robust ∞-categorical
foundations for equivariant homotopy theory – see [BDG+16] and the introduction of [Sha21] for more
details on this. However, nothing in [Sha21] or this paper is specific to that application. In principle, the
foundational work that we undertake here should prove useful wherever classical indexed category theory
has found application, or for base ∞-categories T of algebro-geometric origin (e.g., in a motivic context). It

Date: January 11, 2022.
1See Theorem B for a precise statement.

1
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will also be essential for our development of the theory of parametrized ∞-operads in [NS], which underpins
the work of Horev and his collaborators [Hor19, HHK+20] on equivariant factorization homology.

Recall that in [Sha21] we accomplished the following primary objectives:
(1) We introduced the concepts of T-(co)limits and T-Kan extensions.2 We also proved the basic existence

and uniqueness theorem for T-Kan extensions (cf. [Sha21, Thm. 10.3] and [Sha21, Thm. 10.5]).
(2) Say that T is orbital if its finite coproduct completion FT admits pullbacks. Supposing that T is

orbital, we proved as [Sha21, Cor. 12.15] that a T-∞-category C is T-cocomplete [Sha21, Def. 5.13]
if and only if C admits all T-coproducts [Sha21, Def. 5.10], fiberwise geometric realizations, and
the restriction functors preserve geometric realizations. This was done by a T-colimit decomposition
technique in the form of the parametrized Bousfield–Kan formula; cf. [Sha21, Thm. 12.6] and [Sha21,
Thm. 12.13] coupled with the parametrized Quillen’s Theorem A [Sha21, Thm. 6.7].

(3) We proved a parametrized Yoneda lemma [Sha21, Lem. 11.1] and subsequently established the uni-
versal property of the T-∞-category of presheaves [Sha21, Thm. 11.5].

For more involved applications, we need to establish generalizations of all three of these results. Firstly,
recall that Lurie in [Lur09, §4.3] set up a theory of relative Kan extensions. The idea is that given a
commutative diagram

C E

D B

F

i π

of ∞-categories, one can give a pointwise criterion for the existence of an initial filler i!F . If π is in
addition a cocartesian fibration, then as a corollary one sees that i!F always exists if we suppose that for all
objects b ∈ B, the fiber Eb admits all colimits, and for all morphisms f : b b′, the pushforward functor
f! : Eb Eb′ preserves all colimits.

We will establish the theory of relative T-colimits and relative T-left Kan extensions and thereby obtain a
generalization of Lurie’s result in the parametrized setting in the form of Theorem 6.2.3 Since the definitions
of relative T-colimit and relative T-left Kan extension are technically involved (cf. Definition 5.1 and Defini-
tion 6.1), at this point we will only state a simplified corollary of our main existence result that nonetheless
covers the case of most relevance. To formulate the analogous existence criterion in the parametrized context,
we need the notion of a parametrized fiber of a T-functor:
1.3. Definition ([Sha21, Notn. 2.29]). Let B be a T-∞-category, b ∈ Bt an object, and let Arcocart(B) be
the full subcategory of Ar(B) on the cocartesian edges in B. We let b := {b} ×B,ev0 Arcocart(B). Note then
that the functor b (T/t)op ∼= {t} ×Top Ar(Top) induced by the structure map of B is a trivial fibration
[Sha21, Lem. 12.10] and ev1 : b B is a T-functor covering (T/t)op Top.

Now suppose π : E B is a T-functor. The parametrized fiber of π over b is the T/t-∞-category
Eb := b×ev1,B,π E.

Theorem A. Suppose we have a commutative diagram of T-∞-categories

C E

D B

i π

in which i is the inclusion of a full T-subcategory [Sha21, Def. 2.2] and π is in addition a cocartesian fibration.
Consider the restriction functor

i∗ : Fun/B,T(D,E) Fun/B,T(C,E)
where Fun/B,T(−,−) denotes the full subcategory of Fun/B(−,−) spanned by the T-functors. Suppose that
for all b ∈ Bt, the parametrized fiber Eb admits all T/t-colimits, and for all f : b b′ ∈ Bt, the induced
pushforward T/t-functor f! : Eb Eb′ preserves all T/t-colimits. Then i∗ admits a left adjoint i!. Moreover,
the unit transformation id ⇒ i∗i! is an equivalence, so i! is fully faithful.

2We give a rapid review of these concepts in Section 2.
3Of course, one may dualize appropriately to obtain analogous results involving relative T-limits and relative T-right Kan

extensions; cf. [Sha21, Cor. 5.25].
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1.4. Remark. As with the ordinary theory of Kan extensions, the full faithfulness assertion in Theorem A
is where the pointwise formula for i! comes into play. In particular, even if we assumed the relevant pre-
sentability hypotheses, it would not suffice to appeal to the adjoint functor theorem to verify this property.

Secondly, we develop the theory of T-κ-small, T-filtered, and T-sifted T-∞-categories. In order to speak
of small and large simplicial sets and ∞-categories, we henceforth fix two strongly inaccessible cardinals
δ0 < δ1.

1.5. Convention. For simplicity, we now also suppose throughout that the base ∞-category T is small.

Let Cat denote the (large) ∞-category of small ∞-categories and let CatT := Catcocart
/Top ≃ Fun(Top,Cat)

be the ∞-category of T-small T-∞-categories.4

1.6. Definition (Definition 8.2). Let ∆T ⊂ CatT be the full subcategory spanned by the objects

{∆n × MapT(−, t)}t∈T,n≥0.

Then for every regular cardinal κ, we define the full subcategory Catκ-small
T ⊂ CatT to be the smallest full

subcategory that contains ∆T and is closed under all colimits indexed by κ-small simplicial sets. We say that
a T-small T-∞-category C is T-κ-small if it belongs to Catκ-small

T . If κ = ω, we also say that C is T-finite.

1.7. Remark. Adopting the terminology of Definition 1.6 entails speaking of a host of seemingly redundant
expressions such “T-finite T-∞-category”. We avoid simply writing e.g. “finite T-∞-category” because of
the possible ambiguity as to whether, given some T-∞-category C, “finite” refers to C being finite as an
∞-category or as a T-∞-category.

We then have the following generalization of [Sha21, Cor. 12.15], whose proof turns out to be far simpler
than our earlier strategy of appealing to the parametrized Bousfield–Kan formula. We give the most useful
formulation of this here; a slightly more general statement is recorded as Theorem 8.6.

Theorem B. Suppose that T is orbital. Let C be an T-∞-category and κ a regular cardinal. Then C strongly
admits5 all T-κ-small T-colimits if and only if

(1) For every t ∈ T, the fiber Ct admits all κ-small colimits, and for every α : s t, the restriction
functor α∗ : Ct Cs preserves κ-small colimits.

(2) For every map α : U V of finite T-sets,6 the restriction functor α∗ : CV CU admits a left
adjoint α!.7

(3) C satisfies the Beck-Chevalley condition, i.e., for every pullback square

U ′ U

V ′ V

β′

α′ α

β

in FT, the mate
α′

!β
′∗ ⇒ β∗α! : CU CV ′

is an equivalence.

1.8. Remark. Again supposing that T is orbital, note that by [Sha21, Prop. 5.12] C admits finite T-coproducts
if and only if conditions (2) and (3) in Theorem B hold. Moreover, the ordinary (∞-categorical) Bousfield–
Kan formula shows that an ∞-category is cocomplete if and only if it admits coproducts and geometric
realizations (cf. [Sha21, Cor. 12.3]). Taking κ to be our fixed inaccessible cardinal δ0, we then see that the
hypotheses of Theorem B are equivalent to those of [Sha21, Cor. 12.15].

4Since we suppose that T is small, a T-∞-category C is T-small if and only if C is small.
5We recall this notion as Definition 2.8.
6A finite T-set is defined to be an object of the finite coproduct completion FT of T.
7For a finite T-set U with orbit decomposition U1 ⊔ ... ⊔ Un, we write CU :=

∏n

i=1 CUi
, and the contravariant functoriality

in the finite T-set is inherited from that for orbits.
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1.9. Remark. In [Nar16], Nardin implicitly defines a T-∞-category to strongly admit T-finite T-(co)limits8

if conditions (1) through (3) in Theorem B are satisfied. Moreover, using his formulation, a T-stable T-
∞-category [Nar16, Def. 7.1] by definition strongly admits all T-finite T-colimits and T-finite T-limits. One
practical consequence of Theorem B is that T-stable T-∞-categories then strongly admit T-(co)limits indexed
by an a priori larger class of T-diagrams; for instance, when T = OG this includes those G-spaces that admit
the structure of a finite G-CW complex.

Moving onto the theory of T-κ-filtered and T-sifted T-∞-categories, we may make the following definitions
as the evident parametrized generalizations of [Lur09, Def. 5.3.1.7] and [Lur09, Def. 5.5.8.1].

1.10. Definition (Definition 8.8). Let J be a T-∞-category and let κ be a regular cardinal. We say that
J is T-κ-filtered if for all t ∈ T and T/t-κ-small K, every T/t-functor p : K Jt admits an extension to a
T/t-functor p : K✄ Jt.9

1.11. Notation. For a finite T-set U with orbit decomposition U1 ⊔ ... ⊔ Un, we write

U :=
n∐

i=1
(Top)Ui/

for the T-∞-category given by the coproduct of corepresentable left fibrations; this straightens to the presheaf
MapFT

(−, U)|Top .

Recall from [Sha21] that we write FunT(−,−) for the internal hom for T-∞-categories (defined at the level
of marked simplicial sets as [Sha21, Def. 3.2]); for every t ∈ T we have that FunT(C,D)t ≃ FunT/t(Ct,Dt),
and for every α : s t, the restriction functor α∗ is given by restricting T/t-functors to T/s-functors.

1.12. Definition (Definition 8.14). Let J be a T-∞-category. Then J is T-sifted if for all t ∈ T and finite
T/t-sets U , the diagonal T/t-functor δ : Jt FunT/t(U, Jt) is T/t-cofinal in the sense of [Sha21, Def. 6.8],
i.e. δ is fiberwise cofinal.

Our main theorems about these concepts should be read as confirming the following expectation: T-filtered
and T-sifted T-colimits are computed as ordinary filtered and ordinary sifted colimits in the fibers. To say
this precisely, we need another definition.

1.13. Definition (Definition 9.5). Let J be a T-∞-category. We say that J is cofinal-constant (cc) if for all
morphisms α : s t in T, the restriction functor α∗ : Jt Js is cofinal.

1.14. Remark. Let J be a cofinal-constant T-∞-category and p : J C a T-functor. Moreover, suppose that
T has a terminal object t. Then by our hypothesis on J and [Sha21, Thm. 6.7], the T-functor χ : Jt×Top J

uniquely determined by the inclusion Jt ⊂ J is T-cofinal. Consequently, we obtain an equivalence

colimT
Jp ≃ colimT

Jt×Topp ◦ χ
provided that either T-colimit exists.

Now let Spc denote the (large) ∞-category of small spaces and let Spc
T

be the T-∞-category of small
T-spaces [Sha21, Exm. 3.12].

Theorem C (Theorem 8.11 and Theorem 8.13). Suppose that T is orbital. Let J be a T-∞-category and let
κ be a regular cardinal. The following conditions are equivalent:

(1) J is T-κ-filtered.
(2) For all t ∈ T, Jt is κ-filtered, and J is cofinal-constant.
(3) The T-colimit T-functor

colimT
J : FunT(J,Spc

T
) Spc

T

strongly preserves T-κ-small T-limits.

8Note that Nardin writes instead “finite T-(co)limits” for this notion and he also doesn’t use the adjective “strongly”; see
Remark 1.7.

9We recall the parametrized cone as Definition 2.2. Here, for the T/t-∞-category K, K✄ is notation for K ⋆(T/t)op (T/t)op.
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(4) For all t ∈ T and T/t-κ-small K, the diagonal T/t-functor

δ : Jt FunT/t(K, Jt)

is T/t-cofinal.

Theorem D (Theorem 8.15). Suppose that T is orbital and let J be a T-∞-category. The following conditions
are equivalent:

(1) J is T-sifted.
(2) For all t ∈ T, Jt is sifted, and J is cofinal-constant.
(3) The T-colimit T-functor

colimT
J : FunT(J,Spc

T
) Spc

T

preserves finite T-products.

Thirdly, building upon our earlier discussion of T-presheaves, we introduce the universal constructions
IndκT(C) and PΣ

T (C) that freely adjoin T-κ-filtered T-colimits and T-sifted T-colimits to C, respectively (Defini-
tion 9.9). These are essentially defined to be the minimal full T-subcategories of PT(C) := FunT(Cvop,Spc

T
)

closed under the relevant T-colimits. However, in view of condition (2) in Theorem C and Theorem D, it
turns out that IndκT(−) and PΣ

T (−) are obtained by fiberwise application of Indκ and PΣ (cf. Variant 9.8).
Our main result identifies these constructions in terms of T-presheaves that strongly preserve certain

T-limits if C admits sufficiently many T-colimits.

1.15. Notation. Let D and E be T-∞-categories, and suppose in the following that D,E strongly admit the
relevant T-(co)limits. We introduce notation for certain full T-subcategories of FunT(D,E), which may be
specified by indicating over each t ∈ T what T/t-functors Dt Et span the fiber:

(1) FunLT(D,E): take those T/t-functors that strongly preserve all (small) T/t-colimits.
(2) Fun×

T (D,E): take those T/t-functors that preserve finite T/t-products.10

(3) Fun⊔
T(D,E): take those T/t-functors that preserve finite T/t-coproducts.

(4) Funκ-lex
T (D,E): take those T/t-functors that strongly preserve T-κ-small T/t-limits.

(5) Funκ-rex
T (D,E): take those T/t-functors that strongly preserve T-κ-small T/t-colimits.

We only state the most important points here and refer the reader to the main body of the paper for the
more comprehensive theorem.

Theorem E (Theorem 9.11). Suppose that T is orbital and let C be a T-∞-category.
(1) Suppose that C admits finite T-coproducts. We then have an equality

PΣ
T (C) = Fun×

T (Cvop,Spc
T

).

Moreover, PΣ
T (C) is T-cocomplete, and given any T-cocomplete T-∞-category D, restriction along

the T-Yoneda embedding jΣ
T : C PΣ

T (C) implements an equivalence

FunLT(PΣ
T (C),D) ≃ Fun⊔

T(C,D)

with inverse given by T-left Kan extension.
(2) Suppose that C strongly admits T-κ-small T-colimits. We then have an equality

IndκT(C) = Funκ-lex
T (Cvop,Spc

T
).

Moreover, IndκT(C) is T-cocomplete, and given any T-cocomplete T-∞-category D, restriction along
the T-Yoneda embedding jκT : C IndκT(C) implements an equivalence

FunLT(IndκT(C),D) ≃ Funκ-rex
T (C,D)

with inverse given by T-left Kan extension.

10Note that there is no distinction between strongly preserving and preserving finite T/t-products, and likewise for finite
T/t-coproducts.
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Lastly, we also lay parametrized foundations for two other important concepts in the theory of ∞-
categories: factorization systems and exponentiable (i.e., flat) fibrations.11 We defer the statements of these
results to their respective sections 3 and 4. Most notably, we use the theory of T-factorization systems to
establish the universal property of the free T-cocartesian fibration (Example 3.8), while we use the theory of
T-flat fibrations and the associated T-pairing construction (Theorem-Construction 4.2) to study T-(co)limits
in a T-∞-category of sections (Theorem 4.16).

1.16. Remark. In the case T = ∗, our main Theorem 3.6 on parametrized factorization systems applies to
give a common generalization of the proof of the universal property of the usual free cocartesian fibration
([GHN17, Thm. 4.5]) with that of the universal property of the O-monoidal envelope for an ∞-operad O

([Lur17, Prop. 2.2.4.9]).12 In [NS], we will apply Theorem 3.6 to establish the theory of O-monoidal envelopes
for a T-∞-operad O.

1.17. Remark. Our main interest in Theorem 4.16 lies in using it in [NS] to study T-(co)limits in a T-∞-
category of O-algebras for a T-∞-operad O. Also see [BH21, Prop. 7.6] for a similar type of statement in the
context of normed E∞-algebras in motivic homotopy theory.

In the appendix, we take the opportunity to give the correct13 definition of an exponentiable fibration of
∞-operads and then the construction of O-promonoidal Day convolution with respect to a base ∞-operad
O⊗ (Theorem-Construction 10.6). This generalizes Lurie’s construction in [Lur17, §2.2.6], which supposes
that the source ∞-operad in question is O-monoidal. We saw fit to include this material here because the
main lemma behind it (Lemma 10.1) is also used to establish the theory of T-flat fibrations.

1.18. Remark. Vladimir Hinich has informed us that our treatment of O-promonoidal Day convolution is a
slightly reorganized version of his discussion in [Hin20, §2.8]. In particular, our Theorem-Construction 10.6
is essentially his [Hin20, Prop. 2.8.3], and Lemma 10.1 when specialized to the context of ∞-operads is his
[Hin20, Lem. 2.8.4].

Notation and terminology. We collect a few miscellaneous pieces of notation and terminology from
[Sha21] that we have not introduced yet in our discussion.

1.19. Convention. Let X,Y Z be maps of simplicial sets. Unless otherwise indicated, when we write
X ×Z Ar(Z) ×Z Y we mean X ×Z,ev0 Ar(Z) ×ev1,Z Y (i.e., evaluation at the source goes to the left and
evaluation at the target goes to the right).

We will need to use the theory of marked simplicial sets in various places in this paper; see [Sha21, §2]
for a review.

1.20. Notation. (1) Given a simplicial set X , we let X♭ be the minimal marking on X and X♯ the maximal
marking on X .

(2) If p : X S is a cocartesian fibration, then we let ♮X denote X with its p-cocartesian edges marked.

1.21. Notation. We will generally write Top as ∗T when we wish to think of it as the terminal T-∞-category.

1.22. Definition. Let C be a T-∞-category. We define the T-∞-category of arrows in C to be

ArT(C) := Top ×Ar(Top) Ar(C)

where the map Top Ar(Top) is the identity section.

1.23. Recollection ([Sha21, Def. 4.1]). Let S be a simplicial set, let ι : ∂∆1 × S ⊂ ∆1 × S be the inclusion
functor, and consider the right adjoint

ι∗ : sSet/∂∆1×S sSet/∆1×S

11Some authors (e.g., Ayala and Francis [AF20]) reserve the term exponentiable for the homotopy invariant definition, but
we will elide this distinction in our narrative here.

12This line of reasoning is well-known to experts and has also appeared in the literature as [AMGR17, Prop. B.1]; we thank
Rune Haugseng for the pointer.

13If O⊗ is the commutative ∞-operad, then it turns out that our earlier definition of symmetric promonoidal given in
[BGS20] was insufficiently general; see Example 10.4. We thank Yonatan Harpaz for alerting us to this issue.
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to pullback along ι. Then for maps p, q : X,Y S of simplicial sets, we define the S-join X ⋆S Y to be
ι∗(X,Y ); this recovers the ordinary join if S = ∗. Note that if we let χ : S×∆1 S ⋆S be the map adjoint
to idS×∂∆1 (using the universal property of the ordinary join), then we have a canonical isomorphism

X ⋆S Y ∼= S × ∆1 ×
χ,S⋆S,p⋆q

X ⋆ Y,

so the S-join is the relative join in the sense of Lurie [Lur21, Tag 0241]. In keeping with the terminology of
[Sha21], however, we will prefer to generically call this the parametrized join.

Now if S = Top and we have T-∞-categories C and D, the Top-join C ⋆Top D is again a T-∞-category, and
in fact the structure map to Top × ∆1 is a T-functor (cf. [Sha21, Prop. 4.3]).

1.24. Recollection ([Sha21, Def. 8.3]). Let C and D be T-∞-categories and let F : C D :G be a relative
adjunction with respect to Top [Lur17, Def. 7.3.2.2]. Then we say that F ⊣ G is a T-adjunction if F and G
are both T-functors.

1.25. Recollection ([Sha21, Def. 7.1]). Let p : X B be a T-functor. We say that p is a T-fibration if p
is a categorical fibration. In this case, p is T-cocartesian, resp. T-cartesian if

(1) For every object t ∈ T, pt : Xt Bt is a cocartesian, resp. cartesian fibration.
(2) For every morphism α : s t, the restriction functor α∗ : Xt Xs carries pt-cocartesian, resp.

pt-cartesian edges to ps-cocartesian, resp. ps-cartesian edges.
If p : X B and q : Y B are two T-cocartesian fibrations, we say that a T-functor F : X Y over
B is a morphism of T-cocartesian fibrations if F preserves fiberwise (with respect to T) cocartesian edges.
Similarly, we have the analogous definition of a morphism of T-cartesian fibrations.

Finally, note that p is T-cocartesian if and only if p is a cocartesian fibration [Sha21, Rem. 7.4].

Acknowledgements. I would like to thank Denis Nardin for helpful conversations on the subject matter
of this paper. I would also like to acknowledge that Dylan Wilson has obtained similar results in unpub-
lished work. The author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy EXC 2044–390685587, Mathematics Münster: Dynam-
ics–Geometry–Structure.

2. Recollections on parametrized limits and colimits

In this section, we give a streamlined exposition of the concepts of parametrized (co)limits and Kan
extensions introduced in [Sha21]. This is done primarily to fix notation and make this paper more self-
contained. For the reader already familiar with [Sha21], the only points to bear in mind are our more
concise notation for parametrized cones (Definition 2.2) and the notion of strongly admitting and preserving
K-indexed T-colimits with respect to certain collections K of parametrized diagrams (Definition 2.8).

2.1. Notation ([Sha21, Notn. 3.5]). Let p : K C be a T-functor. We then let
σp : ∗T FunT(K,C)

denote the cocartesian section given by adjointing the map Ar(Top)♯ ×Top ♮K
pr

♮K
p

♮C. This is an
explicit choice of T-functor corresponding to p under the equivalence

FunT(∗T,FunT(K,C)) ≃ FunT(K,C)
of [Sha21, Prop. 3.4].

2.2. Definition (Cones and slices). Let C be a T-∞-category. We let
C✄ := C ⋆Top Top , C✁ := Top ⋆Top C

denote the T-right and T-left cones on C. We also write v : ∗T ⊂ C✄ or C✁ for the inclusion of the cone
T-point.

For a T-functor p : K C, we then let
C(p,T)/ := ∗T ×σp,Fun

T
(K,C) FunT(K✄,C) , C/(p,T) := ∗T ×σp,Fun

T
(K,C) FunT(K✁,C)

denote the slice T-∞-categories.

We will also need in a few places the following smaller model for slicing over and under a T-object.
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2.3. Definition. Let C be a T-∞-category. For any object x ∈ Ct, we write
C/x := ArT(C) ×C x , Cx/ := x×C ArT(C)

and regard these as T/t-∞-categories via composition of the projection to x with the trivial fibration
x ≃ (T/t)op ([Sha21, Lem. 12.10]).

2.4. Observation ([Sha21, Prop. 4.30]). In Definition 2.3, if we write ix : x Ct for the T/t-functor defined
by x, then we have canonical equivalences

C/x ≃ (Ct)/(ix,T/t) , Cx/ ≃ (Ct)(ix,T/t)/

of T/t-∞-categories over Ct. Similarly, for a cocartesian section σ : ∗T C, we have canonical equivalences

ArT(C) ×C,σ ∗T ≃ C/(σ,T) , ∗T ×σ,C ArT(C) ≃ C(σ,T)/

of T-∞-categories over C.

We now proceed to our discussion on parametrized colimits; the case of parametrized limits is dual in
view of [Sha21, Cor. 5.25] and hence will not be explicitly considered.

2.5. Definition ([Sha21, Def. 5.1-2]). Let C be a T-∞-category. A T-functor σ : ∗T C is a T-initial object
if and only if σ(t) ∈ Ct is an initial object for all t ∈ T. A T-functor p : K✄ C is then a T-colimit diagram
if and only if the T-functor

(id, σp) : ∗T C(p,T)/ = ∗T ×σp,Fun
T

(K,C) FunT(K✄,C)
is a T-initial object. Lastly, we say that a T-functor p : K C admits a T-colimit if p admits an extension
to a T-colimit diagram p, and we then write colimT

Kp = p|v. If T moreover has a terminal object t, we will
also identify the cocartesian section colimT

Kp with its value at t.14

2.6. Notation. Let p : K C be a T-functor and let δ : C FunT(K,C) be the constant T-functor. We
then write

colimT
K : FunT(K,C) C

for the partially-defined15 T-left adjoint of δ.

The next observation is the trivial case of [Sha21, Cor. 9.16] where we let D = Top there.

2.7. Observation. For a T-functor p : K C, colimT
K is defined on an object p : Kt Ct in the fiber

FunT(K,C)t ≃ FunT/t(Kt,Ct) if and only if p admits a T/t-colimit, in which case colimT
Kp ≃ (colimT/t

Kt
p)(t).

In particular, if for each t ∈ T the parametrized fiber Ct admits all Kt-indexed T/t-colimits, then colimT
K is

defined on its entire domain.
Passing to cocartesian sections, we then see that

colimT
K : FunT(K,C) FunT(∗T ,C)

is a partial left adjoint to the functor given by precomposing with the structure map of K, and colimT
K is

defined on its entire domain if colimT
K is (but possibly not conversely).

This observation already highlights the need to systematically distinguish between T-colimits in C and
T/t-colimits in the parametrized fibers Ct. We do this as follows:

2.8. Definition. Let C be a T-∞-category.
(1) C strongly admits all T-colimits, i.e., is T-cocomplete [Sha21, Def. 5.13], if for each t ∈ T, Ct admits

all T/t-colimits.
(2) If C and D are T-cocomplete T-∞-categories, then a T-functor F : C D strongly preserves all

T-colimits if for each t ∈ T, Ft : Ct Dt preserves all T/t-colimits [Sha21, Def. 11.2].

14If t ∈ Top is an initial object, then cocartesian sections are uniquely specified by their value at t.
15For a T-functor R : C D, the domain of its partial T-left adjoint L is the largest full T-subcategory D0 ⊂ D for which

Lt is a partial left adjoint to Rt for all t ∈ T and f∗Lt
≃ Lsf∗ for all (f : s t) ∈ T.
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More generally, if we have a collection K = {Kt : t ∈ T} where Kt is a class of small T/t-∞-categories such
that for each morphism f : s t in T, f∗(Kt) ⊂ Ks, then we have analogous notions of strongly admitting
and preserving K-indexed T-colimits. We will typically leave the collection {Kt} implicit when referring to
K. Abusing notation, we will also let K refer to the class of T-∞-categories K such that Kt ∈ Kt for all
t ∈ T.

2.9. Remark. In this paper, all T-colimits will be indexed by small T-∞-categories, and we will typically
suppress the adjective ‘small’ in this context (as was already done in Definition 2.8).

We next review the theory of T-left Kan extensions along fully faithful T-functors. We first need an
auxiliary construction.

2.10. Remark. Let C be a T-∞-category. By definition, the T-right cone C✄ has a universal mapping
property with respect to maps going in. In the following we will also need a universal mapping property of
C✄ for maps going out. Namely, by [Sha21, Lem. 4.5] we have a homotopy pushout square of T-∞-categories

C × {1} C × ∆1

∗T C✄

p f

v

where f is defined as the adjoint to (idC, p).
Now suppose that σ : ∗T C is a T-final object. Then we may construct a homotopy h : C × ∆1 C

from idC to σ, which yields a T-functor
h′ : C✄ C

such that h′|C = idC and h′|v = σ. Moreover, if one considers the bifibration (cf. [Sha21, Lem. 4.8])
(f, g) : FunT(C✄,C) FunT(C,C) × FunT(∗T ,C)

then h′ is obtained by taking a f -cartesian lift with target [C✄ p ∗T σ C] in FunT(C✄,C) over the edge
idC σ ◦ p in FunT(C,C) specified by h.

2.11. Construction. Let D be a T-∞-category and let x ∈ Dt. We then construct a T/t-functor
θx : (D/x)✄ Dt

as follows (where the parametrized right cone is formed with respect to the base T/t). First, we adjoint the
projection D/x ArT(D) to obtain a T/t-functor hx : D/x × ∆1 Dt. We then let θx be the composite
of hx and the T/t-functor

(h′, π) : (D/x)✄ D/x × ∆1,

where π is the structure map to ∆1 of the parametrized join and h′ is as in Remark 2.10 (note that any
choice of cocartesian section jx : ∗T/t D/x determined by idx is a T/t-final object).

Now suppose given a T-functor G : D E and a full T-subcategory C ⊂ D. We let F := G|C, and for
any x ∈ Dt we let C/x := C ×D D/x. We then write

Gx : (C/x)✄ (D/x)✄ θx Dt
Gt

Et

for the composite T/t-functor. Note that Gx|C/x factors as C/x Ct
Ft

Et; we write F x for this T/t-functor.

The following is a simplification of [Sha21, Def. 10.1] in which we have chosen the datum of the natural
transformation η present there to be the identity, which allows us to dispense with the auxiliary construction
of G′′ : (C ×D ArT(D)) ⋆D D E in that definition.

2.12. Definition. Let D be a T-∞-category and C ⊂ D a full T-subcategory. We say that a T-functor
G : D E is a T-left Kan extension of its restriction F = G|C if for all x ∈ Dt, the T/t-functor Gx of
Construction 2.11 is a T/t-colimit diagram.

A T-functor F : C E then admits a T-left Kan extension to D if there exists such a G, and we say that
{F x}x∈D constitutes the set of relevant diagrams for the extension problem.

The author proved the following existence and uniqueness theorem for T-left Kan extensions as [Sha21,
Thm. 10.3], [Sha21, Thm. 10.5], and [Sha21, Prop. 10.6].
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2.13. Theorem. Let D be a T-∞-category and C ⊂ D a full T-subcategory (with inclusion T-functor φ).
(1) A T-functor F : C E admits a T-left Kan extension G over D if and only if all the relevant

diagrams for F admit parametrized colimits. Moreover, G is then uniquely specified up to contractible
choice.

(2) The partial T-left adjoint φ! to the restriction T-functor φ∗ : FunT(D,E) FunT(C,E) is defined
on all F : Ct Et that admit a T/t-left Kan extension G, in which case φ!F ≃ G. In particular, φ!
is defined on its entire domain if for every x ∈ Dt, the parametrized fiber Et admits all C/x-indexed
T/t-colimits.

In fact, constructing T-left Kan extensions along fully faithful T-functors suffices to handle the general
case:

2.14. Remark. Let φ : C D be a T-functor and let π : M ∆1 ×Top be a cocartesian fibration classified
by φ (so M is a T-∞-category and C ≃ M0 ⊂ M is the inclusion of a full T-subcategory). Suppose that
we have a T-functor G : M E that is a T-left Kan extension of its restriction F = G|C. Let G = G|D.
We then may construct a natural transformation η : F ⇒ φ∗G such that η exhibits G as the T-left Kan
extension of F along φ in the sense of [Sha21, Def. 10.1]. Indeed, consider the trivial fibration16

p = (ev0, π) : Arcocart
T (M) M ×∆1 Ar(∆1)

and let σ be a section that restricts to the identity on M, given by a choice of dotted lift in the diagram

M Arcocart
T (M)

M ×∆1 Ar(∆1) M ×∆1 Ar(∆1)

ι

ι p≃

=

σ

where ι generically denotes the identity section. Then let

η : C × ∆1 = C × {[0 = 0] → [0 → 1]} ⊂ M ×∆1 Ar(∆1) σ Arcocart
T (M) ev1 M G E

and note that η|C×{0} = F and η|C×{1} = G ◦ φ. The assertion that G ≃ φ!F then follows by examining the
pointwise formula defining a T-left Kan extension.

3. Parametrized factorization systems

Our goal in this section is to prove a theorem about parametrized factorization systems (Theorem 3.6)
that will allow us to prove the universal property of the free T-cocartesian fibration (Example 3.8) and
subsequently that of the O-monoidal envelope for a T-∞-operad O in [NS].

3.1. Definition. Let C be a T-∞-category. Then a T-factorization system on C is the data of a factorization
system (Lt, Rt) on the fiber Ct for every t ∈ T, subject to the condition that for every morphism α : s t
in T, the restriction functor α∗ : Ct Cs sends (Lt,Rt) into (Ls,Rs).

3.2. Remark. In Definition 3.1, we could instead formulate the condition of compatibility of the fiberwise
factorization systems with restriction in the following way. Let p denote the structure map of C and consider
the collection of commutative squares in C

x x′

y y′

αx

f f ′

αy

such that f resp. f ′ lies in the fiber Ct resp. Ct′ , p(αx) = p(αy), and αx, αy are p-cocartesian edges. Then
we must have that if f is in Lt resp. Rt, then f ′ is in Lt′ resp. Rt′ .

3.3. Definition. Let C be a T-∞-category with structure map p. Given a T-factorization system (Lt,Rt)t∈T

on C, let L be the collection of edges e : x → y in C such that for any factorization x
e′
−→ x′ f−→ y of e by

a p-cocartesian edge e′ and a fiberwise edge f , f is in Lp(y). Let R be the closure of the union of the Rt

under equivalences in C.
16Cf. [Sha21, Lem. 2.23] applied to π and restrict arrows to be T-fiberwise.
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We have the following variant of [Lur17, Prop. 2.1.2.5].

3.4. Lemma. (L ,R) is a factorization system on C.

Proof. We check the three conditions of a factorization system in turn.
(1) Using the stability of the classes {Lt} and {Rt} along with the p-cocartesian edges under retracts,

we see that L and R are closed under retracts.
(2) Given an edge e : x → y in C, factor e as x e′

−→ x′ f−→ y for e′ p-cocartesian and f in the fiber Cp(y).
Using the factorization system (Lp(y),Rp(y)) on Cp(y), factor f as x′ f ′

−→ x′′ f ′′
−−→ y where f ′ ∈ Lp(y)

and f ′′ ∈ Rp(y). Then x
f ′◦e′
−−−→ x′′ f ′′

−−→ y is our desired factorization of e.
(3) Suppose we have a commutative square

w y

x z

f g

with f ∈ L and g ∈ R; we want to produce an essentially unique filler x y. Without loss of
generality, we may suppose p(y) = p(z) and g ∈ Rp(y). Choosing p-cocartesian edges we may factor
the square as

w w′ w′′ y

x x′ z

f
f ′ f ′′

g

α

h

where the edges which ‘add a prime’ are p-cocartesian, and vertical edges along with the rightmost
square lie in a fiber. By definition, f ′ ∈ Lp(x), and since the (Lt,Rt)t∈T constitute a T-factorization
system on C, f ′′ ∈ Lp(y). Then we have an essentially unique filler h, and h◦α : x → y is our desired
filler.

�

3.5. Proposition. Suppose D is a T-∞-category and (Lt,Rt)t∈T is a T-factorization system on D. Let
(L ,R) be the induced factorization system on D of Definition 3.3.

(1) Let ArLT(D) resp. ArL(D) denote the full subcategory of ArT(D) resp. Ar(D) on the morphisms in
L . Then the source map

ev0 : ArLT(D) D

is a T-cartesian fibration of T-∞-categories, and the source map
ev0 : ArL(D) D

is a cartesian fibration (where here the domain is not generally a T-∞-category).
(2) Let ArRT (D) denote the full subcategory of ArT(D) on the morphisms in R. Suppose that p : C D

is a T-fibration which admits p-cocartesian lifts over all edges in L . Then the target map
ev1 : C ×D ArRT (D) D

is a T-cocartesian fibration.

Proof. (1): For the first assertion, since we have the factorization system (Lt,Rt) on the fibers Dt for all
t ∈ T, ev0 is fiberwise a cartesian fibration, with an edge in ArLt(Dt) = ArLT(D)t

x0 y0

x1 y1

α

f β

g

(ev0)t-cartesian if and only if g is in Rt. Since the factorization systems in the fibers are compatible with
restriction, it follows that ev0 is in addition T-cartesian.

For the second assertion, repeat the argument with the factorization system (L ,R) on D itself.
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(2): The argument is dual to (1), except that now the ev1-cocartesian edges are given by
(α, (f, g)) : (c0, x0 → y0) (c1, x1 → y1)

with f ∈ L and α a p-cocartesian edge. �

3.6. Theorem. Suppose we are in the setup of Proposition 3.5(2) so that we have a T-fibration p : C D

that admits p-cocartesian lifts over all edges in L .
(1) For every cocartesian fibration q : E D, restriction along the inclusion i : C C ×D ArRT (D)

yields a trivial fibration

i∗ : Funcocart
/D (C ×D ArRT (D),E) FunL/D(C,E)

where we define

Funcocart
/D (C ×D ArRT (D),E) := Fun/D(♮(C ×D ArRT (D)), ♮E),

FunL/D(C,E) := Fun/D((C,M), ♮E),

and the marked edges M in C are the p-cocartesian edges of C over L .17 In other words,

i : (C,M) ♮(C ×D ArRT (D))

is a cocartesian equivalence in sSet+
/D.

(2) Let M ′ denote the ev1-cocartesian edges in C ×D ArRT (D) over L and define

FunL/D(C ×D ArRT (D),E) := Fun/D((C ×D ArRT (D),M ′), ♮E).

Then we have an adjunction

i! : FunL/D(C,E) FunL/D(C ×D ArRT (D),E) :i∗

where i! is the fully faithful inclusion of the full subcategory Funcocart
/D (C ×D ArRT (D),E) under the

equivalence of (1).

Proof. (1): Given a monomorphism A B of simplicial sets, we need to solve the lifting problem

A♭ × ♮(C ×D ArRT (D))
⋃
A♭×(C,M) B

♭ × (C,M) ♮E

B♭ × ♮(C ×D ArRT (D)) D♯.

q

Let us suppress markings for clarity. We can factor this square as

A× (C ×D ArRT (D))
⋃
A×CB × C E Arcocart

T (E) E

B × (C ×D ArRT (D)) E ×D ArT(D) D

ι

≃

ev1

q

λ ev1

where the map λ is given by

B × (C ×D ArRT (D)) B × C E,

B × (C ×D ArRT (D)) B × ArRT (D) ArT(D),

and the map Arcocart
T (E) E ×D ArT(D) is a pullback of the known trivial fibration Arcocart(E) E ×D

Ar(D) of [Sha21, Lem. 2.23] by the identity section T Ar(T), hence is a trivial fibration. Therefore, the
dotted arrow exists, and postcomposing by ev1 yields the desired lift.

(2): We need to show that Funcocart
/D (C ×D ArRT (D),E) ⊂ FunL/D(C ×D ArRT (D),E) is a coreflective sub-

category. For this, it suffices to show that for every object F ∈ FunL/D(C ×D ArRT (D),E), there exists a

17Note that objects of FunL
/D

(C, E) are necessarily T-functors.
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colocalization ǫF : G F relative to Funcocart
/D (C ×D ArRT (D),E) in the sense of [Lur09, Def. 5.2.7.6] (after

taking opposites there). We will construct this explicitly as follows. First define a homotopy
H : ∆1 × C ×D ArRT (D) E ×D ArT(D)

between the functors
H0 = (F ◦ i,⊂) : C ×D ArRT (D) E ×D ArT(D), (c, x → y) 7→ (F (c, x = x), x → y),

H1 = (id, ιDq) ◦ F : C ×D ArRT (D) E E ×D ArT(D), (c, x → y) 7→ (F (c, x → y), y = y)

in the following way: let min,max : ∆1 × ∆1 ∆1 be the min and max maps, form the functors
F ′ = ArT(F ) ◦ (ι,min∗) : C ×D ArRT (D) ArT(C ×D ArRT (D)) ArT(E),

G′ = max∗ ◦ pr2 : C ×D ArRT (D) ArRT (D) ArT(ArT(D)),
and let H be the adjoint of the resulting map

(F ′, G′) : C ×D ArRT (D) ArT(E ×D ArT(D)).
We then place H into the commutative diagram

{1} × C ×D ArRT (D) E Arcocart
T (E) E

∆1 × C ×D ArRT (D) E ×D ArT(D) D.

F ι

≃

ev1

q

H

ǫ′
F

ev1

Let ǫ′
F be any filler, and define ǫF = ev1 ◦ ǫ′

F . Note that ǫF (0) ≃ i!i
∗F and ǫF (1) = F . We now make the

following simple observations, whose verification we leave to the reader:
(1) For every natural transformation θ : F G, the square

i!i
∗F i!i

∗G

F G

i!i
∗θ

ǫF ǫG

θ

is homotopy commutative.
(2) i!i

∗ǫF is an equivalence.
(3) ǫi!i∗F is an equivalence.

Examining the part of the proof of [Lur09, Prop. 5.2.7.4] that establishes the implication 5.2.7.4(3) ⇒
5.2.7.4(1), we conclude that ǫF is indeed a colocalization, so we are done by [Lur09, Prop. 5.2.7.8]. �

3.7. Remark. Replacing the T-factorization system (Lt,Rt)t∈T by the factorization system (L ,R) on D

(Lemma 3.4), note that since edges in R map down to equivalences in Top, we have that ArRT (D) ≃ ArR(D)
where by the latter ∞-category we mean the full subcategory of Ar(D) on those edges in R. Theorem 3.6
could thus be formulated entirely in ‘non-parametrized’ terms; this is related to the fact that a T-functor
q : E D is a T-cocartesian fibration if and only if it is a cocartesian fibration [Sha21, Rem. 7.4]. In this
form, Ayala–Mazel-Gee–Rozenblyum have also articulated Theorem 3.6(1) model-independently in terms of
an adjunction of ∞-categories [AMGR17, Prop. B.1].

We end this section by giving two important applications of Theorem 3.6.

3.8. Example. Let (Lt,Rt)t∈T be the T-factorization system given by letting Lt be the equivalences and
Rt be all morphisms for every t ∈ T. Then ArRT (D) = ArT(D), and C ×D ArT(D) is the free T-cocartesian
fibration on D ([Sha21, Def. 7.6]). By Theorem 3.6(1), we see that i : C C ×D ArT(D) has the expected
universal property: for every T-cocartesian fibration E D,

i∗ : Funcocart
/D,T (C ×D ArT(D),E) Fun/D,T(C,E)

is an equivalence. This promotes to an adjunction
Frcocart : (CatT)/D (CatT)cocart

/D ≃ CatD :U.
When T = ∗, this recovers [GHN17, Thm. 4.5].
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By Theorem 3.6(2), we also have an adjunction
i! : Fun/D,T(C,E) Fun/D,T(C ×D ArT(D),E) :i∗

in which i! is fully faithful.

3.9. Example. Suppose T = ∗ and consider the inert-active factorization system on an ∞-operad O⊗. Let
p : C⊗ O⊗ be a fibration of ∞-operads. Then EnvO(C)⊗ := C⊗ ×O⊗ Aract(O⊗) is the O-monoidal envelope
of C⊗ [Lur17, Constr. 2.2.4.1], and by Theorem 3.6(1) for any O-monoidal ∞-category D⊗ we have that

Fun⊗
O(EnvO(C),D) ≃ AlgC/O(D).

This recovers [Lur17, Prop. 2.2.4.9].

4. Parametrized pairing construction

In this section, we first introduce the concept of a T-flat fibration p : X B, which will amount to a
condition on p that ensures that the pullback functor

p∗ : (CatT)/B (CatT)/X

admits a right adjoint p∗ (Remark 4.10). Given another T-fibration q : Y B, we then recall from [Sha21,
Constr. 9.1] the B-relative T-pairing construction F̃unB,T(X,Y) (Theorem-Construction 4.2) as a certain
T-fibration over B. In our discussion in [Sha21, §9], we only established the properties of the T-pairing
construction needed for our application to proving the existence theorem for T-left Kan extensions. We
enter into a more systematic discussion here by first proving its base-change property (Proposition 4.5) and
then its universal property internal to T-∞-categories (Theorem 4.9), from which it follows that

F̃unB,T(X,Y) ≃ p∗p
∗(Y q

B)
at the level of the underlying ∞-category (CatT)/B of sSet+

/♮B
.18 We then apply the T-pairing construction

to study T-(co)limits in a T-∞-category of sections (Theorem 4.16). This material will be used in [NS] to
understand T-(co)limits in T-∞-categories of O-algebras for a T-∞-operad O.

4.1. Definition. Let p : X B be a T-fibration. We say that p is a T-flat fibration if for every t ∈ T, the
pullback pt : Xt Bt is flat.

In what follows, for a T-∞-category B we let Arcocart(B) ⊂ Ar(B) denote the full subcategory on arrows
that are cocartesian edges with respect to the structure map to Top.

4.2. Theorem-Construction ([Sha21, Def. 9.1]). Let p : X B be a T-flat fibration and consider the
span of marked simplicial sets

♮B (Arcocart(B) ×ev1,B,p X,E ) ♮X
ev0 prX

in which B and X are given the cocartesian markings (with respect to the structure maps to Top), and an
edge e in Arcocart(B) ×B X is marked if and only if ev0(e) is marked and prX(e) is marked. The functor

(ev0)∗(prX)∗ : sSet+
/♮X

sSet+
/♮B

is then right Quillen with respect to the slice model structures induced from the cocartesian model structure
on sSet+

/Top . For a T-fibration q : Y B, we then define the T-pairing of (X, p) and (Y, q) to be the
T-fibration over B given by

F̃unB,T(X,Y) := (ev0)∗(prX)∗q∗(♮Y),
where the marked edges are precisely the cocartesian edges with respect to the structure map to Top.

Proof. The assertion that (ev0)∗(prX)∗ is right Quillen was proved under the assumption that p is a T-
cocartesian or T-cartesian fibration in [Sha21, Thm. 9.3(1)]. However, that assumption was only used in
the proof to show that ev0 is flat. Using our weaker assumption that p is T-flat, this follows instead from
Lemma 10.1 applied to the factorization system (L ,R) on B with L given by the cocartesian edges and R
given by those edges lying over equivalences in Top [Lur09, Ex. 5.2.8.15]. �

18We equip sSet+
/♮B

with the slice model structure with respect to the cocartesian model structure on sSet+
/(Top)♯ . Since

♮B (Top)♯ is fibrant, we may indeed identify the underlying ∞-category as (CatT)/B.
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4.3. Recollection. If p : X B is a T-cartesian fibration and q : Y B is a T-cocartesian fibration, then
we showed in [Sha21, Thm. 9.3] that r : F̃unB,T(X,Y) B is a T-cocartesian fibration. Moreover, we may
produce F̃unB,T(X,Y) as a marked simplicial set with the r-cocartesian edges marked in the following way:
let E ′ ⊂ (Arcocart(B) ×B X)1 be the minimal collection of edges closed under composition that contains the
class E in Theorem-Construction 4.2 and the ev0-cartesian edges in Arcocart(B) ×B X, which are those edges




b0 b1

c0 c1
f

, x0
g x1




such that f is sent to an equivalence in Top and g is a p-cartesian edge.19 Then the span of marked simplicial
sets

B♯ (Arcocart(B) ×B X,E ′) B♯
ev0 ev1

defines via (ev0)∗(ev1)∗(Y, q-cocart) the same underlying simplicial set F̃unB,T(X,Y) as before, but with the
r-cocartesian edges marked. Unwinding the definitions, we thus see that F̃unB,T(X,Y) enjoys the following
additional functoriality with respect to morphisms in B: for every fiberwise morphism f : b b′ ∈ Bt, we
have a pushforward functor

f! : FunT/t(Xb,Yb) FunT/t(Xb′ ,Yb′ ), F 7→ f! ◦ F ◦ f∗

where f∗ : Xb′ Xb and f! : Yb Yb′ are the T/t-functors encoded by p and q.
We next establish the compatibility of the T-pairing construction with base-change. First, we need a

lemma.
4.4. Lemma. Let f : A B be a T-functor. The functor

ψ : Arcocart(A) A ×f,B,ev0 Arcocart(B)
induced by f is a homotopy equivalence of cartesian fibrations over A (with respect to ev0 on the source and
projection to A on the target).

Proof. By [Sha21, Lem. 9.2(1)], ev0 : Arcocart(A) A is a cartesian fibration and an edge e is ev0-cartesian
if and only if the projection of ev1(e) to Top is an equivalence. It follows that ψ preserves cartesian edges,
so to show ψ is a homotopy equivalence it suffices to check that for every a ∈ A, the map on fibers

ψa : a = {a} ×A,ev0 Arcocart(A) f(a) = {f(a)} ×B,ev0 Arcocart(B)

is an equivalence of ∞-categories. But if a lies over t ∈ T op, then the induced projections a (T/t)op and
f(a) (T/t)op are equivalences (cf. [Sha21, Notn. 2.28]), so ψa is an equivalence. �

4.5. Proposition. Let f : A B be a T-functor, let X B be a T-flat fibration, and let Y B be a
T-fibration. We have a canonical and natural equivalence of T-fibrations over A

F̃unA,T(X ×B A,Y ×B A) ≃ F̃unB,T(X,Y) ×B A.

Proof. Consider the morphism of spans

Arcocart(A) ×A (A ×B X)

A A ×B Arcocart(B) ×B X X

ev0 prXφ

prA prX

where φ is induced by f . Noting that T-flat fibrations are stable under pullback, we see that φ induces a
comparison functor (after marking as necessary)

Φ : F̃unB,T(X,Y) ×B A F̃unA,T(X ×B A,Y ×B A).
By Lemma 4.4, φ is a homotopy equivalence. Moreover, the homotopy inverse respects the projection to X,
so by the proof of [Sha21, Lem. 2.27], Φ is an equivalence of T-fibrations over A. �

19See [Sha21, Lem. 7.5] for a justification as to why we can take p-cartesian edges here as opposed to fiberwise cartesian.
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We can use the base-change property of the T-pairing construction explicated in Proposition 4.5 to give
a more transparent identification of its parametrized fibers [Sha21, Prop. 9.7].

4.6. Corollary. Let X B be a T-flat fibration and Y B a T-fibration. For every b ∈ B over t ∈ Top,
we have an equivalence of T/t-∞-categories

F̃unB,T(X,Y)b ≃ FunT/t(Xb,Yb)

Proof. We may invoke Proposition 4.5 to replace B with Bt, and invoke Proposition 4.5 again with A =
b B to reduce to the case B = T, for which F̃unT,T(−,−) ∼= FunT(−,−) as marked simplicial sets. �

We next proceed to articulate the universal property of the T-pairing construction (Theorem 4.9) as a
partially-defined internal hom for T-fibrations over a fixed base T-∞-category.

4.7. Notation. Let B be a T-∞-category, let p : X B, q : Y B be T-fibrations over B, and let
q◦ : FunT(X,Y) FunT(X,B) be the T-functor given by postcomposition by q. We then let

Fun/B,T(X,Y) := ∗T ×σp,Fun
T

(X,B),q◦ FunT(X,Y)

denote the T-∞-category of T-functors X Y over B.

4.8. Lemma. Let p : X B be a T-fibration and consider the span of marked simplicial sets

(Top)♯ Ar(Top)♯ ×ev1,(Top)♯ ♮X ♮B.
ev0 p◦prX

For any T-fibration q : Y B, we then have an equivalence of T-∞-categories

(ev0)∗(p ◦ prX)∗(♮Y ) ≃ Fun/B,T(X,Y)

which is an isomorphism at the level of marked simplicial sets.

Proof. By definition, given a map of marked simplicial sets K (Top)♯, we have natural bijections

Hom/(Top)♯(K, (ev0)∗(p ◦ prX)∗(♮Y)) ∼= Hom/♮B(K ×Top Ar(Top)♯ ×Top ♮X, ♮Y)
∼= Hom/(Top)♯(K ×Top Ar(Top)♯ ×Top ♮X, ♮Y) ×Hom

/(Top)♯ (K×Top Ar(Top)♯×Top ♮X,♮B) {φ ◦ pr}

yielding an isomorphism of marked simplicial sets over Top

(ev0)∗(p ◦ prX)∗(♮Y ) ∼= ♮Fun/B,T(X,Y).

�

4.9. Theorem. We have a canonical equivalence of T-∞-categories

Fun/B,T(C, F̃unB,T(X,Y)) ≃ Fun/B,T(C ×B X,Y)

natural in T-flat fibrations p : X B and T-fibrations C,Y B.

Proof. By Proposition 4.5, we may assume C = B without loss of generality. We then adopt essentially the
same strategy that we used to show [Sha21, Eqn. 9.12.1] (which is the equivalence when Y = B ×Top E) by
considering the diagram of marked simplicial sets

Ar(Top)♯ ×Top ♮X (Arcocart(B) ×B X,E ) ♮B

Ar(Top)♯ ×Top ♮B ♮B

(Top)♯

(j,id)

(id,p)

p◦prX

ev0

ev0

prB

where j is the composite Ar(Top) ×Top X
prX X

p
B ι Arcocart(B), ι being the identity section. Let

i : Ar(Top)♯ ×Top ♮X (Ar(Top)♯ ×Top ♮B) ×
♮B (Arcocart(B) ×B X,E )



PARAMETRIZED HIGHER CATEGORY THEORY II: UNIVERSAL CONSTRUCTIONS 17

denote the induced map to the pullback. By [Sha21, Lem. 9.12], i is a homotopy equivalence with respect
to the projection to X. By [Sha21, Lem. 2.27] and Lemma 4.8, we obtain an equivalence of T-∞-categories

Fun/B,T(B, F̃unB,T(X,Y)) ≃ Fun/B,T(X,Y).

�

4.10. Remark. In the statement of Theorem 4.9, if we replace the span

♮B (Arcocart(B) ×B X,E ) ♮B
ev0 p◦prX

with
♮B (Arcocart(B) ×B X,E ) ♮X

ev0 prX

then the same argument as in the proof of Theorem 4.9 shows that for all T-fibrations D X, we have a
canonical and natural equivalence20

Fun/B,T(C, (ev0)∗(prX)∗D) ≃ Fun/X,T(C ×B X,D).

Passing first to cocartesian sections and then to mapping spaces, this shows that at the level of underlying
∞-categories, (ev0)∗(prX)∗ : (CatT)/X (CatT)/B computes the right adjoint to p∗. This justifies the
terminology of “T-flat fibration” since these are indeed exponentiable in the parametrized sense. Moreover,
we then see that

F̃unB,T(X,−) ≃ p∗p
∗(−)

as endofunctors of (CatT)/B.

4.11. Remark. Suppose X,Y B are T-cocartesian fibrations and let FunB(X,Y) denote the internal hom
construction of [Sha21, §3],21 so that FunB(X,Y) B is a T-cocartesian fibration. Consider the morphism
of spans

(Arcocart(B) ×B X,E )

♮B Ar(B)♯ ×B ♮X ♮B

(i,id)

in which i is the inclusion Arcocart(B) ⊂ Ar(B). Then this morphism induces a T-functor over B

ρ : FunB(X,Y) F̃unB,T(X,Y).

that upon passage to cocartesian sections in the source, regarded as T-sections in the target, induces the
inclusion

FunB(X,Y) Fun/B,T(X,Y).

Beware that even if X is in addition T-cartesian so that F̃unB,T(X,Y) is T-cocartesian, ρ will not preserve
cocartesian edges in general; indeed, one observes that the above functor (i, id) does not carry the marking
E ′ of Recollection 4.3 to marked edges in the target. Nonetheless, we have the following proposition.

4.12. Proposition. In the situation of Remark 4.11, if X ≃ B ×Top K for some T-∞-category K, then the
comparison T-functor ρ implements an equivalence

ρ : FunB(B ×Top K,Y) ≃ F̃unB,T(B ×Top K,Y)

of T-cocartesian fibrations over B. Consequently, for every T-cocartesian fibration C B, the equivalence
of Theorem 4.9 restricts to

FunB(C, F̃unB,T(B ×Top K,Y)) ≃ FunB(C ×Top K,Y).

20Here, (ev0)∗(prX)∗ : sSet+
/♮X

sSet+
/♮B

and (ev0)∗(prX)∗D := (ev0)∗(prX)∗(♮D) regarded as a T-fibration over B.
21We mildly abuse our notational conventions by writing FunB(−, −) instead of FunBop (−, −) as we would do if B = ∗T =

Top.
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Proof. The consequence will follow immediately from the universal property of FunB(−,−) once we establish
the first claim. For this, first observe that since X ≃ B×Top K, X is both a T-cocartesian and T-cartesian fi-
bration over B such that the fiberwise cartesian edges, fiberwise cocartesian edges, and fiberwise equivalences
all coincide in X. In particular, the functor (i, id) in Remark 4.11 carries the class E ′ of Recollection 4.3 into
the marked edges of Ar(B)♯ ×B ♮X, so ρ is a morphism of T-cocartesian fibrations. It therefore suffices to
check the claimed equivalence fiberwise.

Given b ∈ B over t ∈ Top, we may replace B by Bb/ and T by (T/t)op, so it further suffices to check that
ρ induces an equivalence upon passage to cocartesian sections. But this is the map

FunB(X,Y) ≃ FunT-cocart
/B,T (X,Y).

Indeed, for any T-cartesian fibration X the cocartesian sections of F̃unB,T(X,Y) is the full subcategory of
Fun/B,T(X,Y) spanned by those T-functors F : X Y over B that carry fiberwise cartesian edges to
fiberwise cocartesian edges, but in our case F equivalently preserves cocartesian edges. �

4.1. Application: parametrized (co)limits in section T-∞-categories. We next use the T-pairing
construction to analyze T-limits and T-colimits in a T-∞-category of sections. Actually, we work in some-
what greater generality: given a T-cocartesian fibration X B and a T-fibration C B, we will study
T-(co)limits in Fun/B,T(C,X) (Theorem 4.16). First, we introduce some terminology concerning relative
adjunctions, extending [Sha21, Def. 8.3].

4.13. Definition. Let X,Y B be T-fibrations and let
F : X Y :G

be a relative adjunction with respect to the structure maps to B (in the sense of [Lur17, Def. 7.3.2.2]). We
then say that F ⊣ G is a B-relative T-adjunction if F and G are T-functors.

4.14. Remark (Stability under base-change). Suppose
F : X Y :G

is a B-relative T-adjunction and φ : C B is a T-functor. By [Lur17, Prop. 7.3.2.5], the pullback
FC : X ×B C Y ×B C :GC

is then a C-relative T-adjunction.

The following lemma illustrates the basic asymmetry between B-relative left and right T-adjoints that
should already be familiar from the theory of relative adjunctions (compare [Lur17, Prop. 7.3.2.6] versus
[Lur17, Prop. 7.3.2.11].)

4.15. Lemma. Suppose X,Y B are T-cocartesian fibrations.
(1) Let F : X Y be a morphism of T-cocartesian fibrations over B. Then F admits a B-relative right

T-adjoint R : Y X if and only if for all b ∈ Bt, the parametrized fiber Fb : Xb Yb admits a
right T/t-adjoint Rb.

(2) Let F : X Y be a T-functor over B. Then F admits a B-relative left T-adjoint L : Y X if and
only if for all b ∈ Bt, the parametrized fiber Fb : Xb Yb admits a left T/t-adjoint Lb, and for all
fiberwise morphisms f : b b′ in Bt, the natural transformation

Yb Xb

Yb′ Xb′

Lb

f! f!

Lb′

adjoint to
Yb Xb

Yb′ Xb′

f!

Fb

f!

Fb′

is an equivalence. Moreover, in this case L is a morphism of T-cocartesian fibrations over B.

Proof. (1): By the opposite of [Lur17, Prop. 7.3.2.6], F admits a B-relative right adjoint R if and only if
for all b ∈ B, Fb admits a right adjoint Rb. But we are then reduced to showing that R is in addition a
T-functor if and only if Rb is in addition a T/t-functor for all b ∈ B, which is clear.
(2): Since every morphism in B factors as the composite of a cocartesian edge and a fiberwise morphism,
the claim follows directly from [Lur17, Prop. 7.3.2.11]. �
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We may now state the main result of this subsection. Note that the cases of parametrized limits and
colimits involve different hypotheses (as should be familiar from the theory of limits and colimits in ∞-
categories of algebras).

4.16. Theorem. Let p : X B be a T-cocartesian fibration, let K be a T-∞-category, and let r : C B

be any T-fibration.
(1) There exists a B-relative constant K-indexed diagram T-functor

δp : X F̃unB,T(B ×Top K,X),
which is a morphism of T-cocartesian fibrations over B, such that the constant K-indexed diagram T-
functor

δr,p : Fun/B,T(C,X) FunT(K,Fun/B,T(C,X))
is given by Fun/B,T(C, δp).

(2) Suppose that for every b ∈ Bt, Xb admits all Kt-indexed T/t-limits. Then δp admits a B-relative T-right
adjoint

limB,T : F̃unB,T(B ×Top K,X) X

which for all b ∈ Bt restricts to the T/t-limit T/t-functor

limT/t

: FunT/t(Kt,Xb) Xb.

Consequently, δr,p admits a T-right adjoint limT given by Fun/B,T(C, limB,T).
(3) A T/t-functor

f : K✁

t Fun/B,T(C,X)t
is a T/t-limit diagram, resp. f admits a T/t-limit, if for all α : s t in T and c ∈ Cs over b ∈ Bs, the
composite T/s-functor

fc : K✁
s

fα Fun/B,T(C,X)s
evc Fun/Bs,T/s(c,Xs) ≃ Xb

is a T/s-limit diagram, resp. fc admits a T/s-limit.
(4) Suppose that for every b ∈ Bt, Xb admits all Kt-indexed T/t-colimits, and for every morphism f : b b′

in Bt, the pushforward T/t-functor f! : Xb Xb′ preserves Kt-indexed T/t-colimits. Then δp admits a
B-relative T-left adjoint

colimB,T : F̃unB,T(B ×Top K,X) X

which for all b ∈ Bt restricts to the T/t-colimit T/t-functor

colimT/t

: FunT/t(Kt,Xb) Xb.

Consequently, δr,p admits a T-left adjoint colimT given by Fun/B,T(C, colimB,T).
(5) A T/t-functor

f : K✄

t Fun/B,T(C,X)t
is a T/t-colimit diagram, resp. f admits a T/t-colimit, if for all α : s t in T and c ∈ Cs over b ∈ Bs,
the composite T/s-functor

fc : K✄
s

fα Fun/B,T(C,X)s
evc Fun/Bs,T/s(c,Xs) ≃ Xb

is a T/s-colimit diagram (resp. fc admits a T/s-colimit), and for all c c′ ∈ Cs over g : b b′ ∈ Bs,
g! ◦ fc is a T/s-colimit diagram (resp. g! preserves the T/s-colimit of fc).

Proof. (1): Using Proposition 4.12, we may define δp as adjoint to the projection X×Top K X, since this
is a morphism of T-cocartesian fibrations over B, and by construction this has the indicated property.
(2): Under our assumption, the existence of limB,T follows immediately from Lemma 4.15(1). For the
consequence, note that we have an equivalence of T-∞-categories

FunT(K,Fun/B,T(C,X)) ≃ Fun/B,T(C ×Top K,X)

≃ Fun/B,T(C, F̃unB,T(B ×Top K,X))
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where the first equivalence holds by the universal property of FunT(−,−) and the definition of Fun/B,T(C,X)
as a pullback, and the second equivalence holds by Theorem 4.9. It thus suffices to show that Fun/B,T(C,−)
covariantly transforms B-relative T-adjunctions into T-adjunctions. For this, by Remark 4.14 we may suppose
that C = B without loss of generality, in which case the assertion is [Sha21, Cor. 8.5].
(3): This follows similarly to (2), but where we now consider how Fun/B,T(C,−) transforms limB,T as a
partially defined B-relative right T-adjoint (under the given hypotheses on fc) to limT as a partially defined
right T-adjoint.
(4) and (5): These are proven as for (2) and (3) but using Lemma 4.15(2) instead. �

4.17. Corollary. Let X B be a T-cocartesian fibration and let C B be a T-fibration. Let K = {Kt :
t ∈ T} be a collection of classes Kt of small T/t-∞-categories closed with respect to base-change in T.

(1) Suppose that for all b ∈ Bt, Xb admits all Kt-indexed T/t-limits. Then Fun/B,T(C,X) strongly admits
all K-indexed T-limits.

(2) Suppose that for all b ∈ Bt, Xb admits all Kt-indexed T/t-colimits, and for all g : b b′ ∈ Bt, the
pushforward T/t-functor g! : Xb Xb′ preserves all Kt-indexed T/t-colimits. Then Fun/B,T(C,X)
strongly admits all K-indexed T-colimits.

Proof. We show how to deduce (1) from Theorem 4.16, the proof of (2) being similar. For this, the only
additional point to note is that for any K ∈ Kt, by base-change of the given data to lie over T/t we may
apply Theorem 4.16 under our hypotheses to show that Fun/B,T(C,X)t admits all K-indexed T/t-limits. �

5. Relative parametrized colimits

In this section and the next we work towards the proof of Theorem A.

5.1. Definition. Suppose we have a commutative diagram of T-∞-categories

K C

K✄ B

p

i π

q

p

in which π is a T-fibration. Let q = πp = qi. We say that p is a weak π-T-colimit diagram if the T-functor

∗T ∗T ×σq,B
(q,T)/C(p,T)/

induced by σp is a T-initial object.
We say that p is a π-T-colimit diagram if the T-functor

∗T B(q,T)/ ×B(q,T)/ C(p,T)/

induced by σp is a T-initial object. (Here, the projection to the first factor is induced by σq′ for q′ given by
the composite K ⋆Top (∆1 × Top) K✄ B.)id⋆const q

5.2. Example. For T = ∆0 and K = ∆0, weak π-colimit diagrams are locally π-cocartesian edges, whereas
π-colimit diagrams are π-cocartesian edges.

5.3. Remark. For Definition 5.1, p is a π-T-colimit diagram if and only if the T-functor

C(p,T)/ B(q,T)/ ×B(q,T)/ C(p,T)/

is an equivalence of T-∞-categories, or equivalently the commutative square

C(p,T)/ C(p,T)/

B(q,T)/ B(q,T)/

is a homotopy pullback square (using Lemma 5.4(1)). This is ultimately because for any T-category E, a
T-functor σ : ∗T E is a T-initial object if and only if E(σ,T)/ E is an equivalence.



PARAMETRIZED HIGHER CATEGORY THEORY II: UNIVERSAL CONSTRUCTIONS 21

We now collect a few lemmas that will feature in the proof of our main result (Proposition 5.8) on the
existence of π-T-colimits. We first state a parametrized analogue of [Lur09, Prop. 4.2.1.6].

5.4. Lemma. Suppose we have a commutative diagram of T-∞-categories

K C

L B.

p

i π

q

p

in which i is a monomorphism. Let q = π ◦ p = q ◦ i and let
ψ : C(p,T)/ C(p,T)/ ×B(q,T)/ B(q,T)/

denote the induced T-functor.
(1) If π is a categorical fibration, then

φ : FunT(L,C) FunT(K,C) ×Fun
T

(K,B) FunT(L,B)
is a categorical fibration, and ψ is a left fibration.

(2) Suppose that π is a T-cocartesian fibration and let MC denote the π-cocartesian edges in C. Suppose
that we have fiberwise markings {(MK)t} on K and {(ML)t} on L that are stable under base-change
(i.e., for all f : s t ∈ T, f∗(MK)t ⊂ (MK)s). Let MK be the minimal subset of the edges on
K closed under composition that contains the cocartesian edges and {(MK)t}, and similarly define
ML. Let FunT((L,ML), (C,MC)), etc. be the full T-subcategories spanned by those T/t-functors that
preserve the additional markings, and let

φ′ : FunT((L,ML), (C,MC)) FunT((K,MK), (C,MC)) ×Fun
T

(K,B) FunT(L,B)

be the restriction of φ. Then if i : (K,MK) (L,ML) is a cocartesian equivalence in sSet+
/Top , φ′

is a trivial fibration. Moreover, if p then sends ML into MC, ψ is a trivial fibration.

Proof. (1): It suffices to show that φ is a fibration in sSet+
/Top where we mark the cocartesian edges. This

follows as in the proof of [Sha21, Lem. 3.5(1)]. Considering this categorical fibration for both i and i✄ then
shows ψ is a categorical fibration by a base-change argument. Since a functor between left fibrations over
a common base that is a categorical fibration is necessarily a left fibration, to then show that ψ is a left
fibration it suffices to show that C(f,T)/ C is a left fibration for any T-functor f : J C. But this is a
consequence of the T-functor

FunT(J✄,C) FunT(J,C) ×Top C

being a T-bifibration (cf. [Sha21, Ex. 7.10] and [Lur09, Rem. 2.4.7.4] for the stronger conclusion that
C(f,T)/ C is a left fibration and not just a T-cocartesian fibration).

(2): Since φ′ is a categorical fibration by (1), it suffices to show that φ′
t is an equivalence for all t ∈ T.

After replacing T/t with T, we thus reduce to checking that
φ̂′ : FunT((L,ML), (C,MC)) FunT((K,MK), (C,MC)) ×FunT(K,B) FunT(L,B)

is a trivial fibration. Let A B be any cofibration of simplicial sets. The relevant lifting problem then
transposes to

A♭ × (L,MK)
⋃
A♭×(K,MK) B

♭ × (K,MK) (C,MC)

B♭ × (L,ML) B♯.

Now because trivial cofibrations in the cocartesian model structure on sSet+
/Top are stable under taking

pushout-products with arbitrary cofibrations in sSet+ [Lur09, Cor. 3.1.4.3], there exists a dotted lift. The
assertion about ψ then follows as in (1) by a base-change argument. �

We have an elementary observation about lifting T-initial objects along a T-cocartesian fibration.

5.5. Lemma. Let π : C B be a T-cocartesian fibration and suppose that σ : Top B is a T-initial
object. Let σ̃ : Top C be a T-functor lift of σ. Suppose that:
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(1) σ̃ is a T-initial object in Top ×σ,B C.
(2) For all t ∈ T and morphisms f : σ(t) y ∈ Bt, the pushforward T/t-functor f! : Cσ(t) Cy

preserves T/t-initial objects.
Then σ̃ is a T-initial object.

Proof. We may check for all t ∈ T that σ̃(t) is an initial object in Ct, using the known assertion when
T = ∆0. �

We can then bootstrap from Lemma 5.5 to understand relative T-colimits originating from T-colimits in
the parametrized fibers.

5.6. Lemma. Suppose we have a commutative diagram of T-∞-categories

K Top ×B C C

K✄ Top B

p0

p

π
p0 p

q

σ

in which π is a T-cocartesian fibration and p0 is a T-colimit diagram. Then p is a weak π-T-colimit diagram.
Suppose moreover that for every t ∈ T and morphism f : σ(t) y ∈ Bt, the pushforward T/t-functor

f! : Cσ(t) Cy preserves the Kt-indexed T/t-colimit diagram given by (p0)t. Then p is a π-T/t-colimit
diagram.

Proof. By Lemma 5.7, we have an equivalence C(p0,T)/ ≃ Top ×B(q,T)/ C(p,T)/. Thus by definition, if p0 is a
T-colimit diagram, then p is a weak π-C-colimit diagram.

For the second claim, we note that the fiberwise cofinal T-functor Top ⊂ K✄ given by inclusion of the
T-cone point induces an equivalence B(q,T)/ ≃ B(σ,T)/ by [Sha21, Thm. 6.7]. It thus suffices to check that
the T-functor

Top B(σ,T)/ ×B(πp,T)/ C(p,T)/

B(σ,T)/

σ̃

σ π′

induced by p is a T-initial object (where we abuse notation and write σ also for the T-initial object idσ
in B(σ,T)/). By Lemma 5.4(1), π′ is a left fibration. Under the equivalence B(σ,T)/ ≃ Top ×σ,B Ar(B) of
Observation 2.4, the objects of the base B(σ,T)/ are equivalently given by pairs (t ∈ T, f : σ(t) y). A
cocartesian section of the parameterized fiber π′

f is determined up to equivalence by a commutative diagram
of T/t-∞-categories

Kt Cy

(Kt)✄ (T/t)op

p′
0

p0
′

and is a T/t-initial object if and only if p0
′ is a T/t-colimit diagram. It is now clear that under our hypotheses,

Lemma 5.5 applies to show that σ̃ is a T-initial object. �

5.7. Lemma. Suppose we have a homotopy pullback square of T-∞-categories

W X

Y Z

f

g h

k
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and a T-functor p : K W. Then the commutative square of T-∞-categories

W(p,T)/ X(fp,T)/

Y(gp,T)/ Z(hfp,T)/.

is a homotopy pullback square.

Proof. The proof is a straightforward diagram chase, starting from the known assertion that
FunT(K,−) : CatT CatT

preserves limits. �
Finally, we arrive at our main existence result for relative T-colimits.

5.8. Proposition. Suppose we have a commutative diagram of T-∞-categories

K C

K✄ B

p

i π

q

p

in which π : C B is a T-cocartesian fibration. Let σ = q|Top . If for all t ∈ T, the parametrized fiber Cσ(t)

admits Kt-indexed T/t-colimits, then there exists a filler p : K✄ C which is a weak π-T-colimit diagram.
Moreover, suppose that for all morphisms f : σ(t) y ∈ Bt, the induced pushforward T/t-functor

f! : Cσ(t) Cy preserves Kt-indexed T/t-colimits. Then p is a π-T-colimit diagram.

Proof. We prove this by reducing to Lemma 5.6. Let MC denote the π-cocartesian edges in C. First consider
the diagram

K × {0} C

K × ∆1 K✄ B

p

i0 π

f

h

q

where the map f is adjoint to (K = K,K T). Because i0 : ♮K × {0} ♮K × (∆1)♯ is left marked
anodyne, the dotted map h : ♮K × (∆1)♯ (C,MC) exists. Consider the two commutative squares

K × ∆1 C

K✄ B

h

f π

q

,

K C

K✄ Top B

p′:=h|K×{1}

i π

q′

σ

We obtain a zig-zag

B(q,T)/ ×B(πp,T)/ C(p,T)/ B(q,T)/ ×B(πh,T)/ C(h,T)/ B(q′,T)/ ×B(πp′,T)/ C(p′,T)/

B(q,T)/ B(q,T)/ B(q′,T)/

φψ

χ=

where all the maps are obvious (except possibly χ, which is induced by precomposition by K✄ Top K✄).
We claim that ψ and φ are equivalences. For ψ, by Lemma 5.4(2),

C(h,T)/ B(πh,T)/ ×B(πp,T)/ C(p,T)/

is a trivial fibration. But ψ is a pullback of this map, hence an equivalence. For φ, note that the T-functors
K✄ Top K✄ and K × {1} K × ∆1 are both fiberwise cofinal. Hence by [Sha21, Thm. 6.7], we
deduce that φ is an equivalence.

Replacing p and q by p′ and q′, we find ourselves in the situation of Lemma 5.6, which immediately applies
given our hypotheses. �
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6. Relative parametrized left Kan extensions

6.1. Definition. Suppose we have a commutative diagram of T-∞-categories

C E

D B

F

i πG

in which i is the inclusion of a full T-subcategory. Then we say that G is a π-T-left Kan extension of F if
for every x ∈ Dt, the commutative diagram

C/x Et

(C/x)✄ Bt

Fx

πt
Gx

exhibits Gx (defined in Construction 2.11) as a πt-T/t-colimit diagram. Here, the lower horizontal T/t-functor
is the composite

(C/x)✄ (D/x)✄ θx Dt Bt.

We also say that G is a weak π-T-left Kan extension of F if in the pulled-back diagram

C E ×B D

D D,

F ′

i π′

=

G′

G′ is a π′-T-left Kan extension of F ′.

We may now prove our main existence result on relative T-left Kan extensions, from which Theorem A is
an immediate corollary.

6.2. Theorem. Let π : E B be a T-cocartesian fibration22, let ρ : D B be a T-functor, and let
i : C ⊂ D be the inclusion of a full T-subcategory.

(1) Let F : C E be a T-functor over B and suppose that for all x ∈ Dt, F x : C/x Et admits a
πt-T/t-colimit. Then F admits an essentially unique π-T-left Kan extension G : D E.

(2) The partial T-left adjoint i! to the restriction T-functor
i∗ : Fun/B,T(D,E) Fun/B,T(C,E)

is defined on all those F : Ct Et that admit a weak πt-T/t-left Kan extension G, in which case
i!F ≃ G.

Proof. The overarching strategy is the same as in the proof of Theorem 2.13 given in [Sha21, §10]. The key
idea is to factor i through the free T-cocartesian fibration as

C ι C ×D ArT(D) ev1 D.

(1): Choose a section ξ of the trivial fibration Arcocart
T (E) E ×B ArT(B) that restricts to the identity

section on E and let F ′ be the composite

C ×D ArT(D) F×ArT(ρ)
E ×B ArT(B) ξ Arcocart

T (E) ev1 E.

We then have a commutative diagram

C ×D ArT(D) E

(C ×D ArT(D)) ⋆D D B

F ′

j π

22Because of this assumption, our theorem is slightly weaker than [Lur09, Thm. 4.3.2.15] in the case where T = ∆0.
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where F = F ′|C. Note that if ξ : M D is any T-cocartesian fibration, then for any x ∈ Dt we have a
pullback square

Mx M/x := M ×M⋆DD ArT(M ⋆D D) ×M⋆DD x

x D/x := ArT(D) ×D x
ιx

where the righthand vertical functor is a cocartesian fibration (induced by M⋆DD D). Since cocartesian
fibrations are smooth [Lur09, Prop. 4.1.2.15] and ιx is fiberwise cofinal, it follows that Mx M/x is
fiberwise cofinal (with respect to the base (T/t)op). In our situation, M = C ×D ArT(D), Mx

∼= C/x, and
(F ′)x restricts on C/x to F x. By the proof of Proposition 5.8 together with [Sha21, Thm. 6.7], we see that F x
admits a π-T-colimit if and only if (F ′)x admits a π-T-colimit. We thereby reduce to the ‘D-parametrized’
situation of a T-cocartesian fibration φ : M D and a commutative diagram

M E

M ⋆D D B

F

j π
G

in which F sends φ-cocartesian edges to π-cocartesian edges. Pulling back along ρ, we may also suppose
that D = B, noting that the discrepancy between strong and weak π-T-left Kan extensions will lie only in
the pointwise property of the eventual extension and does not feature in the constructive proof of existence.

We may solve the coherence problem of assembling the individual πt-T/t-colimits together into a π-T-left
Kan extension G by a similar method to the proof of [Sha21, Thm. 9.15]. Consider [Sha21, Constr. 9.8]
applied to φ and F ; this yields

W = E(φ,F )/T := D ×F̃unD,T(M,E) F̃unD,T(M ⋆D D,E),

such that for x ∈ Dt, if we let F |x : Mx Ex denote the T/t-functor given by restriction, then the
parametrized fiber Wx is equivalent to (Ex)(F |x,T

/t)/ by Corollary 4.6 (or [Sha21, Cor. 9.9]). Let W′ ⊂ W be
the full T-subcategory spanned by the T/t-colimit diagrams (Mx)✄ Ex, so that for all x ∈ D, the fiber
W′
x is that spanned by the initial objects in Wx, which are precisely weak πt-T/t-colimit diagrams extending

F |x. Note that the use of [Sha21, Prop. 9.10] and [Sha21, Lem. 9.11] in the proof of [Sha21, Thm. 9.15]
won’t apply here since E D isn’t supposed to be a T-cartesian fibration. However, we may argue directly
that W′ D is a trivial fibration by computing mapping spaces as follows:

(∗) For any α : x y ∈ Dt and extensions F |i of F |i over (Mi)✄, i ∈ {x, y}, we have that maps
F |x F |y in F̃unD,T(M ⋆D D,E) are defined by lax commutative squares of T/t-functors

(Mx)✄ Ex

(My)✄ Ey,

F |x

α!
⇒

α!

F |y

and hence we have
MapW(F |x, F |y) ≃ Map(α!F |x, F |yα!) ×Map(α!F |x,F |yα!) {id}.

By assumption, if F |x is a T/t-colimit diagram, then α!F |x is as well. Therefore, MapW′(F |x, F |y)
is contractible for all T/t-colimit diagrams F |x and F |y, and this suffices to show that W′ D is a
trivial fibration since we already have compatibility of these initial objects with restriction in the base T.
Furthermore, any section τ of this trivial fibration defines a relative left adjoint of W D with respect to
the base D.

Now by Theorem 4.9, applying Fun/D,T(D,−) to τ yields an extension G : M ⋆D D E of F that is a
T-initial object of

Top ×σF ,Fun
/D,T

(M,E) Fun/D,T(M ⋆D D,E).
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Taking cocartesian sections, we then see that G is an initial object in the space of such fillers and is in
particular essentially unique.

(2): Let φ′ : (C ×D ArT(D)) ⋆D D D be the structure map. Factor i∗ as

Fun/B,T(D,E) Fun/B,T((C ×D ArT(D)) ⋆D D,E) Fun/B,T(C ×D ArT(D),E) Fun/B,T(C,E).(φ′)∗ j∗
ι∗

Then since φ′ is T-left adjoint to iD, (φ′)∗ has T-left adjoint (iD)∗. Also, by Example 3.8 the procedure
F 7→ F ′ of (1) defines a fully faithful T-left adjoint to ι∗ with essential image spanned by those T-functors
that send φ-cocartesian edges to π-cocartesian edges. To conclude, we observe that in the proof of (1) we
showed that the partial left T-adjoint j! is defined on F ′ if it is obtained from F satisfying the assumptions
of (2). �

7. More on the parametrized Yoneda embedding

For a T-∞-category C, let PT(C) := FunT(Cvop,Spc
T

) be the T-∞-category of T-presheaves and jT :
C PT(C) the T-Yoneda embedding [Sha21, §11]. In this section, we record a generalization (Proposi-
tion 7.5) of our earlier result that jT strongly preserves T-limits [Sha21, Cor. 11.10] as well as some basic
facts concerning T-corepresentable T-left fibrations (Lemma 7.8) that mirror the discussion in [Lur09, §4.4.4].
These results play a technical role in the remainder of the paper and so their proofs could be skipped on a
first reading.

7.1. Lemma. Let K and C be T-∞-categories. Then we have a homotopy pullback square

FunT(K✁,C) FunT(K × ∆1,C)

C ×Top FunT(K,C) FunT(K,C) ×Top FunT(K,C).

Thus, for any T-functor p : K C and t ∈ T, we have an equivalence

(C/(p,T))t ≃ Ct ×Fun
T/t (Kt,Ct) FunT/t(Kt,Ct)/{pt}

of right fibrations over Ct.

Proof. Consider the commutative square of T-∞-categories

K × ∂∆1 Top⊔K

K × ∆1 K✁

where the vertical maps are the inclusions and the horizontal maps are induced by the structure map
K Top and the identity on K. By application of [Lur09, Prop. 4.2.1.2] fiberwise, this is a homotopy
pushout square, and the first claim follows by transforming the pushout to a pullback under FunT(−,C).
For a T-functor p : K C, we thus obtain a commutative diagram of homotopy pullback squares

C/(p,T) FunT(K,C)/(σp,T) FunT(K × ∆1,C)

C FunT(K,C) FunT(K,C) ×Top FunT(K,C),δ (id,σp)

where σp : Top FunT(K,C) selects p. To identify (C/(p,T))t, after replacing p by pt we may suppose that
T has a final object ∗. But then for any T-∞-category D and cocartesian section σ : Top D that selects
an object x = σ(∗) ∈ D∗, we have that (D/(σ,T))∗ ≃ (D∗)/x by [Sha21, Prop. 4.30]. �

The following lemma generalizes and supplies another proof of the fact that the Yoneda embedding
preserves limits [Lur09, Prop. 5.1.3.2].
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7.2. Lemma. Let p : K C be functor of small ∞-categories. Then the commutative square of ∞-categories

C/p P(C)/jp

C P(C)j

is a homotopy pullback square. Consequently, the functor ϕ : Cop Spc classifying the right fibration
C/p C is canonically equivalent to limKjp.

Proof. It suffices to show that the induced functor ψ : C/p C ×P(C) P(C)/jp is an equivalence of right
fibrations over C by checking that for all x ∈ C, ψx is an equivalence. First note that by the T = ∆0 case of
Lemma 7.1, we may identify ψx with the map

ψ′
x : MapCK(δx, p) MapP(C)K(δj(x), jp) ≃ MapP(C)(j(x), limKjp) ≃ (limKjp)(x)

induced by postcomposition by the Yoneda embedding. Using the end formula for mapping spaces in
Fun(K,C) [Gla16, Prop. 2.3], we have an equivalence

MapCK(δx, p) ≃
∫

K

MapC(x, p(−)) := limTw(K)MapC(x, p(−)).

where the limit is taken over the functor

Tw(K) ev1−−→ K
p−→ C

MapC(x,−)−−−−−−−→ Spc.
Under this identification, ψ′

x is induced by restriction along ev1 (using the contravariant functoriality of
limits in the diagram). The claim then follows from Lemma 7.3.

Since representable right fibrations are classified by the corresponding representable functor [Lur09,
Prop. 4.4.4.5], we then have that ϕ is equivalent to the composition

Cop jop

−−→ P(C)op MapP(C)(−,limKjp)
−−−−−−−−−−−−−→ Spc.

An argument with the Yoneda lemma then shows ϕ is in turn equivalent to limKjp (in more detail, see
Remark 7.4). �

7.3. Lemma. Let K be an ∞-category. Then the source and target functors
ev0, ev1 : Tw(K) K

are right cofinal.

Proof. We verify the hypotheses of Joyal’s cofinality theorem [Lur09, Thm. 4.1.3.1] for ev1 (in its opposite
formulation). Let y ∈ K and consider the commutative diagram of homotopy pullbacks

(K/y)op Tw(K) ×K K/y Tw(K)

{y} K/y K

ι′

ev1

ι

Since ev1 is a left fibration, ev1 is a smooth map [Lur09, Prop. 4.1.2.15]. Therefore, the pullback ι′ of the
cofinal inclusion ι along ev1 is again cofinal, so in particular a weak homotopy equivalence. We deduce that
Tw(K) ×K K/y is weakly contractible, which proves the claim. The proof for ev0 is similar. �

7.4. Remark. Let q ∈ P(C) be a presheaf. By [Lur09, Lem. 5.1.5.2], we have an equivalence q(c) ≃
MapP(C)(j(c), q) of spaces for all c ∈ C. We can promote this to an equivalence of presheaves

MapP(C)(j(−), q) ≃ q(−)

as follows. Let π : C/q = C ×P(C) P(C)/q C denote the projection. We then have the sequence of
equivalences in P(C)

q(−) ≃ colimC/q MapC(−, π) ≃ colimC/q MapP(C)(j(−), jπ)
≃ MapP(C)(j(−), colimC/qjπ) ≃ MapP(C)(j(−), q),
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where we use that idP(C) is the left Kan extension of j along itself [Lur09, Lem. 5.1.5.3] for the first and
last equivalences, j is fully faithful [Lur09, Prop. 5.1.3.1] for the second equivalence, and j(c) corepresents
evaluation at c [Lur09, Lem. 5.1.5.2] (and is hence completely compact) to show the third equivalence, where
the map in question is the canonical colimit interchange map.

Now suppose C is a T-∞-category and let q ∈ PT(C) ≃ P(Cv) be a T-presheaf. We again have that the
T-Yoneda embedding jT : C PT(C), given fiberwise by Ct ⊂ P(Ct) ⊂ PT/t(C) ≃ P(Cv

t ), is T-fully faithful,
idP

T
(C) is the T-left Kan extension of jT along itself [Sha21, Lem. 11.1], and for any c ∈ Ct, jT(c) is completely

compact as an object in PT/t(Ct) ≃ P(Cv
t ), hence T/t-completely compact in PT/t(Ct) since T-colimits in

Spc
T

are computed as ordinary colimits under the correspondence of [Sha21, Prop. 5.5]. Repeating the
above argument then shows that we have an equivalence of T-presheaves

q(−) ≃ MapP
T

(C)(jT(−), q) : Cvop Spc,

where on the right we view q as a cocartesian section of PT(C).

7.5. Proposition. Let p : K C be a T-functor of small T-∞-categories. Then the commutative square
of T-∞-categories

C/(p,T) PT(C)/(jTp,T)

C PT(C)jT

is a homotopy pullback square. Consequently, the functor Cvop Spc classifying the left fibration

(C/(p,T))vop ≃ (Cvop)(pvop,T)/ Cvop

is canonically equivalent to limT
KjTp.

Proof. The square in question is a homotopy pullback if and only if for all t ∈ T, the square

(C/(p,T))t ≃ (C/(pt,T
/t)

t )idt
(PT(C)/(jTp,T))t ≃ (PT/t(Ct)/(pt,T

/t))idt

Ct ≃ (Ct)idt
PT(C)t ≃ PT/t(Ct)

is a homotopy pullback of ∞-categories. Therefore, after replacing T by T/t, we may suppose that T has a
final object ∗ ∈ T, and it suffices to check that the square of ∞-categories

(C/(p,T))∗ (PT(C)/(jTp,T))∗

C∗ PT(C)

is a homotopy pullback. Let π generically denote all pullbacks of the structure map K Top. By the uni-
versal property of Spc

T
as a T-∞-category of T-objects in Spc [Sha21, Prop. 3.10], we have an identification

of the constant T-diagram functor
PT(C) = FunT(Cvop,Spc

T
) FunT(K,PT(C))

with the functor
π∗ : Fun(Cvop,Spc) Fun(Cvop ×Top K,Spc)

given by restriction along π. Abusing notation, let jTp also denote the corresponding functor Cvop ×Top

K Spc under this equivalence. Then by Lemma 7.1, we have a homotopy pullback square

(PT(C)/(jTp,T))∗ Fun(Cvop ×Top K,Spc)/jTp

PT(C) ≃ P(Cv) Fun(Cvop ×Top K,Spc).π∗
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By the S = ∆0 case of [Sha21, Lem. 8.8] applied to the adjunction π∗ ⊣ π∗, we deduce an equivalence

(PT(C)/(jTp,T))∗ ≃ P(Cv)/π∗(jTp).

Next, consider the functor

P ′ = P × idK : Cop
∗ × K ∼= (Cop

∗ × Top) ×Top K Cvop ×Top K,

defined to be the product of the unique T-functor P : Cop
∗ ×Top Cvop extending the inclusion ι : Cop

∗ ⊂ Cvop

on the first factor and the identity on K on the second factor; informally, P ′(c, k) = (χ∗
t (c), k) for k ∈ Kt and

χt : t ∗ the unique map. Using the canonical unit transformation ι ⇒ P , P ′ fits into a lax commutative
diagram

C
op
∗ × K Cvop ×Top K

C
op
∗ Cvop.

P ′

pr ⇒ π

ι

We claim that the induced map θ : ι∗π∗(jTp) pr∗P
′∗(jTp) is an equivalence, which we may check

objectwise at each c ∈ C∗. Let c : Top Cvop denote the unique T-functor such that c(∗) = c. Since
T-limits in T-functor categories are computed pointwise (by the dual of [Sha21, Prop. 9.17]), under the
equivalences of [Sha21, Prop. 3.10] we have a commutative square

Fun(Cvop ×Top K,Spc) Fun(K,Spc)

Fun(Cvop,Spc) Fun(Top,Spc)

c∗

π∗ π∗

c∗

where the vertical functors are given by right Kan extension and the horizontal functors by restriction, and
after evaluation at ∗ ∈ Top this equivalence identifies with θ(c), which proves the claim.

Abusing notation, let jp also denote its adjoint K×Cop Spc, and observe that (P ′)∗(jtp) ≃ (jp)|K×C
op
∗ ,

so that the equivalence θ yields an equivalence

P(C∗)/(π∗(jTp))|
C

op
∗ ≃ P(C∗)/pr∗((jp)|

K×C
op
∗

)
.

Using that pr is a cartesian fibration, we have an equivalence pr∗((jp)|K×C
op
∗ ) ≃ (pr∗(jp))|Cop

∗ . Note that the
limit of jp : K P(C) is computed by pr∗(jp), so P(C)/jp ≃ P(C)/pr∗(jp). Using that C∗ PT(C) ≃ P(Cv)
factors through P(C∗) and invoking [Sha21, Lem. 8.8] with respect to the adjunctions P(C∗) P(Cv)
and P(C∗) P(C), we then reduce the claim to checking that the outer square

(C/(p,T))∗ P(C∗)/(jp)|
C

op
∗ P(C)/jp

C∗ P(C∗) P(C).

is a homotopy pullback square. But this follows from Lemma 7.6 and Lemma 7.2.
The last statement then follows from [Sha21, Prop. 5.24], Lemma 7.8(3), and Remark 7.4. �

7.6. Lemma. Suppose T has a final object ∗ and let p : K C be a T-functor. Then we have a homotopy
pullback square

(C/(p,T))∗ C/p

C∗ C.

Proof. Note that the inclusion of the initial object ∆0 (Top)♯ is a cocartesian equivalence in sSet+
/Top .

By [Sha21, Thm. 4.16], i : ∆0 ⋆Top ♮K ♮K
✁ is a cocartesian equivalence. Since FunT(−,−) is a Quillen
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bifunctor, precomposition by i then yields a homotopy pullback square

FunT(K✁,C) Fun(K✁,C)

C∗ × FunT(K,C) C × Fun(K,C)

where the bottom horizontal functor is the evident inclusion. Taking the pullback over {p} then produces
the desired homotopy pullback square. �

We have the evident parametrized analogue of a (co)representable fibration.

7.7. Definition. Let f : D C be a T-left resp. T-right fibration. If D admits a T-initial object resp.
T-final object, then we say that f is T-corepresentable resp. T-representable.

We record some basic facts about T-corepresentable T-left fibrations and the T-Yoneda embedding.

7.8. Lemma. (1) Let D be a T-∞-category and let σ : Top D be a cocartesian section. Then σ is a
T-initial object of D if and only if D(σ,T)/ D is a trivial fibration.

(2) Let f : D C be a T-functor. If f is a T-corepresentable T-left fibration with T-initial object σ,
then we have a canonical equivalence D ≃ C(fσ,T)/ of T-∞-categories over C.

(3) Let σ : Top C be any cocartesian section. The T-left fibration C(σ,T)/ C, as a left fibration, is
classified by the functor

Map
C

(σ,−) : C (σvop,id)−−−−−→ Cvop ×Top C
Map

C
(−,−)

−−−−−−−→ Spc
that sends c ∈ Ct to MapCt

(σ(t), c).
(4) The functor obtained by taking cocartesian sections of the T-Yoneda embedding jT

ĵT : FunT(Top,C) PT(C) ≃ P(Cv), ĵT(σ) 7→ Map
C

(−, σ) ≃ Map
Cvop(σvop,−)

is fully faithful. Under the straightening equivalence PT(C) ≃ LFib(Cvop), ĵT has essential image
spanned by the T-corepresentable T-left fibrations over Cvop.

(5) The composite T-functor colimTjT : C Spc
T

is constant with value the T-final object of Spc
T

.

Proof. First note that we have a homotopy pullback square

ArT(D) = Top ×Ar(Top) Ar(D) FunT(T × ∆1,D)

D FunT(T,D)

≃

ev0 ev0

≃

in which the horizontal maps are equivalences of T-∞-categories. Therefore, for all t ∈ T, we have an
equivalence D(σ,T)/ ×D Dt ≃ D

σ(t)/
t , and (1) follows by checking fiberwise.

For (2), suppose f is a T-left fibration and σ is a T-initial object of D. Using (1), let τ : D D(σ,T)/ be
a choice of section. We then claim that the composite map

χ : D τ−→ D(σ,T)/ f−→ C(fσ,T)/

is an equivalence. Since χ is a T-functor between T-left fibrations over C, it suffices to check that χt is an
equivalence of left fibrations over Ct for all t ∈ T. But χt is a functor of corepresentable left fibrations that
preserves the initial object, and is thus an equivalence.

For (3), recall that Map
C

(−,−) was defined as the straightening of the T-left fibration TwT(C) Cvop×Top

C given by the T-fiberwise twisted arrow category (cf. the discussion right after [Sha21, Thm. 11.5]). By
(2), it then suffices to show that the pullback D = C×(Cvop×TopC) TwT(C) has a T-initial object that projects
to σ. But this again reduces to the fiberwise assertion about Ct ×(Cop

t ×Ct) Tw(Ct) ≃ (Ct)σ(x)/; note that
the assumption that σ is a cocartesian section ensures that the collection of fiberwise initial objects in D is
stable under cocartesian pushforward, so it indeed promotes to a T-initial object.

For (4), since jT is fiberwise fully faithful and the formation of cocartesian sections computes the limit of
the corresponding functor into Cat, it follows that ĵT is fully faithful. The assertion now follows from (3).
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For (5), we may check the assertion fiberwise, so suppose that T has a final object ∗. Then we need to
show that for any x ∈ C∗, colimTjT(x) ≃ 1 ∈ SpcT . But note that for all t ∈ T, if we let αt : t ∗ denote
the unique morphism then jT(x)|Cop

t
≃ MapCt

(−, α∗
tx), hence in view of [Sha21, Prop. 5.5] the assertion

follows from its non-parametrized analogue colimC
op
t
j(α∗

tx) ≃ 1. �

8. Finite, filtered, and sifted diagrams

In this section, we develop the theory of T-κ-small, T-filtered, and T-sifted T-∞-categories (Definition 8.2,
Definition 8.8, and Definition 8.14). To prepare for our discussion, we begin with the following proposition,
which recovers and extends the homotopy colimit decomposition result of [Lur09, Cor. 4.2.3.10]. Its statement
involves the “lower T-slice” construction of [Sha21, Def. 4.17].

8.1. Theorem. Let C be a T-∞-category.
(1) The assignments [K p−→ ♮C] 7→ [♮C(p,T)/ C] and [L q−→ ♮C] 7→ [♮C/(p,T) ♮C] of marked simplicial

sets assemble to a Quillen adjunction
C(−,T)/ : sSet+

/♮C
(sSet+

/♮C
)op :C/(−,T)

with respect to the slice model structure (and its opposite) induced from the cocartesian model struc-
ture on sSet+

/Top . Consequently, we obtain an adjunction of ∞-categories

C(−,T)/ : (CatT)/C (CatT)op
/C :C/(−,T).

(2) Let p• : I (CatT)/C be a functor with colimit p : K C and suppose that for every i ∈ I, the
T-functor pi : Ki C admits a T-colimit σi. Then the σi assemble to a T-functor σ• : I×Top C

such that if σ• admits a T-colimit σ, then p admits a T-colimit given by σ.

Proof. (1): Let us suppress the markings on C and its relatives for clarity. The two displayed functors
participate in an adjunction in view of the definitional isomorphisms of hom-sets

Hom/C(L,C(p,T)/) ∼= HomK⊔L//Top(K ⋆Top (L×Top Ar(Top)♯), C) ∼= Hom/C(K,C/(q,T)).
The left adjoint preserves cofibrations and weak equivalences by [Sha21, Prop. 4.18], [Sha21, Prop. 4.19], and
the discussion immediately proceeding it, so the adjunction is Quillen. Finally, even though this adjunction
is not generally simplicial, we may descend to an adjunction on the underlying ∞-categories by [Lur17,
Cor. 1.3.4.26].

(2): Let p• : I✄ (CatT)/C be a colimit diagram extending p• and let ϕ : (Iop)✁ (CatT)/C be the
opposite of the postcomposition of p• with C(−,T)/. By (1), ϕ is a limit diagram. We wish to show that the
value C(p,T)/ C on its cone point is a T-corepresentable T-left fibration with T-initial object as indicated.

By assumption, ϕ factors through the subcategory of T-corepresentable T-left fibrations over C, hence by
Lemma 7.8(4) applied to Cvop and using that (−)op preserves limits, we may factor ϕop as

ψ : I FunT(Top,Cvop)op ≃ FunT(Top,C).
Let σ• : I × Top C be the adjoint T-functor and suppose σ• extends to a T-colimit diagram

σ• : (I × Top) ⋆Top Top ≃ I✄ × Top C

(necessarily then adjoint to a colimit diagram ψ : I✄ FunT(Top,C) extending ψ). Since the T-Yoneda
embedding jT strongly preserves T-limits [Sha21, Cor. 11.10], we obtain a T-limit diagram jT ◦ σ•vop and
thus a limit diagram

ĵT ◦ ψop : (Iop)✁ FunT(Top,Cvop) PT(Cvop) ≃ LFib(C).
Since LFib(C) is a subcategory of (CatT)/C stable under limits and ϕ factors through this subcategory, we
deduce that ϕ ≃ ĵT ◦ ψop as limit diagrams extending ϕ, which proves the claim. �

8.2. Definition. Let ∆T ⊂ CatT ≃ Fun(Top,Cat) be the full subcategory spanned by the objects {∆n ×
MapT(−, t) : t ∈ T, n ≥ 0}. Then for every regular cardinal κ, define the full subcategory Catκ-small

T ⊂ CatT
of T-κ-small T-∞-categories to be the smallest full subcategory that contains ∆T and is closed under all
colimits indexed by κ-small simplicial sets.

If κ = ω, then we will also use the terminology T-finite in place of T-ω-small.
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8.3. Remark. Let i : ∆ ⊂ Cat be the usual inclusion of the simplex category, which extends to the
adjunction [L : P(∆) Cat :R] whose fully faithful right adjoint exhibits Cat as the full subcat-
egory of complete Segal spaces in P(∆). Then applying Fun(Top,−) to L ⊣ R yields an adjunction
[LT : P(∆ × T) CatT :RT ], where LT is the unique functor extending iT : ∆ × T CatT , ([n], t) 7→
∆n × MapT(−, t) and RT is fully faithful. In particular, iT is fully faithful with essential image ∆T . Fur-
thermore, using that idP(∆×T) is the left Kan extension of the Yoneda embedding along itself, we deduce
that idCatT is the left Kan extension of iT along itself; indeed, for any T-∞-category C, applying the colimit-
preserving functor LT to the equivalence

RT(C) ≃ colim[(∆ × T) ×P(∆×T) P(∆ × T)/RT(C) P(∆ × T)]

and using that (∆ × T) ×P(∆×T) P(∆ × T)/RT(C) ≃ (∆ × T) ×CatT (CatT)/C proves the claim.
As a corollary, if κ0 is the strongly inaccessible cardinal that fixes our definition of small simplicial set,

then Catκ0-small
T = CatT . Our definition of small T-∞-category is thus unambiguous.

8.4. Remark. In Definition 8.2, if T = ∆0, then the notion of a T-κ-small T-∞-category C coincides with
that of an essentially κ-small ∞-category [Lur09, Def. 5.4.1.3]: that is, there exists a κ-small simplicial set
K and a categorical equivalence K C. To see this, note that if C is essentially κ-small then by [Lur09,
Var. 4.2.3.15] if κ > ω or [Lur09, Var. 4.2.3.16] if κ = ω, there exists a κ-small simplicial set L and a map
φ : L ∆ such that C ≃ colimLφ. Conversely, the full subcategory of essentially κ-small ∞-categories is
closed under κ-small colimits by a direct argument if κ = ω and by the identification with κ-compact objects
in Cat if κ > ω [Lur09, Prop. 5.4.1.2].

8.5. Remark. We may describe the ∞-category Catκ-small
T more explicitly in the following manner. Define

an increasing union of full subcategories (Catκ-small
T )α ⊂ Catκ-small

T for all ordinals α ≤ κ inductively as
follows:

(0) (Catκ-small
T )0 = ∆T .

(1) For every successor ordinal β = α+ 1, let (Catκ-small
T )β consist of all colimits of diagrams

K (Catκ-small
T )α

indexed by κ-small simplicial sets K.
(2) For every limit ordinal λ ≤ κ, let (Catκ-small

T )λ =
⋃
α<λ(Catκ-small

T )α.
Then since the ordinal κ is itself κ-filtered, we conclude that Catκ-small

T = (Catκ-small
T )κ.

We now apply Theorem 8.1 to prove a κ-T-cocompleteness result that generalizes [Sha21, Cor. 12.15],
with a different method of proof.

8.6. Theorem. Let C be a T-∞-category and κ a regular cardinal. Then C strongly admits all T-κ-small
T-colimits if and only if

(1) For every t ∈ T, Ct admits T/t-colimits indexed by corepresentable left fibrations.
(2) For every t ∈ T, Ct admits κ-small colimits, and for every α : s t, the restriction functor

α∗ : Ct Cs preserves κ-small colimits.
Furthermore, if C and D are T-∞-categories that strongly admit T-κ-small T-colimits and F : C D is a
T-functor, then F strongly preserves all T-κ-small T-colimits if and only if

a. For every α : s t, the mate α!Fs ⇒ Ftα! is an equivalence.
b. For every t ∈ T, Ft preserves all κ-small colimits.

Proof. For the ‘only if’ direction, suppose that C strongly admits T-colimits. Then (1) holds since ∆T/t ⊂
Catκ-small

T/t by definition, and (2) holds since if K is an essentially κ-small ∞-category, then as noted in
Remark 8.4 there exists a κ-small simplicial set L and a functor φ : L ∆ × {idt} ⊂ ∆ ×T/t

≃−→ ∆T/t such
that K × (T/t)op ≃ colimLφ in CatT , hence K × (T/t)op is a T-κ-small T-∞-category.

Conversely, suppose C satisfies (1) and (2). Let Kt denote the full subcategory of CatT/t consisting of all
T/t-∞-categories K such that all K-indexed T/t-diagrams in Ct admit T/t-colimits. We wish to show that
Kt contains Catκ-small

T/t . To ease notation, let us replace T/t by T and suppose that T has a final object ∗.
By our first assumption, K∗ contains ∆T . It thus suffices to show that K∗ is closed under κ-small colimits
in CatT . So suppose we have a diagram f : I K∗ with I κ-small such that f has colimit K in CatT,
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and let p : K C be a T-functor. Then since colimits in (CatT)/C are created by the forgetful functor to
CatT , we obtain a colimit diagram p• : I✄ (CatT)/C such that for each i ∈ I, the T-functor pi admits
a T-colimit xi ∈ C∗. By our second assumption combined with [Sha21, Cor. 5.9] and Theorem 8.1(2), we
deduce that p admits a T-colimit, which proves the claim. Repeating the same type of argument establishes
the assertion about the T-functor F . �

8.7. Remark. If we suppose that T is orbital in Theorem 8.6, then by [Sha21, Prop. 5.12] we may replace
(1) with the assumption that for all α : s t, α∗ admits a left adjoint α!, and for all pullback squares in
FT

U ′ U

V ′ V,

β′

α′ α

β

the mate α′
!β

′∗ ⇒ β∗α! is an equivalence.

8.8. Definition. Let J be a T-∞-category and let κ be a regular cardinal. Then J is T-κ-filtered if for all
t ∈ T and T/t-κ-small K, every T/t-functor p : K Jt admits an extension to a T/t-functor p : K✄ Jt.

8.9. Lemma. Suppose that T is orbital and has a final object ∗. Let κ be a regular cardinal and suppose that
K and L are T-κ-small T-∞-categories. Then K ⋆Top L is T-κ-small.

Proof. Let (Catκ-small
T )α be as in Remark 8.5. First observe that if K = ∆n× (T/t)op and L = ∆m× (T/s)op,

then K × L ∈ (Catω-small
T )1 using that T is orbital. Because

K ⋆Top L ≃ (K ×Top L) × ∆1
∐

(K×TopL)×∂∆1

K ⊔ L ,

we deduce that the T-join restricts to a functor ∆T × ∆T (Catω-small
T )1 ⊂ (Catκ-small

T )1. We then
formulate the following inductive hypothesis:

(1) If β = α+ 1 < κ is a successor ordinal, then for all K,L ∈ (Catκ-small
T )α, K ⋆Top L ∈ (Catκ-small

T )β .
(2) If λ ≤ κ is a limit ordinal, then for all K,L ∈ (Catκ-small

T )λ, K ⋆Top L ∈ (Catκ-small
T )λ.

Because the T-join preserves colimits separately in each variable (as may be checked fiberwise) and κ is a
regular cardinal, we may proceed by induction to confirm the inductive hypothesis for all λ ≤ κ; this proves
the claim since Catκ-small

T = (Catκ-small
T )κ. �

8.10. Lemma. Suppose that T is orbital and J is T-κ-filtered. Then for any T/t-κ-small K and T/t-functor
p : K Jt, (Jt)(p,T/t)/ is T/t-κ-filtered.

Proof. Replace T/t by T and suppose K is T-κ-small and p : K J is a T-functor. To check that J(p,T)/

is T-filtered, after replacing T/t by T once more it suffices to show that for any T-functor φ : L J(p,T)/

with T-κ-small L, φ extends over L✄. Using that J(p,T)/ ≃ J(p,T)/, by adjunction it suffices to extend the
T-functor ψ : K ⋆Top L J (under p ⊔ q) over (K ⋆Top L)✄. By our assumption that J is T-filtered, this is
possible since K ⋆Top L is T-κ-small by Lemma 8.9. �

8.11. Theorem. Suppose that T is orbital. Let J be a T-∞-category and let κ be a regular cardinal. The
following conditions are equivalent:

(1) J is T-κ-filtered.
(2) For all t ∈ T, Jt is κ-filtered, and J is cofinal-constant (Definition 9.5).
(3) The T-colimit T-functor colimT

J : FunT(J,Spc
T

) Spc
T

strongly preserves T-κ-small T-limits.

Proof. First suppose (1). Then for any essentially κ-small ∞-category K and t ∈ T, our assumption ensures
that every T/t-functor K× (T/t)op Jt extends over K✄ × (T/t)op, which shows that Jt is κ-filtered. Now
suppose α : s t is a morphism in T. We want to show that α∗ : Jt Js is cofinal. Let x ∈ Js and
σ : (T/s)op Jt be the unique T/t-functor that selects x, and note that by Lemma 7.1

Jt ×Js (Js)x/ ≃ ((Jt)(σ,T/t)/)t.
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By Lemma 8.10, (Jt)(σ,T/t)/ is T/t-κ-filtered, so ((Jt)(σ,T/t)/)t is κ-filtered by what was previously shown,
and hence weakly contractible.23 The claim now follows by Joyal’s cofinality theorem. We conclude that J

is cofinal-constant, so J satisfies (2).
Next suppose (2). To show (3), by the dual of Theorem 8.6 it suffices to show that colimT

J preserves
κ-small limits fiberwise and intertwines with the ‘coinduction’ right adjoints. By [Sha21, Prop. 5.5], under
the equivalence FunT/t(Jt,Spc

T/t) ≃ Fun(Jt,Spc), the functor colimT/t

Jt
identifies with left Kan extension

along the structure map Jt (T/t)op. In view of our assumption that the fibers of J are κ-filtered, by
[Lur09, Prop. 5.3.3.3] and [Lur09, Prop. 4.3.3.10] we conclude that colimT/t

Jt
preserves κ-small limits. Next,

let α : s t be a morphism in T and consider the resulting pullback square

Js Jt

(T/s)op (T/t)op

φ

π π

φ

yielding
Fun(Jt,Spc) Fun((T/t)op,Spc)

Fun(Js,Spc) Fun((T/s)op,Spc).

π!

⇒
φ∗

π!

φ∗

We need to show that the mate χ : π!φ∗ ⇒ φ∗π! is an equivalence. To ease notation, let us replace T/t by T

and t by ∗. Let p : J∗ × Top J be the unique T-functor extending the inclusion J∗ ⊂ J and note that our
assumption that p is T-cofinal yields a factorization of colimT

J as

FunT(J,Spc
T

) p∗
−→ FunT(J∗ × Top,Spc

T
)

colimT
J∗×Top−−−−−−−−→ Spc

T
.

Since the T-functor p∗ admits a T-left adjoint given by T-left Kan extension, p∗ commutes with all T-limits
[Sha21, Cor. 8.9]. We may thus replace J by the constant diagram J∗ × Top in the proof.

Now let F : J∗ × (T/s)op Spc be a functor and u ∈ T; we will show that χF (u) is an equivalence. For
every γ : v s, let Fγ = F |J∗×{γ}. Invoking our assumption that T is orbital, let {vi ∈ T : i ∈ I} be a
finite collection such that T/s ×T T/u ≃ ∐i∈I T

/vi and let γi : vi s be the structure maps. Then

(φ∗π!F )(u) ≃ lim
(⊔

i∈I
(Top)vi/ (Top)s/ π!F−−→ Spc

)
≃
∏

i∈I
(π!F )(γi) ≃

∏

i∈I
colimJ∗Fγi

On the other hand, using that the upper φ is a map of cartesian fibrations over J∗, we get that φ∗F is
computed fiberwise over J∗ by [Lur09, Prop. 4.3.3.10]. Thus for all x ∈ J∗,

(φ∗F )(x, u) ≃ lim
(⊔

i∈I
(Top)vi/ {x} × (Top)s/ F−→ Spc

)
≃
∏

i∈I
F (x, γi),

and using that κ-filtered colimits commute with finite products in Spc, we deduce that χF (u) is an equiva-
lence.

Finally, suppose (3). To show (1), after the usual reduction it suffices to prove that if T admits a final object
∗ and q : K J is a T-functor with K T-κ-small, then (C(q,T)/)∗ is nonempty. Let ϕ = limT

Kvop(jTqvop) ∈
PT(Jvop) ≃ Fun(J,Spc). Then

colimT
J (ϕ) ≃ limT

Kvop(colimT
J jTq

vop) ≃ limT
Kvop(1T) ≃ 1T,

using that colimTjT factors through the T-final object 1T of Spc
T

by Lemma 7.8(5) and any T-limit of
T-final objects is again T-final. By Proposition 7.5 applied to p = qvop and Lemma 8.12, we deduce that
(C(q,T)/)∗ is weakly contractible, so in particular nonempty. �

8.12. Lemma. Let π : C Top be a T-∞-category, p : D C a T-left fibration, and F : C Spc
T

a
T-functor that classifies p. Let |D|T denote the T-space obtained by inverting all morphisms in the fibers Dt

for all t ∈ T. Then |D|T ≃ colimTF .

23In fact, we don’t need to invoke Lemma 8.9 as in the proof of Lemma 8.10 because we are only interested in the extension
property for constant T/t-diagrams; in particular, the assumption that T is orbital there is not necessary in this instance.
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Proof. Recall again that under the equivalence FunT(C,Spc
T

) ≃ Fun(C,Spc) and the identification of T-left
fibrations with left fibrations, p is classified as a left fibration by F † : C Spc and colimTF ≃ π!F

†. Denote
the classifying space adjunction by | − | : Cat Spc :ι. In view of the functoriality of the straightening
equivalence [Lur09, Prop. 3.2.1.4], we have that the functor LFib(C) LFib(Top) defined by D 7→ |D|T
identifies with the composite

L : Fun(C,Spc) ι−→ Fun(C,Cat) π!−→ Fun(Top,Cat) |−|−−→ Fun(Top,Spc).
Since π∗ι ≃ ιπ∗ the right adjoint of L identifies with π∗, so L is canonically equivalent to π!. �
8.13. Theorem. Suppose that T is orbital. Let J be a T-∞-category and κ a regular cardinal. Then J is
T-κ-filtered if and only if for all t ∈ T and T/t-κ-small K, the diagonal T/t-functor

δ : Jt FunT/t(K, Jt)
is T/t-cofinal.

Proof. In the proof, let us replace T/t with T and suppose that T has a final object ∗. For the ‘if’ direction,
after replacing T/t by T once more it suffices to show that for any T-κ-small K and T-functor p : K J,
p extends over K✄, i.e., (J(p,T)/)∗ is nonempty. But since (J(p,T)/)∗ ≃ J∗ ×FunT(K,J) FunT(K, J){p}/ by the
dual of Lemma 7.1, this follows by our assumption that J∗ FunT(K, J) is cofinal. Conversely, for the
‘only if’ direction suppose that J is T-κ-filtered and let K be T-κ-small. After replacing T/t by T, it suffices
to show that δ∗ is cofinal. For this, by Joyal’s cofinality theorem and Lemma 7.1 again, it suffices to show
that (J(p,T)/)∗ is weakly contractible for all p : K J. But this follows by Lemma 8.10 and the (1)⇒(2)
implication of Theorem 8.11. �

To formulate the notion of a T-sifted T-∞-category, we adopt the viewpoint of the alternative character-
ization of Theorem 8.13, but over a more restrictive class of diagrams.

8.14. Definition. Let J be a T-∞-category. Then J is T-sifted if for all t ∈ T and finite T/t-sets U , the
diagonal T/t-functor δ : Jt FunT/t(U, Jt) is T/t-cofinal.

8.15. Theorem. Suppose that T is orbital and let J be a T-∞-category. The following conditions are equiv-
alent:

(1) J is T-sifted.
(2) For all t ∈ T, Jt is sifted, and J is cofinal-constant (Definition 9.5).
(3) The T-colimit T-functor colimT

J : FunT(J,Spc
T

) Spc
T

preserves finite T-products.

Proof. First suppose (1). Then for t ∈ T and U = idt ⊔ idt, the T/t-cofinality of δ : Jt FunT(U, Jt)
ensures that Jt is sifted, whereas if we let U = [α : s t], then because δidt

≃ α∗ : Jt Js we deduce
that α∗ is cofinal, hence J is cofinal-constant. This shows that J satisfies (2).

The implication (2)⇒(3) follows by the same proof as (2)⇒(3) in Theorem 8.11. Finally, suppose (3).
By Joyal’s cofinality theorem and Lemma 7.1, it suffices to show that for all t ∈ T, finite T/t-set U , and
T/t-functor p : U Jt, the ∞-category ((Jt)(p,T/t)/)idt

is weakly contractible. But this follows by the same
proof as (3)⇒(1) in Theorem 8.11. �

We end this section by explaining a parametrized generalization of the following fact: if F : C × C D

is a functor that commutes with colimits separately in each variable, then F preserves sifted colimits. To do
this, we need to recall the appropriate parametrized notion of distributive functor, whose definition is due
to Nardin. We first fix some local notation.

8.16. Definition. Let U be a finite T-set. A U -∞-category is a cocartesian fibration over U .24

8.17. Notation. Let f : U V be a map of finite T-sets. Then we have the adjunction
f∗ : CatV CatU :f∗

where f∗ is pullback along U V . Note also that some authors also prefer to write f∗ as
∏
f to emphasize

its interpretation as an indexed product.
24Perhaps confusingly, this is reversing our convention that a T-∞-category is a cocartesian fibration over Top. However, we

don’t want to write “U op-∞-category”.
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To understand the following definition, the reader should convince themselves that it reduces to “preserving
colimits separately in each variable” when T = ∗.

8.18. Definition ([Nar17, Def. 3.15]). Suppose that T is orbital, let f : U V be a map of finite T-sets,
let C be a U -∞-category, and let D be a V -∞-category. Let F : f∗C D be a V -functor. Then we say
that F is V -distributive if for every pullback square

U ′ V ′

U V

f ′

g′ g

f

of finite T-sets and U ′-colimit diagram p : K✄ g′∗C, the V ′-functor

(f ′
∗K)✄ can f ′

∗(K✄) f ′
∗p f ′

∗g
′∗C ≃ g∗f∗C

g∗F g∗D

is a V ′-colimit diagram.25

8.19. Proposition. Suppose that T is orbital, let f : U V be a map of finite T-sets, and let C resp. D

be a U resp. V -∞-category. Suppose that F : f∗C D is a V -distributive V -functor. Then F strongly
preserves V -sifted V -colimits.

Proof. Since the property of parametrized distributivity is stable under base-change, it suffices to show that
F preserves V -sifted V -colimits. Without loss of generality, we may also suppose that V is an orbit. Let
K be a V -sifted V -∞-category and suppose that p : K✄ f∗C is a V -colimit diagram. Then because the
counit map f∗f∗C ≃ FunU (U ×V U,C) C is given by restriction along the diagonal U U ×V U , the
adjoint map (KU )✄ C is a U-colimit diagram. Since F is V -distributive, the V -functor

ψ : (f∗f
∗K)✄ f∗(f∗K✄) f∗C

F−→ D

is a V -colimit diagram. Since K is V -sifted, the unit V -functor δ : K f∗f∗K ≃ FunV (U,K) is V -cofinal,
so ψ ◦ δ is also a V -colimit diagram. But this composite is homotopic to F ◦ p via the triangle identity for
f∗ ⊣ f∗, proving the claim. �

We will use Proposition 8.19 together with Theorem 4.16 in [NS] to show e.g. that given a T-distributive
T-symmetric monoidal T-∞-category C (such as the G-∞-category of G-spectra equipped with the Hill–
Hopkins–Ravenel norms when T = OG), the forgetful T-functor from the T-∞-category of T-commutative
algebras in C to C creates all T-sifted T-colimits.

9. Universal constructions

In this section, we introduce a few more universal constructions in addition to that of T-presheaves that
formally adjoin smaller classes of T-colimits. We begin with the following lemma.

9.1. Lemma. Let f : C D be a functor of small ∞-categories and let F : P(C) P(D) be the unique
colimit-preserving functor that extends j ◦ f . Then for every presheaf ϕ ∈ P(C), the induced functor

C ×P(C) P(C)/ϕ D ×P(D) P(D)/F (ϕ)

is cofinal.

Proof. We verify the hypotheses of Joyal’s cofinality theorem. Let τ = [d, γ : j(d) F (ϕ)] be an object of
D ×P(D) P(D)/F (ϕ). We want to show that the ∞-category

E := (C ×P(C) P(C)/ϕ) ×(D×P(D)P(D)/F (ϕ)) (D ×P(D) P(D)/F (ϕ))τ/

25Using the compatibility of the parametrized join with restriction [Sha21, Lem. 4.4], the canonical map (f ′
∗K)✄ can f ′

∗(K✄)
is defined to be the adjoint to ǫ✄ : (f ′∗f ′

∗K)✄ K✄ for ǫ the counit of the adjunction f ′∗ ⊣ f ′
∗.
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is weakly contractible. Consider the commutative diagram

E (D ×P(D) P(D)/F (ϕ))τ/

Dd/ ×D (C ×P(C) P(C)/ϕ) Dd/ ×D (D ×P(D) P(D)/F (ϕ)) Dd/

C ×P(C) P(C)/ϕ D ×P(D) P(D)/F (ϕ) D.

G′

π′ π

G

Observe that since F (ϕ) ≃ colim(D ×P(D) P(D)/F (ϕ) P(D)) and MapP(D))(j(d),−) : P(D) Spc
preserves colimits, we have that Dd/ ×D (D ×P(D) P(D)/F (ϕ)) is weakly homotopy equivalent to F (ϕ)(d).
Likewise, since F preserves colimits, the functor G is a weak homotopy equivalence. By Lemma 9.2, the
functor π is a Kan fibration. By right properness of the Quillen model structure on simplicial sets, we deduce
that G′ is a weak homotopy equivalence, hence W is weakly contractible. �
9.2. Lemma. Let ψ : X Y be a right fibration and let p : K X be a functor. Then the induced
functor

Xp/ Yψp/ ×Y X

is a Kan fibration.

Proof. Let n > 0 and ι : A = Λni B = ∆n be a horn inclusion. We need to solve the lifting problem

A Xp/

B Yψp/ ×Y X

ι which transposes to
K ⋆ A

⋃
AB X

K ⋆ B Y.

ι′ ψ

If i < n so that ι is left anodyne, then by [Lur09, Lem. 2.1.2.3], ι′ is inner anodyne, and if i > 0 so that ι is
right anodyne, then by the opposite of [Lur09, Lem. 2.1.2.4], ι′ is right anodyne. Therefore, the dotted lift
exists. �
9.3. Definition. Let C be a T-∞-category. We define the fiberwise T-∞-category of presheaves of C to be
the full subcategory

Pfb
T (C) ⊂ PT(C)

whose fiber over each object t ∈ T is the full subcategory P(Ct) of PT(C)t ≃ P(Cv
t ), embedded via left Kan

extension along the fully faithful inclusion C
op
t ⊂ C

vop
t .

9.4. Remark. In Definition 9.3, we note that Pfb
T (C) is a full T-subcategory of PT(C), i.e., it is a sub-

cocartesian fibration over Top. Indeed, the existence of the T-Yoneda embedding jT as a T-functor implies
that for any morphism α : s t in T, the diagram

Ct Cv
t PT(C)t ≃ P(Cv

t )

Cs Cv
s PT(C)s ≃ P(Cv

s)

α∗

j

α∗

j

commutes, where α∗ is given by restriction along Cvop
s C

vop
t . Since the inclusions P(Ct) ⊂ P(Cv

t ) and
P(Cs) ⊂ P(Cv

s) along with α∗ are colimit-preserving, we have a factorization of the outer rectangle as

Ct P(Ct) PT(C)t ≃ P(Cv
t )

Cs P(Cs) PT(C)s ≃ P(Cv
s),

j

α∗ α∗|P(Ct) α∗

j

which both establishes the claim and also identifies α∗|P(Ct) with the prolongation of j ◦α∗ obtained via the
universal property of P(Ct). The T-Yoneda embedding then restricts to a T-functor jfb

T : C Pfb
T (C).
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9.5. Definition. Let K be a T-∞-category. Then K is cofinal-constant (cc) if for all morphisms α : s t
in T, the restriction functor α∗ : Tt Ts is cofinal.

We say that a T-∞-category C is cc T-cocomplete if C strongly admits all cc T-colimits. If C and D are
cc T-cocomplete, we will let FunccT (C,D) denote the full T-subcategory of FunT(C,D) whose fiber over each
t ∈ T is spanned by those T/t-functors that strongly preserve all cc T/t-colimits.

More generally, if K is a collection of small simplicial sets, then we have analogous definitions of K-cc T-
∞-categories, K-cc T-cocompleteness and FunK-cc

T (C,D), where we suppose that the collection of T-diagrams
in question are cofinal-constant and have fibers in K.

9.6. Proposition. Let C be a T-∞-category. Then C is cc T-cocomplete if and only if C strongly admits
all constant T-colimits. Similarly, if C and D are cc T-cocomplete, then a T-functor F : C D strongly
preserves all cc T-colimits if and only if Ft preserves all colimits for all t ∈ T.

Proof. We prove the first assertion about C; the second assertion about F will then follow immediately. The
‘only if’ implication is obvious. Conversely, suppose C strongly admits all constant T-colimits. Let t ∈ T and
let K be a cc T/t-∞-category. We have the T/t-functor

ψ : Kt × (T/t)op K

given as the cocartesian extension of the inclusion of the fiber Kt ⊂ K over the initial object idt ∈ (T/t)op.
By assumption, for all morphisms α : s t in T, the functor ψα ≃ α∗ : Kt Ks is cofinal, so by
[Sha21, Thm. 6.7], for each T/t-functor f : K Ct, the induced T-functor ψ∗ : C(f,T/t)/ C(fψ,T/t)/ is
an equivalence. In particular, C(f,T/t)/ admits a T/t-initial object if and only if C(fψ,T/t)/ does. Therefore,
f extends to a T/t-colimit diagram if and only if fψ does, which completes the proof. �

Recall that C strongly admits all constant T-colimits if and only if its fibers admit all colimits and its
pushforward functors preserve all colimits. For example, Pfb

T (C) strongly admits all constant T-colimits, so
by Proposition 9.6, Pfb

T (C) is cc T-cocomplete.

9.7. Proposition. Let C be a small T-∞-category and let D be cc T-cocomplete. Then for any T-functor
f : C D, the T-left Kan extension F of f along jfb

T exists. Moreover, restriction along jfb
T

(jfb
T )∗ : FunccT (Pfb

T (C),D) FunT(C,D)
implements an equivalence of T-∞-categories, with inverse given by T-left Kan extension.

Proof. For any ϕ ∈ Pfb
T (C)t ≃ P(Ct), note that by Lemma 9.1

C ×Pfb
T

(C) Pfb
T (C)/ϕ = C ×Pfb

T
(C) ArT(Pfb

T (C)) ×Pfb
T

(C) ϕ ϕ
≃։ (T/t)op

is a cofinal-constant T/t-∞-category. Therefore, by the pointwise formula for T-left Kan extensions [Sha21,
Thm. 10.3], F = (jfb

T )!f exists and is computed by Ft ≃ j!ft, so Ft preserves all colimits. Furthermore, given
a T-functor G : Pfb

T (C) D such that Gt preserves colimits for all t ∈ T, since j!j
∗Gt

≃−→ Gt it follows that
(jfb

T )!(jfb
T )∗G

≃−→ G from the pointwise formula. By the same logic as [Sha21, Cor. 10.7], we thus obtain a
T-adjunction

(jfb
T )! : FunT(C,D) FunT(Pfb

T (C),D) :(jfb
T )∗

in which (jfb
T )! is T-fully faithful with essential image FunccT (Pfb

T (C),D). �

9.8. Variant. Let C be a small T-∞-category. For a collection K of small simplicial sets, let PK-fb
T (C) ⊂ Pfb

T (C)
be the full subcategory whose fiber over each t ∈ T is given by PK(Ct) ⊂ P(Ct) [Lur09, Prop. 5.3.6.2], and
let jK-fb

T denote the factorization of the T-Yoneda embedding through PK-fb
T (C). Then by the universal

property of PK(−), PK-fb
T (C) is a sub-cocartesian fibration of Pfb

T (C) and hence a T-∞-category. Note
that the proof of [Lur09, Prop. 5.3.6.2] shows that for a K-cocomplete ∞-category D, the equivalence
FunK(PK(Ct),D) ≃−→ Fun(Ct,D) implemented by restriction has inverse given by left Kan extension. Thus,
by the same proof as in Proposition 9.7, we see that if D is a T-∞-category that is K-cc T-cocomplete, we
have an T-adjunction

(jK-fb
T )! : FunT(C,D) FunT(PK-fb

T (C),D) :(jK-fb
T )∗

in which (jK-fb
T )! is T-fully faithful with essential image FunK-cc

T (PK-fb
T (C),D).



PARAMETRIZED HIGHER CATEGORY THEORY II: UNIVERSAL CONSTRUCTIONS 39

9.9. Definition. If K is the collection of sifted resp. κ-filtered simplicial sets, we will write PΣ
T (C) and jΣ

T

resp. IndκT(C) and jκT for PK-fb
T (C) and jK-fb

T . If κ = ω, we will also write IndT(C).

For the following lemma, note that if T is orbital and E is an ∞-category that admits finite products, then
ET admits finite T-products in view of [Sha21, Prop. 5.6] and the pointwise formula for right Kan extension.

9.10. Lemma. Suppose that T is an orbital ∞-category. Let C be a T-∞-category that admits finite T-products
and let E be an ∞-category that admits finite products. Then under the equivalence

(−)† : FunT(C,ET) ≃−→ Fun(C,E)
of [Sha21, Prop. 3.10], a T-functor F : C ET preserves finite T-products if and only if F † : C E sends
cartesian edges to equivalences and F †|Ct preserves finite products for all t ∈ T. Moreover, if T admits a
final object ∗, then (−)† restricts to an equivalence Fun×

T (C,ET) ≃−→ Fun×(C∗,E).

Proof. For the first statement, first note that F : C ET preserves finite products fiberwise if and only if
for all α : s t in T, evαFt : Ct ET/t E preserves finite products. But since evαFt ≃ evidsFsα

∗,
this occurs if and only if F †|Ct preserves finite products for all t ∈ T. Furthermore, by definition F † inverts
cartesian edges if and only if for all α : s t in T and x ∈ Cs, the natural map (Ftα∗x)(idt)

≃−→ (α∗Fsx)(idt)
is an equivalence. This shows the ‘only if’ implication. Now let β : u t be any morphism and write
s×tu ≃ ⊔i∈I oi for oi ∈ T and a finite set I. For each oi, let αi : oi u and βi : oi s denote the implicit
maps, so that β∗α∗x ≃ ∏

i∈I αi∗βi
∗x by our assumption that C admits finite T-products. If we suppose that

F preserves finite products fiberwise and F † inverts cartesian edges, we then have

(Ftα∗x)(β) ≃ (Fuβ∗α∗x)(idu) ≃
∏

i∈I
(Fuαi∗β∗

i x)(idu) ≃
∏

i∈I
(αi∗β∗

i Fs)(idu)

≃ (β∗α∗Fsx)(idu) ≃ (α∗Fsx)(β),
which shows the ‘if’ implication.

To prove the second statement, suppose now that T has a final object ∗. First note that if we let W denote
the set of cartesian edges in C, then the composite C∗ C C[W−1] is an equivalence of ∞-categories in
view of [Lur09, Cor. 3.3.4.3]. Now let G : C E be a functor that inverts W and suppose G|C∗ preserves
finite products. For any t ∈ T, let αt : t ∗ denote the unique morphism. If

∏
i∈I xi is a finite product in

Ct, then we have a cartesian edge
∏
i∈I αt∗xi

∏
i∈I xi in C lifting αt since αt∗ is a right adjoint, hence

G(
∏
i∈I xi) ≃ ∏i∈I G(xi) and the claim is proven. �

9.11. Theorem. Suppose that T is an orbital ∞-category and let C be a T-∞-category. Suppose that C admits
finite T-coproducts. Then the following statements obtain:

(1) We have an equality
PΣ

T(C) = Fun×
T (Cvop,Spc

T
)

as full T-subcategories of PT(C).
(2) The inclusion PΣ

T (C) ⊂ PT(C) strongly preserves T-sifted T-colimits and admits a T-left adjoint L
such that jΣ

T ≃ L ◦ jT.
(3) PΣ

T (C) is T-cocomplete, jΣ
T preserves finite T-coproducts, and if D is any T-cocomplete T-∞-category,

then restriction along jΣ
T implements an equivalence

FunLT(PΣ
T (C),D) ≃−→ Fun⊔

T(C,D)
with inverse given by T-left Kan extension.

Similarly, if C strongly admits T-κ-small T-colimits, then:
(1) IndκT(C) equals the full T-subcategory Funκ-lex

T (Cvop,Spc
T

) of PT(C) whose fiber over t ∈ T is spanned
by those T/t-presheaves that strongly preserve T/t-κ-small T/t-limits.

(2) The inclusion IndκT(C) ⊂ PT(C) strongly preserves T-κ-filtered T-colimits and admits a T-left adjoint
L such that jκT ≃ L ◦ jT.

(3) IndκT(C) is T-cocomplete, jκT strongly preserves T-κ-small T-colimits, and if D is any T-cocomplete
T-∞-category, then restriction along jκT implements an equivalence

FunLT(IndκT(C),D) ≃−→ Funκ-rex
T (C,D)
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with inverse given by T-left Kan extension.

Proof. In both cases, (1) is an immediate consequence of Lemma 9.10 (together with the dual of Theorem 8.6
in the second instance). Given Theorem 8.15, Theorem 8.11, and Variant 9.8, the rest of the statements
then follow formally as in the proof of [Lur09, Prop. 5.5.8.10] and [Lur09, Prop. 5.5.8.15]. �

10. Appendix: Promonoidal Day convolution

We record the following important technical lemma on flat fibrations and apply it to construct O-
promonoidal Day convolution with respect to a base ∞-operad O.

10.1. Lemma. Let B be an ∞-category with a factorization system (L ,R) and let p : X B be a categorical
fibration. Let ArL(B) denote the full subcategory of Ar(B) on those arrows in L and consider the functor

π = ev0 ◦ pr1 : ArL(B) ×B X B.

Suppose that
(1) For every edge e : a b in L and x ∈ X such that p(x) = a, there exists a p-cocartesian edge

x y covering e.
(2) The pullback XR = X ×B BR BR is a flat categorical fibration, where BR ⊂ B denotes the wide

subcategory on those morphisms in R.
Then π is a flat categorical fibration.

Proof. We apply the criterion of [Lur17, Prop. B.3.2] to show flatness. In other words, if we let σ0 = [a0 →
b0 → c0] be a 2-simplex in B and let




a0 c0

a1 c1

α γ , x z




be an edge in ArL(B) ×B X covering a0 c0 via π, then we need to show that

(ArL(B) ×B X)(α,x)//(γ,z)
b0

:= {σ0} ×Ba0//c0 (ArL(B) ×B X)(α,x)//(γ,z)

≃ ArL(B)α//γb0
×Ba1//c1 Xx//z

is weakly contractible.
As we noted in Proposition 3.5(1), the functor ev0 : ArL(B) B is a cartesian fibration, with ev0-

cartesian edges given by morphisms f g such that the edge f(1) g(1) is in R. Therefore, we may
identify the full subcategory of ArL(B)α//γb0

spanned by the final objects with that spanned by objects of the
form

a0 b0 c0

a1 b1 c1

α β γ

in which b1 c1 is in R. Fix such a choice of final object σ•, and let

θ : ∆1 × ArL(B)α//γb0
ArL(B)α//γb0

be the natural transformation recording the essentially unique homotopy of the identity functor to the
constant functor at σ• (i.e., the unit transformation of the associated localization functor). Also let

θ′ : ArL(B)α//γb0
Fun(∆1,ArL(B)α//γb0

) Fun′(∆1,Ba1//c1)

be the composite of the adjoint to θ and evaluation at the target. Here, Fun′ denotes the full subcategory on
objects τ = [a1 → b′

1 → b1 → c1] with d1τ = σ1 and such that b′
1 b1 is in L ; in other words, d0τ is the

essentially unique factorization of b′
1 c1 furnished by (L ,R). We then define a natural transformation

η : ∆1 × ArL(B)α//γb0
×Ba1//c1 Xx//z ArL(B)α//γb0

×Ba1//c1 Xx//z
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as θ on the first factor and the adjoint to

ArL(B)α//γb0
×Ba1//c1 Xx//z

(θ′,id) Fun′(∆1,Ba1//c1) ×ev0,Ba1//c1 Xx//z P Fun(∆1,Xx//z)

on the second factor, where P is the cocartesian pushforward functor that on objects is given by

([a1 → b′
1
e−→ b1 → c1], x → y → z) [x → e!y → z]

and rigorously defined as in [Sha21, Lem. 2.23].
Let L = η1 and observe that the essential image of L is X

x//z
b1

:= {σ1} ×Ba1//c1 Xx//z. It is then
straightforward to show that η satisfies condition (3) of [Lur09, Prop 5.2.7.4] so that L is a localization
functor. In particular, it suffices to show that X

x//z
b1

is weakly contractible. Moreover, after choosing a
(L ,R)-factorization [a1

e−→ a′
1 → b1], we have a p-cocartesian lift e : x x′ of e by assumption (1), and by

the universal property of e we have an equivalence

X
x//z
b1

≃ (XR)x
′//z
a′

1
.

But hypothesis (2) then ensures that (XR)x
′//z
a′

1
is weakly contractible, which completes the proof. �

Now let O⊗ be an ∞-operad and consider the factorization system given by the inert and active edges
(cf. [Lur17, Def. 2.1.2.3] and [Lur17, Prop. 2.1.2.4]). Let O⊗

act ⊂ O⊗ be the wide subcategory on the active
edges.

10.2. Definition. Let p : C⊗ O⊗ be a fibration of ∞-operads. We say that p exhibits C⊗ as a O-
promonoidal ∞-category if the restricted functor pact : C⊗

act O⊗
act is flat.

10.3. Example. Suppose that C⊗ is a O-monoidal ∞-category, so that its structure map p is a cocartesian
fibration. C⊗ is then O-promonoidal since cocartesian fibrations are flat [Lur17, Exm. B.3.4].

The following example was pointed out to us by Harpaz and shows that our earlier definition of symmetric
promonoidal given as [BGS20, Def. 1.4] was too restrictive.

10.4. Example. There exists examples of O-promonoidal ∞-categories (C⊗, p) such that p itself is not flat.
For instance, consider the ∞-operad MCom⊗ that parametrizes modules over commutative algebras (cf.
[HNP19, 4.3]). Then MCom⊗ is symmetric promonoidal, but p : MCom⊗ F∗ is not flat. Indeed, let
〈n〉 = {1, ..., n,+} and consider the composition of maps of pointed finite sets

h : 〈3〉 f 〈2〉 g 〈1〉
where f(1) = 1, f(2) = 2, f(3) = 2 and g(1) = 1, g(2) = +. Let m be the object of MCom representing the
module factor and consider the inert edge e : (m,m,m) m over h. Then e doesn’t factor over h = g ◦ f ,
so p is not flat.

10.5. Remark. Let (C⊗, p) be a O-promonoidal ∞-category. Then if C⊗ is moreover corepresentable in the
sense that p is locally cocartesian, we claim that p is cocartesian so that C⊗ is O-monoidal. Indeed, by
[BGS20, Prop. 1.5] we see that pact is cocartesian, and using the inert-active factorization system on C⊗

together with the decomposition of mapping spaces in C⊗ ensured by the definition of an ∞-operad [Lur17,
Def. 2.1.1.10(2)], it is not difficult to check that p itself is cocartesian.

We now generalize Lurie’s construction of Day convolution [Lur17, Thm. 2.2.6.2], which assumed that C⊗

was O-monoidal. Let Arne(O⊗) denote the full subcategory of Ar(O⊗) on the inert edges.

10.6. Theorem-Construction. Let (C⊗, p) be a O-promonoidal ∞-category. Consider the span of marked
simplicial sets

(O⊗,Ne) (Arne(O⊗) ×ev1,O⊗,p C
⊗,Ne) (C⊗,Ne)

pr
C⊗ev0

where the middle marking consists of those edges in Arne(O⊗)×O⊗ C⊗ whose source in O⊗ is inert and whose
projection to C⊗ is inert. Then the functor

(ev0)∗ ◦ (prC⊗ )∗ : sSet+
/(C⊗,Ne) sSet+

/(O⊗,Ne)



42 JAY SHAH

is right Quillen with respect to the operadic model structures of [Lur17, Prop. 2.1.4.6]. For a fibration
D⊗ C⊗ of ∞-operads, we then define the p-operadic coinduction of D⊗ to be

(NmpD)⊗ := (ev0)∗(prC⊗ )∗(D⊗,Ne).
For a fibration D⊗ O⊗ of ∞-operads, we define the Day convolution (of C⊗ with D⊗ over O⊗) to be

F̃unO(C,D)⊗ := (Nmpp
∗D)⊗.

Proof. It suffices to verify the hypotheses of [Lur17, Thm. B.4.2]. For (1), ev0 is flat by Lemma 10.1. The
remainder of the proof is now identical to that of [Lur17, Prop. 2.2.6.20(a)]; the only additional point to
note is that the verification of (5) only uses that C⊗ O⊗ admits p-cocartesian lifts over inert edges in
the base. �
10.7. Remark. It follows readily from the definition that the underlying ∞-category of the Day convolution
F̃unO(C,E)⊗ is equivalent to the pairing construction F̃unO(C,E) (Theorem-Construction 4.2 with T = ∗).

Given Theorem-Construction 10.6, all the usual properties of Day convolution with this extra generality
in the source variable then hold; we will give a comprehensive treatment of the parametrized theory in [NS].
In particular, we have that for any fibration D⊗ O⊗ of ∞-operads, the identity section

ι : (D⊗ ×O⊗ C⊗,Ne) (D⊗ ×O⊗ Arne(O⊗) ×O⊗ C⊗,Ne)
is a homotopy equivalence in sSet+

/(C⊗,Ne), so for all fibrations E⊗ C⊗ of ∞-operads, restriction along ι
induces an equivalence of ∞-categories

AlgD/O(NmpE) ≃ AlgD×OC/C(E).
Thus, we may think of the class of O-promonoidal ∞-categories as singling out the exponentiable fibrations

of ∞-operads over O⊗.

References
[AF20] David Ayala and John Francis, Fibrations of ∞-categories, Higher Structures 4 (2020), no. 1.
[AMGR17] David Ayala, Aaron Mazel-Gee, and Nick Rozenblyum, Factorization homology of enriched ∞-categories, arXiv

preprint arXiv:1710.06414 (2017).
[BDG+16] Clark Barwick, Emanuele Dotto, Saul Glasman, Denis Nardin, and Jay Shah, Parametrized higher category theory

and higher algebra: A general introduction, arXiv:1608.03654, 2016.
[BGS20] Clark Barwick, Saul Glasman, and Jay Shah, Spectral Mackey functors and equivariant algebraic K-theory, II,

Tunisian J. Math. 2 (2020), no. 1, 97–146.
[BH21] Tom Bachmann and Marc Hoyois, Norms in motivic homotopy theory, Astérisque 425 (2021).
[GHN17] David Gepner, Rune Haugseng, and Thomas Nikolaus, Lax colimits and free fibrations in ∞-categories, Documenta

Mathematica 22 (2017), 1225–1266.
[Gla16] Saul Glasman, A spectrum-level Hodge filtration on topological Hochschild homology, Selecta Mathematica 22

(2016), no. 3, 1583–1612.
[HHK+20] Jeremy Hahn, Asaf Horev, Inbar Klang, Dylan Wilson, and Foling Zou, Equivariant nonabelian Poincaré duality

and equivariant factorization homology of Thom spectra, arXiv preprint arXiv:2006.13348 (2020).
[Hin20] Vladimir Hinich, Yoneda lemma for enriched ∞-categories, Advances in Mathematics 367 (2020), 107129.
[HNP19] Yonatan Harpaz, Joost Nuiten, and Matan Prasma, Tangent categories of algebras over operads, Israel Journal of

Mathematics 234 (2019), no. 2, 691–742.
[Hor19] Asaf Horev, Genuine equivariant factorization homology, arXiv preprint arXiv:1910.07226 (2019).
[Lur09] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton,

NJ, 2009. MR 2522659 (2010j:18001)
[Lur17] , Higher algebra, Preprint from the web page of the author, May 2017.
[Lur21] Jacob Lurie, Kerodon, https://kerodon.net, 2021.
[Nar16] Denis Nardin, Parametrized higher category theory and higher algebra: Exposé IV – Stability with respect to an

orbital ∞-category, arXiv:1608.07704, 2016.
[Nar17] Denis Nardin, Stability and distributivity over orbital ∞-categories, Ph.D. thesis, 2017.
[NS] Denis Nardin and Jay Shah, Parametrized and equivariant higher algebra, In preparation.
[Sha21] Jay Shah, Parametrized higher category theory, to appear in Algebraic & Geometric Topology (2021),

arXiv:1809.05892.

Fachbereich Mathematik und Informatik, WWU Münster, 48149 Münster, Germany
Email address: jayhshah@gmail.com



299



ar
X

iv
:1

60
8.

07
70

4v
4 

 [
m

at
h.

A
T

] 
 2

9 
O

ct
 2

01
6

PARAMETRIZED HIGHER CATEGORY THEORY AND HIGHER
ALGEBRA: EXPOSÉ IV – STABILITY WITH RESPECT TO AN

ORBITAL ∞-CATEGORY

DENIS NARDIN

Abstract. In this paper we develop a theory of stability for G-categories
(presheaf of categories on the orbit category of G), where G is a finite group.
We give a description of Mackey functors as G-commutative monoids exploit it
to characterize G-spectra as the G-stabilization of G-spaces. As an application
of this we provide an alternative proof of a theorem by Guillou and May. The
theory here is developed in the more general setting of orbital categories.
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1. Introduction

It is often said that spectra are the same as homology theories. This is strictly
speaking wrong when homology theories are interpreted as valued in graded abelian
groups, due to the presence of phantom maps. Luckily, Goodwillie calculus provides
us with an equivalence between spectra and linear functors from finite pointed
spaces to spaces (that is space-valued homology theories). This allows us to state a
universal property for the category of spectra: it is the universal source of a linear
functor to spaces ([21, Pr. 1.4.2.22]).

One would imagine that a similar statement should be true for G-spectra, where
G is a finite group. The category of G-spectra is not, however, the universal source
of linear functors to G-spaces (that would be spectral presheaves over the orbit
category of G). It has been an important insight in the solution to the Kervaire
invariant one problem by Hill, Hopkins, and Ravenel ([18]) that in G-spectra one
should ask for a stronger form of additivity: they should not only turn coproducts
into products, but also coproducts indexed by a finite G-set into the corresponding
product. This is merely a form of Atiyah duality for finite G-sets, but a highly
suggestive one.

1
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In order to speak of indexed products and coproducts it is necessary to be able to
remember the notion of objects with an H-action for every subgroup H of G. So we
need to move from the notion of ∞-category to the notion of G-∞-category, which
is a presheaf of categories over OG, the orbit category of G. This sends G/H to the
∞-category of objects corresponding to the subgroup H (e.g. H-spaces, H-spectra
etc.) and encodes all the functoriality of restriction to subgroups (corresponding
to the map G/H G/K for H ⊆ K) and of twisting the action by conjugation
(corresponding to the isomorphism of G/H with G/gHg−1 in OG). The general
theory of (co)limits indexed by a G-∞-category has been developed in [26]. We will
briefly summarize the necessary results in section 2.

Once the notion of G-(co)limit has been set up, one can try to mimic the whole
theory of additive and stable ∞-categories in this equivariant setting. This works
nicely and provides us with a universal property for the G-∞-category of G-spectra:
it is the universal recipient of a G-linear functor from the G-∞-category of finite
G-spaces (cf. theorem 7.4).

1.1. Theorem. For any G-category with finite G-colimits C the G-functor Ω∞ :
SpG TopG induces an equivalence

FunG−rex
G (C,SpG) LinG(C,Top

G
)

between the category of G-functors C SpG preserving finite G-colimits and the
category of G-linear G-functors C Top

G
.

Another important result in the same spirit is the identification of connective
spectra with group-like commutative monoids in spaces, as done in [25]. This
too has an equivariant analogue (cf. corollary A.4.1). In fact it turns out that
G-commutative monoids are the same thing as product-preserving functors from
the effective Burnside category of [2]. This explains the ubiquity of Mackey func-
tors in equivariant homotopy theory and allows us to give an alternative proof of
[17, Th. 0.1], identifying orthogonal G-spectra with spectral Mackey functors (see
appendix A).

Two important predecessors of this paper are [14] and [15]. In the first a de-
scription of G-spectra as enriched functors from G-spaces to G-spaces is provided
for a general compact Lie group, while the second contains a characterization of
G-spectra as functors in term of an excisivity condition for a finite group G. While
the approach taken here is different, the intuition behind it is very similar.

In this paper we will work in the general setting of atomic orbital categories (see
section 2). Examples of atomic orbital categories beyond the orbit category of a
(pro)finite group are an∞-groupoid (thus recovering the theory of [23]), the cyclonic
orbit category ([8, Df. 1.10]) and the global orbit category for finite groups (the full
subcategory of Ogl defined in [24, Cn. 8.32] spanned by completely universal finite
subgroups of L). One important non-example is the orbit∞-category of a compact
Lie group. This is due to the lack of a good notion of finite G-set stable under
restriction to subgroups when G is compact Lie. The reader uninterested in such
generality can safely substitute OG every time T appears in this paper.

Acknowledgments: This paper is part of a joint project with Clark Barwick,
Emanuele Dotto, Saul Glasman and Jay Shah. Many of the ideas and details of
the present paper arose first during conversations with them. Other papers in this
project are [4], [3], [26], [7], [1], [5], [13], [12], and [11]. I would like to thank Mark
Behrens for help navigating the models for G-spectra in appendix A. We also want
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to thank all the other past and present participants to the Bourbon seminar for
the incredibly stimulating environment: Lukas Brantner, Peter Haine, Marc Hoyois,
Akhil Mathew and Tomer Schlank.

2. Preliminaries on equivariant (co)limits

2.1. We will be using extensively the theory of T -∞-categories for a general base cat-
egory T , developed in [3] and [26]. In this section we will recall the most important
results.

Motivated by the discussion of G-categories in the introduction, we want to study
presheaves of∞-categories over T . However, a different model for those turns out to
be more convenient (e.g. allowing us to state results like theorem 2.8). To describe it
we will make use of the following foundational result of the theory of ∞-categories
(cfr. [20, Th. 3.2.0.1] and [20, Sec. 3.3.2]):

2.2. Theorem. There is a cocartesian fibration Z Cat∞ such that for every∞-
category S there is an equivalence between Fun(S,Cat∞) and the ∞-category of co-
cartesian fibrations over S, sending F : S Cat∞ to the pullback of Z Cat∞
along F .

2.3. Definition. Motivated by the previous result, we let a T -∞-category to be a
cocartesian fibration over T op. A T -functor between two T -∞-categories is simply
a map of cocartesian fibrations (that is a map of simplicial sets over T op that
sends cocartesian arrows to cocartesian arrows). Using the simplicial nerve of [20,
Df. 1.1.5.5] we can form the ∞-category of T -∞-categories.

2.4. Notation. If C is a T -∞-category and e : t t′ is an edge of T , we denote
the pushforward functor Ct′ Ct by δe or δt/t′ .

2.5. Definition. For any ∞-category T , the ∞-category FT of finite T -sets is the
full subcategory of the category of presheaves on T spanned by finite coproducts of
representables. It satisfies the following universal property: for any ∞-category D
with all finite coproducts the forgetful functor

Fun∐(FT , D) Fun(T,D)

is an equivalence, where the left hand side is the category of functors preserving
finite coproducts. There is a functor Orbit : FT F (where F = F∆0 is the
category of finite sets) sending every finite T -set to the set of summands.

For any finite T -set U there is a T -∞-category U, called the category of points
of U , which as a simplicial set over T op is defined by

U = T op ×Fop
T

(Fop
T )U/ .

This is the left fibration classified by the functor sending V to the space of arrows
[V U ].

2.6. Construction. If C,D are two T -∞-categories, there exists a T -∞-category
FunT (C,D) classified by the functor

b 7→ FunT/b
(C|Tb/

, D|Tb/
)

There is an obvious evaluation T -functor

C ×Top FunT (C,D) D
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2.7. Definition. For every∞-category C we want to construct a T -∞-category CT

classified by the functor b 7→ Fun(T op
/b , C). This is the T -∞-category of T -objects in

C. As a simplicial set over T op it is given by

Mor/Top(K,CT ) = Mor(K ×Top Fun(∆1, T op), C)

where Fun(∆1, T op) lies above T op with the evaluation at 0. This is a cocartesian
fibration thanks to [20, Co. 3.2.2.13].

When T = OG and C = Top, this is the cocartesian fibration classified by the
functor sending G/H to the ∞-category of genuine H-spaces (that is presheaves of
spaces over OH). One of the pleasant features of the model of T -∞-categories we
are using is that the T -∞-category of T -objects has a simple universal property:

2.8. Theorem. Suppose T an∞-category, C a T -∞-category, and D an∞-category.
Then there is a natural equivalence

FunT (C,DT ) ≃ Fun(C,D) .

In particular, by [20, Th. 3.2.0.1], the ∞-category FunT (C,Cat∞T
) is equivalent to

the ∞-category associated to the simplicial category of cocartesian fibrations over
C and under this equivalence left fibrations correspond to functors whose image lies
in Top

T
.

2.9. Definition. A T -adjunction between two T -∞-categories C and D is an ad-
junction FG : C ⇆ D between the two total categories such that F and G are
T -functors (that is they send cocartesian arrows to cocartesian arrows) and unit
and counit lie above the identity natural transformation of the identity functor on
T . This is the same thing as a relative adjunction in the sense of [21, Sec. 7.3.2] such
that both functors are T -functors. Note that the left adjoint in a relative adjunction
is is automatically a T -functor, but this is not true for the right adjoint.

2.10. Definition. Precomposition with the structure map C T op induces a
diagonal T -functor

∆ : D ∼= FunT (T,D) FunT (C,D) .

When this T -functor has a left T -adjoint we say that D has all C-indexed T -colimits.
Similarly, if it has a right T -adjoint we say that D has all C-indexed T -limits. If
a T -∞-category D has all C-indexed T -colimits (respectively T -limits) for every
small T -category C we say that D is T -cocomplete (respectively T -complete).

A T -colimit indexed by a T -category of the form pr2 : K × T op T op for K
an ∞-category is called a fiberwise T -colimit. A T -colimit indexed by the category
of points of a finite T -set is called a finite T -coproduct. A T -∞-category is said to
be pointed if it has both a T -initial and a T -terminal object (that are cocartesian
sections of the structure map that fiberwise select the initial and the terminal object
respectively) and the canonical comparison map is an equivalence.

The following proposition summarizes the results on T -(co)limits from [26] that
will be needed in this paper.

2.11. Proposition. Let C be a T -∞-category.
◮ C has all T -colimits indexed by K × T op if and only if for every b ∈ T the

fiber Cb has all colimits indexed by K and for every edge e : b b′ in T
the pushforward functor δe : Cb′ Cb preserves colimits indexed by K.
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◮ Suppose FT has all fiber products (that is T is orbital, cf. Df. 4.1). Then C
has all (finite) T -coproducts if and only if the following two conditions are
satisfied
(1) for every b ∈ T the fiber Cb has all (finite) coproducts and for every

edge e : b b′ the pushforward δe preserves (finite) coproducts;
(2) For every edge e : b b′ the pushforward δe has a left adjoint

∐
e sat-

isfying the Beck-Chevalley condition: for every pair of edges e : b b′

and e′ : b′′ b′ the canonical base change natural transformation of
functors from Cb′′ to Cb

δe
∐

e′

∐

o∈Orbit(b×b′b′′)

∐

pr1

δpr2

is an equivalence, where pr1 : o b and pr2 : o b′ are the restric-
tions to o of the two projections from b×b′ b

′′.
◮ C has all T -colimits if and only if it has all fiberwise colimits and all finite

T -coproducts.

Similar statements hold for T -limits. When T -products exist the right adjoint of δe
will be denoted by

∏
e.

2.12. Definition. There is also a notion of T -Kan extension, defined exactly as for
the T -(co)limit: if we have a T -functor j : I J there is a T -functor induced by
precomposition with j:

j∗ : FunT (J,D) FunT (I,D) .

If j∗ has a left T -adjoint we denote it by j! and call it the left T -Kan extension along
j. Similarly, when j∗ has a right T -adjoint we call it the right T -Kan extension j∗.

The proof of the following proposition can be found in [26].

2.13. Proposition. Let C be a T -∞-category with all T -colimits. Then for every
map of small T -∞-categories j : I I ′ the left Kan extension along j

j! : FunT (I, C) FunT (I
′, C)

exists. Similarly for T -limits and the right Kan extension j∗.

2.14. Notation. A T -functor is said to be fiberwise left exact, T -left exact, fiberwise
right exact, T -right exact if it preserves finite fiberwise limits, finite T -limits, finite
fiberwise colimits and finite T -colimits respectively. We will denote the full T -∞-
subcategories of FunT (C,D) preserving certain (co)limits will be denoted as in the
following list:

◮FunT−lex
T (C,D): finite T -colimits;

◮Funfb−lex
T (C,D): finite fiberwise colimits;

◮Fun∐T (C,D): finite T -coproducts;
◮FunT−rex

T (C,D): finite T -limits;

◮Funfb−rex
T (C,D): finite fiberwise limits;

◮Fun×T (C,D): finite T -products.
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3. Fiberwise stability

3.1. Recollection. If C is an ∞-category with finite colimits and D is an ∞-
category with finite limits a functor F : C D is called linear if it sends the
initial object of C to the terminal object of D and pushout squares in C to pullback
squares in D (this functors are called pointed excisive in [21]). In [21, Pr. 1.4.2.13]
it is proven that a pointed functor is linear if and only if the natural transformation
F ΩFΣ is an equivalence. The full subcategory of Fun(C,D) spanned by linear
functors is denoted Lin(C,D).

3.2. Definition. Let C,D T -∞-categories and assume that C has all finite fiberwise
colimits and D has all finite fiberwise limits. We say that a T -functor F : C D
is fiberwise linear if the restriction on the fiber Fb : Cb Db is linear for every
b ∈ T . We denote the full T -subcategory of FunT (C,D) spanned by fiberwise linear
functors with LinT (C,D).

3.3. First we want to show that, if C is T -pointed, LinT (C,D) is a localization of
the subcategory FunT,∗(C,D) of functors sending the zero object to the terminal
object in each fiber. To do so we introduce two additional functors ΣT : C C
and ΩT : D D which are the pushout (respectively pullback) of the diagrams

idC ∗

∗
and

∗

∗ idD
.

Since fiberwise linearity can be checked fiberwise it is clear that a functor F ∈
FunT,∗(C,D) is in Lin(C,D) if and only if the canonical map F ΩTFΣT is an
equivalence.

3.4. Lemma. Suppose that C is a pointed T -category. Then the∞-category LinT (C,D)
is stable.

Proof. It is clear that LinT (C,D) has finite limits and that it is pointed. If we show
that Ω is an equivalence we are done by proposition 1.4.2.24 of [21]. But Ω is just
postcomposition with ΩT : D D and then it is obvious that precomposition
with ΣT : C C is an inverse. �

3.5. Definition. We say that a T -∞-category D with all finite fiberwise limits and
colimits is fiberwise stable if all fibers Db are stable.

3.6. Construction. If C is a T -∞-category we want to construct a fiberwise stabi-
lization, that is the universal source of a fiberwise linear T -functor to C. Let E(D)
be the simplicial set over T op such that

Mor/Top(K, E(D)) ∼= Mor/Top(K ×Topfin
∗ , D)

(this is an instance of the pairing construction of [20, Cor. 3.2.2.13]). The fiber over
b ∈ T op is the category Fun(Topfin

∗ , Db).
We let Sp

T
(D) be the simplicial subset of E(D) consisting of all simplices whose

vertices are linear functors Topfin
∗ Db. This is the same simplicial set denoted
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by Stab(D) in [21, Cn. 6.2.2.2]. It comes equipped with a natural map of simplicial
sets Ω∞ : Sp

T
(D) D over T op that on vertices is evaluation at S0.

3.7. Proposition. The map Sp
T
(D) T op is a fiberwise stable T -∞-category.

Moreover the natural functor Ω∞ : Sp
T
(D) D is a fiberwise left exact T -

functor and for every pointed T -∞-category C with finite T -colimits the induced
map

Funfb−rex
T (C,Sp

T
(D)) LinT (C,D)

is an equivalence of categories.

Proof. From [20, Cor. 3.2.2.13] it follows immediately that E(D) is a cocartesian
fibration whose cocartesian edges are those maps (∆1)♯ × (Topfin

∗ )♭ D♮ that
are marked. So to prove that Sp

T
(D) T op is a cocartesian fibration we need

only to prove that it contains all cocartesian edges whose source is in it (that is,
that Sp

T
(D) is closed under pushforward). But, by our description of cocartesian

edges, the pushforward functor along an edge e : b b′ of E is given by

(δe)∗ : Eb′ = Fun(Topfin
∗ , Db′) Eb = Fun(Topfin

∗ , Db) ,

that is postcomposition with the pushforward in D. Since the pushforward in D
preserves finite limits by definition, (δe)∗ preserves linear functors and so Sp

T
(D)

is a T -∞-category.
Note that the fiber of Sp

T
(D) over b ∈ T is exactly the stabilization of the fiber

Db and that the pushforward functors between fibers of Sp
T
(D) are the functors

induced by the pushforward between the fibers of D. So the cocartesian fibration
Sp

T
(D) has all finite fiberwise limits and colimits and is fiberwise stable. Moreover

the functor Sp
T
(D) D is a T -functor preserving T -limits.

Finally let us prove the universal property. Since the fibers of

Funfb−lex
T (C,Sp

T
(D)) and LinT (C,D)

over b ∈ T are

Funfb−lex
T/b

(C ×Top T op
b/ ,Sp

T/b
(D ×Top T op

b/ )) and LinT/b
(C ×Top T op

b/ , D ×Top T op
b/ )

respectively, up to replacing T by its slice T/b it is enough to prove that the functor

(Ω∞)∗ : Funfb−lex
T (C,Sp

T
(D)) LinT (C,D)

is an equivalence of categories (since being an equivalence can be checked on ev-
ery fiber). Observe that Funfb−lex

T (C,Sp
T
(D)) and Sp(LinT (C,D)) are the same

subcategory of FunT (C × Topfin, D), because both are spanned by the functors
F : C ×Topfin

T D whose restriction to Cb×Topfin lie in Funlex(Cb,Sp(Db)) =
Sp(Lin(Cb, Db)) for any b ∈ T . Then the thesis is obvious because Lin(Cb, Db) is
stable. �

4. Categories of finite T -sets

4.1. Definition. A small ∞-category T is said to be orbital if the category FT

of definition 2.5 has all pullbacks. An orbital category T is atomic if there are no
nontrivial retracts, that is if every map with a left inverse is an equivalence.

A more in depth treatment of orbital ∞-categories can be found in [7].

4.2. Example. The following are examples of atomic orbital categories:
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◮ The orbit category OG of a (pro)finite group is atomic orbital;
◮ The category of finite sets and surjections is atomic orbital;
◮ In general any epiorbital category ([16, Df. 2.1]) is atomic orbital;
◮ All ∞-groupoids are atomic orbital categories;
◮ Every cosieve of an atomic orbital category is atomic orbital;
◮ More generally, the total category of every right fibration over an atomic

orbital ∞-category is atomic orbital;
◮ The cyclonic orbit category of [8, Df. 1.10] is atomic orbital;
◮ The category of connected groupoids (that is groupoids of the form BG

for a finite group G) and covering maps is atomic orbital. This is the full
subcategory of the global orbit category of [24, Cn. 8.32] spanned by the
completely universal finite subgroups of L.

4.3. For the remainder of this paper, T will be a fixed atomic orbital category. We
will now construct T -∞-categories of finite T -sets that will be used to parametrize
the various multiplications composing the structure of a T -commutative monoid.

4.4. Definition. We want to construct the T -category classified by the functor
T Cat∞ sending V to FT/V

. We contemplate the arrow∞-categoryFun(∆1,FT )
of the ∞-category FT of finite T -sets. Since FT admits all pullbacks, the target
functor

Fun(∆1,FT ) Fun({1},FT ) ∼= FT

is a cartesian fibration. We may pull it back along the fully faithful inclusion
T FT to obtain a cartesian fibration

τ : Fun(∆1,FT )×Fun({1},FT ) T T.

It is classified by the functor T op Cat∞ that carries an orbit V to the ∞-
category FT/V

.
We now write

p : FT T op

for the dual cocartesian fibration τ∨ (constructed in [9]) to the cartesian fibration
τ . This is now a T -∞-category, called the T -∞-category of finite T -sets, and once
again it is classified by the functor T op Cat∞ that carries an orbit V to the
nerve of the ∞-category FT/V

. Its objects are arrows I = [U V ] with U ∈ FT

and V ∈ T and an arrow [U V ] [U ′ V ′] is a diagram

U W U ′

V V ′ V ′

where the left square is cartesian. Composition is then defined by forming suitable
pullbacks. The target functor

[U V ] V

is the structure map p : FT T op.

4.5. Example. If T = OG is the orbit category of a profinite group G, then
FG Oop

G is the cocartesian fibration classified by the functor sending an or-
bit G/H to the category of finite H-sets (under the canonical identification that
sends a finite G-set over G/H to the fiber over eH).
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4.6. Example. Suppose V is an object of T . Then there is an object

I(V ) = [id : V V ]

of FT , which enjoys the following property. For any object J = [g : X Y ] of FT ,
one has an equivalence

MapFT
(J, I(V )) ≃ MapT (V, Y ).

In particular, the assignment V I(V ) defines a fully faithful right adjoint to
the structure map p : FT T op.

4.7. In what follows it will be convenient to have at our disposal more general
categories whose objects are finite T -sets. They will be all more easily manipulated
as subcategories of the Burnside category of finite T -sets. The latter is the dual
version of the main construction in [6], but we will repeat it here both because of
its simplicity and because we will need to use some details in our main results.

4.8. Construction. Let again us consider the cartesian fibration

τ : ST := Fun(∆1,FT )×Fun({1},FT ) T T.

It is also, for much easier reasons, a cocartesian fibration.
With this in mind, we now proceed to define triple structures on these ∞-

categories. Denote by ιT ⊂ T the subcategory consisting of the equivalences of
T . Then we can contemplate the triple structures

(T, ιT, T ) and (ST , ST ×T ιT, ST ).

It is a simple matter to see that these triple structures are adequate in the sense of
[2, Df. 5.2]. We may therefore construct their effective Burnside ∞-categories, and
the projection induces a functor

t′ : Aeff(ST , ST ×T ιT, ST ) Aeff(T, ιT, T ).

An object of Aeff(ST , ST ×T ιT, ST ) is a morphism [U V ] of finite T -sets in
which V ∈ T . If

I = [U V ] and J = [X Y ]

are two objects, then a morphism I J of Aeff(ST , ST×T ιT, ST ) is a commutative
diagram

U W X

V Z Y∼

in which the morphism Z ∼ Y is an equivalence in T .

4.9. Lemma. The functor t′ above is both a cartesian and a cocartesian fibration.
Furthermore, any morphism of Aeff(ST , ST×T ιT, ST ) represented as a commutative
diagram

U W X

V Z Y∼

is
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◮ t′-cartesian if the morphisms W ∼ U and W ∼ X are equivalences;
◮ t′-cocartesian if the left square is cartesian and ≡WX is an equivalence.

Proof. This follows immediately from (the opposite of) the “omnibus theorem” for
effective Burnside ∞-categories [2, Th. 12.2]. �
4.10. Definition. We have an inclusion T op Aeff(T, ιT, T ), which is a weak
equivalence. Write

Aeff(T ) := Aeff(ST , ST ×T ιT, ST )×Aeff(T,ιT,T ) T
op;

the projection Aeff(T ) Aeff(ST , ST ×T ιT, ST ) is thus an equivalence, and the
projection

t : Aeff(T ) T op

is a cartesian and cocartesian fibration, so it is a T -∞-category.
It is classified by the functor sending V ∈ T to the Burnside category Aeff(FT/V

).

4.11. Note that FT is naturally a T -subcategory of Aeff(T ), consisting of all objects
and all morphisms such that the left square is cartesian. This is the analogue of
the classical inclusion of the category F of finite sets inside the Burnside category
of finite sets Aeff(F) by considering only the egressive maps.

This can be extended to an inclusion of pointed finite sets F∗ inside Aeff(F) as
the subcategory containing all objects and as maps the spans [I Ĩ I ′] such
that the “left leg” is an inclusion (Ĩ under this identification corresponds to the
preimage of I ′ under the map I+ I ′+, so that we can identify F∗ with the
category of finite sets and partially defined maps. It will be convenient for us to
turn this into the definition of finite pointed T -sets.

4.12. Definition. We’ll say that a map U U ′ of finite T -sets is a summand
inclusion if there is U ′′ U ′ such that the map U ∐U ′′ U ′ is an equivalence.

Consider the subcategory of Aeff(T ) containing all objects and whose morphisms
are those diagrams

U Ũ U ′

V V ′ V ′

such that the arrow Ũ U×V V ′ is a summand inclusion (this is a condition of the
left square of the diagram and does not depend on the particular choice of pullback
U ×V V ′). This subcategory contains all cocartesian morphisms of Aeff(T ) T op

and so it is a T -subcategory. We will call it the T -∞-category of finite pointed T -sets
and denote it by F∗T .

4.13. Notation. We will often decorate an object I = [U V ] of F∗T with a
subscript +, to remind ourselves that we see it as living in F∗T rather than of FT

or A(T ). The + does not have any real meaning (in our construction there are no
“basepoints”) and it is only a mnemonic aid. The canonical inclusion FT FT

∗
will be indicated by (−)+ : I 7→ I+.

4.14. Lemma. The cocartesian fibration F∗T T op is classified by the functor
sending V to the category of pointed objects in (FT )V/.

Moreover the canonical inclusion (−)+ : FT F∗T has a right T -adjoint send-
ing [U V ] to [U ∐ V V ].
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Proof. The fiber of F∗T over V consists in the Burnside category of FT/V
where

the egressive morphisms are the summand-inclusions. We can identify this with the
category of pointed objects by sending a span

U Ũ U ′

where U = Ũ ∐W to the map

U ∐ V U ′ ∐ V

where the central map is U ∐ V = Ũ ∐ (W ∐ V ) U ′ ∐ V , given by Ũ U ′ on
the first component and the structure map to V on the second component.

Now it is clear that the functor

[U ∐ V V ] 7→ [U ∐ V V ]

is the right adjoint to the inclusion of FT/V
into pointed objects. So in order to

have a T -adjunction we need only to verify that the right adjoint provided by [21,
Pr. 7.3.2.6] is a T -functor, but this follows from the universality of finite coproducts
in FT and the fact that coproducts therein are disjoint. �

5. T -semiadditive functors and T -semiadditive categories

5.1. Notation. Let I = [U V ] ∈ FT and W ∈ Orbit(U), then the canonical
map W U ×V W must be a summand-inclusion, since it factors through an
unique orbit, of which W is a retract. So we can define the characteristic map

χ[W⊆U ] : I+ I(W )+

(where I(W ) is the construction of example 4.6) as the map of pointed finite T -sets
described by the following diagram

U W W

V W W
.

Note that this map is in F∗T due to the fact that, thanks to the atomicity of T ,
the map W U ×V W is a summand inclusion, since the orbit it factors through
retract onto W ..

5.2. Construction. Let C be a pointed T -∞-category with all finite T -coproducts,
I = [U V ] ∈ FT and X ∈ FunT (U, C) be a diagram. Then there is a map
induced on the colimits

(χ[W⊆U ])∗ : δW/V

∐

I

X X[W⊆U ] .

above χ[W⊆U ], where
∐

I is the left adjoint to δI : CV
∼= FunT (V, C) FunT (U, C)

and X[W⊆U ] is the value of X at [W ⊆ U ] ∈ U. We can describe it as follows: by
the base change condition in proposition 2.11 we have

δW/V

∐

I

X ∼=
∐

[U×V W/W ]

δ[U×V W/U ]X

As before, the atomicity of T implies that we can write

U ×V W ∼= W ∐ Ũ
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where W on the right hand side is the diagonal copy. Hence

δW/V

∐

I

X ∼= X[W U ] ∐
∐

[Ũ U ]

X .

So we can define a map

(χ[W⊆U ])∗ : δW/V

∐

I

X X[W⊆U ]

which is the identity on the first summand and the zero map on the other.
If D is a T -∞-category with finite T -products and F : C D a T -functor we

will denote by (χ[W⊆U ])∗ also the natural transformation

F

(∐

I

X

) ∏

W/V

F (X)

obtained by adjunction on F (χ[W⊆U ])∗, where
∏

W/V is the right adjoint of δW/V .

5.3. Definition. Let C be a pointed T -∞-category with all finite T -coproducts and
D a T -∞-category with all finite T -products. Then a T -functor F : C D is said
to be T -semiadditive if for every I = [U V ] ∈ FT and X ∈ FunT (U, C) the
map
(5.3.1)

∏

W∈Orbit(U)

(χ[W⊆U ])∗ : F

(∐

I

X

) ∏

W∈Orbit(U)

∏

W/V

F (X[W⊆U ]) ∼=
∏

I

F (X)

is an equivalence. We will denote the T -∞-category of all T -semiadditive T -functors
with Fun⊕

T (C,D).
We say that a pointed T -∞-category with all finite T -products and T -coproducts

is T -semiadditive if the identity functor is T -semiadditive. That is, if the map

(5.3.2)
∐

I

X
∏

I

X

is an equivalence for every I-uple X .

It is clear that if F : C D preserves finite T -coproducts and G : D E
is T -semiadditive then the composition GF is T -semiadditive. Similarly if F is
T -semiadditive and G preserves finite T -products.

5.4. Example. Let C be a pointed T -∞-category with all finite T -coproducts and
D an ∞-category with all finite products. Then the category of T -objects DT has
all finite T -products and a T -functor C DT is T -semiadditive if and only if the
associated functor F : C D is such that for every [U V ] ∈ FT the map

F

(∐

I

X

) ∏

W∈Orbit(U)

F (X[W⊆U ])

is an equivalence. In particular if D is semiadditive (i.e. it has biproducts), then
DT is T -semiadditive.

5.5. Example. The T -∞-category Aeff(T ) is T -semiadditive. In fact every fiber
is semiadditive by proposition 4.3 of [2], so it is sufficient to observe that for any
arrow W V in T the functor

δW/V : Aeff(T/V ) Aeff(T/W )
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has well behaved left and right adjoints and the canonical comparison map is an
equivalence.

5.6. Construction. Let C be a pointed T -∞-category with finite T -products. Then
if I = [U V ] ∈ FT and X : U C, let us consider for every W ∈ Orbit(U)
the map of CV

η[W⊆U ] :
∐

W/V

X[W U ]

∐

I

X
∏

I

X .

This can be described as the adjoint to the map in the fiber over W

X[W⊆U ] δW/V

∏

IW

X ∼=
∏

W ′∈Orbit(U×V W )

∏

W ′/W

X[W ′ U ] ,

given by the identity map XW

∏
W ′/W XW ′ when W ′ is the diagonal copy W

in U ×V W and the zero map on the other components.
Then C being T -semiadditive is equivalent to the fact that {ηW }W∈Orbit(U) as-

semble to an equivalence
∐

I

X ∼=
∐

W∈Orbit(U)

∐

W/V

X[W⊆U ]

∐
η[W⊆U]−−−−−−→

∏

I

X .

The previous remark immediately yields the following criterion for determining
when a category is T -semiadditive

5.7. Lemma. Let C be a pointed T -∞-category with finite products and suppose
that for every I = [U V ] ∈ FT there is a natural transformation

µI :
∏

I

∆X X

of functors CV CV , where ∆ : CV FunT (U, C) is the functor of definition
2.10, such that for every W ∈ Orbit(U) the composition

µI ◦ η[W⊆U ] :
∐

W/V

δW/V X X

is homotopic to the counit of the adjunction
∐

W/V ⊣ δW/V . Then C is T -semiadditive.

Proof. We need to prove that for every [U V ] ∈ FT , X ∈ FunT (U, C) and
Y ∈ CV , the map

∏

W∈Orbit(U)

(η[W⊆U ])
∗ : MapCV

(∏

I

X,Y

) ∏

W∈Orbit(U)

MapCV


∐

W/V

X[W⊆U ], Y




is an equivalence. But using the µI we can construct an inverse

(µI
Y )∗ ◦

∏

I

:
∏

W∈Orbit(U)

MapCV


∐

W/V

X[W⊆U ], Y


 ∼= MapFun(U,C) (X,∆Y )

MapCV

(∏

I

X,
∏

I

∆I

)
MapCV

(∏

I

X,Y

)
.

�
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5.8. Proposition. If C is a pointed T -∞-category with finite T -coproducts and D
is a T -∞-category with finite T -products then Fun⊕(C,D) is T -semiadditive

Proof. First let us note that by I to be empty in 5.3.1 every T -semiadditive functor
must send the zero object of C to the terminal object of D. Then for any additive
functor F the left T -Kan extension of the restriction to the zero object of C is the
constant functor at the terminal object, since the T -colimit of a constant functor
at the zero object is the zero object. So, if i : {0} ⊆ C is the inclusion of the zero
object

MapFun⊕
T
(∗, F ) = Map(i!(F |0), F ) = Map(F |0, F |0) = ∗

Hence the constant functor at the terminal object is the zero object of Fun⊕
T (C,D).

Then we need to prove that Fun⊕T (C,D) satisfies the hypothesis of the previ-
ous lemma. But this is easy: for F a T -semiadditive T -functor remember that
(
∏

I F ) (−) ∼= F (
∐

I −) so we can choose

µI :

(∏

I

F

)
(−) ∼= F

(∐

I

−
)

F (−)

given by precomposition with the canonical map idC
∐

I provided by the
universal property of the coproduct of C. Since the required identites are easily
verified we are done. �

5.9. Definition. Let C be a T -∞-category with finite products. Then a T -commutative
monoid is a T -semiadditive functor F∗T C. We will indicate the T -∞-category
of T -commutative monoids in C with CMonT (C). Precomposition with the co-
cartesian section I(−)+ : T op F∗T induces a T -functor

CMonT (C) C .

In order to prove the universal property of CMonT (C) we will need the following
lemma

5.10. Lemma. Let C be a pointed T -∞-category with finite T -coproducts. Then the
map

Fun∐T (F∗T , C) C

given by precomposition with I(−)+ is an equivalence

Proof. We can construct an inverse by sending every c ∈ CV to the left Kan exten-
sion of its cocartesian section V C along I(−)+ : T op F∗T . �

5.11. Proposition. Let C be a T -∞-category with finite T -products. The functor

CMonT (C) C .

induced by precomposition with the cocartesian section I(−)+ : T FT
∗ is an

equivalence if and only if C is T -semiadditive.

Proof. If the map is an equivalence then C is T -semiadditive, since CMonT (C) is.
Vice versa if C is T -semiadditive then

CMonT (C) = Fun⊕
T (F∗T , C) = Fun∐T (F∗T , C) C

is an equivalence by lemma 5.10. �
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5.11.1. Corollary. Let C be a T -∞-category with finite T -products and D a pointed
T -∞-category with finite T -coproducts. Then the map

Fun∐T (D,CMonT (C)) Fun⊕T (D,C)

is an equivalence of categories.

Proof. Observe that

Fun∐
T (D,CMonT (C)) ∼= Fun⊕T (D,CMonT (C)) ∼= CMonT (Fun

⊕
T (D,C))

where the first equivalence comes from the T -semiadditivity of CMonT (C). Since
Fun⊕T (D,C) is T -semiadditive the thesis follows by the previous proposition. �

6. T -commutative monoids and Mackey functors

6.1. The notion of T -commutative monoid, while being the natural generalization
of Γ-space to the parametrized setting, might seem abstract and difficult to work
with. The aim of this section is that in fact T -commutative monoids are just objects
very familiar in equivariant homotopy theory: Mackey functors.

6.2. Lemma. Let Fin
∗ T

be the T -subcategory of F∗T containing all objects and all
the maps represented by spans in ST

I Ĩ I ′

where the right arrow is an equivalence. Then a functor M : F∗T Top is a T -
commutative monoid if and only if its restriction to Fin

∗ T
is a right Kan extension

along I(−)+ : T op FT
∗ .

Proof. Obvious from the limit description of right Kan extensions (see [20, Pr. 4.3.2.15]).
�

6.3. Lemma. The inclusion j : F∗T Aeff(T ) is a T -commutative monoid.

Proof. Clear from the fact that F∗T contains all T -coproduct diagrams of Aeff(T )
and example 5.5. �

6.4. Lemma. Let C be an ∞-category and let E,F,D subcategories of C such
that (C,E,D) and (C,E, F ) are adequate triples in the sense of [2]. Consider the
diagram of categories

Aeff(C, ιE,D) Aeff(C,E,D)

Aeff(C, ιE, F ) Aeff(C,E, F )

f

g′ g

f ′

Then if a right Kan extension along g′ exists so does the right Kan extension along
g′ and the natural transformation

f ′∗g∗ g′∗f
∗

is an equivalence.
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Proof. Let us fix I ∈ C. We need to prove that the functor

Aeff(C, ιE,D)×Aeff(C,ιE,F )A
eff(C, ιE, F )I/ Aeff(C,E,D)×Aeff(C,E,F )A

eff(C,E, F )I/

is coinitial. This is equivalent to the fact that for every J ∈ C with a map from I
the category
(
Aeff(C, ιE,D) ×Aeff(C,ιE,F ) A

eff(C, ιE, F )I/
)
×(

Aeff(C,E,D)×
Aeff(C,E,F )

Aeff(C,E,F )I/

)

(
Aeff(C,E,D) ×Aeff(C,E,F ) A

eff(C,E, F )I/
)
/J

is weakly contractible. Let us start naming names. We have a fixed map I J in
Aeff(C,E, F ). This correspond to a span

I
F←− J̃

E−→ J ,

where we decorate every arrow with the subcategory it lives in. Now an object of
our category is T ∈ T together with an arrow in Aeff(C, ιE, F ) from I and an arrow
in Aeff(C,E,D) to J . These correspond to spans

I
F←− T ′ ιE−−→ T and T

D←− T̃
E−→ J .

The last piece of data needed is an homotopy of their composition with the given
map I J , that is a diagram

J

J̃ T̃

I T ′ T

E

F
D

E

ιE

F

where the central square is cartesian. But this is equivalent to the map J̃ T̃
being an equivalence. Summing up, an object of our category is a factorization of
J̃ I

J̃
D−→ T

F−→ I .

Moreover a similar analysis on higher simplices shows that this is the opposite of
the category of factorizations. It is easy to see that J̃

=−→ J̃ I is a terminal
object for this category, which is then weakly contractible. �

6.5. Theorem. Let C be a T -∞-category with finite T -limits. Precomposition with
the inclusion j : F∗T Aeff(T ) induces an equivalence

Fun×T (A
eff(T ), C) CMonT (C) .

We denote the category on the left hand side by MackT (C) and call it the T -∞-
category of T -Mackey functors valued in C.
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Proof. Let PshT (C) be the T -presheaf T -∞-category of C. Then, by the full faith-
fulness of the T -Yoneda embedding (see [3, Th. 10.4]) we have a pullback square

Fun×
T (A

eff(T ), C) CMonT (C)

Fun×
T (A

eff(T ),PshT (C)) CMonT (PshTC)

FunT

(
C∨op,Fun×T (A

eff(T ),Top
T
)
)

FunT

(
C∨op,CMonT (Top

T
)
)

,

where C∨op is the fiberwise opposite of [9], so it is enough to show the thesis for
C = Top

T
.

We claim that sending every T -commutative monoid to its right Kan extension
is the inverse of the restriction map. The first step is showing that the natural map

j∗M ◦ j M

is an equivalence. By applying 6.4 with C = F = ST , E the subcategory of fiberwise
arrows and D the category of summand inclusions (that is the egressive maps in
the definition of F∗T ) we see that it is enough to prove that the map

k∗(M |Fin
∗ T

) ◦ k M |Fin
∗ T

is an equivalence, where k is the inclusion of Eop in F op. But this follows imme-
diately from the fact that M |Fin

∗ T
is the right Kan extension of its restriction to

T op.
Hence j∗M must be a product preserving functor (since the image of j contains all

product diagrams in Aeff(T ). Viceversa let suppose that N is a product preserving
functor from Aeff(T ) to C. Then there is a natural map

N j∗(N ◦ j) .
But since j is essentially surjective we can check that this is an equivalence after
precomposing with j, which follows immediately from the previous case. �

6.6. With a similar proof it is possible to prove that if D is an ∞-category with
finite products there is an equivalence

Fun×(Aeff(T ), D) ∼= CMonT (D
T ) .

7. T -linear functors and T -stability

Recall the definition of fiberwise linear functor and fiberwise stable cocartesian
fibration from section 3.

The following definition is inspired to hypothesis (A) of [14].

7.1. Definition. Let C be a pointed T -∞-category with finite T -colimits and let D
be a T -∞-category with finite T -limits. Then a T -functor F : C D is T -linear
if it is fiberwise linear and T -semiadditive. A T -∞-category with all finite T -limits
and T -colimits is T -stable if it is fiberwise stable and T -semiadditive.

We will denote the T -subcategory of FunT (C,D) which on the fiber above V
is spanned by T/V -linear functors from C ×Top (T/V )

op to D ×Top (T/V )
op with

LinT (C,D).
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7.2. Lemma. Let D be a T -semiadditive T -∞-category. Then Sp
T
(D) is T -semiadditive

(and hence T -stable) and the functor Ω∞ : Sp
T
(D) D preserves T -products (and

so all T -limits).

Proof. Recall that Sp
T
(D) is the cocartesian fibration classified by the functor

V 7→ Sp(DV ) so it is clearly fiberwise semiadditive and we just need to show that
for every arrow W V in T the pushforward functor

Sp(DV ) Sp(DW )

has a coinciding left and right adjoints that satisfies the Beck-Chevalley condition.
But since the left and right adjoint are clearly given by postcomposition of those
of DV DW the thesis follows. �

7.3. Definition. Let D be a T -∞-category with all finite T -limits. Then the T -∞-
category of T -spectra is

SpT (D) = Sp
T
(CMonT (D)) .

By the previous lemma the latter category is T -stable

Note that there is a natural T -functor Ω∞ : SpT (D) D given by the compo-
sition

SpT (D) = Sp
T
(CMonT (D))

Ω∞
−−→ CMonT (D)

I(−)∗+−−−−→ D .

It is immediate by the previous lemma that it preserves all T -limits.

7.4. Theorem (Universal property of T -spectra). Let C be a pointed T -∞-category
with finite T -colimits and D be a T -∞-category with finite T -limits. Then the func-
tor

(Ω∞)∗ : Fun
T−rex
T (C,SpT (D)) LinT (C,D)

is an equivalence of T -∞-categories, where the source categories is the full subcate-
gory of those functors preserving finite T -limits. In particular

SpT (D) ∼= LinT (Top∗
fin

T
, D) ,

and the functor Ω∞ is given by evaluation at the cocartesian section I(−)+ : T op F∗T .

Proof. Since the map is clearly a T -functor we just need to check that it is an
equivalence fiberwise. But, remembering that finite T -colimits are generated by T -
coproducts and finite fiberwise colimits, we can apply 5.11.1 and 3.7 and conclude

FunT−rex
T (C,Sp

T
(CMonT (D))) = Lin∐T (C,CMonT (D)) = LinT (C,D) .

�

7.4.1. Corollary. Let D be an ∞-category with all finite limits. Then there is an
equivalence

LinT (Top∗
fin

T
, DT )

∼= Fun⊕(Aeff (T ),Sp(D)) .

Proof. Both of those are equivalent to the global sections of SpT (DT ). �
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Appendix A. Comparison with orthogonal spectra

A.1. Let G be a finite group. In this appendix we will prove that our notion of G-
spectra coincides with the orthogonal G-spectra developed in [22], thus reproving
a theorem by Guillou and May ([17]). Fix once and for all a complete G-universe U
(that is an isometric G-action on R∞ such that every finite-dimensional representa-
tion can be isometrically embedded in R∞ countably many times) and note that its
restriction to a subgroup H of G is an H-universe, which we will take with indexing
set given by the G-invariant subspaces. The category of orthogonal H-spectra with
respect to U ([22, Df. II.2.6]) will be denoted by SpH(1).

A.2. Definition. Let (OG)∗ be the category of G-orbits with a distinguished base-
point but with any possible map.1, We will write an element of (OG)∗ as G/H
where the distinguished basepoint is eH . It is clear that the functor (OG)∗ OG

that forgets the basepoint is an equivalence of categories. A map G/H G/K is
the datum of gK ∈ G/K such that g−1Hg ⊆ K. We have a functor from (OG)

op
∗

to categories sending
◮ A pointed orbit G/H to the category SpH

(1) of orthogonal H-spectra with
respect to U ;

◮ A map G/H G/K the composition of the functors

SpK(1) Spg
−1Hg

(1) SpH(1)

where the first functor is the restriction along the inclusion g−1Hg ⊆ K
and the second functor is induced by the isomorphism g−1Hg ∼= H given
by conjugating by g−1.

If we equip every category SpH(1) with the family of π∗-isomorphisms ([22, Df. III.3.2])
this becomes a functor from (OG)

op
∗ to the category of relative categories (since [22,

Lm. V.2.2] implies that change of groups preserve π∗-isomorphisms). By precompos-
ing with the equivalence Oop

G
∼= (OG)

op
∗ and postcomposing with the localization

functor from relative categories to ∞-categories we finally obtain a functor

Oop
G Cat∞

that classifies a cocartesian fibration SpG

orth
Oop

G . We call this cocartesian fibra-
tion the G-∞-category of orthogonal G-spectra. It comes equipped with a natural
G-functor

Ω∞ : SpG

orth
Top

G

induced by the natural transformation obtained by sending every orthogonal H-
spectrum to its 0-th space.

A.3. Lemma. The G-∞-category SpG

orth
is G-stable

Proof. Since the fibers are obtained by localizing a stable model category at the
weak equivalences SpG

orth is fiberwise stable. So we just need to check G-semiadditivity.
But after unwrapping the definitions this is equivalent to the Wirthmüller isomor-
phism ([19, Th. II.6.2], which holds for orthogonal G-spectra by [22, Th. III.4.16]).

�
1Another way of thinking of this category is as the category of G-orbits together with an

explicit isomorphism with an orbit of the form G/H. This is of course purely bookkeeping and
has nothing to do with the use of basepoints when defining G-spectra.
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We can now give a very simple proof of [17, Th. 0.1] along the outline in section
11 of [10].

A.4. Theorem (Guillou-May). The functor Ω∞ : SpG
orth Top

G
lifts to an

equivalence of G-∞-categories SpG

orth
∼= SpG.

Proof. Since the functor SpG

orth
Top

G
preserves all finite G-limits (it has a

left G-adjoint by proposition [21, Pr. 7.3.2.1]) it lifts uniquely to a functor Ξ :

SpG
orth SpG.
For every orbit V the fibers (SpG

orth)V and (SpG)V are both generated by suspen-
sion spectra of orbits. Moreover Ξ sends suspension spectra of orbits to suspension
spectra of orbits and is fully faithful when restricted to those subcategories by [10,
Th. 10.6] and [22, Th. V.11.1], since in both settings Map(Σ∞

+ G/H,Σ∞
+ G/K) is

just Ω∞ (Σ∞
+ (G/H ×G/K)

)G. Hence it is an equivalence by the Schwede-Shipley
theorem [21, Th. 7.1.2.1]. �

From this description of G-spectra we immediately obtain a recognition principle
for G-connective G-spectra

A.4.1. Corollary. There is an adjuction

B ⊣ Ω∞ : CMonG(Top
G
) ⇆ SpG

such that
◮ the unit X Ω∞BX is an equivalence if and only XH is a group-like

monoid for every subgroup H < G;
◮ the counit BΩ∞E E is an equivalence if and only if EH is connective

for every subgroup H < G.

Proof. After our identifications this is just the adjunction

Fun×(Aeff(G),Top) ∼= Fun⊕(Aeff(G),CMon(Top)) ⇆ Fun⊕(Aeff(G),Sp)

given by postcomposition with the adjunction for ordinary spectra, and the thesis
follows from the classical recognition theorem. �
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PARAMETRIZED AND EQUIVARIANT HIGHER ALGEBRA

DENIS NARDIN AND JAY SHAH

Abstract. We develop the rudiments of a theory of parametrized ∞-operads, including parametrized gen-
eralizations of monoidal envelopes, Day convolution, operadic left Kan extensions, results on limits and
colimits of algebras, and the symmetric monoidal Yoneda embedding.
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1. Introduction

The goal of this paper is to lay foundations for a theory of parametrized∞-operads. To explain the concept,
suppose G is a finite group and let us first recall the concept of a G-symmetric monoidal ∞-category, after
Hill–Hopkins [HH16], Blumberg–Hill [BH20], and Bachmann–Hoyois [BH21]. Let FG be the category of
finite G-sets, Span(FG) the (2, 1)-category of spans of finite G-sets, and Ĉat the (huge) ∞-category of
(large) ∞-categories.

Date: March 2, 2022.
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2 DENIS NARDIN AND JAY SHAH

1.0.1. Definition. A G-symmetric monoidal ∞-category is a product-preserving functor
C⊗ : Span(FG) Ĉat.

For example, the ∞-category SpG of genuine G-spectra extends to a G-symmetric monoidal ∞-category
(SpG)⊗ whose value on G/H is equivalent to SpH and whose covariant functoriality encodes the symmetric
monoidal structures on {SpH}H≤G as well as the Hill–Hopkins–Ravenel norm functors f⊗ : SpH SpK
associated to maps of G-orbits f : G/H G/K (cf. [BH21, §9]). More generally, one can substitute other
base ∞-categories apart from FG as needed for other applications; in particular, in the motivic context
Bachmann and Hoyois work with spans over certain categories of schemes and have extensively investigated
the properties of such normed symmetric monoidal ∞-categories and their algebras in [BH21].

Just as the theory of symmetric monoidal∞-categories admits a generalization to a theory of∞-operads,
we will see that the theory of G-symmetric monoidal ∞-categories admits a corresponding sort of general-
ization. Roughly speaking, a simplicial G-operad should consist of the data of a space of multimorphisms
associated to every map of finite G-sets, with a composition law then associated to every composite of maps
of finite G-sets.1 In fact, just as an ∞-operad is really the ∞-categorical counterpart of a simplicial col-
ored operad (i.e, a simplicial multicategory), our theory of G-∞-operads will encompass both G-symmetric
monoidal ∞-categories and simplicial colored G-operads via a suitably defined coherent nerve construction.
Abstracting away from the equivariant situation, we will be able to make this idea work under the follow-
ing hypotheses on our base ∞-category, which were first articulated in the first author’s work [Nar16] on
parametrized stability.
1.0.2. Definition ([Nar16, Def. 4.1]). Let T be a small ∞-category. We say that T is orbital if its finite
coproduct completion admits all pullbacks. We say that T is atomic if it has no non-trivial retracts, so that
every map with a left inverse is an equivalence.
1.0.3. Example. The orbit category OG of a finite group is atomic orbital. Some other examples are
enumerated in [Nar16, Ex. 4.2].
1.0.4. Remark. The condition for an∞-category to be atomic orbital is a highly restrictive one; for example,
if T is atomic orbital and admits a terminal object, then T is equivalent to the nerve of a 1-category T
(Proposition 2.5.1).

At this point, the reader should examine the definition of a simplicial colored T -operad (Definition 2.5.4)
to get a conceptual handle on the forthcoming definition of a T-∞-operad.

1.1. Summary of results. After some preliminaries on the T-∞-category FT,∗ of pointed finite T-sets (Def-
inition 2.1.2), we give the definition of T-∞-operad as Definition 2.1.7 and algebras therein as Definition 2.2.1.
We explicate the parametrized Segal condition (Theorem 2.3.3) and show how the definition of a T-symmetric
monoidal T-∞-category recovers Definition 1.0.1 (Theorem 2.3.9). We then study parametrized generaliza-
tions of three essential constructions in the theory of ∞-operads: monoidal envelopes (Definition 2.8.4),
Day convolution (Definition 3.1.6), and operadic left Kan extension (Definition 4.3.5). Finally, we study T-
(co)limits in T-∞-categories of O-algebras, first in the context of a general T-∞-operad O⊗ (Theorem 5.1.3
and Theorem 5.1.4) and then in the special case of the O⊗ = FT,∗ (Theorem 5.3.7), and we establish a
T-symmetric monoidal refinement of the universal property of T-presheaves (Corollary 6.0.12).

1.2. Related work. This paper is part of a larger body of work on parametrized higher category theory and
higher algebra [BDG+16a, BDG+16b, Sha21a, Sha21b, Nar16, Nar17]. In particular, all of the conventions,
terminology, and notation from [Sha21b] are in force in this paper, and the reader should at least skim the
introduction and §2 of [Sha21b] before reading this work. Furthermore, the definition of a T-∞-operad was
developed in joint work with Barwick, Dotto, and Glasman circa 2016 and has previously appeared in the
first author’s thesis [Nar17, §3.1]. On the other hand, this paper doesn’t otherwise expand on [Nar17, §3]; for
instance, we will not recapitulate the first author’s work on tensor products of T-presentable T-∞-categories.

As this paper is intended to play a foundational and supporting role in the literature, we don’t discuss
many interesting examples or applications here. Horev [Hor19] has used these results in his development of
a theory of genuine equivariant factorization homology (see also [HHK+20]), and he in particular discusses
the example of the G-∞-operad EV associated to a finite-dimensional real G-representation V . The second

1Beware that this isn’t the notion of G-operad that appears in the work of Blumberg-Hill [BH15].



PARAMETRIZED AND EQUIVARIANT HIGHER ALGEBRA 3

author and Quigley have applied these results in their study of the parametrized Tate construction [QS21a]
and real cyclotomic spectra [QS21b]. Hilman has introduced similar ideas in his study of parametrized
noncommutative motives and equivariant algebraic K-theory [Hil22a, Hil22b].

In a different direction, the theory of G-operads in their various guises has a long history that we don’t
attempt to summarize here; some recent references are [BH15, GW18, Rub21, BP21, MMO21, GMMO18].
In terms of the relationship to the N∞-operads of Blumberg–Hill, we discuss T-indexing systems I in our
framework in Definition 2.4.8, the corresponding commutative T-∞-operad Com⊗

I in Definition 2.4.10, and
how they identify with G-indexing systems in the sense of Blumberg–Hill when T = OG in Remark 2.4.12.
It should be possible to adapt ideas of Hinich from [Hin15] to establish a formal comparison between the
∞-category of ComI-algebras in our sense and those in the sense of [BH15], but we do not attempt to do
this now.

1.3. Acknowledgements. We thank Clark Barwick, Emanuele Dotto, and Saul Glasman for valuable dis-
cussions in the early stages of this project. J.S. was supported by NSF grant DMS-1547292 and the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC
2044–390685587, Mathematics Münster: Dynamics–Geometry–Structure.

2. Parametrized ∞-operads

2.1. First definitions. We begin by introducing the basic definitions of parametrized higher algebra in
parallel to Lurie’s development of the foundations of ∞-operads [Lur17, §2.1]. Let T be an atomic orbital
∞-category, whose objects we refer to as orbits, and let FT be its finite coproduct completion2, which we
refer to as the ∞-category of finite T-sets.

2.1.1. Definition. For every orbit V ∈ T, let
FT/V := (FT)/V = Ar(FT)×FT

{V }
(thus fixing a preferred choice of finite coproduct completion of T/V ), and let

FT/V ,∗ := (FT/V )idV / = (FT)V//V

be the ∞-category of finite pointed T/V -sets.

Using that T is orbital, we could then define the T-∞-category of finite T-sets FT as the full T-subcategory
of Spc

T
spanned by the finite T/V -sets in each fiber (Spc

T
)V over an orbit V , so that as a cocartesian fibra-

tion, FT is classified by the assignment V (FT)/V with functoriality that given by pullback. Similarly,
we could define a pointed variant FT,∗ as the full T-subcategory of Spc

T,∗ classified by the assignment
V (FT)V//V .

However, although conceptually transparent, these definitions of FT and FT,∗ are ill-suited to writing
down arbitrary morphisms that may interpolate between different fibers. Instead, we will follow the first
author’s work in [Nar16, §4] and instead define FT and FT,∗ as certain ∞-categories of spans, along the
lines of the construction of the dual cocartesian fibration in [BGN18] as well as the span description of finite
pointed sets in terms of finite sets and partially defined maps (cf. [Nar16, 4.11]).

2.1.2. Definition. Let
Fv

T := Ar(FT)×FT
T,

so that the functor ev1 : Fv
T T given by evaluation at the target is a cartesian fibration classified by

V (FT)/V . Labeling an arbitrary morphism [φ : f g] of Fv
T as

U X

V Y,

h

f g

k

we define wide subcategories
(Fv

T)tdeg, (Fv
T)si, (Fv

T)cart ⊂ Fv
T

2Explicitly, we could take FT ⊂ P(T) to be the full subcategory spanned by finite coproducts of representables. However,
any equivalent choice will suffice.
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as containing those morphisms φ such that k is degenerate, U X ×Y V is a summand inclusion, and
U X ×Y V is an equivalence, respectively.3 Then the triples

(Fv
T ; (Fv

T)cart, (Fv
T)tdeg) and (Fv

T ; (Fv
T)si, (Fv

T)tdeg)
are adequate in the sense of [Bar17, 5.2].4 Consequently, we may form the associated span ∞-categories5

FT := Span(Fv
T ; (Fv

T)cart, (Fv
T)tdeg) and FT,∗ := Span(Fv

T ; (Fv
T)si, (Fv

T)tdeg).
We regard FT and FT,∗ as T-∞-categories via the structure map ev1 given by evaluation at the target,

so that a morphism ψ (for either ∞-category)

U Z X

V Y Y.

m

=

is ev1-cocartesian if and only if m : Z X is an equivalence and Z U×V Y is an equivalence (cf. [Nar16,
Lem. 4.9 and Def. 4.12]). The canonical inclusion FT ⊂ FT,∗ of span ∞-categories is thus the inclusion of a
T-subcategory. We also have an ‘identity’ cocartesian section I : Top FT that sends V to [V = V ].

2.1.3. Definition. In the notation of Definition 2.1.2, we declare a morphism ψ in FT,∗ to be inert if
m : Z X is an equivalence and active if Z U ×V Y is an equivalence. Note that a morphism ψ in
FT,∗ is both inert and active if and only if ψ is ev1-cocartesian.

2.1.4. Remark. Note that FT is by definition the dual cocartesian fibration to Fv
T in the sense of [BGN18,

Def. 3.4]. As such, for any orbit V we have an equivalence
(Fv

T)V = FT/V
≃ Span(FT/V ; (FT/V )≃,FT/V ) = (FT)V

implemented by inclusion.
We next describe FT,∗. Let Fsi

T denote the wide subcategory on the summand inclusions in FT , so
(Fv

T)si
V = Fsi

T/V . As was noted in [Nar16, Lem. 4.14], for any orbit V we have an equivalence

(FT,∗)V = Span(FT/V ; Fsi
T/V ,FT/V ) ≃ FT/V ,∗,

under which an object [U f V ] is sent to [U ⊔ V f ⊔ id
V ] pointed at V , and a span

U α W β U ′,

with α given by the summand inclusion W ⊂W ⊔W ′ ≃ U , is sent to the pointed map
U ⊔ V γ U ′ ⊔ V

with γ|W = β and γ|W ′ = constV . Consequently, we will often refer to an object f = [U V ] of FT,∗
as f+ = [U+ V ] to emphasize the implicit presence of the basepoint. We will also denote the canonical
inclusion FT ⊂ FT,∗ of span ∞-categories by

(−)+ : FT FT,∗

and refer to this as the pointing T -functor. By [Nar16, Lem. 4.14], (−)+ has a ‘forgetful’ right T -adjoint
which sends [U+ V ] to [U ⊔ V V ]. Note also that a morphism ψ in FT,∗ is active if and only if it is
in the image of (−)+.

2.1.5. Remark. For an orbit V ∈ T, we obtain from Definition 2.1.3 a definition for inert and active edges
in (FT,∗)V by restriction to the fiber. Under the equivalence (FT,∗)V ≃ FT/V ,∗ of Remark 2.1.4, a pointed
map f : U ⊔ V U ′ ⊔ V is then inert if and only if its pullback along U ′ ⊂ U ′ ⊔ V is an equivalence, and
is active if and only if f ≃ g+ for some g : U U ′ in FT/V .

3Note that the “target degenerate” morphisms are a subclass of ev1-cocartesian edges (for which more generally the map k
is an equivalence) and the “cartesian” morphisms are exactly the ev1-cartesian edges.

4Note that we have swapped the order of the wide subcategories from that of [Bar17], so that the first subcategory will
indicate the backward facing arrows and the second will indicate the forward facing arrows when forming the span ∞-category.

5In [Bar17] and [Nar16], the term “effective Burnside ∞-category” Aeff is used as a synonym for “span ∞-category”.
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2.1.6. Definition. Suppose f+ = [U+ V ] is an object of FT,∗. Let Orbit(U) be the set of orbits of U , so
that we have an equivalence

U ≃
∐

W∈Orbit(U)

W

in FT with each W an object in T. Given W ∈ Orbit(U), the characteristic morphism
χ[W⊂U ] : f+ I(W )+

is defined to be
U W W

V W W.

f =

=

=
=

Here we make essential use of our assumption that T is atomic to ensure that W U ×V W is a summand
inclusion. Clearly, χ[W⊂U ] is inert.

2.1.7. Definition. A T-∞-operad is a pair (C⊗, p) consisting of a T-∞-category C⊗ along with a T-functor
p : C⊗ FT,∗, which is a categorical fibration and satisfies the following additional conditions:

(1) For every inert morphism ψ : f+ g+ of FT,∗ and every object x ∈ C⊗
f+

, there is a p-cocartesian
edge x y in C⊗ covering ψ.

(2) For any object f+ = [U+ V ] of FT,∗, the p-cocartesian edges lying over the characteristic mor-
phisms {

χ[W⊂U ] : f+ I(W )+ | W ∈ Orbit(U)
}

together induce an equivalence
∏

W∈Orbit(U)

(χ[W⊂U ])! : C⊗
f+

∼
∏

W∈Orbit(U)

C⊗
I(W )+

.

(3) For any morphism
ψ : f+ = [U+ V ] g+ =

[
U ′

+ V ′]

of FT,∗, objects x ∈ C⊗
f+

and y ∈ C⊗
g+ , and any choice of p-cocartesian edges

{y yW | W ∈ Orbit(U ′)}
lying over the characteristic morphisms

{
χ[W⊂U ′] : g+ I(W )+ | W ∈ Orbit(U ′)

}
,

the induced map

Mapψ
C⊗ (x, y) ∼

∏

W∈Orbit(U ′)

Mapχ[W ⊂U′]◦ψ
C⊗ (x, yW )

is an equivalence.
We will typically omit the structure map p and simply refer to C⊗ as a T-∞-operad. Given a T-∞-operad

C⊗, its underlying T-∞-category is the fiber product
C := Top ×I(−)+,FT,∗

C⊗.

2.1.8. Definition. Suppose (C⊗, p) is a T-∞-operad. Then an edge of C⊗ is inert if it is p-cocartesian over
an inert edge of FT,∗, and is active if it factors as a p-cocartesian edge followed by an edge lying over a
fiberwise active edge in FT,∗. We let C⊗

ne be the wide T-subcategory of C⊗ on the inert edges, and C⊗
act the

wide T-subcategory of C⊗ on the active edges.

2.1.9. Remark. Let C⊗ be a T-∞-operad and U ∈ FT . Note that for any orbit V and morphism f : U V ,
we have an equivalence

C⊗
f+
≃ CU =

∏

W∈Orbit(U)

CW .

We will often write objects x ∈ C⊗
f+

as tuples (xW ).
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2.1.10. Remark (Simplified condition on mapping spaces). In Definition 2.1.7, in view of the inert-fiberwise
active factorization system on a T-∞-operad (Example 2.8.1) we may replace (3) by the following apparently
weaker condition:

(3') Let α : [U f V ] [U ′ g V ] be a morphism in FT/V , which defines an active edge α+ in (FT,∗)V .
Let x ∈ C⊗

f+
, y ∈ C⊗

g+ be objects, and for each W ∈ Orbit(U ′) let y yW be a p-cocartesian edge lifting
the characteristic morphism χ[W⊂U ′]. For every W ∈ Orbit(U ′) we have a commutative square

[U+ V ]
[
U ′

+ V
]

[(U ×U ′ W )+ W ] [W+ W ]

α+

ρW χ[W ⊂U′]
(αW )+

where ρW is the inert edge corresponding to the summand inclusion U ×U ′ W U ×V W and αW :
U ×U ′ W W is the pullback of α : U U ′ along W ⊂ U ′. (Note that the lower composition is the
inert-fiberwise active factorization of the upper composition χ[W⊂U ′] ◦ α+.) Let

{x xW | W ∈ Orbit(U ′)}
be any choice of p-cocartesian edges lying over the morphisms ρW . Then the induced map

(2.1.1) Mapα+
C⊗(x, y) ∼

∏

W∈Orbit(U ′)

Map(αW )+
C⊗ (xW , yW )

is an equivalence.

2.1.11. Remark (Spaces of multimorphisms and operadic composition). Suppose C⊗ is a T-∞-operad,
α : U U ′ is a morphism in FT , and x ∈ CU , y ∈ CU ′ are tuples of objects in C. For every W ∈ Orbit(U ′),
let

αW : UW = U ×U ′ W W

be the pullback of α along the summand inclusion W ⊂ U ′. Consider the component yW of y as an object
in C⊗

I(W )+
and the sub-tuple xW ∈ CUW of x as an object in C⊗

(αW )+
. Let

MulαC(x, y) :=
∏

W∈Orbit(U ′)

Map(αW )+
C⊗ (xW , yW )

be the space of (α;x, y)-multimorphisms encoded by C⊗. Then for any choice of map U ′ V in FT down
to an orbit V , we have the canonical equivalence

Mapα+
C⊗ (x, y) ≃ MulαC(x, y)

of (2.1.1) (compare Remark 2.1.9).
These spaces of multimorphisms are interrelated by the structure of C⊗. For instance, for every composite

morphism U0 α U1
β U2 in FT and xi ∈ CUi , i ∈ {0, 1, 2}, any choice of map ρ : U2 V to an orbit V

yields a map
◦ : MulαC(x0, x1)×MulβC(x1, x2) Mulβ◦α

C (x0, x2)
defined by the composition in C⊗, and one may check that this map is independent of the choice of ρ.
Likewise, for every composition of pullback squares in FT

X X ′ W

U U ′ V

f∗α

f

α

with V,W orbits, and objects x ∈ CU , y ∈ CU ′ , one has a base-change map

f∗ : MulαC(x, y) Mulf
∗α

C (f∗x, f∗y)
induced by the cocartesian pushforward in C⊗ along f in Top. Note that these maps extend the functoriality
on the underlying T-∞-category C.

Altogether, these maps satisfy homotopy coherent unitality, associativity, and base-change compatibility
constraints as encapsulated by C⊗.
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2.2. Morphisms of operads. We next introduce morphisms of T-∞-operads and algebras over T-∞-
operads.

2.2.1. Definition. Suppose C⊗ and D⊗ are two T-∞-operads. A morphism of T-∞-operads is a T-functor
A : C⊗ D⊗

over FT,∗ that carries inert morphisms to inert morphisms. Conceptually, A is a C-algebra valued in D.
If A is moreover a categorical fibration, then we call A a fibration of T-∞-operads. Given fibrations of

T-∞-operads p : C⊗ O⊗ and q : D⊗ O⊗, we let
AlgO,T(C,D)

denote the full subcategory of Fun/O⊗ (C⊗,D⊗) spanned by the morphisms of T-∞-operads, and
Alg

O,T
(C,D)

the corresponding full T-subcategory of the T-∞-category Fun/O⊗,T(C⊗,D⊗) [Sha21b, Notn. 4.7].6
If p is the identity on O⊗, then we will also denote AlgO,T(C,D) as AlgO,T(D). If O⊗ = FT,∗, then we

will also denote AlgO,T(C,D) as AlgT(C,D). Combining these two cases, if C⊗ = O⊗ = FT,∗, then we will
also denote AlgO,T(C,D) as CAlgT(D), the ∞-category of T-commutative algebras in D.

2.2.2. Warning. In the case T = ∗, our notation for ∞-categories of algebras conflicts with that of Lurie in
[Lur17, Def. 2.1.3.1].

2.2.3. Definition. Suppose p : C⊗ O⊗ is a fibration of T-∞-operads in which p is moreover a cocartesian
fibration. In this case, we call C⊗ a O-monoidal T-∞-category. If O⊗ = FT,∗, we also call C⊗ a T-symmetric
monoidal T-∞-category.7 We also refer to C as O-monoidal if the additional structure (C⊗, p) is understood
from context.

2.2.4. Notation. Let C⊗ be an O-monoidal T-∞-category. For an active morphism f : x y in O⊗, we
typically denote the cocartesian pushforward functor associated to f by f⊗ : C⊗

x C⊗
y and refer to it as

the norm functor for f . If O⊗ = FT,∗, then for any morphism f : U V of finite T-sets with V an orbit,
we have a norm functor f⊗ : CU CV associated to f+ : [U+ → V ] [V+ → V ]. More generally, if
V is a finite T-set with orbit decomposition

∐n
i=1 Vi so that f =

∐n
i=1(fi : Ui Vi), then we let f⊗ be

the product of the functors {(fi)⊗}ni=1. (We will also describe in Section 2.7 how to dispense with the orbit
restriction in the formalism by passing to ‘big’ T-∞-operads.)

2.2.5. Definition. Given two O-monoidal T-∞-categories p, q : C⊗,D⊗ O⊗, a T-functor F : C⊗ D⊗

is lax O-monoidal if it is a morphism of T-∞-operads, and is (strict) O-monoidal if it carries p-cocartesian
edges to q-cocartesian edges. We let

Fun⊗
O,T(C,D)

denote the subcategory of Fun/O⊗(C⊗,D⊗) spanned by the O-monoidal T-functors, and

Fun⊗
O,T(C,D)

the corresponding T-subcategory of Fun/O⊗,T(C⊗,D⊗). We will also drop O from the notation if O⊗ = FT,∗
and speak of lax and strict T-symmetric monoidal T-functors.

In the situation of a cocartesian fibration p : C⊗ O⊗ over a T-∞-operad O⊗, we have the following
simplification of the conditions for C⊗ to be a T-∞-operad (and hence O-monoidal).

2.2.6. Proposition. Let (O⊗, q) be a T-∞-operad and let p : C⊗ O⊗ be a cocartesian fibration of T-∞-
categories. Then (C⊗, q ◦ p) is a T-∞-operad if and only if for every f+ = [U+ V ] ∈ FT,∗ and x ∈ O⊗

f+
,

the inert edges {x xW |W ∈ Orbit(U)} in O⊗ together induce an equivalence

C⊗
x

∼
∏

W∈Orbit(U)

C⊗
xW
.

6For this definition to be sensible, note that for any map V W in T, the pullback of a T/W -∞-operad along the induced
functor (T/V )op (T/W )op is again a T/V -∞-operad, and likewise for morphisms of T/W -∞-operads.

7We may also write “T-symmetric monoidal ∞-category” for this notion since there is no potential for ambiguity.
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Proof. The proof is exactly analogous to that of [Lur17, Prop. 2.1.2.12], so we will omit it. �

Lastly, we state the evident notions of T-suboperad and O-monoidal T-subcategory.

2.2.7. Definition. Let (C⊗, p) be a T-∞-operad and let D⊗ be a T-subcategory of C⊗ with inclusion T-
functor i. We say that D⊗ is a T-suboperad of C⊗ if p◦ i exhibits D⊗ as a T-∞-operad and i is a morphism of
T-∞-operads. If C⊗ is moreover an O-monoidal T-∞-category via q : C⊗ O⊗, then D⊗ is a O-monoidal
T-subcategory of C⊗ if D⊗ ⊂ C⊗ is stable under q-cocartesian edges, so that q◦i exhibits D⊗ as an O-monoidal
T-∞-category and i is an O-monoidal functor.

2.3. Parametrized Segal condition. We next want to interpret condition (2) of Definition 2.1.7 as an
equivalence of T/V -∞-categories (i.e., a T-Segal condition). First, we extend our notation for the T-fibers of
a T-functor.

2.3.1. Notation. Let F : X C be a T-functor and let σ : ∆n C be a n-simplex of C. Define the T-fiber
of X over σ to be

Xσ := ∆n ×σ,C,ev0 Arcocart(C)×ev1,C,F X.

2.3.2. Construction. For any T-∞-category X and edge f : x y in X, we can construct a T-functor

φ : ∆1 × y = ∆1 × (∆0 ×y,X,ev0 Arcocart(X)) ∆1 ×f,X,ev0 Arcocart(X)

which fits into the commutative diagram

{0} × y x

∆1 × y ∆1 ×f,X,ev0 Arcocart(X)

{1} × y y,

f∗

φ

=

where f∗ : y x is the T-functor defined in [Sha21a, Rem. 12.11], which sends a cocartesian edge [e : y → z]
to the cocartesian edge [f∗(e) : x→ z′] given by the factorization of [e ◦ f ] as the composite of f∗(e) and a
fiberwise edge φ(e)1.

Explicitly, let h : ∆1 ×∆1 X be given by

x y

y y

f

f =
=

and let

M = ∆1×
h,F̃un∆1 (∆1×∆1,X×∆1),ev0

F̃un∆1(∆1×∆1,Arcocart(X)×∆1)×ev1,F̃un∆1 (∆1×∆1,Top×∆1),I (Top×∆1),

where I denotes the identity section, so that M ∆1 × Top is a T-correspondence with

M0 = {0} ×f,Ar(X),ev0 Ar(Arcocart(X))×ev1,Ar(Top),I T
op,

M1 = {0} ×idy,Ar(X),ev0 Ar(Arcocart(X))×ev1,Ar(Top),I T
op.

We have a zig-zag of T-functors over ∆1 × Top

y ×∆1 M ∆1 ×f,X,ev0 Arcocart(X)
τ

π ρ

where π restricts to the trivial fibrations M0 y × {0}, M1 y × {1} of [Sha21a, Lem. 12.10] and ρ
restricts to M0 x, M1 y. Thus π is a trivial fibration and we may choose a section τ which fixes
y × {1} ⊂M1. Then we let φ = ρ ◦ τ .
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2.3.3. Theorem. Let C⊗ O⊗ be a fibration of T-∞-operads. Let x ∈ O⊗ be an object over [f+ : U+ →
V ] ∈ FT,∗. Let U ≃ U1

∐
...
∐
Un be an orbit decomposition, let fi : Ui V denote the induced morphisms,

and let ei : x xi be inert edges in O⊗ lifting the characteristic morphisms χ[Ui⊂U ] in FT,∗. Then we have
an equivalence of T/V -∞-categories

C⊗
x ≃

∏

f


 ∐

1≤i≤n
Cxi


 ≃

∏

1≤i≤n


∏

fi

Cxi


 .8

Proof. Let
hi : ∆1 × xi ∆1 ×ei,O⊗ Arcocart(O⊗) O⊗

be the homotopy associated to the edge ei as defined as in Construction 2.3.2. Because hi lands in O⊗
ne,

the pullback C⊗ ×O⊗ (∆1 × xi) ∆1 × Ui is a cocartesian fibration. This corresponds to a T/Ui-functor
ρi : f∗

i (C⊗
x ) Cxi . Taking the coproduct of the ρi and taking the adjoint of that, we get a comparison

T/V -functor

ρ : C⊗
x

∏

f


 ∐

1≤i≤n
Cxi


 .

We claim that ρ is a equivalence of T/V -∞-categories. We will check that for every object [g : V ′ → V ], the
fiber ρg is an equivalence. Consider the pullback square

U ′ U

V ′ V.

g′

f ′ f

g

Let [U+ → V ] [U ′
+ → V ′] be the corresponding inert morphism in FT,∗ and let x x′ be an inert lift

of that morphism to O⊗. Also let U ′ ≃ U ′
1
∐
...
∐
U ′
m be an orbit decomposition and let e′

j : x′ x′
j be

inert morphisms lifting the characteristic morphisms χ[U ′
j
⊂U ′].

Note that
(C⊗
x )g ≃ (C⊗

x′)idV ′ ≃ C⊗
x′

and

∏

f


 ∐

1≤i≤n
Cxi





g

≃


∏

f ′


(g′)∗


 ∐

1≤i≤n
Cxi








idV ′

≃


(g′)∗


 ∐

1≤i≤n
Cxi






idU′

≃


 ∐

1≤j≤m
Cx′

j




idU′

≃
∐

1≤j≤m
Cx′

j

A diagram chase then shows that the functor ρg : C⊗
x′

∐
1≤j≤m Cx′

j
implements the equivalence of

condition (2) in Definition 2.1.7. �

8In this expression, each Cxi is a T/Ui -∞-category, their coproduct is a cocartesian fibration over (T/U )op = U ≃
∐

1≤i≤n
Ui,

the righthand product is taken in T/V -∞-categories, and the indexed product
∏

f
denotes the right adjoint to pullback along

the induced functor U V .
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2.3.4. Corollary (T-Segal condition). Let C⊗ FT,∗ be a T-∞-operad. Then for every object [U+
f+ V ]

in FT,∗, we have an equivalence of T/V -∞-categories

C⊗
f+
≃ FunT/V (U,CV ).

Proof. In view of Theorem 2.3.3, we only need to note that FunT/V (U,−) ≃ ∏
f f

∗ as endofunctors of
CatT/V and that for an orbit decomposition U ≃ U1

∐
...
∐
Un,

∐
1≤i≤n CUi ≃ CU ≃ U ×V CV . �

2.3.5. Example. Let C⊗ be a T-symmetric monoidal T-∞-category. Then for every morphism f : U V
of finite T-sets, the norm functor f⊗ : CU CV of Notation 2.2.4 canonically refines to a norm T/V -functor
FunT/V (U,CV ) CV . Indeed, if V is an orbit this is encoded by the cocartesian fibration C⊗ FT,∗ in
view of Corollary 2.3.4, and one extends to general V by taking coproducts.

We also have a reformulation of condition (3) in Definition 2.1.7 (or rather (3') in Remark 2.1.10), whose
proof is the same as that of Theorem 2.3.3. Recall the notion of T-mapping spaces from [Sha21a, §11].
2.3.6. Notation. Let p : X B be a T-fibration, let α : a b be a morphism in a fiber BV , and let
x, y ∈ X so that p(x) = a and p(y) = b. Then we define as a pullback of T/V -spaces

Mapα
X

(x, y) := α×Map
B

(a,b) Map
X

(x, y).

2.3.7. Proposition. Let C⊗ be a T-∞-operad and let notation be as in Remark 2.1.10. Then we have an
equivalence of T/V -spaces

Mapα+
C⊗ (x, y) ∼

∏

g


 ∐

W∈Orbit(U ′)

Map(αW )+
C⊗ (xW , yW )


 .

Let us now apply the T-Segal condition to characterize T-symmetric monoidal T-∞-categories as T-
commutative monoids in CatT .
2.3.8. Remark. Under the equivalences (given by straightening and [Sha21a, Prop. 3.10], respectively)

Catcocart
/F

T,∗
≃ Fun(FT,∗,Cat) ≃ FunT (FT,∗,CatT)

we see that T-symmetric monoidal T-∞-categories C⊗ correspond to T-commutative monoids M , i.e., T-
semiadditive T-functors [Nar16, Def. 5.3], since by Corollary 2.3.4, M transforms

[U+ V ] ≃
∐

W∈Orbit(U)

∐

W→V

I(W )+ ∈ FT/V ,∗

into ∏

W∈Orbit(U)

∏

W→V

CW ≃
∏

W∈Orbit(U)

FunT/V (W,CV ) ≃ FunT/V (U,CV ) ∈ CatT/V .

Furthermore, in [Nar16, Thm. 6.5] the first author identified T-commutative monoids with T-Mackey
functors. Using this, we can relate our notion of T-symmetric monoidal T-∞-category with that which
appears in [BH21], wherein the norm functors of Notation 2.2.4 appear as the covariant part of categorical
Mackey functor.
2.3.9. Theorem. We have a canonical equivalence of ∞-categories

Cat⊗
T ≃ Fun×(Span(FT),Cat)

between the ∞-category Cat⊗
T of T-symmetric monoidal T-∞-categories and the ∞-category of product-

preserving functors from Span(FT) to Cat.
Proof. In [Nar16, Thm. 6.5], the first author proved that given a T-∞-category D with finite T-limits,
precomposition by the inclusion FT,∗ Span(FT) := Span(Fv

T; (Fv
T), (Fv

T)tdeg) induces an equivalence of
T-∞-categories

Fun×
T (Span(FT),D) ∼ CMonT(D).

In particular, if D = CatT , then as we just observed CMonT(D) ≃ Cat⊗
T , and passing to cocartesian

sections we obtain
Fun×

T (Span(FT),CatT) ≃ Cat⊗
T .
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Under the equivalence
FunT (Span(FT),CatT) ≃ Fun(Span(FT),Cat)

let Fun′(Span(FT ),Cat) denote the image of Fun×
T (Span(FT),CatT). Explicitly, functors in Fun′ send

cartesian edges to equivalences and fiberwise products to products, where cartesian edges in Span(FT) are
given by

U U U

W V V

=

==

=f

in view of the adjunction
f∗ : Span(FT/W ) Span(FT/V ) :f!.

Let
s : Span(FT) Span(FT)

denote the source map. Then we claim that precomposition by s induces an equivalence
Fun×(Span(FT),Cat) ∼ Fun′(Span(FT),Cat)

with inverse given by right Kan extension.
First note that given a product preserving functor G : Span(FT) Cat, s∗G evidently sends cartesian

edges to equivalences and fiberwise products to products. Conversely, suppose we have a functor F :
Span(FT) Cat in Fun′. Let X ∈ Span(FT) be an object. Note that (Fop

T )X/ Span(FT)X/ is an
initial functor as it admits a right adjoint which sends a span X Z Y to X Z. Pulling back, we
thereby obtain an initial functor

(Fv
T)op ×Fop

T
(Fop

T )X/ Span(FT)×Span(FT) Span(FT)X/

and we are interested in computing the limit of the functor
F ′ = F ◦ pr : (Fv

T)op ×Fop
T

(Fop
T )X/ (Fv

T)op Cat.

By our assumption on F , F ′ is the right Kan extension of its restriction to Top ×Fop
T

(Fop
T )X/ (where

Top (Fv
T)op is the identity section). Indeed, given an object I = [V U X ] and an orbit de-

composition U ≃∐n
i=1 Ui, the n projection maps I Ii = [Ui = Ui X ] induce an equivalence

F ′(I) = F ([U V ]) ∼
n∏

i=1
F ′(Ii) =

n∏

i=1
F ([Ui = Ui]).

We conclude that the limit of F ′ is
∏
i∈I F ([Xi = Xi]) for some orbit decomposition X ≃ ∐i∈I Xi, so

s∗F (X) ≃∏i∈I F (idXi). Using this pointwise formula and a simple argument regarding the morphisms, we
see that s∗F preserves products and the counit and unit maps are equivalences. �

2.4. Examples. In this subsection, we discuss some basic examples of T-∞-operads.

2.4.1. Example (T-(co)cartesian T-symmetric monoidal structures). Let C be a T-∞-category and let π :
C× FT be the cartesian fibration defined as in [Sha21a, Prop. 5.12], so (C×)U ≃

∏
W∈Orbit(U) CW and the

functoriality is given by restriction. Suppose C admits finite T-coproducts. Then by [Sha21a, Prop. 5.12], π is
a Beck–Chevalley fibration with cocartesian functoriality given by the coinduction functors, and by Barwick’s
unfurling construction [Bar17, §11], π straightens to a product-preserving functor Span(FT) Cat. Let

C∐ FT,∗

denote the resulting T-symmetric monoidal T-∞-category under the equivalence of Theorem 2.3.9. We call
C∐ the T-cocartesian T-symmetric monoidal structure on C.

Dually, suppose that C admits finite T-products. Then by the dual of [Sha21a, Prop. 5.12], the vertical
opposite πvop : (C×)vop FT is a Beck–Chevalley fibration with cocartesian functoriality given by the
(opposite of the) induction functors, and thus we obtain a product-preserving functor Span(FT) Cat.
After postcomposing by the opposite automorphism of Cat, let

CΠ FT,∗
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denote the resulting T-symmetric monoidal T-∞-category under the equivalence of Theorem 2.3.9. We call
CΠ the T-cartesian T-symmetric monoidal structure on C.

2.4.2. Example (G-spectra). Let Gpdfin be the (2, 1)-category of finite groupoids and let

SH⊗ : Span(Gpdfin) CAlg(Catsift)

denote the (restriction of the) functor of [BH21, §9.2]. Let G be a finite group and let

ωG : Span(FG) Span(Gpdfin)

be the action groupoid functor. Let (SpG)⊗ be the G-symmetric monoidal G-∞-category associated to
SH⊗ ◦ωG under Theorem 2.3.9. Then (SpG)⊗ is the G-symmetric monoidal structure on SpG that encodes
the Hill–Hopkins–Ravenel norm functors.

2.4.3. Example (Trivial T-∞-operad). Let Triv⊗
T ⊂ FT,∗ be the wide subcategory on the inert edges. Then

Triv⊗
T is a T-suboperad of FT,∗ such that the identity cocartesian section I+ : Top FT,∗ restricts to a

fully faithful functor into Triv⊗
T and an equivalence onto TrivT. We call Triv⊗

T the trivial T-∞-operad.

We claim that given any T-∞-operad C⊗, we have an equivalence

AlgTrivT,T
(C) ≃ C

implemented by restriction along I+. To show this, we need the following lemma.

2.4.4. Lemma. Let (O⊗, p) be a T-∞-operad and let

O⊗
ne := Triv⊗

T ×F
T,∗

O⊗

be the wide subcategory on the inert edges. Let F ne
O : Triv⊗

T Cat be the functor classifying the cocartesian
fibration p|O⊗

ne
. Then F ne

O is the right Kan extension of its restriction FO along I+ : Top Triv⊗
T (which

classifies the underlying T-∞-category O).

Proof. Let f+ = [U+ V ] be any object in Triv⊗
T and let Jop = Top ×Triv⊗

T

(Triv⊗
T )f+/. We need to show

that the natural map
F ne
O (f+) lim(θ : Jop Top FO Cat)

is an equivalence. If we view Orbit(U) as a discrete category, then we have a functor φ : Orbit(U) Jop

that sends W to (W,χ[W⊂U ]), and by definition we have an equivalence

F ne
O (f+) ≃ lim(θ ◦ φ).

Consequently, it suffices to show that φ is right cofinal. Since Triv⊗
T ≃ ((Fv

T)si)op under the inclusion into
FT,∗ = Span(Fv

T ; (Fv
T)si, (Fv

T)tdeg), we may equivalently show that

φop : Orbit(U)op = Orbit(U) J ≃ T ×(Fv
T

)si ((Fv
T)si)/f

is left cofinal. For this, we will apply Quillen’s Theorem A. Let

α =




X U

X V

α

= f




be any object in J. Then since Orbit(U) is discrete, we have an equivalence

Orbit(U)×J J
α/ ≃

∐

W∈Orbit(U)

MapJ(α, χ[W⊂U ]).

If we let W be the orbit in U that α factors through, then for all other W ′ ∈ Orbit(X), we have

MapJ(α, χ[W ′⊂U ]) = ∅.



PARAMETRIZED AND EQUIVARIANT HIGHER ALGEBRA 13

To compute the remaining mapping space, observe that we have a homotopy pullback square

MapJ(α, χ[W⊂U ]) Map(Fv
T

)si(idX , idW ) ≃MapFv
T

(idX , idW )

∗ Map(Fv
T

)si(idX , f) ≃MapFv
T

(idX , f)α

where for the righthand equivalences we use our assumption that T is orbital. But the righthand vertical
map identifies with

MapFT
(X,W ) MapFT

(X,U)×MapFT
(X,V ) MapFT

(X,V ) ≃ MapFT
(X,U)

and is hence an equivalence. We conclude that Orbit(U)×J J
α/ is contractible, so φop is left cofinal. �

2.4.5. Corollary. Let C be a T-∞-category, let FC : Top Cat be the functor that classifies C, and
let q : TrivT(C)⊗ Triv⊗

T be the cocartesian fibration classified by the right Kan extension of FC along
I+ : Top Triv⊗

T .9 Then TrivT(C)⊗ is a T-∞-operad and for any T-∞-operad O⊗, we have an equivalence
of T-∞-categories

Alg
T

(TrivT(C),O) ≃ FunT(C,O)
implemented by restriction along I+.
Proof. By Lemma 2.4.4, we have an equivalence of ∞-categories between TrivT-monoidal T-∞-categories
and the full subcategory of Fun(Triv⊗

T ,Cat) spanned by those functors right Kan extended from Top along
I+, so in particular TrivT(C)⊗ is a T-∞-operad. For the second statement, since restriction along I+ is a
T-functor, it suffices to show an equivalence of fibers over every orbit V ∈ T, so after replacing T by T/V we
reduce to the claim that

AlgT(TrivT(C),O) ≃ Funcocart
/Triv⊗

T

(TrivT(C)⊗,O⊗
ne) FunT(C,O)

is an equivalence of ∞-categories. But this follows immediately from Lemma 2.4.4. �
2.4.6. Example. By Corollary 2.4.5, the T-suboperads of the trivial T-∞-operad are in bijective correspon-
dence with sieves of T. For instance, we have that the initial T-∞-operad TrivT(∅)⊗ corresponds to ∅ ⊂ T

and identifies with the full subcategory of FT,∗ on objects [∅+ V ].
2.4.7. Example (Indexing systems and the family of commutative T-∞-operads). Clearly FT,∗ is itself a
T-∞-operad, which deserves to be called the T-commutative T-∞-operad Com⊗

T . Note that the identity
cocartesian section I+ : Top Com⊗

T restricts to an equivalence Top ≃ ComT .
In the parametrized setting, we may further define a family of T-suboperads of Com⊗

T so as to encode dif-
ferent flavors of parametrized commutativity. First, define the minimal T-commutative T-∞-operad Com⊗

T≃

to be the wide subcategory of FT,∗ containing all morphisms

U Z X

V Y Y.

m

=

where m is a coproduct of fold maps (including possibly empty fold maps). In other words, if we let ∇
denote the collection of fold maps and (Fv

T)∇:tdeg ⊂ Fv
T the wide subcategory on morphisms with source in

∇ and target degenerate, then
Com⊗

T≃ = Span(Fv
T ; (Fv

T)si, (Fv
T)∇:tdeg),

where we use that ∇ is stable under pullback by summand inclusions, and Com⊗
T≃ is classified by the functor

Top Cat that sends an orbit V to Span(FT/V ; Fsi
T/V ,F∇

T/V ). Since Com⊗
T≃ contains all inert edges in

Com⊗
T and ComT≃ ≃ Top, to verify that Com⊗

T≃ is a T-suboperad it only remains to check condition (3') of
Remark 2.1.10. But this condition is satisfied since a map α : U U ′ of finite T-sets is a fold map if and
only if for all W ∈ Orbit(U ′), the pullback αW : U ×U ′ W W is a fold map.

9Using [Sha21a, Ex. 2.26], we could give a definition of TrivT(C)⊗ at the level of marked simplicial sets, without passing
through straightening and unstraightening.
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Now suppose that we want to define a T-∞-operad O⊗ such that we have T-operadic inclusions
Com⊗

T≃ ⊂ O⊗ ⊂ Com⊗
T .

Since ComT≃ = ComT ≃ Top, the only constraint on O⊗ to be a T-suboperad arises from condition (3').
In other words, to specify O⊗ we may as well specify the morphisms α : U V with V an orbit that we
wish to be active. We already have that all fold maps are active, so in particular all summand inclusions are
active. Furthermore, as observed in Remark 2.1.11, for any orbit W ⊂ U , the composite map W ⊂ U α V
yields an operadic composition map

MulW⊂U
O ×MulαO ≃ ∗ ×MulαO Mulα|W

O ,

so if α is active, we must have that α|W is active for all W ∈ Orbit(U). The converse holds by a similar
argument since α factors as

U
∐
W∈Orbit(U) W

∐
W∈Orbit(U) V V≃

∐
α|W ∇ .

We thereby reduce to specifying whether or not morphisms α : W V are active for both W and V orbits.
Moreover, by examining Remark 2.1.11 again we see that the only constraints are:

(1) The active morphisms contain all equivalences and are closed under composition, so assemble to a
subcategory I ⊂ T such that I contains the maximal subgroupoid T≃ of T.

(2) The active morphisms are closed under base-change, in the sense that for any commutative square

W ′ W

V ′ V

α′ α

such that the map W ′ V ′ ×V W is a summand inclusion, if α is in I then α′ is in I.

2.4.8. Definition. A T-indexing system is a subcategory I of T that satisfies the above conditions (1) and
(2).

2.4.9. Remark. An indexing system I is the same data as a subcategory I ⊂ FT such that:
(1) I contains the maximal subgroupoid F≃

T .
(2) Morphisms in I are closed under base-change and binary coproducts.
(3) I contains all fold maps (and hence all summand inclusions).

Indeed, the assignment I I = I ×FT
T is seen to identify the two notions, with inverse given by taking

the finite coproduct completion of I.

2.4.10. Definition. Let I be a T-indexing system and let (Fv
T)I:tdeg ⊂ Fv

T be the wide subcategory on
morphisms with source in I and target degenerate. We then define the I-commutative T-∞-operad to be

Com⊗
I

:= Span(Fv
T ; (Fv

T)si, (Fv
T)I:tdeg).

More generally, we define a commutative T-∞-operad to be any T-suboperad of Com⊗
T containing Com⊗

T≃ .

The above analysis confirms the following proposition.

2.4.11. Proposition. The assignment I Com⊗
I implements an inclusion-preserving bijection between

T-indexing systems and commutative T-∞-operads.

2.4.12. Remark. Let T = OG. A G-indexing system I in the sense of Blumberg-Hill [BH15, Def. 3.22] as
reformulated by Rubin [Rub21, Def. 2.12] is a collection {I(H)} of finite H-sets for every subgroup H ≤ G
such that I(H) contains all finite H-sets with trivial H-action and satisfies the following closure properties:

(1) If U ∈ I(H) and U ′ ∼= U , then U ′ ∈ I(H).
(2) For every subgroup K ≤ H , if U ∈ I(H) then resHKU ∈ I(K).
(3) For every conjugate H ′ = gHg−1 of H , if U ∈ I(H) then its conjugate U ′ ∈ I(H ′).
(4) If U ∈ I(H) and U ′ ⊂ U , then U ′ ∈ I(H).
(5) If U,U ′ ∈ I(H), then U

∐
U ′ ∈ I(H).

(6) For any subgroup K ≤ H , if U ∈ I(K) and H/K ∈ I(H) then indHKU ∈ I(H).
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In [BH15, Thm. 3.17], it was shown that G-indexing systems are in bijective correspondence with sub-
categories of FG satisfying the conditions of Remark 2.4.9 (and thus with the OG-indexing systems of
Definition 2.4.8). For the convenience of the reader, we review this correspondence. Note that under
the equivalences FH ≃ F/(G/H)

G , given a subgroup K ≤ H , induction corresponds to postcomposition by
G/K G/H . Therefore, given a G-indexing system I, we may define a wide subcategory I ⊂ OG to be
the subcategory whose morphisms f : V W ∼= G/H are such that f ∈ I(H). The enumerated conditions
then imply that I is a OG-indexing system, using closure under restriction and inclusion to validate the
base-change condition.

Conversely, suppose I is a OG-indexing system and let I ⊂ FG be the subcategory generated by I as in
Remark 2.4.9. Let I(H) be the subset of objects of FH given by morphisms in I with target G/H under
FH ≃ F/(G/H)

G . Then one sees that I is a G-indexing system and these assignments are mutually inverse –
note that condition (5) holds since given U,U ′ G/H , the coproduct in FH is given by the composition
U
∐
U ′ G/H

∐
G/H G/H .

Consequently, by the work of Bonventre–Pereira [BP21], Gutiérrez–White [GW18], and Rubin [Rub21],
we see that the commutative G-∞-operads are in bijection with the N∞-operads of Blumberg–Hill.

A straightforward adaptation of the proof of Theorem 2.3.9 shows the following.

2.4.13. Definition. Given a T-indexing system I, let Cat⊗
I be the ∞-category of I-symmetric monoidal

T-∞-categories and I-symmetric monoidal T-functors thereof.

2.4.14. Theorem. Let I be a T-indexing system. We then have a canonical equivalence
Cat⊗

I ≃ Fun×(Span(FT; FT , I),Cat).

2.4.15. Corollary. For the minimal indexing system I = T≃, we have a canonical identification of T≃-
symmetric monoidal T-∞-categories with Top-cocartesian families of symmetric monoidal∞-categories ([Lur17,
Def. 4.8.3.1]).

2.5. T -operadic nerve. In this subsection, we suppose that T is equivalent to the nerve of a 1-category T .
For example, by the following proposition we could take T to be any atomic orbital∞-category that admits
a final object.

2.5.1. Proposition. Suppose T is an atomic orbital ∞-category that admits a final object ∗. Then T is
equivalent to the nerve of a 1-category.

Proof. By [Lur09, Prop. 2.3.4.18] it suffices to show that the mapping spaces of T are 0-truncated, or
equivalently that the essentially unique maps V ∗ are 0-truncated for all V ∈ T. By [Lur09, Lem. 5.5.6.15],
this occurs if and only if the diagonal δ : V V × V in FT is (−1)-truncated. But since T is atomic and δ
is split by either projection to V , it follows that δ is a summand inclusion and hence a monomorphism. �

Correspondingly, let FT denote the subcategory of the category of Set-valued presheaves on T spanned
by the finite coproducts of representables, so that FT ≃ N(FT ).

2.5.2. Remark. If T is a 1-category, then the a priori (2, 1)-category

FT,∗ := Span(F∆1

T ×FT T, (F∆1

T )tdeg, (F∆1

T )si)
is enriched in setoids and therefore equivalent to a 1-category. Indeed, the only automorphisms of spans of
the form

U Ũ U ′

V V ′ V ′

where the left square is in (F∆1

T )si are identities. In what follows, we will implicitly make a choice of
1-categorical model for FT,∗ by picking a representative for every equivalence class of morphisms.

Our goal is to indicate how to prescribe the data of a T-∞-operad in terms of the stricter data of a
simplicial colored T -operad, which will be defined along the lines suggested by Remark 2.1.11. To concisely
state its definition, we first need to introduce some notation.
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2.5.3. Notation. Let AFT ⊆ Ar(FT ) denote the wide subcategory of the arrow category whose morphisms
are cartesian squares. Suppose that obO FT is a Grothendieck fibration fibered in sets, and let obO(U)
denote the fiber of obO over U ∈ FT . We then write

AOFT := AFT ×(FT ×FT ) (obO × obO)
for the category whose objects are triples (f : U V, x ∈ obO(U), y ∈ obO(V )) and whose morphisms are
cartesian squares

U ′ U

V ′ V

f ′

φ

f

ψ

such that x′ = φ∗x and y′ = ψ∗y. We have functors
1 : obO AOFT , (x ∈ obO(U)) 7→ (idU , x, x),

◦ : AOFT ×obO A
OFT AOFT , (f : U V, g : V W, x, y, z) 7→ (gf : U W, x, z).

2.5.4. Definition. A (fibrant) simplicial colored T -operad O is the data of
(1) A ‘T -set of colors’, given as a Grothendieck fibration fibered in sets

obO FT
classified by a functor Fop

T Set preserving finite products.
(2) A collection of spaces of multimorphisms, packaged into a functor

MulO : (AOFT )op sSet, (f : U V, x ∈ obO(U), y ∈ obO(V )) 7→ MulfO(x, y)
that preserves finite products and is valued in Kan complexes.10

(3) A distinguished ‘identity’ for MulO, given by a natural transformation
1 : ∗ MulidU

O (x, x)
of functors (obO)op sSet, where the right hand side is the composition

(obO)op 1−→ AOFop
T

Mul−−→ sSet .
(4) A ‘composition law’ for MulO, given by a natural transformation

◦ : MulfO(x, y)×MulgO(y, z) MulgfO (x, z)
of functors (AOFT ×obO A

OFT )op sSet, where the left hand side is the composition

(AOFT ×obO A
OFT )op (AOFT ×AOFT )op Mul×Mul−−−−−−→ sSet× sSet ×−→ sSet ,

and the right hand side is the composition

(AOFT ×obO A
OFT )op ◦−→ AOFop

T
Mul−−→ sSet .

These data are required to satisfy the following compatibilities:
• Unitality: The compositions

MulfO(x, y) (id,1y)−−−−→ MulfO(x, y)×MulidV

O (y, y) ◦−→ MulfO(x, y)
and

MulfO(x, y) (1x,id)−−−−→ MulidU

O (x, x) ×MulfO(x, y) ◦−→ MulfO(x, y)
are the identity natural transformation.

• Associativity The following diagram is commutative

MulfO(x, y)×MulgO(y, z)×MulhO(z, t) MulgfO (x, z)×MulhO(z, t)

MulfO(x, y)×MulhgO (y, t) MulhgfO (x, t)

(◦,id)

(id,◦) ◦

◦

.

10If V is an orbit, we thus obtain a T /V -space MulfO(x, y) : (T /V )op sSet by precomposing MulO with the functor
T /V AOFT over FT determined by (f, x, y) – indeed, one has an equivalence (AOFT )/(f,x,y) ≃ (FT )/V .
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2.5.5. Construction. From the data of Definition 2.5.4 we will build a simplicial category O⊗ over FT,∗ as
follows. We let the objects of O⊗ be the pairs ([U+ V ], x), where [U+ V ] is an object of FT,∗ and
x ∈ obO(U), and we define as mapping simplicial sets

MapO⊗(([U+ V ], x), ([U ′
+ V ′], x′)) :=

∐

U
i←−U0

f−→U ′

Mulf (i∗x, x′)

where the coproduct is indexed by the set of all maps [U+ V ] [U ′
+ V ′] in FT,∗. The identity of

([U+ V ], x) is given by 1(U,x) ∈ MulidU (x, x). If

U1

U0 U ′
0

U U ′ U ′′

j′ f ′

i f j g

is a diagram representing a composition in FT,∗, composition over it is given by

Mulf (i∗x, x′)×Mulg(j∗x′, x′′) Mulf
′
((j′)∗i∗x, j∗x′)×Mulg(j∗x′, x′′) Mulgf

′
((ij′)∗x, x′′) .

Verifying that this satisfies associativity and unitality is left as an exercise for the reader.

2.5.6. Proposition. The map N(O⊗) N(FT,∗) ≃ FT,∗ is a T-∞-operad.

Proof. Using [Lur09, Prop. 2.4.1.10] we see that the above map is an inner fibration and that its restriction
over the subcategory of inert edges is a cocartesian fibration. Then remaining properties are true because
obO and Mul preserve finite products. �
2.6. Model structures. In this subsection, we introduce a model structure for T-∞-operads by means of
Lurie’s theory of categorical patterns ([Lur17, Def. B.0.19]). For a T-∞-operad O⊗, let Ne ⊂ (O⊗)1 denote
the subset of inert morphisms.

2.6.1. Definition. We define categorical patterns PT and P⊗
T on FT,∗ as follows. For each collection of

morphisms α = {αi : Ui V }ni=1 in T, let α : U =
⊔n
i=1 Ui

(αi)
V and define a morphism

fα : (n✁)♯ (FT,∗,Ne)
(for n = {1, ..., n} regarded as a discrete category) that sends the cone point v to [U+ → V ], i ∈ n to
[Ui+ → Ui], and v i to the characteristic morphism χ[Ui⊂U ]. Then let A be the set of the α and let

PT = (Ne,All, {fα : n✁ FT,∗}α∈A),
P⊗

T = (All,All, {fα : n✁ FT,∗}α∈A).

Furthermore, for any T-∞-operad O⊗, we define categorical patterns PO and P⊗
O on O⊗ by the construc-

tion of [Lur17, Rem. B.1.5]. In other words, let B denote the set of pairs (α, fα) where fα : (n✁)♯ (O⊗,Ne)
is any lift of fα, and let

PO = (Ne,All, {fα : n✁ O⊗}(α,fα)∈B),

P⊗
O = (Ne,All, {fα : n✁ O⊗}(α,fα)∈B).

2.6.2. Theorem-Construction. The T-operadic model structure on the category sSet+
/(F

T,∗,Ne) is that
defined by the categorical pattern PT of Definition 2.6.1 according to [Lur17, Thm. B.0.20]. The T-operadic
model structure is left proper, combinatorial, simplicial, and has the following properties:

(1) The cofibrations are precisely the monomorphisms.
(2) A marked map X Y over (FT,∗,Ne) is a weak equivalence if for any T-∞-operad O⊗, the induced

map
Map/(F

T,∗,Ne)(Y, (O⊗,Ne)) Map/(F
T,∗,Ne)(X, (O⊗,Ne))

is a weak equivalence.
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(3) An object is fibrant if it is of the form (O⊗,Ne) for some T-∞-operad O⊗.
(4) The fibrations between fibrant objects in sSet+

/(F
T,∗,Ne) are exactly given by the fibrations of T-∞-

operads.
Furthermore, for any T-∞-operad O⊗, we define the T-operadic model structure on the category sSet+

/(O⊗,Ne)
via the categorical pattern PO, and this coincides with the model structure induced from the T-operadic
model structure on sSet+

/(F
T,∗,Ne) by slicing over (O⊗,Ne).

Finally, we also define the T-monoidal model structure on the category sSet+
/O⊗ via the categorical pattern

P⊗
O. This construction has the same formal properties as with the T-operadic model structure, but where

the fibrant objects are precisely the O-monoidal T-∞-categories with the cocartesian edges marked.

Proof. The construction of the T-operadic model structure on sSet+
/(F

T,∗,Ne) and the first three claims about
it follows immediately from [Lur17, Thm. B.0.20] and the definition of a T-∞-operad. The fourth claim
and the assertion about the model structure on sSet+

/(O⊗,Ne) follow from [Lur17, Prop. B.2.7]. Finally,
the analogous assertions about the T-monoidal model structure all follow in the same way (cf. [Lur17,
Var. 2.1.4.13]). �

2.6.3. Definition. We define the ∞-category of (small) T-∞-operads

OpT := N((sSet+
/(F

T,∗,Ne))
f )

to be the simplicial nerve of the full simplicial subcategory of sSet+
/(F

T,∗,Ne) spanned by the fibrant objects
in the T-operadic model structure. We further let Cat⊗

T denote the subcategory of OpT spanned by the
(small) T-symmetric monoidal T-∞-categories and T-symmetric monoidal functors thereof, or equivalently,
the simplicial nerve N((sSet+

/F
T,∗

)f ) taken with respect to the T-monoidal model structure.
For a small T-∞-operad O⊗, we then let

OpO,T := N((sSet+
/(O⊗,Ne))

f ), Cat⊗
O,T := N((sSet+

/O⊗ )f ).

Note that OpO,T ≃ (OpT)/O⊗ and Cat⊗
O,T includes as the subcategory of OpO,T on the O-monoidal T-∞-

categories and morphisms thereof.

2.6.4. Corollary. For any small T-∞-operad O⊗, the ∞-categories OpO,T and Cat⊗
O,T are presentable.

Proof. Since the T-operadic model structure on sSet+
/(O⊗,Ne) and the T-monoidal model structure on sSet+

/O⊗

are combinatorial and simplicial by Theorem-Construction 2.6.2, it follows from [Lur09, Prop. A.3.7.6] that
OpO,T and Cat⊗

O,T are presentable. �

Using the theory of categorical patterns, it is easy to construct cotensors in the∞-category of T-∞-operads
fibered over a given base.

2.6.5. Construction. Let O⊗ be a T-∞-operad and let K be a marked simplicial set. By [Lur17, Prop. B.1.9]
applied to the trivial categorical pattern on sSet+ and PO on sSet+

/(O⊗,Ne), the functor

(−×K) : sSet+
/(O⊗,Ne) sSet+

/(O⊗,Ne), A 7→ A×K

is left Quillen. We denote its right adjoint on fibrant objects by (C⊗, p) 7→ ((C⊗, p)K , pK) and the underlying
T-∞-category by (C, p)K . Since this adjunction is also simplicial, for (C⊗, p) and (D⊗, q) fibrations of T-∞-
operads over O⊗ we obtain equivalences of ∞-categories

AlgO,T(C, (D, q)K) ≃ Fun/(O⊗,Ne)(K × (C⊗,Ne), (D⊗,Ne)) ≃ Fun(K,AlgO,T(C,D)∼)

where (−)∼ means we take the marking given by the equivalences. In other words, we have constructed the
cotensor of OpO,T over Cat at the level of marked simplicial sets. Note also that a fibrant replacement of
K×(C⊗,Ne) computes the tensor. Repeating this analysis with the categorical pattern P⊗

O, we see that if C⊗

and D⊗ are O-monoidal, then (D⊗, p)K is moreover O-monoidal, and we have equivalences of ∞-categories

Fun⊗
O,T(C, (D, q)K) ≃ Fun/O⊗(K × (C⊗)♯, (D⊗)♯) ≃ Fun(K,Fun⊗

O,T(C,D)∼).
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Moreover, note that if F : O Cat denotes the functor classifying D O, then (D, q)K O is
classified by the functor O Cat given by applying Fun(K, (−)∼) fiberwise to F . We may thus consider
(D⊗, p)K to be a construction of the pointwise O-monoidal structure on (D, q)K .
2.7. Big T-∞-operads. For certain arguments, it is technically inconvenient that the base T does not admit
pullbacks. We will thus need to consider an equivalent definition of a T-∞-operad.
2.7.1. Definition. Let Ar(FT)tdeg,Ar(FT)si denote the wide subcategories of Ar(FT) on morphisms

σ =




U X

V Y




such that ev1(σ) : V Y is a degenerate edge, resp. the induced morphism U V ×Y X is a summand
inclusion. Then (Ar(FT); Ar(FT)si,Ar(FT)tdeg) is a disjunctive triple, and we define

Fbig
T,∗ := Span(Ar(FT); Ar(FT)si,Ar(FT)tdeg).

Evaluation at the target defines a structure map Fbig
T,∗ Fop

T , which is a cocartesian fibration.

2.7.2. Definition. We define a categorical pattern P̃T on Fbig
T,∗ as follows. Let φ : U V be a morphism

in FT and Σ = {σ1, ..., σn} be a collection of commutative squares in FT

σi =




Ui U

Vi V

αi

φi φ

βi




such that αi is a summand inclusion and the induced map Ui Vi ×V U is also a summand inclusion. Let
χσi : ∆1 (Ar(FT)si)op ⊂ Fbig

T,∗ be the morphism corresponding to σi.
Suppose moreover that the summand inclusions αi combine to yield an equivalence

∐
1≤i≤n Ui ≃ U . Let

fφ,Σ : n✁ Fbig
T,∗

denote the functor which selects the n morphisms χσ1 , ..., χσn . We then let
P̃T = (Ne,All, {fφ,Σ})

where φ and Σ range over all possible choices.
2.7.3. Definition. The T-operadic model structure on the category sSet+

/(Fbig
T,∗,Ne) is that defined by the

categorical pattern P̃T of Definition 2.7.2 according to [Lur17, Thm. B.0.20]. We call the fibrant objects big
T-∞-operads.

For any big T-∞-operad Õ⊗ Fbig
T,∗, we then define the T-operadic model structure on sSet+

/(Õ⊗,Ne)
via

the categorical pattern
P̃O = (Ne,All, {fx,φ,Σ}),

where the fx,φ,Σ : n✁ Õ⊗ range over all cocartesian sections of the fφ,Σ, and the x in the notation
denotes the value of fx,φ,Σ on the cone point v.

Given a big T-∞-operad Õ⊗ Fbig
T,∗ Fop

T , we will let O⊗ FT,∗ Top denote its pullback along
the inclusion Top ⊂ Fop

T . Clearly, O⊗ is a T-∞-operad.

2.7.4. Proposition. Let Õ⊗ be a big T-∞-operad over Fbig
T,∗ and consider the span

(Õ⊗,Ne) (Arne(Õ⊗)×
Õ⊗ O⊗,Ne) (O⊗,Ne).

pr
O⊗ev0

Then the adjunction
(prO⊗)!(ev0)∗ : sSet+

/(Õ⊗,Ne)
sSet+

/(O⊗,Ne) :(ev0)∗(prO⊗)∗

is a Quillen equivalence.
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Proof. We first show that (prO⊗)!(ev0)∗ ⊣ (ev0)∗(prO⊗ )∗ is a Quillen adjunction. For this, it suffices to show
that (ev0)∗(prO⊗)∗ preserves fibrant objects. Examining the proof of [Sha21b, Prop. 3.5(1)], we see that it
implies

ev0 : Arne(Õ⊗)×
Õ⊗ O⊗ Õ⊗

is a cartesian fibration, because any fiberwise active edge with target in O⊗ necessarily has source in O⊗.
Therefore, the hypotheses of [Lur17, Thm. B.4.2] are satisfied excluding those involving the maps fx,φ,Σ.
We deduce that (ev0)∗(prO⊗)∗ sends fibrant objects to fibrations over Õ⊗ which are cocartesian over the
inert edges. Given a T-∞-operad C⊗, let C̃⊗ = (ev0)∗(prO⊗ )∗(C⊗). It remains to show that for every
fx,φ,Σ : n✁ Õ⊗,

(i) the functor n✁ Cat classifying the cocartesian fibration n✁ ×
Õ⊗ C̃⊗ is a limit diagram.

(ii) For every cocartesian section n✁ n✁ ×
Õ⊗ C̃⊗, the composite n✁ C̃⊗ is a f -limit diagram for

f : C̃⊗ Õ⊗.
In fact, we only need to consider fx,φ,Σ where Σ is given by squares

Ui U

Ui V

= φ

with Ui an orbit, so we will suppose this in the remainder of the argument.
For (i), recall from [Sha21a, Ex. 2.26] that the right Kan extension of a functor C Cat along C D

is modeled at the level of cocartesian fibrations by the push-pull construction involving the span

D Ar(D)×D C C.

Therefore, C̃⊗
ne is the right Kan extension of C⊗

ne along O⊗
ne ⊂ Õ⊗

ne. In particular, given x ∈ Õ⊗ over
[f+ : U+ → V ] ∈ Fbig

T,∗ and an orbit decomposition V ≃ V1
∐
...
∐
Vm, let x xj be inert morphisms lifting

the cocartesian morphisms [U+ → V ] [(U×V Vj)+×Vj ]. Then we have an equivalence C̃⊗
x ≃

∏
1≤j≤m C⊗

xj
,

and postcomposing with the further decompositions of C⊗
xj

given by orbit decompositions of U ×V Vj verifies
(i).

For (ii), it suffices to prove that for every fiberwise active edge α : x y ∈ Õ⊗ over [U ′
+ → V ] [U+ →

V ], objects x, y ∈ C̃⊗ over x, y, and identification y ≃ (y1, ..., yn) induced by fy,φ,Σ,

Mapα
C̃⊗(x, y) ≃

∏

1≤i≤n
Mapαi

C̃⊗
(x, yi).

where αi is the composition x y yi.
However, for an orbit decomposition V ≃ V1

∐
...
∐
Vm and corresponding inert morphisms x xj ,

y yj , we have that
Mapα

C̃⊗ (x, y) ≃
∏

1≤j≤m
Mapα

j

C⊗(xj , yj)

where α ≃ (αj : xj yj) under the same decomposition for mapping spaces in Õ⊗. Using the known
decompositions of mapping spaces in C⊗ then yields the claim.

Finally, it is easy to see that the induced adjunction of ∞-categories

(Opbig
T )

/Õ⊗ (OpT)/O⊗

is an equivalence because the unit and counit transformations are equivalences. Hence the Quillen adjunction
is a Quillen equivalence. �

2.7.5. Corollary. Let Õ⊗ be a big T-∞-operad over Fbig
T,∗ and let i : O⊗ Õ⊗ denote the inclusion. Then

we have a Quillen equivalence

i! : sSet+
/(O⊗,Ne) sSet+

/(Õ⊗,Ne)
:i∗
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Proof. i is obviously compatible with the categorical patterns defining the model structures in the sense of
[Lur17, B.2.8], so i! ⊣ i∗ is a Quillen adjunction. Moreover, at the level of the underlying ∞-categories i∗
is left adjoint to the right Quillen functor of Proposition 2.7.4. Hence the Quillen adjunction is a Quillen
equivalence. �

2.8. Monoidal envelopes. In this subsection, we apply the theory of parametrized factorization systems
[Sha21b, §3] to construct the O-monoidal envelope of any fibration of T-∞-operads C⊗ O⊗. First recall
the notion of T-factorization system from [Sha21b, Def. 3.1] and the associated ‘total’ factorization system
of [Sha21b, Def. 3.2].

2.8.1. Example. We have the inert-active T-factorization system on FT,∗ given fiberwise by the inert-active
factorization system on FT/V ,∗ as in Remark 2.1.5. Note that the definition of (possibly non-fiberwise) inert
and active edges in FT,∗ given initially in Definition 2.1.3 then matches that of [Sha21b, Def. 3.2]. More
generally, we have the inert-active T-factorization system on any T-∞-operad O⊗. From this, we obtain the
inert-fiberwise active factorization system on O⊗ itself.

2.8.2. Remark. The inert edges in FT,∗ and Fbig
T,∗ satisfy the following right cancellation property: if we

have a 2-simplex
x1

x0 x2

gf

h

such that f is inert, then g is inert if and only if h is inert. The ‘only if’ direction is clear. To see the
converse, note that by factoring f as a cocartesian edge followed by a fiberwise inert edge, we may suppose
that f is of either form. Then by examining the composition of spans, we see that the claimed assertion
reduces to the two-out-of-three property for equivalences in (FT)/U , where x2 lies over U .

In contrast, the active edges do not satisfy the left cancellation property, because cocartesian edges do
not. However, fiberwise active edges do satisfy the left cancellation property, just as they do in the theory
of ∞-operads.

2.8.3. Notation. Given a T-∞-operad O⊗, let Aract(O⊗) denote the full T-subcategory of Ar(O⊗) on the
active morphisms, and let

Aract
T (O⊗) = Top ×Ar(Top) Aract(O⊗).

2.8.4. Definition. Given a fibration of T-∞-operads p : C⊗ O⊗, the O-monoidal envelope of p is
EnvO,T(C)⊗ := C⊗ ×O⊗ Aract

T (O⊗) O⊗.

If O⊗ = FT,∗, we will abbreviate EnvO,T(C)⊗ as EnvT(C)⊗ and refer to it as the T-symmetric monoidal
envelope of C⊗.

2.8.5. Remark. For a T-∞-operad C⊗, the underlying T-∞-category of EnvT(C)⊗ is C⊗
act.

2.8.6. Proposition. Let p : C⊗ O⊗ be a fibration of T-∞-operads. Then EnvO,T(C)⊗ is a O-monoidal
T-∞-category.

Proof. We need to show that
ev1 : C⊗ ×O⊗ Aract

T (O⊗) O⊗

is a cocartesian fibration of T-∞-operads. By [Sha21b, Prop. 3.5(2)], ev1 is a cocartesian fibration. We
now seek to verify the criterion of Proposition 2.2.6 to finish the proof. Because O⊗ is a T-∞-operad, for
any object y ∈ O⊗

[U+→V ], orbit decomposition U ≃ U1
∐
...
∐
Un, and inert edges ρi : y yi lifting the

characteristic morphisms χ[Ui⊂U ], the ρi induce an equivalence

((O⊗
act)V )/y ≃

∏

1≤i≤n
((O⊗

act)Ui )/yi .

Using that C⊗ O⊗ is a fibration of T-∞-operads, we have the further equivalence

(C⊗
act)V ×(O⊗

act)V
((O⊗

act)V )/y ≃
∏

1≤i≤n
(C⊗

act)Ui ×(O⊗
act)Ui

((O⊗
act)Ui )/yi .



22 DENIS NARDIN AND JAY SHAH

Using that the fiberwise active edges are left cancellative, we identify the lefthand side with (C⊗ ×O⊗

Aract
T (O⊗))y, and similarly for the righthand side. The stated equivalence is then the one induced by the Segal

maps, and we conclude that ev1 : C⊗ ×O⊗ Aract
T (O⊗) O⊗ is a cocartesian fibration of T-∞-operads. �

2.8.7. Proposition. Let p : C⊗ O⊗ be a fibration of T-∞-operads and let q : D⊗ O⊗ be a cocartesian
fibration of T-∞-operads. Let i : C⊗ ⊂ EnvO,T(C)⊗ denote the inclusion of C⊗ into its O-monoidal envelope.

(1) Precomposition by i yields an equivalence
i∗ : Fun⊗

O,T(EnvO,T(C),D) AlgO,T(C,D).
(2) We have an adjunction

i! : AlgO,T(C,D) AlgO,T(EnvO,T(C),D) :i∗

where i! is the fully faithful inclusion of Fun⊗
O,T(EnvO,T(C),D) under the equivalence of (1).

Proof. This follows immediately from [Sha21b, Thm. 3.6], using the inert-active T-factorization system on
O⊗. �
2.8.8. Corollary. Let O⊗ be a T-∞-operad. We have an adjunction

Env⊗
O,T : OpO,T Cat⊗

O,T :U.

2.9. Subcategories and localization. Let C⊗ O⊗ be a fibration of T-∞-operads. Given a full T-
subcategory D ⊂ C, let D⊗ be the full T-subcategory of C⊗ on the objects of D (using the Segal decompo-
sitions of the fibers of C⊗). Clearly, D⊗ O⊗ is a fibration of T-∞-operads, and the inclusion D⊗ C⊗

is a morphism of T-∞-operads over O⊗. In this subsection, we state conditions under which D⊗ inherits
an O-monoidal structure from C⊗. Our presentation of these results parallels and extends those of [Lur17,
§2.2.1].

2.9.1. Proposition. Let C⊗ O⊗ be a fibration of T-∞-operads and let D ⊂ C be a full T-subcategory.
Suppose that for every fiberwise active edge α : x y in O⊗

V with y ∈ OV , the pushforward functor
⊗α : C⊗

x Cy restricts to a functor D⊗
x Dy. Then D⊗ O⊗ is a cocartesian fibration and the

inclusion D⊗ C⊗ is an O-monoidal T-functor.

Proof. This is immediate in light of the inert-fiberwise active factorization system on C⊗ (Example 2.8.1). �
We say that a T-functor L : C C is a T-localization if for every object V ∈ T, LV is a localization

functor. If we let D denote the essential image of L, then by [Lur17, 7.3.2.6] we have a T-adjunction
L : C D :R

where R : D C is the inclusion. Given a T-localization L : C C, a morphism in C is an L-equivalence
if it lies in a fiber CV and is a LV -equivalence. Similarly, given a T-∞-operad C⊗, a morphism in C⊗ is
an L-equivalence if it lies entirely in a fiber C⊗

[U+→V ] and is a product of L-equivalences under the Segal
decomposition of that fiber.

2.9.2. Theorem. Let O⊗ be a T-∞-operad and C⊗ O⊗ an O-monoidal T-∞-category. Let L : C C

be a T-localization and let D ⊂ C be its essential image. Suppose that for every fiberwise active edge α :
x y ∈ O⊗

V with y ∈ OV , the pushforward functor ⊗α : C⊗
x Cy preserves L-equivalences. Then we have

a relative adjunction over O⊗

L⊗ : C⊗ D⊗ :R⊗

with L⊗ an O-monoidal functor (i.e., preserving cocartesian edges over O⊗) and R⊗ a lax O-monoidal functor
(i.e., a morphism of T -∞-operads), which prolongs the T-adjunction L : C D :R.

Proof. This is immediate from the inert-fiberwise active factorization system on C⊗ (Example 2.8.1) together
with the criterion of [BH21, Prop. D.7]. �
2.9.3. Remark. In the case where O⊗ = FT,∗, the criterion of Theorem 2.9.2 amounts to

(1) For every object V ∈ T and Z ∈ CV , the functor
−⊗ Z : CV CV

preserves LV -equivalences.
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(2) For every morphism f : V W in T, the norm functor

f⊗ : CV CW

sends LV -equivalences to LW -equivalences.

3. Parametrized Day convolution

In this section, we construct a (partially-defined) internal hom for T-∞-operads fibered over an arbitrary
base T-∞-operad O⊗: the T-Day convolution. We first introduce the notion of an O-promonoidal T-∞-
category C⊗, which is the analogue of a flat categorical fibration11 in the context of T-∞-operads. The
O-promonoidal condition ensures the existence of the p-operadic coinduction functor (Corollary 3.1.5), and
given a O-promonoidal T-∞-category p : C⊗ O⊗ and any fibration E⊗ O⊗ of T-∞-operads, we may
then use the p-operadic coinduction on the pullback of E⊗ over C⊗ to construct the T-Day convolution
(Definition 3.1.6)

F̃unO,T(C,E)⊗ O⊗.

We then state conditions on E⊗ under which F̃unO,T(C,E)⊗ is O-monoidal – these amount to the existence
of certain T-colimits as well as T-distributivity of the tensor product (Theorem 3.2.6).

3.1. O-promonoidal T-∞-categories and T-Day convolution.

3.1.1. Definition. Let p : C⊗ O⊗ be a fibration of T-∞-operads. We say that C⊗ is O-promonoidal if
for every V ∈ T, the functor pV : (C⊗

V )act (O⊗
V )act is a flat categorical fibration.

3.1.2. Example. Suppose (C⊗, p) is a O-monoidal T-∞-category, so that p is a cocartesian fibration. C⊗ is
then O-promonoidal since cocartesian fibrations are flat [Lur17, Ex. B.3.4].

3.1.3. Remark. To understand the relevance of the O-promonoidal condition, the reader may find it useful
to first review the nonparametrized story from [Sha21b, §10]. To our knowledge, the correct definition of an
O-promonoidal∞-category first appeared in Hinich’s work [Hin20] (and was misstated in [BGS20]).

For technical reasons, to construct the T-Day convolution we will first work in the setting of big T-∞-
operads (i.e., so that the base is Fop

T in place of Top). Let Arne(Õ⊗) be notation for the full subcategory of
Ar(Õ⊗) on the inert edges.

3.1.4. Theorem. Let Õ⊗ and C̃⊗ be big T-∞-operads over Fbig
T,∗ and let p : C̃⊗ Õ⊗ be a fibration of

big T-∞-operads such that the restriction p′ : C⊗ O⊗ is O-promonoidal. Consider the span of marked
simplicial sets

(Õ⊗,Ne) (Arne(Õ⊗)×
Õ⊗ C̃⊗,Ne) (C̃⊗,Ne)ev0

pr̃
C⊗

where by the middle marking Ne we mean those edges in Arne(Õ⊗)×
Õ⊗ C̃⊗ whose source in Õ⊗ is inert and

whose projection to C̃⊗ is inert. Then the functor

(ev0)∗ ◦ (pr
C̃⊗ )∗ : sSet+

/(C̃⊗,Ne)
sSet+

/(Õ⊗,Ne)

is right Quillen with respect to the T-operadic model structures of Definition 2.7.3.

Proof. We verify the hypotheses of [Lur17, Thm. B.4.2].
(1) ev0 is flat by [Sha21b, Lem. 10.1] applied to the inert-fiberwise active factorization system on Õ⊗

(Example 2.8.1), noting that products of flat fibrations are flat in order to promote the flatness condition
on (p′)f.act to pf.act.

(2) It is obvious that inert edges are closed under composition and contain the equivalences.
(3) Vacuously true since the categorical patterns we are looking at contain all 2-simplices.

11Some authors also call this an exponentiable fibration to highlight its key property: a categorical fibration π : C D is
said to be flat if the right adjoint π∗ to the pullback functor π∗ : Cat/D Cat/C exists.
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(4) Suppose e : x0 → y0 is an inert edge in Õ⊗. Then as we saw in [Sha21b, Prop. 3.5(1)], given an inert edge
y0 → y1 the cartesian lift of e to an edge e′ : [x0 → x1] → [y0 → y1] in Arne(Õ⊗) has ev1(e′) : x1 → y1
an equivalence. It follows that given a further lift of y0 → y1 to an object (y0 → y1, c ∈ C̃⊗

y1) in
Arne(Õ⊗)×

Õ⊗ C̃⊗, e admits a cartesian lift to an edge e′′ : (x0 → x1, c
′)→ (y0 → y1, c) (with c′ → c an

equivalence).
(5) Let fx,φ,Σ : n✁ Õ⊗ be in the categorical pattern defining the T-operadic model structure on

sSet+
/(Õ⊗,Ne)

. We claim that the pullback

π : n✁ ×
Õ⊗ Arne(Õ⊗)×

Õ⊗ C̃⊗ n✁

is a cocartesian fibration. Because inert edges are right cancellative (Remark 2.8.2) and C̃⊗ is cocartesian
over the inert edges of Õ⊗, it suffices to show that

n✁ ×
Õ⊗

ne
Ar(Õ⊗

ne) n✁

is cocartesian, where Õ⊗
ne ⊂ Õ⊗ is the wide subcategory with morphisms restricted to the inert edges.

In fact, we will prove the stronger assertion that

ev0 : Ar(Õ⊗
ne) Õ⊗

ne

is cocartesian. For this, by [Lur09, 6.1.1.1], it suffices to show that Õ⊗
ne admits pushouts. Since the inert

edges in Õ⊗ are defined to be the cocartesian lifts of inert edges in Fbig
T,∗, we may reduce to the case

Õ⊗ = Fbig
T,∗. It then suffices to show that Ar(FT)† (as in Definition 2.7.1) admits pullbacks. So suppose

we have a commutative cube
W ×U X X

W U

Z ×V Y Y

Z V

We want to show that if W Z×V U is a summand inclusion, then W ×UX Z×Y X is a summand
inclusion. To see this, consider the diagram

W ×U X Z ×Y X X

W Z ×V U U

The right square and outer rectangle are both pullback squares, so the left square is as well. Since
summand inclusions are stable under pullback, the desired conclusion follows.

(6) Let s : n✁ n✁ ×
Õ⊗ Arne(Õ⊗)×

Õ⊗ C̃⊗ be a cocartesian section of π defined as above. Suppose that
s({v}) = (x e−→ y ∈ Õ⊗

ne, c ∈ C̃⊗
y ) and e is a cocartesian lift of the inert morphism in Fbig

T,∗ defined by the
square

U ′ U

V ′ V

φ′ φ
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in FT . If Σ = {σ1, ..., σn} is given by squares σi

Ui U

Vi V

φ

then let Σ′ = {σ′
1, ..., σ

′
n} be given by the collection of squares σ′

i

Ui ×U U ′ U ′

Vi ×V V ′ V ′.

φ′

Because summand inclusions are stable under pullback, the morphisms Ui ×U U ′ U ′ are summand
inclusions, and clearly induce an equivalence

∐
1≤i≤n Ui ×U U ′ ≃ U ′. Therefore, the data of (c, φ′,Σ′)

defines a morphism fc,φ′,Σ′ : n✁ C̃⊗ which is part of the categorical pattern defining the T-operadic
model structure on sSet+

/(C̃⊗,Ne)
. Moreover, by the analysis done in (5) we may identify the composite

map
n✁ n✁ ×

Õ⊗ Arne(Õ⊗)×
Õ⊗ C̃⊗ C̃⊗

with fc,φ′,Σ′ .
(7) We check the following: suppose we have a commutative diagram

x0 x1 x2

y0 y1 y2

in Arne(Õ⊗) and c0 c1 c2 in C̃⊗ that covers y0 y1 y2, such that c1 c2 is an equivalence
(so y1 y2 is an equivalence), x1 x2 is inert, x0 x1 is an equivalence. Then c0 c1 is inert
if and only if c0 c2 is inert. But this is clear from the definitions.

(8) It suffices to check the following: suppose we have a commutative diagram

x0 x1 x2

y0 y1 y2

in Arne(Õ⊗) and c0 c1 c2 in C̃⊗ that covers y0 y1 y2, such that x0 x1, y0 y1, and
c0 c1 are inert. Then {x1 x2, y1 y2, c1 c2} are inert if and only if {x0 x2, y0 y2,
c0 c2} are inert. But this follows from the right cancellativity of inert morphisms (Remark 2.8.2).

�

Having passed to the big T-∞-operads to construct the T-operadic coinduction and verify its properties,
we now pass back to the usual formulation of T-∞-operads.

3.1.5. Corollary. Let O⊗ be a T-∞-operad and let (C⊗, p) be an O-promonoidal T-∞-category. Consider the
span diagram of marked simplicial sets

(O⊗,Ne) (Arne(O⊗)×O⊗ C⊗,Ne) (C⊗,Ne).ev0 pr
C⊗

Then the functor
(ev0)∗ ◦ (prC⊗ )∗ : sSet+

/(C⊗,Ne) sSet+
/(O⊗,Ne)

is right Quillen with respect to the T-operadic model structures.

Proof. Combine Theorem 3.1.4, Proposition 2.7.4, and Corollary 2.7.5. �
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3.1.6. Definition. In the situation of Corollary 3.1.5, given a fibration of T-∞-operads E⊗ C⊗, define
the p-operadic coinduction or p-norm of E⊗ to be the T-∞-operad

(NormpE)⊗ := (ev0)∗(prC⊗ )∗(E⊗,Ne),

given as a marked simplicial set fibered over (O⊗,Ne).
Given a fibration of T-∞-operads E⊗ O⊗, define the Day convolution T-∞-operad to be

F̃unO,T(C,E)⊗ := (Normpp
∗E)⊗.

If O⊗ = FT,∗, we will also denote F̃unO,T(C,E)⊗ as FunT(C,E)⊗.

3.1.7. Proposition. Let p, q : D⊗ O⊗ be fibrations of T-∞-operads. Then the functor

ι : (D⊗ ×O⊗ C⊗,Ne) (D⊗ ×O⊗ Arne(O⊗)×O⊗ C⊗,Ne)

induced by the identity section is a homotopy equivalence in sSet+
/(C⊗,Ne). Consequently, for O-promonoidal

(C⊗, p), ι∗ induces an equivalence of T-∞-categories

Alg
O,T

(D,NormpE) Alg
C,T

(D×O C,E)≃

and an equivalence of ∞-categories

AlgO,T(D,NormpE) AlgC,T(D×O C,E).≃

Proof. Let P : D⊗ ×O⊗ Arne(O⊗) D⊗ be a cocartesian pushforward chosen so that P |D⊗ = id, and let

P ′ = P × idC⊗ : D⊗ ×O⊗ Arne(O⊗)×O⊗ C⊗ D⊗ ×O⊗ C⊗.

Then P ′ respects the given markings, and as in the proof of [Sha21a, Lem. 3.2(2)] we may construct an
explicit homotopy h : id ι◦P ′ such that h sends objects to fiberwise marked edges. This shows that P is
a marked homotopy inverse to ι and hence ι is a homotopy equivalence in sSet+

/(C⊗,Ne). The consequences
then follow from the definition of the left adjoint to Normp. �

3.1.8. Corollary. The Quillen adjunction of Corollary 3.1.5 descends to an adjunction of ∞-categories

p∗ : (OpT)/O⊗ (OpT)/C⊗ :Normp.

In particular, if (C⊗, p) is O-promonoidal, then the right adjoint to p∗ exists and is computed by Normp.

3.1.9. Proposition. The underlying T-∞-category of F̃unO,T(C,E)⊗ is the T-pairing construction F̃unO,T(C,E)
of [Sha21a, Constr. 9.1]. In particular, if O⊗ = FT,∗, the underlying T-∞-category of FunT(C,E)⊗ is
FunT(C,E).

Proof. Consider the diagram

Arcocart(O)×O C O

O×O⊗ Arne(O⊗)×O⊗ C⊗ Arne(O⊗)×O⊗ C⊗ O⊗

O O⊗

ι

where ι is defined using the inclusions O ⊂ O⊗ and C ⊂ C⊗. Unwinding the definitions, to prove the claim
it suffices to show that the map

Arcocart(O)×O C O×O⊗ Arne(O⊗)×O⊗ O×O C

is a homotopy equivalence (in sSet+
/♮O

via the target map). But this is clear, since the inert edges in O⊗

with source and target in O are, up to equivalence, precisely the cocartesian edges in O. �
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3.2. O-monoidality of the T-Day convolution. We now establish O-monoidality of the T-Day convolution
T-∞-operad given appropriate conditions on the input T-∞-operads. For this, we will use repeatedly the
following criterion for when a fibration of T-∞-operads is locally cocartesian or cocartesian.

3.2.1. Lemma. Let p : C⊗ O⊗ be a fibration of T-∞-operads. Suppose that for every fiberwise active edge
e : x y in O⊗ with y ∈ O, and c ∈ O⊗ with p(c) = x, there exists a locally cocartesian edge f : c c′

over e. Then p is a locally cocartesian fibration.
Furthermore, suppose that for every composition of fiberwise active edges x e−→ y

e′
−→ z in O⊗ with z ∈ O,

and c ∈ O⊗ with p(c) = x, locally cocartesian lifts of e to f : c c′ and e′ to f ′ : c′ c′′ compose to yield
a locally cocartesian edge f ′′ : c c′′. Then p is a cocartesian fibration.

Proof. For the first assertion, using the inert-fiberwise active factorization system on O⊗ and that p admits
cocartesian lifts over inert edges, we reduce to checking that p admits locally cocartesian lifts over fiberwise
active edges. Then given any fiberwise active edge e : x y in O⊗, we may use that O⊗ is a T-∞-operad
to obtain a decomposition of e as (ei : xi yi)i∈I for yi ∈ O under the identifications O⊗

y ≃
∏
i∈I O

⊗
yi

,
O⊗
x ≃

∏
i∈I O

⊗
xi

, and MapO⊗
act

(x, y) ≃ ∏i∈I MapO⊗
act

(xi, yi). Suppose c ∈ C⊗ over x. Because p is a fibration
of T-∞-operads, we get ci ∈ C⊗ over xi, and we may take the product of locally cocartesian lifts ci c′

i

over the ei to obtain the desired locally cocartesian lift c c′ of e.
For the second assertion, we need to check that locally cocartesian edges compose to yield again a locally

cocartesian edge. Note that for any commutative diagram in C⊗

c d

c′ d′

f

g g′

f ′

with f locally cocartesian over a fiberwise active edge and g, g′ inert, then f ′ is necessarily locally cocartesian.
Using this, we can reduce to checking that locally cocartesian edges over fiberwise active edges compose.
Then as before, we can further reduce to supposing that the last object lies in O. �

The next proposition allows us to understand T-Day convolution as a locally cocartesian fibration over
the base T-∞-operad O⊗.

3.2.2. Proposition. Let (C⊗, p) be an O-promonoidal T-∞-category and let (E⊗, q) be an O-monoidal T-∞-
category in which for every object x ∈ OV , the parametrized fiber Ex is T/V -cocomplete.

(1) The T-Day convolution F̃unO,T(C,E)⊗ O⊗ is a locally cocartesian fibration, and for every x ∈ OV ,
its parametrized fiber F̃unO,T(C,E)x is T/V -cocomplete.

(2) Suppose α is a fiberwise active edge in F̃unO,T(C,E)⊗
V lifting α : x y in O⊗

V with y ∈ OV , which
in turn lifts f : U V in FT (identified with the fiberwise active edge [U+ → V ] [V+ → V ] in
FT,∗). The data of α is given by a commutative diagram of T/V -∞-categories

{x} ×O⊗ Arne(O⊗)×O⊗ C⊗ E⊗
V

∆1 ×α,O⊗ Arne(O⊗)×O⊗ C⊗ O⊗
V

F

i qVH

where we use the projections of the lefthand ∞-categories to {V } ×Top Ar(Top) ∼= (T/V )op in order
to pullback to the base (T/V )op.

Then α is a locally cocartesian edge if and only if H is a weak qV -T/V -left Kan extension of F in
the sense of [Sha21b, Def. 6.1].

(3) Note that we have inclusions of full T-subcategories

C⊗
x := {x} ×O⊗ Arcocart(O⊗)×O⊗ C⊗ ⊂ {x} ×O⊗ Arne(O⊗)×O⊗ C⊗

C⊗
α := ∆1 ×α,O⊗ Arcocart(O⊗)×O⊗ C⊗ ⊂ ∆1 ×α,O⊗ Arne(O⊗)×O⊗ C⊗.
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Choose a cocartesian pushforward Pα : E⊗
α Ey and consider the commutative diagram

C⊗
x E⊗

α Ey

C⊗
α (T/V )op

F

i

Pα

H

(where we abusively continue to write H and F for the canonical lifts of those functors to have
codomains E⊗

α and E⊗
x ⊂ E⊗

α respectively). Then α is a locally cocartesian edge if and only if Pα ◦H
is a T/V -left Kan extension of Pα ◦ F .

Furthermore, if we let G = (Pα ◦H)|Cy : Cy Ey, then we have the data of a diagram

C⊗
x E⊗

x Ey

Cy

F

⇓ηα⊗

α⊗

G

in which the natural transformation η exhibits G as a T/V -left Kan extension of α⊗ ◦ F along α⊗.

Proof. (2): By definition, α is a locally cocartesian edge if and only if H is initial in the space of all such
fillers. But if H is a weak qV -T/V -left Kan extension of F , then it is in particular initial. Conversely,
provided that we know a weak qV -T/V -left Kan extension of F exists, then it necessarily coincides with the
filler defined by α.

(1): We now show existence of these weak qV -T/V -left Kan extensions. Let

K := {x} ×O⊗ Arne(O⊗)×O⊗ C⊗

L := ∆1 ×α,O⊗ Arne(O⊗)×O⊗ C⊗.

Note that any object in L that is not in K is either of the form (y → z = p(c) ∈ Arcocart(O), c ∈ C)
or (y → z = p(c) ∈ Arne(O⊗), c ∈ C⊗) with z over [∅+ → W ] ∈ FT,∗. Let L0 ⊂ L denote the full T-
subcategory excluding the second type of objects. Because the fiber of E⊗ over any object [∅+ →W ] ∈ FT,∗
is contractible, we may replace L with L0 and instead consider fillers H0 : L0 E⊗. Moreover, note that
there are no inert edges in L0 not either cocartesian over Top or in K, so any extension H0 necessarily defines
an edge of F̃unO,T(C,E)⊗.

Because both the additional objects in L0 and morphisms between those objects lie over y O ⊂ O⊗,
by [Sha21b, Thm. 6.2] in conjunction with [Sha21b, Prop. 5.8] it suffices to have Ey be T/V -cocomplete for
a weak qV -T/V -left Kan extension of F to exist. This is ensured by our hypothesis.

By Lemma 3.2.1, we see that the case we just considered suffices to show that F̃unO,T(C,E)⊗ O⊗ is a
locally cocartesian fibration. In addition, by Proposition 3.1.9 and [Sha21a, Prop. 9.7], for every x ∈ OV we
have an equivalence

F̃unO,T(C,E)x ≃ FunV (Cx,Ex),

and the latter T/V -∞-category is T/V -cocomplete by the pointwise computation of T/V -colimits in T/V -
functor categories.

(3): Observe that for l = (y → z, c) ∈ C⊗
α ⊂ L, K ×L L/l ≃ C⊗

x ×C⊗
α

(C⊗
α )/l. By the pointwise formula

for T/V -left Kan extensions, the first part of the claim follows. The second part then follows by [Sha21b,
Rem. 2.14]. �

As with ordinary Day convolution, we need an additional distributivity hypothesis on the target for T-Day
convolution to be O-monoidal. We first recall the definition of a distributive functor (as originally formulated
by the first author).

3.2.3. Definition ([Sha21b, Def. 8.18]). Let f : U V be a map of finite T-sets, let C be a T/U -∞-
category, and let D be a T/V -∞-category. Let F :

∏
f C = f∗C D be a T/V -functor. Then we say that



PARAMETRIZED AND EQUIVARIANT HIGHER ALGEBRA 29

F is distributive if for every pullback square

U ′ V ′

U V

f ′

g′ g

f

of finite T-sets and T/U
′ -colimit diagram p : K✄ g′∗C, the T/V

′ -functor

(f ′
∗K)✄ can f ′

∗(K✄) f ′
∗p f ′

∗g
′∗C ≃ g∗f∗C

g∗F g∗D

is a T/V
′ -colimit diagram.

3.2.4. Definition. Let C⊗ be a O-monoidal T-∞-category and suppose that for all y ∈ OV , Cy is T/V -
cocomplete. We say that C⊗ is distributive if for every fiberwise active edge α : x y lifting [U+ →
V ] [V+ → V ] (corresponding to f : U V in FT), the associated pushforward T/V -functor

α⊗ : C⊗
x Cy

is distributive. Here, for this condition to be sensible, we use that for an orbit decomposition U ≃
U1
∐
...
∐
Un and n cocartesian morphisms x xi lifting the characteristic maps χ[Ui⊂U ] : [U+ →

V ] [(Ui)+ → Ui], the parametrized fiber C⊗
x is identified with

∏
f

(
Cx1

∐
...
∐

Cxn

)
by the T-Segal

condition (cf. Example 2.3.5).
Also note that in particular, for each morphism α : x y in OV , the condition that the pushforward

T/V -functor α⊗ : Cx Cy is distributive is equivalent to α⊗ strongly preserving all small T/V -colimits.

The following proposition furnishes some examples of distributive T-symmetric monoidal T-∞-categories.

3.2.5. Proposition. Let C be a cocomplete ∞-category with finite products such that the products commute
with colimits separately in each variable. Let f : U U ′ be a morphism of finite T-sets. Then the product
T/U

′-functor
µ : f∗f

∗CT/U′ CT/U′

is distributive. Consequently, the T-cartesian T-symmetric monoidal structure on CT is T-distributive.

Proof. By the universal property of the category of T/U ′ -objects ([Sha21a, Prop. 3.10]), µ can be identified
with a functor

µ† : f∗f
∗CT/U′ C

such that its restriction to the fiber over [W → U ′] ∈ T/U
′ is the functor

∏

V ∈Orbit(U×U′W )

Fun(V ,C)
∏

evV−−−−→
∏

V ∈Orbit(U×U′W )

C
×−→ C .

For the proof of distributivity we can assume without loss of generality that U ′ is an orbit. Suppose
p : K✄ CT/U is a T/U -colimit diagram and let p† : K✄ C be the functor under the equivalence of
[Sha21a, Prop. 3.10]. By [Sha21a, Prop. 5.5], any such p is T/U -colimit diagram if and only if for every
[V → U ] ∈ T/U the functor p†

V : K✄
[V→U ] C given by restriction to the fiber is a colimit diagram. By

[Sha21a, Prop. 5.5] again, it suffices to prove that the diagram

(f∗K)✄ f∗CT/U
µ†

C

is a colimit diagram when restricted to each fiber. But the restriction to the fiber above [W → U ′] ∈ T/U
′ is


 ∏

V ∈Orbit(U×U′W )

KV



⊲

∏

V ∈Orbit(U×U′W )

K⊲
V

∏
pV−−−−→

∏

V ∈Orbit(U×U′W )

C
×−→ C,

which is a colimit diagram since the cartesian product in C commutes with colimits separately in each
variable. �

We now return to T-Day convolution and prove the main result of this subsection.
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3.2.6. Theorem. In the situation of Proposition 3.2.2, suppose moreover that q : E⊗ O⊗ is distributive.
Then F̃unO,T(C,E)⊗ O⊗ is a cocartesian fibration and F̃unO,T(C,E)⊗ is distributive.

Proof. Let

y

x z

βα

γ

be a 2-simplex σ of fiberwise active edges in O⊗
W with z ∈ OW , which covers

V

U W

gf

h

in FT (viewed as a 2-simplex in (FT,∗)act
W ). We need to verify that given a lift of σ to a 2-simplex σ

y

x z

βα

γ

in F̃unO,T(C,E)⊗, if α and β are locally cocartesian edges then γ is a locally cocartesian edge.
Suppose that V ≃ ∐1≤i≤n Vi is an orbit decomposition of V with respect to which α decomposes as

{αi : xi yi}1≤i≤n. Then the locally cocartesian edge α corresponds to n commutative diagrams of
T/Vi -∞-categories

C⊗
xi

Eyi

C⊗
αi

Fxi

Fαi

in which Fαi is a T/Vi -left Kan extension of Fxi . From this, we obtain the commutative diagram of T/W -∞-
categories

∏
g(
∐

1≤i≤n C
⊗
xi

) ≃ C⊗
x

∏
g(
∐

1≤i≤n Eyi) ≃ E⊗
y Ez

∏
g(
∐

1≤i≤n C
⊗
αi

) ≃ C⊗
α

Fx β⊗

Fα

β⊗◦Fα

in which β⊗ ◦ Fα is a T/W -left Kan extension of β⊗ ◦ Fx, invoking the hypothesis that E⊗ is distributive.
On the other hand, the locally cocartesian edge β corresponds to a commutative diagram of T/W -∞-

categories

C⊗
y Ez

C⊗
β

Fy

Fβ
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in which Fy is the restriction of β⊗ ◦Fα along the inclusion C⊗
y ⊂ C⊗

α and Fβ is a T/W -left Kan extension of
Fy. Combining these two diagrams, we obtain a commutative diagram of T/W -∞-categories

C⊗
x E⊗

y

C⊗
y C⊗

α Ez

C⊗
β C⊗

σ

Fx

β⊗

β⊗◦Fα

Fβ Fσ

where C⊗
σ := ∆2×σ,O⊗ Arcocart(O⊗)×O⊗ C⊗. Because C⊗ is O-promonoidal and σ is a 2-simplex of fiberwise

active edges, the lefthand square is a pushout square of T/W -∞-categories, and the dotted T/W -functor Fσ is
obtained from gluing together β⊗ ◦Fα and Fβ . Indeed, Fσ corresponds to the 2-simplex σ in F̃unO,T(C,E)⊗.
By Lemma 3.2.7, Fσ is a T/W -left Kan extension of β⊗ ◦ Fα. By transitivity of T/W -left Kan extensions,
Fσ is a T/W -left Kan extension of β⊗ ◦ Fx, and the restriction Fγ of Fσ to C⊗

γ ⊂ C⊗
σ is also a T/W -left Kan

extension of β⊗ ◦ Fx. But this exactly means that γ is a locally cocartesian edge. Finally, by Lemma 3.2.1
this suffices to show that F̃unO,T(C,E)⊗ O⊗ is a cocartesian fibration.

To show that F̃unO,T(C,E)⊗ is distributive, we check the definition. So suppose that α : x y is a
fiberwise active edge in O⊗

V with y ∈ OV , which lifts f : U V in FT. Let U ≃ U1
∐
...
∐
Un be an orbit

decomposition and suppose we have T/Ui -colimits

Ki FunT/Ui (Cxi ,Exi)

(T/Ui )op

pi

qi

(Here and throughout we suppress the data of the natural transformations.) By [Sha21a, Prop. 9.17] and
its proof, these are adjoint to T/Ui -left Kan extensions

Ki ×(T/Ui )op Cxi Exi

Cxi

p′
i

q′
i

Let K =
∐

1≤i≤nKi, p =
∐

1≤i≤n pi, and q =
∐

1≤i≤n qi, and the same for K′, p′, q′. We need to show
that

∏
f K F̃unO,T(C,E)⊗

x FunT/V (Cy,Ey)

(T/V )op

∏
f
p α⊗

α⊗◦
∏

f
q

is a T/V -colimit. Equivalently, we need to show that in the diagram



32 DENIS NARDIN AND JAY SHAH

∏
f K×(T/V )op C⊗

x E⊗
x Ey

∏
f K×(T/V )op C⊗

α

C⊗
α

(
∏

f
p)′

α⊗

(α⊗◦
∏

f
p)′

(α⊗◦
∏

f
q)′

the T/V -functor (α⊗ ◦
∏
f q)′ is a T/V -left Kan extension of (α⊗ ◦

∏
f p)′. Here we change the domain

from C⊗
y to C⊗

α because we are not supposing that C⊗ is O-monoidal. Note that (α⊗ ◦
∏
f p)′ is by definition

a T/V -left Kan extension of α⊗ ◦ (
∏
f p)′, so it suffices to show that (α⊗ ◦

∏
f q)′ is a T/V -left Kan extension

of α⊗ ◦ (
∏
f p)′.

Because E⊗ is distributive, we have that

∏
f K×(T/V )op C⊗

x E⊗
x Ey

C⊗
x

∏
f

(p′) α⊗

α⊗◦
∏

f
(q′)

is a T/V -left Kan extension. By definition, (α⊗ ◦
∏
f q)′ is a T/V -left Kan extension of α⊗ ◦

∏
f (q′) along the

inclusion C⊗
x ⊂ C⊗

α . By transitivity of T/V -left Kan extensions, we are done. �

3.2.7. Lemma. Suppose we have a diagram of T-∞-categories

A B E

C D

i

φ

F

φ

i

H

such that the lefthand square is a pushout square in which every T-functor is an inclusion. Further suppose
that the relevant T-colimits exists for the T-left Kan extensions of F along φ and of F ◦ i along φ to exist.
Then H is a T-left Kan extension of F if and only if H ◦ i is a T-left Kan extension of F ◦ i.

Proof. Consider the commutative diagram of T-∞-categories

P FunT(D,E) FunT(C,E)

Top FunT(B,E) FunT(A,E)σF

σ

σF i

in which every square is a pullback square. Then P is identified with

Top ×σF i,Fun
T

(A,E) FunT(C,E) ≃ Top ×σF ,Fun
T

(B,E) FunT(D,E)

and the cocartesian section σ is equivalently determined by a T-functor H extending F or a T-functor G
extending F ◦ i. Moreover, because of our hypothesis on the existence of the relevant T-colimits, σ is an
T-initial object in P if and only if H is a T-left Kan extension of F along φ if and only if G is a T-left Kan
extension of F ◦ i along φ. �

3.2.8. Example (Smash product). Define a functor

(∆1)⊗ : Span(FT) hoSpan(FT) Cat1
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by sending an object U =
∐
I Ui (decomposed as a disjoint union of orbits) to

∏
I ∆1, and a morphism

f :
∐
I Ui

∐
J Vj , φ : I J contravariantly to the restriction functor φ∗ :

∏
J ∆1 ∏

I ∆1 and
covariantly to the product over J of

min :
∏

Ij

∆1 ∆1, (xi) 7→ min(xi)

if Ij is nonempty, and 1 : ∆0 ∆1 otherwise. (One easily verifies the base-change condition, so this indeeds
defines a functor.)

Let (∆1 × Top)⊗ denote the resulting T-symmetric monoidal T-∞-category under the equivalence of
Theorem 2.3.9. Let C⊗ be a distributive T-symmetric monoidal T-∞-category. Then by Theorem 3.2.6,
we have that FunT(∆1 × Top,C)⊗ is a distributive T-symmetric monoidal T-∞-category. Moreover, the
fiberwise tensor products admit a simple description because the underlying T-category of the source is
constant. Namely, for the fold map ∇ : U

∐
U U , the tensor product

⊗ : Fun(∆1,CU )× Fun(∆1,CU ) Fun(∆1,CU )
is given by taking the cartesian product into Fun(∆1×∆1,CU×CU ), postcomposition by ⊗ : CU×CU CU ,
and then left Kan extension along min : ∆1 ×∆1 ∆1 (which is computed by taking colimits fiberwise
because min is a cocartesian fibration).

Now suppose in addition that C⊗ is T-cartesian T-symmetric monoidal, so the tensor product on the fibers
of FunT(∆1 × Top,C) is the pushout product. Let C∗ denote the full T-subcategory of FunT(∆1 × Top,C)
given over an object U ∈ T by those functors ∆1 CU which take 0 to a final object ∗ of CU . The inclusion
C∗ ⊂ FunT(∆1 × Top,C) admits a left adjoint L, which over an object U ∈ T takes a functor F : ∆1 CU
to

L(F ) : ∆1 CU , [0→ 1] [∗ → F (1)/F (0)].
L is a T-localization functor, so to descend the cartesian T-symmetric monoidal structure on C to the

smash product on C∗, we can check the criterion of Theorem 2.9.2 (or rather, Remark 2.9.3):
(1) For the fold map ∇ : U

∐
U U and an object [z0 z1] ∈ Fun(∆1,CU ),

−⊗ [z0 z1] : Fun(∆1,CU ) Fun(∆1,CU )
preserves LU -equivalences. Indeed, let

x0 y0

x1 y1

be an LU -equivalence, i.e. x1/x0 y1/y0 is an equivalence in CU . We have an equivalence

(x1 × z1) / (x0 × z1 ∪x0×z0 x1 × z0) ≃
(
x1 × z1
x0 × z1

)
/

(
x1 × z0
x0 × z0

)
.

Using that we have a diagram of pushout squares

x0 × zj zj ∗

x1 × zj x1/x0 × zj (x1 × zj)/(x0 × zj)
(and similarly for y) by cartesian closedness, we deduce that

(
x1 × z1
x0 × z1

)
/

(
x1 × z0
x0 × z0

) (
y1 × z1
y0 × z1

)
/

(
y1 × z0
y0 × z0

)

is an equivalence, as desired.
(2) For a map f : U V in T,

f⊗ : Fun(∆1,CU ) Fun(∆1,CV )
sends LU -equivalences to LV -equivalences: to show this, suppose

θ : [x0 → x1] [y0 → y1]
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is a LU -equivalence in Fun(∆1,CU ). Equivalently, we have a left Kan extension

Λ2
0 ×∆1 CU

(Λ2
0)✄ ×∆1

where restriction to the cone point is sent to an equivalence x1/x0 ∼ y1/y0. Using distributivity,
we get a T/V -left Kan extension diagram

∏
f ((Λ2

0 ×∆1)× (T/U )op)
∏
f CU CV

((Λ2
0)✄ ×∆1)× (T/V )op

∏
f

The vertical arrow factors as∏

f

((Λ2
0 ×∆1)× (T/U )op) (Λ2

0 ×∆1)× (T/V )op ((Λ2
0)✄ ×∆1)× (T/V )op

where the first arrow is induced by the symmetric monoidal structure on ∆1 × Top. Therefore, the
left Kan extension corresponding to f⊗(θ)

Λ2
0 ×∆1 CV

(Λ2
0)✄ ×∆1

restricts on the cone point to an equivalence, so f⊗(θ) is a LV -equivalence.
In particular, suppose that T = OG and C = Spc

G
. Then we obtain the smash product G-symmetric

monoidal structure on pointed G-spaces Spc
G,∗, and given a map of orbits f : G/H G/K correspond-

ing to an inclusion of subgroups K ⊂ H and a real K-representation R, the norm functor f⊗ sends the
representation sphere SR to the representation sphere SIndH

KR.

3.3. Pointwise O-monoidal structure. In this brief subsection, we indicate how to adapt the construct of
the T-Day convolution so as to construct the cotensor of OpO,T over CatT. In other words, given a fibration
of T-∞-operads p : D⊗ O⊗ and a T-∞-category K, we have a T-∞-operad F̃unO,T(K ×Top O,D)⊗ that
satisfies the universal mapping property

(3.3.1) AlgO,T(C, F̃unO,T(K×Top O,D)) ≃ FunT(K,Alg
O,T

(C,D))

for all fibrations of ∞-operads q : C⊗ O⊗.
For the following construction, observe the isomorphism

Arne(O⊗)×ev1,O⊗,pr (O⊗ ×Top K) ∼= Arne(O⊗)×Top K.

3.3.1. Theorem-Construction. Let O⊗ be a T-∞-operad and K a T-∞-category. Consider the span
diagram of marked simplicial sets

(O⊗,Ne) (Arne(O⊗)×Top K,Ne) (O⊗,Ne).ev0 ev1

where by the middle marking Ne we mean those edges whose source and target in O⊗ are inert and whose
projection to K is a cocartesian edge. Then the functor

(ev0)∗ ◦ (ev1)∗ : sSet+
/(O⊗,Ne) sSet+

/(O⊗,Ne)

is right Quillen with respect to the T-operadic model structures. For a fibration of∞-operads p : C⊗ O⊗,
we let

F̃unO,T(K×Top O,C)⊗ := (ev0)∗(ev1)∗(C⊗,Ne).
If O ≃ Top, then we more simply write

FunT(K,C)⊗ := (ev0)∗(ev1)∗(C⊗,Ne).
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This construction satisfies the universal property (3.3.1) and its underlying T-∞-category is as the notation
indicates.

Proof. This follows along the same lines as our proofs of the analogous results for T-Day convolution in
Section 3.1. �

3.3.2. Remark. In the situation of Theorem-Construction 3.3.1, a fibrant replacement of (O⊗,Ne)×Top ♮K

in the T-operadic model structure on sSet+
/(O⊗,Ne) computes the tensor of OpO,T over CatT .

If we then suppose that C⊗ is an O-monoidal T-∞-category, we obtain the pointwise O-monoidal structure
on FunT(K,C). In contrast to the T-Day convolution, we don’t need to impose any further hypotheses on
C⊗ for this to exist.

3.3.3. Theorem-Construction. Let O⊗ be a T-∞-operad and K a T-∞-category. Consider the span
diagram of marked simplicial sets

(O⊗)♯ Arne(O⊗)♯ ×Top ♮K (O⊗)♯.ev0 ev1

Then the functor
(ev0)∗ ◦ (ev1)∗ : sSet+

/O⊗ sSet+
/O⊗

agrees with the construction of Theorem-Construction 3.3.1 on underlying simplicial sets and is right Quillen
with respect to the T-monoidal model structures. Given any O-monoidal T-∞-categories C⊗,D⊗, we then
have a natural equivalence

Fun⊗
O,T(C, F̃unO,T(K×Top O,D)) ≃ FunT(K,Fun⊗

O,T(C,D)).

Proof. That (ev0)∗ ◦ (ev1)∗ is right Quillen follows by [Lur17, Thm. B.4.2] as in the proof of Theorem 3.1.4.
The only differences to note are regarding conditions (4) and (7). For (4), by [Sha21b, Prop. 3.5(1)] the
ev0-cartesian edges in Arne(O⊗) are fiberwise active in the target, hence ev0 : Arne(O⊗)×Top K O⊗ is a
cartesian fibration whose cartesian edges project to equivalences in K. (7) then follows by inspection.

The universal mapping property then follows by restricting the equivalence (3.3.1). �

3.3.4. Example. Suppose O⊗ = FT,∗, let C⊗ be a T-symmetric monoidal T-∞-category, and let K be
a T-∞-category. Then we may unwind the pointwise T-symmetric monoidal structure on FunT(K,C) as
follows:

(∗) Let f : U V be a map of finite T-sets. Then the norm functor
f⊗ : FunT/U (KU ,CU ) FunT/V (KV ,CV )

sends a T/U -functor F : KU CU to the T/V -functor

KV
η
∏

f

KU ≃ FunT/V (U,KV )
∏

f
F ∏

f

CU ≃ FunT/V (U,CV ) f⊗ CV

where η is the diagonal T/V -functor (i.e., the unit of the restriction-coinduction adjunction) and the
norm T/V -functor f⊗ is defined as in Example 2.3.5.

In particular, note that if C⊗ is distributive, then FunT(K,C)⊗ is also distributive.

4. Parametrized operadic left Kan extensions

In this section, we construct T-operadic left Kan extensions, implementing in the operadic context the
strategy that the second author used to construct T-left Kan extensions in [Sha21a, §§9-10].

4.0.1. Remark. The strategy of our construction of T-operadic left Kan extensions will be to first show that
the T-colimit of a lax O-monoidal functor canonically inherits a O-algebra structure, and to then reduce to
this case via the O-monoidal envelope. If we let T = ∆0, this gives a new construction of Lurie’s operadic
left Kan extension ([Lur17, §3.1.2]). See also [CH21].

We first begin with some necessary preliminaries on generalized T-∞-operads and the T-operadic join.
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4.1. Generalized T-∞-operads. Given a map of finite T-sets φ : U V , let σ1, σ2 be two squares in FT

Ui U

Vi V

αi

φi φ

βi

such that αi is a summand inclusion, the induced map Ui Vi ×V U is also a summand inclusion, and
moreover (α1, α2) : U1 ⊔ U2 U is an epimorphism. Let U12 = U1 ×U U2 and V12 = V1 ×V V2. Then we
have an induced map

gφ,σ1,σ2 : (Λ2
2)✁ Fbig

T,∗
which selects the square

[U+ → V ] [(U1)+ → V1]

[(U2)+ → V2] [(U12)+ → V12]

in which every morphism is inert.
We define the generalized T-operadic model structure on sSet+

/(Fbig
T,∗,Ne) to be the model structure defined

using the categorical pattern (Ne,All, {gφ,σ1,σ2}) on Fbig
T,∗, letting the φ and {σ1, σ2} range over all possible

choices. We call the fibrant objects for this model structure generalized T-∞-operads. Note that T-∞-operads
are fibrant in this model structure, so are examples of generalized T-∞-operads. However, the converse is
not true. Indeed, let σ0 : Fop

T Fbig
T,∗ be the cocartesian section which selects [∅+ → V ] in each fiber and

define C̃0 := Fop
T ×σ0,Fbig

T,∗
C̃⊗. Then if C̃⊗ Fbig

T,∗ is a generalized T-∞-operad, C̃0 is not necessarily the
terminal T-∞-category.

We then say that C⊗ FT,∗ is a generalized T-∞-operad if it is the pullback of a generalized T-∞-operad
C̃⊗ Fbig

T,∗ under the inclusion FT,∗ Fbig
T,∗. Let C0 be the corresponding pullback of C̃0. The T-functor

Top × ∆1 FT,∗ which selects the inert edge [V+ → V ] [∅+ → V ] in each fiber induces a T-functor
C C0.

4.1.1. Lemma. Suppose C⊗ FT,∗ is a generalized T-∞-operad. Let f : U V be a morphism in
FT and suppose that we have an orbit decomposition U ≃ ⊔1≤i≤nUi. Abbreviate Ui ×V Uj as Uij and let
fi : Ui V , fij : Uij V denote the induced maps. Then we have an equivalence of T/V -∞-categories

C⊗
[U+→V ]

∏

f1

CU1 ×∏
f12

(C0)U12

∏

f2

CU2 ×∏
f23

(C0)U23

... ×∏
f(n−1)n

(C0)U(n−1)n

∏

fn

CUn

Proof. Note that Uij need not be an orbit, so the notation (C0)Uij means
∐

O⊂Uij
(C0)O Uij for any orbit

decomposition of Uij . Without loss of generality we may suppose n = 2. We have a pullback square in FT

U12 U1

U2 V.

g2

g1 f1

f2

The unit maps for the restriction-coinduction adjunction yield T/V -functors
∏
f1
CU1

∏
f12

CU12

∏
f1
CU1

and postcomposing with ∏

f12

CU12

∏

f12

(C0)U12

we obtain the T/V -functors which define the pullback. Using the ‘fiberwise’ definition of generalized T-∞-
operad, we can use the same argument as in the proof of Theorem 2.3.3 to accomplish the proof. �
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4.2. T-operadic join.

4.2.1. Definition. Let C̃⊗, D̃⊗, Õ⊗ be generalized T-∞-operads over Fbig
T,∗ and let p, q : C̃⊗, D̃⊗ Õ⊗ be

categorical fibrations preserving the inert edges. Then the T-operadic join of p and q is defined to be

˜(C ⋆O D)
⊗

:= C̃⊗ ⋆
Õ⊗ D̃⊗ Õ⊗.

Similarly, given C⊗,D⊗ O⊗ fibrations of generalized T-∞-operads over FT,∗, we define the T-operadic
join (C ⋆O D)⊗ to be C⊗ ⋆O⊗ D⊗ O⊗.

Note that the underlying T-∞-category of a T-operadic join (C ⋆O D)⊗ is the O-join of the underlying
T-∞-categories of the factors (by the base-change property [Sha21a, Lem. 4.4]).

4.2.2. Proposition. ˜(C ⋆O D)
⊗

is a generalized T-∞-operad and the structure map to Õ⊗ is a fibration of
generalized T-∞-operads.

Proof. By the proof of [Sha21a, Prop. 4.7(2)], π : ˜(C ⋆O D)
⊗

Fbig
T,∗ admits cocartesian lifts over the inert

edges. Moreover, an edge ∆1 ˜(C ⋆O D)
⊗

is π-cocartesian if and only if it factors through either C̃⊗ or
D̃⊗ and is inert there.

The fiber of ˜(C ⋆O D)
⊗

over an object [U+ → V ] of Fbig
T,∗ is given by C̃⊗

[U+→V ] ⋆Õ⊗
[U+→V ]

D̃⊗
[U+→V ]. Moreover,

the relative join is functorial in the following sense: given commutative diagrams

X X ′

B B′

,

Y Y ′

B B′

we have an induced map X ⋆B Y X ′ ⋆B′ Y ′ covering B ×∆1 B′ ×∆1. From our explicit description
of the π-cocartesian edges, we see that the Segal maps for ˜(C ⋆O D)

⊗
are obtained in this way. Consequently,

it is clear that they are equivalences.
It remains to check that for all of the defining maps gφ,σ1,σ2 : (Λ2

2)✁ Fbig
T,∗, we have that for every lift

G : (Λ2
2)✁ ˜(C ⋆O D)

⊗
where all edges are sent to π-cocartesian edges, G is a π-limit diagram. For this,

there are two cases to consider. Either G factors through C̃⊗, in which case the assertion obviously follows
from G being a π|

C̃⊗ -limit diagram, or G factors through D̃⊗, in which case the assertion is a consequence
of Lemma 4.2.3.

Finally, the second assertion is obvious given the first. �

4.2.3. Lemma. Let K, X, Y and B be ∞-categories, let f1, f2 : X,Y B be categorical fibrations and let
p : K Y be a functor. Also let p denote the composition K

p−→ Y ⊂ X⋆B Y . Then we have an equivalence
of ∞-categories over B/f2p ×∆1

(X ⋆B Y )/p ≃ (X ×B B/f2p) ⋆B/f2p Y /p.

Consequently, if p : K✁ Y is a f2-limit diagram, then p : K✁ Y ⊂ X ⋆B Y is a f -limit diagram
(where f denotes the structure map X ⋆B Y B).

Proof. Let q denote K X ⋆B Y B ×∆1 and note that q factors as K f2p−−→ B × {1} ⊂ B ×∆1. We
first place (X ⋆B Y )/p into the diagram of pullback squares

(X ⋆B Y )/p Z Fun(K✁, X ⋆B Y )

{p} Fun/B(K,Y ) Fun(K,X ⋆B Y )

{q} Fun(K,B ×∆1).
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In addition, using that the composition Fun(K✁, X ⋆B Y ) Fun(K,X ⋆B Y ) Fun(K,B ×∆1) agrees
with Fun(K✁, X ⋆BY ) Fun(K✁, B×∆1) Fun(K,B×∆1), Z fits into the diagram of pullback squares

Z Fun(K✁, X ⋆B Y )

(B ×∆1)/q Fun(K✁, B ×∆1) ∼= Fun(K✁, B)× Fun(K✁,∆1)

{q} = {f2p} × {const1} Fun(K,B ×∆1) ∼= Fun(K,B)× Fun(K,∆1).

Because (∆1)/const1 ≃ ∆1, we get that (B ×∆1)/q ≃ B/f2p ×∆1. Consequently,

(X ⋆B Y )/p ≃ {p} ×Fun/B(K,Y )

(
Fun(K✁, X ⋆B Y )×Fun(K✁,B×∆1) B

/f2p ×∆1
)
.

Let A B/f2p×∆1 be any functor. We will identify Fun/(B/f2p×∆1)(A, (X⋆BY )/p) with Fun/B(A0, X)×
Fun/(B/f2p)(A1, Y

/p) and thereby prove the claim. Let

A×K✁ B/f2p ×∆1 ×K✁ B ×∆1

be the composite of the given map and the map adjoint to B/f2p × ∆1 Fun(K✁, B × ∆1). Note that
(A×K✁)0 ∼= A0 and (A×K✁)1 ∼= (A×K) ∪A1×K A1 ×K✁. We then have the chain of equivalences

Fun/(B/f2p×∆1)(A, (X ⋆B Y )/p) ≃ {p ◦ prK} ×Fun(A×K,X⋆BY ) Fun/(B×∆1)(A×K✁, X ⋆B Y )
≃ {p ◦ prK} ×Fun(A×K,X⋆BY ) (Fun/B(A0, X)× Fun/B((A×K) ∪A1×K A1 ×K✁, Y ))

≃ Fun/B(A0, X)×
(
{p ◦ prK} ×

Fun/B(A×K,Y )
Fun/B(A×K,Y ) ×

Fun/B(A1×K,Y )
Fun/B(A1 ×K✁, Y )

)

≃ Fun/B(A0, X)×
(
{p ◦ prK} ×

Fun/B(A1×K,Y )
Fun/B(A1 ×K✁, Y )

)

and finally
{p ◦ prK} ×

Fun/B(A1×K,Y )
Fun/B(A1 ×K✁, Y ) ≃ Fun/(B/f2p)(A1, Y

/p)

because both sides compute the total fiber of the punctured cube

Fun(A1 ×K✁, Y )

∆0 Fun(A1 ×K,Y )

∆0 Fun(A1 ×K✁, B)

∆0 Fun(A1 ×K,B)

For the last assertion, we need to show that

(X ⋆B Y )/p (X ⋆B Y )/p

B/fp B/fp
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is a homotopy pullback square. But by the first part of the lemma this is equivalent to

(X ×B B/fp) ⋆B/fp Y /p (X ×B B/fp) ⋆B/fp Y /p

B/fp B/fp.

One easily deduces that this is a homotopy pullback square as a consequence of the two squares

X ×B B/fp X ×B B/fp

B/fp B/fp

,

Y /p Y /p

B/fp B/fp

being homotopy pullback squares (the second by our hypothesis). �
4.3. Construction of T-operadic left Kan extensions. We now turn towards constructing T-operadic
left Kan extensions. We will need a variant of the T-Day convolution for our proofs, where we allow the
source T-∞-operad to be generalized.

4.3.1. Variant. Suppose that C⊗ is a generalized T-∞-operad. Then the proofs of Theorem 3.1.4 and
Corollary 3.1.5 still go through to show that

F̃unO,T(C,E)⊗ O⊗

is a (non-generalized) T-∞-operad. Moreover, if C⊗,E⊗ O⊗ are cocartesian fibrations, then the proof
of Proposition 3.2.2 goes through to show that F̃unO,T(C,E)⊗ O⊗ is a locally cocartesian fibration.
However, the proof of Theorem 3.2.6 doesn’t directly apply because if C⊗ is generalized, we have a different
formula for C⊗

x involving fiber products instead of products (cf. Lemma 4.1.1).

For the following results, let O⊗ be a T-∞-operad, p : C⊗ O⊗ an O-monoidal T-∞-category and
q : E⊗ O⊗ a distributive O-monoidal T-∞-category.

4.3.2. Lemma. Consider the commutative diagram

F̃unO,T(C ⋆O O,E)⊗ E⊗

F̃unO,T(C,E)⊗ O⊗.

ρ

λ q

π

where λ is given by restriction along C⊗ ⊂ (C ⋆O O)⊗, ρ is given by restriction along O⊗ ⊂ (C ⋆O O)⊗

followed by the equivalence F̃unO,T(O,E)⊗ ≃ E⊗ induced by precomposition with the identity section ι :
O⊗ Arne(O⊗) (cf. Proposition 3.1.7), and π is the structure map.

(1) An edge e in F̃unO,T(C ⋆O O,E)⊗ is locally πλ-cocartesian if and only if λ(e) is locally π-cocartesian
and ρ(e) is locally q-cocartesian. Consequently, πλ is cocartesian.

(2) λ is O⊗-cartesian and ρ is cocartesian.

Proof. (1): ρ and λ are fibrations of T-∞-operads by the functoriality of the Day convolution, hence preserve
inert edges. By Lemma 3.2.1, it suffices to consider a locally πλ-cocartesian edge e over a fiberwise active
edge f : U V ∈ FT (identified with [U+ → V ] [V+ → V ] in FT,∗). Suppose e covers α : x y in
O⊗
V . Then by Proposition 3.2.2(3), e corresponds to a T/V -left Kan extension

(C⊗
x )✄ E⊗

x Ey

(Cy)✄ (T/V )op.

F

(α⊗)✄

α⊗

G

Examining the pointwise formula defining T/V -left Kan extensions, we see that G is a T/V -left Kan extension
of α⊗◦F along α⊗⋆id if and only ifG|Cy is a T/V -left Kan extension of α⊗◦F |C⊗

x
along α⊗ andG|V ≃ α⊗◦F |V
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(for the latter, using that the inclusion of the right T-cone point is fiberwise cofinal and [Sha21a, Thm. 6.7]).
This implies the first part of the claim. For the consequence, we only need to check that the composition of
locally cocartesian edges is again locally cocartesian, and this is clear using the claim and Theorem 3.2.6.

(2): Taking the fiber over an object y ∈ OV , we get a bifibration
FunT/V ((Cy)✄,Ey) FunT/V (Cy,Ey)× Ey .

Combining this observation with the product decomposition over a general object x ∈ O⊗ obtained by the
T-Segal condition, we deduce that λ is fiberwise cartesian and ρ is fiberwise cocartesian (over O⊗). It remains
to show that for λ the cocartesian pushforward of fiberwise cartesian edges remain fiberwise cartesian, and
the dual statement for ρ. This is obvious over inert edges, so it suffices to consider a fiberwise active edge
α : x y in O⊗

V . Also, without loss of generality suppose y ∈ OV . Let θ : F0 F1 be an edge in
F̃unO,T(C,E)⊗

x , which corresponds to a natural transformation
θ : ∆1 × C⊗

x E⊗
x .

A fiberwise cartesian edge in F̃unO,T(C ⋆O O,E)⊗
x over θ is given by

θ′ : ∆1 × (C⊗
x )✄ E⊗

x

which restricts to θ and is a constant natural transformation when restricted to the right T-cone point. The
cocartesian pushforward α!θ

′ is given by the T/V -left Kan extension of α⊗ ◦ θ′ along id× α⊗. Clearly, this
is still a constant natural transformation when restricted to the right T-cone point, which proves that α!θ

′

is a fiberwise cartesian edge lifting α!θ. A similar argument handles the fiberwise cocartesian edges. �

The next proposition is a very general and parametrized form of the following observation: the colimit of
a lax symmetric monoidal functor canonically inherits the structure of a commutative algebra.

4.3.3. Proposition. Let F : C⊗ E⊗ be a lax O-monoidal T-functor and let σF : O⊗ F̃unO,T(C,E)⊗

be the associated section (which is an O-algebra map). Then there exists a O-algebra lift of σF to

σF : O⊗ F̃unO,T(C ⋆O O,E)⊗

such that the resulting O-algebra
A = F |O⊗ : O⊗ E⊗

has underlying section A|O : O E computed as the q|E-T-left Kan extension of F |C : C E along the
inclusion C C ⋆O O.

Proof. Factoring σF through the O-monoidal envelope Aract
T (O⊗) of id : O⊗ O⊗, we obtain a pullback

square of O-monoidal T-∞-categories and (strong) O-monoidal T-functors

X F̃unO,T(C ⋆O O,E)⊗

Aract
T (O⊗) F̃unO,T(C,E)⊗.

λF λ

τF

We proceed to identify the fibers of λF . By definition, for any object x ∈ O⊗, σF (x) is given by the functor
Fx : C⊗

x E⊗
x , and for any fiberwise active edge α : x y, τF (α) is given by the cocartesian pushforward

α!Fx : C⊗
y E⊗

y . If α decomposes via the T-∞-operad axioms as (αi : xi yi)1≤i≤n for yi ∈ OVi

(induced by an orbit decomposition V ≃ V1 ⊔ ... ⊔ Vn if y covers [V+ W ] in FT,∗), then α!Fx may be
explicitly identified as the collection of T/Vi-left Kan extensions (αi)!Fxi of (αi)⊗ ◦ Fxi : C⊗

xi
Eyi along

(αi)⊗ : C⊗
xi

Cyi . Therefore, the fiber of λF over {α} is given by
∏

1≤i≤n
E

((αi)!Fxi
,T/Vi )/

yi .

Because each Eyi is T/Vi -cocomplete by assumption, these fibers all have initial objects, which are moreover
preserved by the cocartesian edges over Top (i.e., by restriction). We claim that restricting λF to the full
T-subcategory X0 on these initial objects yields a trivial Kan fibration λ′

F : X0 Aract
T (O⊗). By (2) of
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Lemma 4.3.2, λ is O⊗-cartesian, hence the pulled back map λF is O⊗-cartesian. Therefore, it suffices to
check that the cocartesian edges in X over O⊗ preserve initial objects. This is obvious for cocartesian edges
over inert edges in O⊗, so it suffices to consider the case of a fiberwise active edge β : y z in O⊗

W with
z ∈ OW . Then for our fiberwise active edge α : x y ∈ O⊗

W above, β!(α) = β ◦ α : x z computes the
cocartesian pushforward in Aract

T (O⊗). As we have seen, an initial object in X covering α corresponds to a
collection of T/Vi-colimits of (αi)!Fxi

Cyi Eyi

(T/Vi )op (T/Vi )op

(αi)!Fxi

=

By our assumption that E⊗ O⊗ is distributive, applying
∏
β and postcomposing with ⊗β : E⊗

y Ez

yields a T/W -colimit diagram
C⊗
y Ez

(T/W )op (T/W )op=

Factoring C⊗
y (T/W )op through Cz and using the transitivity of T/W -left Kan extensions, this further

implies that the diagram

Cz Ez

(T/W )op (T/W )op

(β◦α)!Fx

=

is a T/W -colimit diagram, where inspecting the definitions reveals that the top horizontal arrow may be
identified with (β ◦ α)!Fx. This is an initial object covering β ◦ α, as desired.

Choosing a section of λ′
F and postcomposing by the map X0 F̃unO,T(C ⋆O O,E)⊗, we obtain the

desired extension σF . Finally, the assertion about A|O is clear from the construction if we consider only
those objects x, α = idx, and edges β entirely in O. �

We can then promote Proposition 4.3.3 to a global existence result.

4.3.4. Theorem. We have O⊗-adjunctions

F̃unO,T(C,E)⊗ F̃unO,T(C ⋆O O,E)⊗ E⊗.
evO

evC δ

Consequently, on passing to ∞-categories of O-algebras, we obtain the adjunction
p! : AlgO,T(C,E) AlgO,T(E) :p∗

where p! is computed as in Proposition 4.3.3 and p∗ is restriction along p.

Proof. The only subtlety involves the first O⊗-adjunction. We may invoke [Lur17, 7.3.2.12] because the
second condition there is ensured by distributivity in E⊗, using the same argument as in the proof of
Proposition 4.3.3. We can then extract the adjunction involving ∞-categories of O-algebra maps by pulling
back along the structure map ev1 : Aract

T (O⊗) O⊗ of the O-monoidal envelope and taking cocartesian
sections. �

Now suppose that p : C⊗ O⊗ is only a fibration of T-∞-operads and consider the factorization of p
through its O-monoidal envelope EnvO,T(C)⊗. In view of Proposition 2.8.7 and Theorem 4.3.4, we have the
composite adjunction

p! : AlgO,T(C,E) AlgO,T(EnvO,T(C),E) AlgO,T(E) : p∗.
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4.3.5. Definition. Given a O-algebra map F : C⊗ E⊗, we define the T-operadic left Kan extension of F
to be p!F .

4.3.6. Remark. Given a fibration of T-∞-operads O⊗ P⊗ and E⊗ P⊗ a distributive P-monoidal
T-∞-category, we will also speak of the T-operadic left Kan extension of a P-algebra map F : C⊗ E⊗

along p in the obvious way (note that distributivity is stable under pullback). In other words, we also have
an adjunction

p! : AlgP,T(C,E) AlgP,T(O,E) :p∗.

Note that the underlying T-functor p!(F )|O : O E is computed by first extending F to
i!F : EnvO,T(C)⊗ E⊗

and then taking the T-left Kan extension of i!F |EnvO,T(C) along the structure map to O.

4.3.7. Example. Suppose that C⊗ = Triv⊗ = (FT,∗)ne and O⊗ = FT,∗. Then the T-symmetric monoidal
envelope of Triv⊗ is (Triv⊗)act = (FT,∗)cocart, the maximal sub-left fibration of FT,∗ Top obtained by
taking the wide subcategory spanned by the cocartesian edges.

In the case that T = OG is the orbit category of a finite group, we can identify this with something
familiar. Namely, let Σn be the symmetric group on n letters, and let OG×Σn,Γn be the full subcategory
of the orbit category of G × Σn on the Σn-free transitive G × Σn-sets. (Recall that every object in this
subcategory is isomorphic to an orbit G× Σn/Γφ, where Γφ is the graph of a homomorphism φ : H Σn
for some subgroup H of G.) Define a functor

−/Σn : OG×Σn,Γn OG, U U/Σn.
This is left adjoint to restriction along the projection G×Σn G and sends (G×Σn)/Γφ to G/H . Then
(−/Σn)op is a left fibration and exhibits Oop

G×Σn,Γn
as a G-∞-category. In fact, Oop

G×Σn,Γn
is a model for the

G-space BGΣn which classifies G-equivariant principal Σn-bundles ([QS21a, Rem. 3.17]).
Now define a G-functor F : Oop

G×Σn,Γn
(FG)cocart which sends an object U to the morphism of G-sets

(U × n)/Σn U/Σn and a morphism U V to

(U × n)/Σn (V × n)/Σn (U × n)/Σn

U/Σn V/Σn V/Σn

=

=

where we note that the left square is a pullback square of G-sets. (Note that this suffices to define a functor
since FG is equivalent to a 1-category.) It follows from Σn-freeness and an elementary argument that F is
fully faithful. Moreover, taking the disjoint union over all n ≥ 0 and postcomposing with (−)+, we obtain
an equivalence of G-∞-categories

∐

n≥0
Oop
G×Σn,Γn

∼ (FG)cocart ∼ (FG,∗)cocart.

Therefore, for a G-symmetric monoidal ∞-category C⊗, the free G-commutative algebra on an object
x : Oop

G C is computed by the G-colimit of the induced functor
∐

n≥0
Oop
G×Σn,Γn

C.

4.3.8. Warning. In the proofs of Lemma 4.3.2, Proposition 4.3.3 and Theorem 4.3.4, the results would fail
if we replaced (C ⋆O O)⊗ by (O ⋆O C)⊗. This corresponds to there generally being no T-operadic right Kan
extension.

5. T-∞-categories of O-algebras

Let O be a T-∞-operad. In this section, we study T-limits and T-colimits in the T-∞-category of O-
algebras within an O-monoidal T-∞-category. Our results are straightforward generalizations of Lurie’s
results in [Lur17, §3.2] and overlap with similar work of Bachmann–Hoyois undertaken in [BH21, §7] (in
particular, compare [BH21, Prop. 7.6]). Before reading this section, the reader should first review [Sha21b,
Thm. 4.16 and Cor. 4.17] on how to compute T-(co)limits in a T-∞-category of sections.
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5.1. Parametrized (co)limits in general. In this section, let C⊗ O⊗ be an O-monoidal T-∞-category,
let P⊗ O⊗ be a fibration of T-∞-operads, and let K = {KV : V ∈ T} be a collection of classes KV of
small T/V -∞-categories closed with respect to base-change in T. We are interested in criteria for when
the T-∞-category Alg

O,T
(P,C) of algebras strongly admits K-indexed T-limits and colimits. To solve this

problem, we will first need to understand how to compute T-limits and T-colimits in an indexed product.

5.1.1. Lemma. Let f : T0 T1 be a categorical fibration of ∞-categories, let C be a T0-∞-category, and
let K be a T1-∞-category. Let

f∗ : CatT1 CatT0 :f∗
denote the restriction-coinduction adjunction.

(1) Let (F : C D :G) be a T0-adjunction. Then (f∗F : f∗C f∗D :f∗G) is a T1-adjunction.
(2) We have a canonical equivalence

FunT1(K, f∗C) ≃ f∗FunT0 (f∗K,C)
under which δK ≃ f∗(δf∗K) as T1-functors with common domain f∗C, where δK, resp. δf∗K is the
constant K-diagram T1-functor, resp. constant f∗K-diagram T0-functor.

(3) Let p : K f∗C be a T1-functor and let q : f∗K C be its adjoint T0-functor. Then p admits a
T1-limit if and only if q admits a T0-limit, and moreover an extension p : K✁ f∗C is a T1-limit
diagram if and only if the adjoint extension q : (f∗K)✁ ≃ f∗(K✁) C is a T0-limit diagram. The
analogous statements also hold for parametrized colimits.

Proof. (1): It suffices to show that for all t ∈ T1, (f∗F )t ⊣ (f∗G)t is an adjunction. In fact, since (f∗C)t ≃
FunT1 ((Tt/1 )op, f∗C), we can more generally verify that FunT1(K, f∗F ) ⊣ FunT1(K, f∗G) is an adjunction for
every T1-∞-category K. But this holds since

FunT0 (f∗K, F ) : FunT0 (f∗K,C) FunT0 (f∗K,D) :FunT0(f∗K, G)
is an adjunction by [Sha21a, Prop. 8.2].
(2): We check the claimed equivalence at the level of representable functors:

FunT1 (L,FunT1 (K, f∗C)) ≃ FunT1(L×T
op
1

K, f∗C) ≃ FunT0 (f∗L×T
op
0
f∗K,C)

≃ FunT0 (f∗L,FunT0 (f∗K,C)) ≃ FunT0(L, f∗FunT0(f∗K,C))
The assertion about constant functors is shown in a similar manner.
(3): This follows from combining (1) and (2). �

5.1.2. Corollary. Let C⊗ O⊗ be a fibration of T-∞-operads, let f : U ≃∐1≤i≤n Ui V be a morphism
in FT with Ui and V orbits, let x ∈ O⊗

f+
, and let ei : x xi be inert edges in O⊗ lifting the characteristic

morphisms χ[Ui⊂U ] in FT,∗. Suppose Cxi admits all KUi -indexed TUi/-(co)limits for each 1 ≤ i ≤ n. Then
C⊗
x admits all KV -indexed TV/-(co)limits.

Proof. Combine Lemma 5.1.1(3) and the Segal equivalence C⊗
x ≃

∏
1≤i≤n

∏
fi
Cxi of Theorem 2.3.3. �

We may now prove our main result on parametrized limits.

5.1.3. Theorem. Let C be an O-monoidal T-∞-category and let P⊗ O⊗ be a fibration of T-∞-operads.
Let K = {KV : V ∈ T} be a collection of classes KV of small T/V -∞-categories closed with respect to
base-change in T (e.g., we could take KV to be all small T/V -∞-categories for each V ∈ T). Suppose for all
x ∈ OV that Cx admits all KV -indexed T/V -limits. Then:

(1) Both Alg
O,T

(P,C) and Fun/O⊗,T(P⊗,C⊗) strongly admit all K-indexed T-limits, and the inclusion

Alg
O,T

(P,C) ⊂ Fun/O⊗,T(P⊗,C⊗)

strongly preserves all K-indexed T-limits.
(2) Fun/O,T(P,C) strongly admits all K-indexed T-limits, and the forgetful T-functor

U : Alg
O,T

(P,C) Fun/O,T(P,C)

strongly creates all K-indexed T-limits.
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Proof. By [Sha21b, Cor. 4.17] and Corollary 5.1.2, Fun/O⊗,T(P⊗,C⊗) strongly admits all K-indexed T-limits.
Moreover, by the explicit formula for parametrized limits in Fun/O⊗,T(P⊗,C⊗) given in [Sha21b, 4.16(3)],
we see the remaining claims follow from the observation that for every fiberwise inert edge e : x x′ in
O⊗
V , the associated pushforward functor e! : C⊗

x C⊗
x′ is identified with projection to a subset of factors

in a fiber product under the Segal equivalence of Theorem 2.3.3, so in particular preserves all KV -indexed
T/V -limits. This proves (1). (2) then follows by invoking [Sha21b, 4.16(3)] once more. �

Next, we handle the case of parametrized colimits, for which we will need an additional distributivity
assumption on C⊗ O⊗. Let KV be the class Ksift

V of T/V -sifted T/V -colimits and write Ksift = K.

5.1.4. Theorem. Suppose C is a distributive O-monoidal T-∞-category (Definition 3.2.4), and let P⊗ O⊗

be a fibration of T-∞-operads. Then:
(1) Both Alg

O,T
(P,C) and Fun/O⊗,T(P⊗,C⊗) strongly admit all Ksift-indexed T-colimits, and the inclu-

sion
Alg

O,T
(P,C) ⊂ Fun/O⊗,T(P⊗,C⊗)

strongly preserves all Ksift-indexed T-colimits.
(2) Fun/O,T(P,C) is T-cocomplete and the forgetful T-functor

U : Alg
O,T

(P,C) Fun/O,T(P,C)

strongly creates all Ksift-indexed T-colimits.
(3) Alg

O,T
(P,C) is T-cocomplete.

(4) Suppose in addition that C is fiberwise presentable. Then Alg
O,T

(P,C) is fiberwise presentable.

Proof. (1) and (2): To show the claim for Fun/O⊗,T(P⊗,C⊗), we verify the criterion of [Sha21b, Thm. 4.16(4)].
Since a fiberwise morphism α : x y in O⊗

V factors as the composite of a fiberwise inert edge and a fiberwise
active edge, and the pushforward functor associated to a fiberwise inert edge is a projection, we may suppose
α is fiberwise active. Moreover, using again the Segal equivalence of Theorem 2.3.3, we may suppose that
α covers a fiberwise active edge f+ : [U+ → V ] [V+ → V ] in FT,∗ defined by a map f : U V of
finite T-sets. Then using the distributive hypothesis on C⊗ together with [Sha21b, Prop. 8.19], we have that
the pushforward T/V -functor α! = ⊗α : C⊗

x Cy preserves all Ksift
V -indexed colimits, so Fun/O⊗,T(P⊗,C⊗)

strongly admits all Ksift-indexed T-colimits. Similarly, we see that Fun/O,T(P,C) is T-cocomplete. The
remaining claims then follow as in the proof of Theorem 5.1.3, now using [Sha21b, Thm. 4.16(4)].

(3): By part (1) and [Sha21a, Cor. 12.15] (or [Sha21b, Thm. 8.6]), it suffices to check that Alg
O,T

(P,C)
admits finite T-coproducts. For this, we employ the same strategy as in the proof of [Lur17, Cor. 3.2.3.3].
Pulling back C⊗ O⊗ via P⊗ O⊗, we may suppose P⊗ = O⊗ without loss of generality. Now let
O⊗

ne = O⊗ ×F
T,∗

Triv⊗
T and note that by Lemma 2.4.4 and Corollary 2.4.5, we have that Alg

O,T
(One,C) ≃

Fun/O,T(O,C). By Theorem 4.3.4, we thus obtain the free-forgetful T-adjunction

F: Fun/O,T(O,C) Alg
O,T

(C) :U

as an instance of T-operadic left Kan extension along O⊗
ne O⊗. This implies that each fiber Alg

O,T
(C)V

admits finite coproducts of free objects, and for each morphism α : V W in T, the putative left adjoint α!
to the restriction functor α∗ : Alg

O,T
(C)W Alg

O,T
(C)V is at least defined on the full subcategory of free

objects, using the pointwise criterion for the existence of an adjoint. By part (2) and the observation that U
is fiberwise conservative, the assumptions of [Lur17, Prop. 4.7.3.14] are satisfied for each of the adjunctions
FV ⊣ UV , so for each object A ∈ Alg

O,T
(C)V , there exists a simplicial object A• such that each An is free

and A ≃ |A•|. It follows that the requisite finite coproducts and left adjoints exist for Alg
O,T

(C). Finally,
verification of the base-change condition also reduces to free objects in the same way.

(4): Upon replacing T by T/V this amounts to showing that AlgO,T(P,C) is presentable. Given (3), it
remains to show that AlgO,T(P,C) is accessible. But since all the pushforward functors α! : C⊗

x C⊗
x′

indexed by morphisms α : x x′ ∈ O⊗ preserve sifted colimits (which reduces to the aforementioned
assertion for fiberwise active α given the inert-fiberwise active factorization on O⊗), this follows from [Lur09,
Prop. 5.4.7.11] in exactly the same way as in the proof of [Lur17, Cor. 3.2.3.5]. �
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5.1.5. Corollary. Suppose C is a distributive O-monoidal T-∞-category. Then the free-forgetful T-adjunction
F: Fun/O,T(O,C) Alg

O,T
(C) :U

of Theorem 4.3.4 applied to O⊗
ne ⊂ O⊗ is fiberwise monadic.

Proof. We verify the hypotheses of the Barr–Beck–Lurie Theorem [Lur17, Thm. 4.7.3.5]. After Theo-
rem 5.1.4(2), it only remains to note that U is fiberwise conservative, which is immediate from the defi-
nitions. �
5.2. Units and initial objects. In this subsection, we identify T-initial objects in Alg

O,T
(C) in the case

where O⊗ is a unital T-∞-operad and C⊗ is any O-monoidal T-∞-category.
5.2.1. Definition. Let O⊗ be a T-∞-operad. We say that O⊗ is unital if for all orbits V ∈ T and objects
x ∈ OV , the space of multimorphisms MulO(∅, x) is contractible.

For example, FT,∗ is unital and Triv⊗
T is not unital. We next introduce the minimal T-suboperad of FT,∗

which remains unital.

5.2.2. Definition. Let E⊗
0,T ⊂ FT,∗ be the T-suboperad given by the wide subcategory on those morphisms

U Z X

V Y Y

m

=

for which m is a summand inclusion.

Given any T-∞-operad O⊗, we will then write O⊗
0 for the pullback E⊗

0,T×F
T,∗

O⊗ in this subsection. Note
that the inclusion E⊗

0,T ⊂ FT,∗ is stable under equivalences and is thus a fibration of T-∞-operads, and the
same is true for the pullback O⊗

0 ⊂ O⊗.

5.2.3. Remark. Let O⊗ be a T-∞-operad and for each orbit V ∈ T, let ∗V be a choice of object in the fiber
O⊗

[∅+→V ] ≃ ∗, which is unique up to contractible choice. We note that ∗V is a final object in O⊗
V . Indeed,

if O⊗ = FT,∗, then [∅+ → V ] is a zero object in (FT,∗)V ≃ FT/V ,∗, and the general case follows by the
definition of a T-∞-operad. Since for each α : V W ∈ T we have that α∗(∗W ) ≃ ∗V , the ∗V assemble to
define a T-final object ∗ : Top O⊗.

Now suppose O⊗ is unital. Then by the same reasoning, we see that ∗V is a zero object in O⊗
V and hence

∗ is a T-zero object. In this case, we will also write 0V for ∗V and 0 for ∗.
5.2.4. Definition. We define the T-functor ω : ∆1 × Top FT,∗ to be the unique homotopy from 0 to
I(−)+. For a unital T-∞-operad O⊗, we then define the T-functor ωO lying in the commutative diagram

O✁ O⊗
0 O⊗

∆1 × Top E⊗
0,T FT,∗

ωO

ω

to be the unique T-functor extending the inclusion O ⊂ O⊗
0 of the underlying ∞-category, whose restriction

along the cone inclusion Top ⊂ O✁ is 0.
For an O-monoidal T-∞-category p : C⊗ O⊗, we define the T-functor ω̃C lying in the commutative

diagram

O✁ C⊗
0 C⊗

O⊗
0 O⊗

ω̃C

ωO
p

to be the unique lift of ωO so that ω̃C sends the edges (0V x) ∈ O✁
V to p-cocartesian edges (and hence

all edges to p-cocartesian edges).
We then define the unit of (C⊗, p) to be the T-functor 1 := ω̃C|O : O C.
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5.2.5. Remark. The T-functors ω, ωO, and ω̃C of Definition 5.2.4 may be defined rigorously as follows. For
ω, choose a section σ of the trivial fibration Top ×0,E⊗

0,T
,ev0

ArT(E⊗
0,T) ev1 E⊗

0,T of Lemma 5.2.6 and define
ω to be the adjoint to the composite ω⊥ = pr ◦ σ ◦ I+ : Top ArT(E⊗

0,T).
Then for ωO, choose a section σO of the trivial fibration ψ of Lemma 5.2.6 applied to O⊗

0 E⊗
0,T, let

ρ : O Top and i : O ⊂ O⊗
0 denote the structure map and inclusion, and define the T-functor

ω⊥
O = σ ◦ (ω⊥ρ, i) : O (Top ×E⊗

0,T
ArT(E⊗

0,T)) ×E⊗
0,T

O⊗
0

≃ Top ×0,O⊗
0 ,ev0

ArT(O⊗
0 ).

By [Sha21a, Cor. 4.27] and [Sha21a, Prop. 4.30], for any T-∞-category D and cocartesian section φ :
Top D we have natural equivalences

D(φ,T)/
≃ D(φ,T)/ ≃ Top ×φ,D ArT(D),

and by [Sha21a, Prop. 4.25] for any T-∞-category A we have the natural T-join and slice equivalence
FunT(A,D(φ,T)/) ≃ FunT//T(A✁,D).

We may thus adjoin ω⊥
O to define ωO so that it fits into the indicated commutative diagram over ω.

Finally, to define ω̃C, first let ∗ : Top C⊗
0 be a lift of 0 to the T-final object of Remark 5.2.3, and

let σC : C⊗
0 ×O⊗

0
Ar(O⊗

0 ) ≃ Arcocart(C⊗
0 ) be a choice of section for the trivial fibration. We then have the

composite
Top ×0,O⊗

0
Ar(O⊗

0 ) ∗×id C⊗
0 ×O⊗

0
Ar(O⊗

0 ) σC Arcocart(C⊗
0 ) ⊂ Ar(C⊗

0 ),
which restricts to

f : Top ×0,O⊗
0

ArT(O⊗
0 ) Top ×∗,C⊗

0
ArT(C⊗

0 ).
The adjoint of f ◦ ω⊥

O then defines the lift ω̃C of ωO.
We also verify the uniqueness assertion for ω̃C and leave that for ωO as an exercise for the reader. By

Lemma 5.2.7, the functor given by restriction along the T-cone point
Funcocart

/O⊗
0

(O✁,C⊗
0 ) FunT(Top,C⊗ ×O⊗,0 T

op)

is an equivalence, and since C⊗×O⊗,0 T
op ≃ Top, we see that the righthand side is contractible, which shows

the claim (and gives another construction of ω̃C).

5.2.6. Lemma. Suppose q : D B is a T-fibration and 0 : Top D is a T-functor such that 0 and q ◦ 0
are T-initial objects. Then the T-functor

ψ : (Top ×0,D,ev0 ArT(D)) (Top ×0,B,ev0 ArT(B))×ev1,B,q D

is a trivial fibration.

Proof. Since q is a categorical fibration, it follows that ψ is as well. It thus suffices to prove that ψ is
a categorical equivalence, for which we may suppose that B = Top by the two-out-of-three property of
equivalences. The claim then follows by our hypothesis that 0V is initial for all V ∈ T. �

5.2.7. Lemma. Let q : D B be a T-cocartesian fibration and let i : Top B be a T-initial object. Then
the T-functor

i∗ : Funcocart
/B,T (B,D) ≃ Top ×B D

is an equivalence.

Proof. It suffices to check the assertion fiberwise. Replacing T by T/V , we may further suppose that T

has a final object ∗, and we reduce to showing that i∗ : Funcocart
/B (B,D) Funcocart

/Top (Top,Top ×B D) is an
equivalence of ∞-categories, or equivalently, that (Top)♯ B♯ is a cocartesian equivalence in sSet+

/B. But
the inclusion of the initial object ∗ ∈ Top is a cocartesian equivalence to both (Top)♯ and B♯, so by the
two-out-of-three property of the cocartesian equivalences we are done. �

We may canonically endow the unit of an O-monoidal T-∞-category with the structure of an O-algebra
in the following way.

5.2.8. Proposition. Let O⊗ be a unital T-∞-operad and let p : C⊗ O⊗ be an O-monoidal T-∞-category.
Then there is a unique cocartesian section 1⊗ of p such that 1⊗ extends the unit 1 : O C.
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Proof. Since O⊗ has the T-initial object 0 by assumption, the claim follows from Lemma 5.2.7. �
We next identify O⊗

0 -monoidal T-∞-categories and O0-algebras therein in more familiar terms.
5.2.9. Proposition. Let O⊗ be a unital T-∞-operad.

(1) Suppose (C⊗, p) is a O-monoidal T-∞-category and let F un
C : O⊗

0 Cat be the functor classifying
the cocartesian fibration p|O⊗

0
. Then F un

C is the right Kan extension of its restriction fun
C along ωO.

(2) Let f : O✁ Cat be a functor whose restriction along the cone inclusion Top ⊂ O✁ is constant
at the final object, and let F be the right Kan extension of f along ωO. The cocartesian fibration
q : D O⊗

0 classifed by F is then an O0-monoidal T-∞-category.
(3) The assignment (C⊗, p) 7→ (∗ → fC) (where fC denotes the restriction of fun

C to C, regarded as
pointed in Fun(O,Cat) via the unit 1 : O C) implements an equivalence of ∞-categories

µ : Cat⊗
O0

≃ Fun(O,Cat)∗/

and an equivalence of T-∞-categories
Cat⊗

O0
≃ FunT(O, (CatT)(∗,T)/).

(4) For any two O-monoidal T-∞-categories C⊗ and D⊗, µ induces an equivalence of ∞-categories
Fun⊗

O0,T
(C0,D0) ≃ Nat∗(fC, fD).

Proof. We first analyze right Kan extension along ωO in general. Let x ∈ O⊗
[U+→V ], let U ≃ ∐n

i=1 Ui be an
orbit decomposition, and let ρi : x xi be cocartesian edges lifting the characteristic morphisms χ[Ui⊂U ].
Let A,B ⊂ O✁ ×O⊗

0
(O⊗

0 )x/ be the full subcategories on objects over



U Z X

V Y Y=


 ∈ (∆1 × Top)×E⊗

0,T
(E⊗

0,T)[U+→V ]/

such that Z = ∅ and Z 6= ∅, respectively, and note that O✁ ×O⊗
0

(O⊗
0 )x/ decomposes as the disjoint union of

A and B. Let φ = φA ⊔φB : {a}⊔Orbit(U) A⊔B be the functor that sends a to (x→ 0V ) and Ui to ρi.
We claim that φ is right cofinal. By the same argument as in the proof of Lemma 2.4.4, φB is right cofinal,

so it only remains to show (x → 0V ) is an initial object in A. Since O✁ ×O⊗
0

(O⊗
0 )x/ O✁ Top is a

cocartesian fibration, it suffices to show that for all morphisms α : W V ∈ T, α∗(x → 0V ) ≃ (x → 0W )
is an initial object in BW . We first check that for objects (x → y) ∈ B covering γ : [U+ → V ] I(W )+,
the mapping space MapBW

(x → 0W , x→ y) is contractible. This mapping space fits into the commutative
diagram

MapBW
(x→ 0W , x→ y) Map(O⊗

0 )x/(x→ 0W , x→ y) ∗

∗ ≃ MapO✁
W

(0W , y) MapO⊗
0

(0W , y) MapO⊗
0

(x, y),

(x→y)

(x→0W )∗

where the lower horizontal composite selects the inert-fiberwise active factorization of x y in the connected
component Mapγ

O⊗
0

(x, y). In fact, since MulO(∅, y) ≃ ∗, this map is an equivalence onto that connected
component, and the contractibility of MapBW

(x→ 0W , x→ y) follows. Finally, the argument for (x→ 0W )
itself proceeds the same way.

We conclude that given a functor f : O✁ Cat, the right Kan extension (ωO)∗f sends x to f(0V ) ×∏n
i=1 f(xi). This shows (1) – more precisely, the unit map F un

C
≃ (ωO)∗(ωO)∗F un

C is seen to be an equiva-
lence. By Proposition 2.2.6, this also shows (2). Moreover, we see that (ωO)∗(ωO)∗f ≃ f if and only if f |Top

is constant at ∗ ∈ Cat. We deduce that the adjunction (ωO)∗ ⊣ (ωO)∗ restricts to an adjoint equivalence
(ωO)∗ : Cat⊗

O0
Fun′(O✁,Cat) :(ωO)∗

where we take the righthand side to consist of the full subcategory on functors O✁ Cat that restrict to
∗ on Top. Note that since the inclusion of a final object is fully faithful, we have an equivalence

Fun′(O✁,Cat) ≃ ∆0 ×∗,Fun(Top,Cat) Fun(O✁,Cat),
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and under the equivalence FunT(O✁,Cat) ≃ FunT(O✁,CatT) of [Sha21a, Prop. 3.9], this yields an equiva-
lence

Fun′(O✁,Cat) ≃ FunT//T(O✁,CatT)
to the ∞-category of T-functors O✁ CatT that restrict on Top to the T-final object of CatT . By the
T-join and slice adjunction of [Sha21a, Prop. 4.25] (together with [Sha21a, Cor. 4.27]), we have an equivalence

FunT//T(O✁,CatT) ≃ FunT(O, (CatT)(∗,T)/),

which we claim yields an equivalence FunT//T(O✁,CatT) ≃ Fun(O,Cat)∗/ upon passage to cocartesian
sections – for this, just examine the pullback square of ∞-categories

FunT(O, (CatT)(∗,T)/) FunT(O,FunT(Top ×∆1,CatT)) ≃ Fun(∆1,Fun(O,Cat))

FunT(O,Top) ≃ ∆0 FunT(O,CatT) ≃ Fun(O,Cat).∗

This shows the first part of (3), and the second follows since we have a comparison T-functor that we just
proved is an equivalence fiberwise. The claim of (4) (i.e., that µ promotes to an equivalence of (∞, 2)-
categories) then follows since µ clearly respects cotensors by ∞-categories (cf. Construction 2.6.5). �

5.2.10. Theorem. Suppose O⊗ is a unital T-∞-operad and C⊗ is a O-monoidal T-∞-category. Then we
have a canonical equivalence of T-∞-categories

Alg
O,T

(O0,C) ≃ Fun/O,T(O,C)(1,T)/.

Proof. By the usual reduction, it will suffice to prove the statement without the ‘underlining’. Our strat-
egy is to replace O⊗

0 by its O0-monoidal envelope and then invoke Proposition 5.2.9(4). We first identify
EnvO0,T(O0)⊗ = Aract

T (O⊗
0 ) in simpler terms. Let

λ : O×∆1 Aract
T (O⊗

0 )×O⊗
0
O

be the T-functor which for x ∈ OV sends (x, 0) (x, 1) to the evident morphism [0V → x] idx of active
arrows. More precisely, we may define the adjoint of λ projecting to Aract

T (O⊗
0 ) as the composite

O×∆1 ×∆1 h O✁ ωO O⊗
0 ,

where to define h, we regard O × (∆1 × ∆1) as fibered over Top × ∆1 via the structure map π for O and
(i, j) 7→ max(i, j), and let h be given by (π, prO) under the defining universal property of the T-join (cf.
[Sha21a, Prop. 4.3]). We then let

λ : ArT(O)×∆1 Aract
T (O⊗

0 )×O⊗
0
O

be the induced morphism of T-cocartesian fibrations over O extending λ under the equivalence of [Sha21b,
Ex. 3.8]. We claim that λ is an equivalence, for which it suffices to check fiberwise. But for every x ∈ OV , we
have that λx is essentially surjective in view of the unital assumption on O⊗ (since the active edges must be
of the form [f : x′ → x] in OV or [0V → x] factoring through some f), and an easy computation of mapping
spaces shows that λx is also fully faithful.

By similar reasoning, we also see that the composition
O× {0} ⊂ O×∆1 ArT(O)×∆1 ≃ Aract

T (O⊗
0 )×O⊗

0
O

identifies with the unit map for EnvO0,T(O0)⊗. Now let E : O Cat be the functor obtained by straighten-
ing ev1 : ArT(O) O. We have shown that under the correspondence of Proposition 5.2.9, EnvO0,T(O0)⊗

straightens to ∆1 × E. In the notation of that proposition, consider the pullback square

Nat∗(∆1 × E, fC) Nat(∆1 × E, fC)

∆0 Nat(E, fC).

Using the universal property of the free T-cocartesian fibration, we deduce an equivalence
Nat∗(∆1 × E, fC) ≃ Fun/O,T(O,C)(1,T)/.
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We may now conclude using Proposition 5.2.9(4). �

5.2.11. Theorem. Let O⊗ be a unital T-∞-operad and let p : C⊗ O⊗ be an O-monoidal T-∞-category.
(1) The O-algebra 1⊗ of Proposition 5.2.8 is an initial object of AlgO,T(C).
(2) Alg

O,T
(C) admits a T-initial object given fiberwise by (1⊗)V .

Proof. Since units are stable under base-change, it suffices to prove the first assertion. Let 1⊗
un : O⊗

0 C⊗

be the unique morphism of T-∞-operads over O⊗ that sends all edges in O⊗
0 to p-cocartesian edges in C⊗

(so 1⊗
un extends ∗ : Top C⊗ under the equivalence of Lemma 5.2.7). Then 1⊗

un corresponds to 1 ∈
Fun/O,T(O,C)(1,T)/ under the equivalence of Theorem 5.2.10 and is hence an initial object of AlgO,T(O0,C).

Let i : O⊗
0 O⊗ denote the inclusion. It will suffice to show that the left adjoint i! to the the forgetful

functor i∗ : AlgO,T(C) AlgO,T(O0,C) is defined on 1⊗
un and sends 1⊗

un to 1⊗. Consider the factorization
of i through its O-monoidal envelope

O⊗
0

ι EnvO,T(O0)⊗ = O⊗
0 ×O⊗ Aract

T (O⊗) ev1 O⊗

and the resulting sequence of adjunctions

AlgO,T(O0,C) ≃ Fun⊗
O,T(EnvO,T(O0),C) AlgO,T(EnvO,T(O0),C)

AlgO,T(C)

ι!

i!

ι∗

(ev1)!(ev1)∗

i∗

where the dotted left adjoints are not necessarily defined. Observe that for every orbit V ∈ T, the fiber
EnvO,T(O0)⊗

V admits an initial object given by id0V , and these assemble to define a T-initial object of
EnvO,T(O0)⊗. By Lemma 5.2.7, the O-monoidal T-functor 1⊗ ◦ ev1 restricts to 1⊗

un as they both send all
edges to p-cocartesian edges and extend ∗, so ι!(1⊗

un) ≃ 1⊗ ◦ ev1. Now observe that for every x ∈ O⊗
V , the

unique map 0V → x is active and is an initial object in the fiber EnvO,T(O0)⊗ ×O⊗ {x}. Consequently, the
ordinary left Kan extension of 1⊗ ◦ ev1 along ev1 exists and is computed by 1⊗ itself. Since the ordinary left
Kan extension is an O-algebra in this case, we conclude that (ev1)!(1⊗◦ev1) ≃ 1⊗ and hence i!(1⊗

un) ≃ 1⊗. �

5.3. Indexed coproducts in the T-symmetric monoidal case. We identify finite T-indexed coproducts
with tensor products in the case of a T-symmetric monoidal T-∞-category C, following the strategy of [Lur17,
§3.2.4]. To precisely articulate this identification, we first discuss how to equip CAlg

T
(C) with a T-symmetric

monoidal structure.

5.3.1. Construction. We define the smash product T-functor

∧ : FT,∗ ×Top FT,∗ FT,∗, ([U+ → V ], [U ′
+ → V ]) 7→ [(U ×V U ′)+ 7→ V ]

as follows. Recall that given an∞-category D with finite products, we can define the smash product functor
∧ : D∗ ×D∗ D∗ as the composition of functors

D∗ ×D∗ ⊂ D∆1 ×D∆1
D∆1×∆1

D∆1
DΛ2

0 D(Λ2
0)✄ D

× min! (d2)∗ colim ev{2}✄

provided the functors min! and colim exist pointwise on objects (∗ → x, ∗ → y) and (∗ ← x∨ y → x× y), as
they then extend to partially defined left adjoints so that the composition exists. If we then have a presheaf
D• : Top Cat such that for every α : V W in T, α∗ : DW DV preserves finite products, wedge
sums, and cofibers (x × y)/(x ∨ y), it follows from the existence theorem for relative adjunctions ([Lur17,
Prop. 7.3.2.6] and [Lur17, Prop. 7.3.2.11]) that we obtain a T-functor

∧ : D∗ ×Top D∗ D∗

given fiberwise by formation of smash products, where D∗ is the unstraightening of the pointed presheaf
D•,∗.
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5.3.2. Definition. Let O⊗,P⊗,Q⊗ be T-∞-operads. We say that a T-functor F : O⊗ ×Top P⊗ Q⊗ is a
bifunctor of T-∞-operads if it sends pairs of inert edges to inert edges and the diagram

O⊗ ×Top P⊗ Q⊗

FT,∗ ×Top FT,∗ FT,∗

F

∧

is homotopy commutative.12

5.3.3. Variant. By the same construction as in Construction 5.3.1, we have a smash product Fop
T -functor

∧ : Fbig
T,∗ ×Fop

T
Fbig

T,∗ Fbig
T,∗

that can be chosen to extend the smash product on FT,∗. Likewise, we have the analogous definition of a
bifunctor of big T-∞-operads, and the datum of one determines the other essentially uniquely under the
correspondence of Corollary 2.7.5.

5.3.4. Theorem-Construction. Suppose F : O⊗×Top P⊗ Q⊗ is a bifunctor of T-∞-operads and let the
T-functor

P : O⊗ ×Top Ar(Top) O⊗, (x, V β←−W ) 7→ β∗(x)
be a choice of cocartesian pushforward. Consider the spans of marked simplicial sets

(O⊗,Ne) (O⊗,Ne)×Top Ar(Top)♯ ×Top (P⊗,Ne) (Q⊗,Ne),π G

(O⊗)♯ (O⊗)♯ ×Top Ar(Top)♯ ×Top (P⊗,Ne) (Q⊗)♯,π G

where G = F ◦ (P × idP⊗) and π is the projection to O⊗. Then these spans determine Quillen adjunctions
G!π

∗ : sSet+
/(O⊗,Ne) sSet+

/(Q⊗,Ne) :π∗G
∗, G!π

∗ : sSet+
/O⊗ sSet+

/Q⊗ :π∗G
∗

with respect to the T-operadic model structures and T-monoidal model structures. Given a fibration
C⊗ Q⊗ of T-∞-operads, we then let

Alg
Q,T

(P,C)⊗ O⊗

denote the resulting fibration of T-∞-operads given by π∗G∗(C⊗,Ne).13

If C⊗ is Q-monoidal, then Alg
Q,T

(P,C)⊗ is O-monoidal, and has cocartesian edges marked as in π∗G∗(♮C⊗).

Proof. Note that the underlying simplicial sets of π∗G∗(−) are the same regardless of whether we work over
(Q⊗,Ne) or (Q⊗)♯. We first establish the assertion on the Quillen adjunction between T-operadic model
structures. For the proof, it will be convenient to pass to big T-∞-operads (cf. Variant 5.3.3). Let

F̃ : Õ⊗ ×Fop
T

P̃⊗ Q̃⊗

be the bifunctor of big T-∞-operads extending F , let the FT-functor
P̃ : Õ⊗ ×Fop

T
Ar(Fop

T ) Õ⊗

be a choice of cocartesian pushforward over Fop
T extending P , let G̃ = F̃ ◦ (P̃ × id

P̃⊗), and consider the span
of marked simplicial sets

(Õ⊗,Ne) (Õ⊗,Ne)×Fop
T

Ar(Fop
T )♯ ×Fop

T
(P̃⊗,Ne) (Q̃⊗,Ne).π̃ G̃

We claim that this span satisfies the hypotheses of [Lur17, Thm. B.4.2] with respect to the categorical
patterns P̃O and P̃Q of Definition 2.7.3. (2) is clear and (3) is vacuous. By [Lur09, Cor. 2.4.7.17], the source
functor ev0 : Ar(Fop

T ) ×Fop
T
P̃⊗ Fop

T is a cartesian fibration, so the pullback π̃ is a cartesian fibration.

12If T = ∗, then the smash product for Fin∗ can be defined without the ambiguity of a contractible space of choices.
Therefore, one can choose the square to strictly commute in sSet+

/(Fin∗,Ne) for the non-parametrized definition of a bifunctor
of ∞-operads as in [Lur17, Def. 2.2.5.3].

13Beware that the notation Alg
Q,T

(P, C)⊗ hides the dependence of the structure map P⊗ Q⊗ on the choice of parameter
in O⊗.
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This proves (1) and (4). Moreover, an edge in Õ⊗ ×Fop
T

Ar(Fop
T ) ×Fop

T
P̃⊗ is π̃-cartesian if and only if its

projection to P̃⊗ is an equivalence, which implies (7).
Now let fx,φ,Σ : n✁ Õ⊗ be as in Definition 2.7.3, so that φ : U V is a morphism in FT , Σ =

{σ1, ..., σn} is a collection of commutative squares

Ui U

Vi V

αi

φi φ

βi

such that αi and Ui Vi×V U are summand inclusions and U ≃ ⊔1≤i≤n Ui, f(v) = x, and each morphism
χi := f(v i) : x xi := f(i) is an inert edge covering χσi : [U+ → V ] 7→ [(Ui)+ → Vi] in Fbig

T,∗. We first
prove (5) by showing that the restriction

n✁ ×Fop
T

Ar(Fop
T )×Fop

T
P̃⊗ n✁

of π along fx,φ,Σ is a cocartesian fibration. In fact, by [Lur17, Lem. 6.1.1.1], for any cocartesian fibration
X Fop

T , the source functor ev0 : Ar(Fop
T )×Fop

T
X Fop

T is a cocartesian fibration, with an edge



V V ′

W W ′

, x y




cocartesian if and only if the square in FT is a pullback square and x y is a cocartesian edge. Next, let

s : n✁ n✁ ×Fop
T

Ar(Fop
T )×Fop

T
P̃⊗

be a cocartesian section determined by s(v) = (V γ←− W, y ∈ P̃⊗
[U ′

+→W ]), so that s(i) = (Vi
γi←− Wi :=

W ×V Vi, yi) for y yi an inert edge lifting Wi W . Let z = F̃ (γ∗x, y), let σ′
i be

Ui ×V U ′ U ×V U ′

Wi W,

φ′

and let Σ′ = {σ′
1, ..., σ

′
n}. Then a chase of the definitions shows that the composition F̃ ◦ P̃ ◦ fx,φ,Σ is of the

form fz,φ′,Σ′ , which shows (6). Finally, (8) follows from the right cancellation property of inert edges. This
completes the verification of the hypotheses of [Lur17, Thm. B.4.2]. We then deduce the theorem in question
by means of Proposition 2.7.4 and Corollary 2.7.5. Finally, repeating this analysis for the other span proves
the assertions regarding the monoidality of the construction. �

5.3.5. Proposition. Let F : O⊗ ×Top P⊗ Q⊗ be a bifunctor of T-∞-operads and let C⊗ Q⊗ be a
fibration of T-∞-operads. We then have the following properties of the construction Alg

Q,T
(P,C)⊗ O⊗:

(1) For every object x ∈ O over V ∈ Top, the parametrized restriction

Fx : x×Top P⊗ (Q⊗)V

is a morphism of T/V -∞-operads, and we obtain a canonical equivalence of T/V -∞-categories

Alg
Q,T

(P,C)⊗ ×O⊗ x ≃ Alg
QV ,T/V (PV ,CV ).

Similarly, for every cocartesian section τ : Top O, we have a canonical equivalence of T-∞-
categories

Alg
Q,T

(P,C)⊗ ×O⊗,τ T
op ≃ Alg

Q,T
(P,C).

(2) For every object y ∈ P over V ∈ Top, the parametrized restriction

Fy : O⊗ ×Top y (Q⊗)V
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is a morphism of T/V -∞-operads, and ‘evaluation at y’ furnishes a commutative square of T/V -∞-
operads

(Alg
Q,T

(P,C)⊗)V (C⊗)V

(O⊗)V ≃ O⊗ ×Top y (Q⊗)V .

evy

Fy

Similarly, for every cocartesian section τ : Top P, we have a morphism of T-∞-operads
evτ : Alg

Q,T
(P,C)⊗ C⊗

covering Fτ : O⊗ Q⊗ and given fiberwise by evaluation at τ(V ).
(3) If C⊗ is Q-monoidal (so that Alg

Q,T
(P,C)⊗ is O-monoidal), then evy and evτ preserve cocartesian

edges.

Proof. (1): We prove the assertion about x – that for τ will hold by the same reasoning. We have a
commutative diagram

x×Top P⊗ O⊗ ×Top P⊗ Q⊗

(T/V )op ×Top FT,∗ FT,∗ ×Top FT,∗ FT,∗

F

∧

where the outer square induces the T/V -functor Fx. The definition of a bifunctor of T-∞-operads then
immediately shows that Fx is a morphism of T/V -∞-operads. Next, consider the commutative diagram

Ar(x)×x (x×Top P⊗)

x x×Top Ar(Top)×Top P⊗ x×Top P⊗ Q⊗
V

O⊗ O⊗ ×Top Ar(Top)×Top P⊗ O⊗ ×Top P⊗ Q⊗

ev0
≃ρ

pr

π P×id Fx

P×idπ F

where the functor ρ is the trivial fibration used in the definition of the cocartesian pushforward. Using
the variant of [Sha21b, Lem. 4.8] for algebra maps, after marking appropriately this diagram induces a
comparison T/V -functor

Alg
Q,T

(P,C)⊗ ×O⊗ x Alg
QV ,T/V (PV ,CV ),

which by [Sha21a, Lem. 2.27] is an equivalence.
(2): By the same logic as in (1), Fy is a morphism of T/V -∞-operads. Using the compatibility of the

construction Alg
Q,T

(P,C)⊗ O⊗ with base-change in T, without loss of generality we may replace T/V

with T and suppose y ∈ P lies over a final object in T. Choosing a section σ of the trivial Kan fibration
y ≃ Top, let j = (id, ι, σ) : O⊗ O⊗ ×Top Ar(Top)×Top P⊗ and consider the morphism of spans

O⊗

O⊗ O⊗ ×Top Ar(Top)×Top P⊗ O⊗ ×Top P⊗ Q⊗.

j

=
Fyσ

P×idπ F

Noting that j respects markings for the first span in Theorem-Construction 5.3.4, we then see that j induces
the desired morphism of T-∞-operads Alg

Q,T
(P,C)⊗ O⊗ ×Q⊗ C⊗.

(3): This follows from the proof of (2) since the functor j also respects markings for the second span in
Theorem-Construction 5.3.4. �

We now specialize to the bifunctor ∧ : FT,∗ ×Top FT,∗ FT,∗. Fix a choice of cocartesian pushforward
P : FT,∗ ×Top Ar(Top) FT,∗ and also write

∧ : FT,∗ ×lax
Top FT,∗ := FT,∗ ×Top Ar(Top)×Top FT,∗ FT,∗
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for the composition ∧ ◦ (P × id).

5.3.6. Construction. Let C⊗ be a T-symmetric monoidal T-∞-category. We construct a T-symmetric
monoidal T-functor

(−)can : CAlg
T

(C)⊗ CAlg
T

(CAlg
T

(C))⊗

that is split by the ‘forgetful’ evaluation T-functor U of Proposition 5.3.5(2). First observe that we have a
commutative diagram of marked simplicial sets

FT,∗
♯ ×lax

Top (FT,∗,Ne)×lax
Top (FT,∗,Ne) FT,∗

♯ ×lax
Top (FT,∗,Ne) FT,∗

♯

FT,∗
♯ ×lax

Top (FT,∗,Ne) FT,∗
♯

FT,∗
♯

∧×lax
Top id

pr12

∧

pr1

∧

pr1

in which the square is a pullback (here, pr12 denotes projection away from the third factor). Also write ∧
for the upper horizontal composite. Then we have that (cf. [Sha21a, Lem. 2.26])

(pr1)∗∧∗ ∼= (pr1)∗ ∧∗ (pr1)∗∧∗ : sSet+
/F

T,∗
sSet+

/F
T,∗
, ♮C

⊗ 7→ ♮CAlg
T

(CAlg
T

(C))⊗.

Now consider the morphisms of spans

FT,∗
♯ ×lax

Top (FT,∗,Ne)

FT,∗
♯ FT,∗

♯ ×lax
Top (FT,∗,Ne)×lax

Top (FT,∗,Ne) FT,∗
♯.

FT,∗
♯ ×lax

Top (FT,∗,Ne)

pr1 ∧

id×lax
Top id×lax

Top ι

pr1 ∧

id×lax
Top ∧

pr1 ∧

Then the lower vertical arrow defines (−)can, and since the upper vertical arrow induces U and the composite
is homotopic to the identity, we see that U ◦ (−)can ≃ id.

5.3.7. Theorem. Let C⊗ be a T-symmetric monoidal T-∞-category. Then CAlg
T

(C) has all finite T-
coproducts. Moreover, for any map of finite T-sets f : U V , we have a canonical equivalence

∐

f

≃ f⊗ : CAlg
T

(C)U CAlg
T

(C)V ,

where f⊗ is furnished by the T-symmetric monoidal structure on CAlg
T

(C) of Theorem-Construction 5.3.4.

Proof. Since the base-change condition for left adjoints to the restriction functors {f∗} of CAlg
T

(C) to
furnish finite T-coproducts is already satisfied by the maps {f⊗}, it will suffice to construct unit and counit
maps exhibiting f⊗ as left adjoint to f∗. Without loss of generality, we may suppose V is an orbit, and
after replacing T by T/V , we may suppose V = ∗ is the final object of T so that CAlg

T
(C)V ≃ CAlgT(C).

In addition, by Theorem 5.2.11, CAlgT(C) admits an initial object given by the unit 1, which is f⊗(∗) for
f : ∅ ∗. We may thus suppose that U is nonempty. Using Construction 5.3.6, given a T-commutative
algebra A we get

Acan : FT,∗ CAlg
T

(C)⊗,

and we then get a map f⊗f∗A A by applying Acan to f+ : [U+ → ∗] [∗+ → ∗] and factoring
the resulting map f∗A A through a cocartesian lift over f+ in the base. Using the naturality of this
procedure in A, we then obtain our candidate for the counit transformation ǫ : f⊗f∗ id. To define the
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unit transformation η : id f∗f⊗, consider the pullback square

U × U U

U ∗

pr2

pr1 f

f

and the associated equivalence f∗f⊗ ≃ (pr1)⊗(pr2)∗. The summand inclusion δ : U U × U yields a
natural transformation

ǫpr∗
2(−) : δ⊗ ≃ δ⊗(δ∗pr∗

2) = (δ⊗δ
∗pr∗

2) pr∗
2,

which on objects B ∈ CAlg
T

(C)U may be described as follows: if we write U ×U ≃ U∐U ′ and g = pr2|U ′ ,
then in terms of the decomposition CAlg

T
(C)U×U ≃ CAlg

T
(C)U ×CAlg

T
(C)U ′ , we have that

ǫpr∗
2B

: δ⊗(B) = (B, 1U ′) pr∗
2(B) = (B, g∗B)

is given by the identity on the first factor and the unique map out of the initial object on the second factor.
We then let

η = (pr1)⊗(ǫpr∗
2(−)) : id ≃ (pr1)⊗δ⊗ (pr1)⊗pr∗

2 ≃ f∗f⊗.

It remains to verify the triangle identities. Let U ≃ ∐n
i=1 Ui be an orbit decomposition of U , let ιi :

Ui U denote the inclusion, and let fi = f ◦ ιi. Observe that after pullback to Ui, the map f acquires a
canonical section, i.e., for all 1 ≤ i ≤ n we have a factorization of the identity map

id : Ui (id,ιi)
Ui × U pi

Ui.

where pi denote the projection. Using (−)can, this furnishes a factorization

id : f∗
i A (pi)⊗(pi)∗(f∗

i A) ≃ (pi)⊗(pr2)∗f∗A f∗
i A,

where we use the commutative square
Ui × U U

Ui ∗

pr2

pi f

fi

for the middle equivalence. To express this in more familiar terms, note that if we write Ui × U ≃ Ui
∐
U ′
i

and qi = pi|U ′
i
, then we may identify this as

f∗
i A ≃ f∗

i A⊗ 1Ui

id⊗1 f∗
i A⊗ (qi)⊗(qi)∗A id⊗ǫ f∗

i A⊗ f∗
i A

ǫ f∗
i A,

where ⊗ denotes the fiberwise tensor product on CAlg
T

(C)Ui induced by the fold map ∇ : Ui
∐
Ui Ui.

Now regarding the composition f∗A ηf∗
f∗f⊗f∗A f∗ǫ f∗A, by an elementary diagram chase we see that

after pullback along ιi this identifies with the factorization of f∗
i A given above, which validates this half of

the triangle identities.
Finally, we consider the composition f⊗B

f⊗η f⊗f∗f⊗B
ǫf∗

f⊗B. By the T-symmetric monoidality
of (−)can, we get a canonical equivalence f⊗(Bcan) ≃ (f⊗B)can in CAlgT(CAlg

T
(C)). If we then write

B = (A1, ..., An) under the decomposition CAlg
T

(C)U ≃
∏n
i=1 CAlg

T
(C)Ui , it follows that we obtain an

equivalence
f⊗f

∗f⊗B ≃ f⊗((p1)⊗(p1)∗A1, ..., (pn)⊗(pn)∗An)
under which ǫf⊗B ≃ f⊗(ǫA1 , ..., ǫAn) and the composite ǫf⊗B ◦ f⊗ηB identifies with f⊗ of the composite
defined factorwise by the map Ai (pi)⊗(pi)∗Ai Ai induced from id : Ui (id,ιi)

Ui × U pi

Ui. Since
these all compose as identities, we deduce the other half of the triangle identities. �

5.3.8. Corollary. Let C⊗ be a T-symmetric monoidal T-∞-category. Then the T-symmetric monoidal struc-
ture on CAlg

T
(C) of Theorem-Construction 5.3.4 is cocartesian.

Next, we consider the more general case of an arbitrary T-indexing system I (Definition 2.4.8).
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5.3.9. Theorem. Let C⊗ be a I-symmetric monoidal T-∞-category. Then for all orbits V ∈ T, the fiber
CAlg

I
(C)V admits finite coproducts, and for all morphisms f : V W ∈ T, the restriction functor

f∗ : CAlg
I
(C)W CAlg

I
(C)V preserves finite coproducts. Moreover, finite coproducts are computed as

tensor products in terms of the symmetric monoidal structures on the fibers CAlg
I
(C)V constructed via

Theorem-Construction 5.3.4 applied to the bifunctor
∧I : Com⊗

T≃ ×Top Com⊗
I Com⊗

I

obtained by restriction of ∧ : FT,∗ ×Top FT,∗ FT,∗.

Proof. The proof is exactly analogous to that of Theorem 5.3.7, where in place of Construction 5.3.6 we
instead use the composition of the span involving ∧I with that involving ∧T≃ to define the T≃-symmetric
monoidal T-functor

CAlg
I
(C)⊗ CAlg

T≃(CAlg
I
(C))⊗,

and also the identification of Corollary 2.4.15. �

5.3.10. Corollary. Let C⊗ be a distributive T-symmetric monoidal T-∞-category such that C is fiberwise
presentable, let I be a T-indexing system, and write C⊗

I = Com⊗
I ×F

T,∗
C⊗. Let

U : CAlg
T

(C) CAlg
I
(CI)

be the forgetful T-functor implemented by restriction along Com⊗
I ⊂ FT,∗. Then for all V ∈ T, UV is a

conservative functor of presentable ∞-categories that preserves all small limits and colimits, and is hence
comonadic. In particular, CAlg

T
(C)V is comonadic over CAlg(CV ).

Proof. To reduce notational clutter, let us replace T by T/V so that V = ∗ is a terminal object of T. By
Theorem 5.1.4(4), both CAlgT(C) and CAlgI(CI) are presentable. Since the forgetful functor to C∗ is
conservative for a reduced T-∞-operad, U∗ is conservative as well. By Theorem 5.1.3(2), U∗ preserves all
small limits. By Theorem 5.1.4(2), U∗ preserves all sifted colimits. By Theorem 5.3.7 and Theorem 5.3.9, U∗
preserves all finite coproducts. It follows that U∗ preserves all small colimits and hence admits a right adjoint
by the adjoint functor theorem, so we are entitled to ask about the comonadicity of U∗. The conclusion then
follows from the Barr–Beck–Lurie Theorem [Lur09, Thm. 4.7.3.5]. �

6. T-symmetric monoidal structure on T-presheaves

Let C be a T-symmetric monoidal T-∞-category. In this section, we construct a T-symmetric monoidal
structure on the T-∞-category of T-presheaves PT(C) such that for any T-distributive T-symmetric monoidal
T-∞-category D, the universal mapping property

FunLT(PT(C),D) ≃ FunT(C,D)
of [Sha21a, Thm. 11.5] refines to an equivalence

FunL,⊗T (PT(C),D) ≃ Fun⊗
T (C,D);

cf. Corollary 6.0.12. This result has also been achieved by Hilman as [Hil22a, Thm. 2.3.6].
We first extend our discussion of universal constructions from [Sha21b] by proving the parametrized

analogue of [Lur09, Prop. 5.3.6.2].14 Let K = {KU : U ∈ T} be a collection of classes KU of small T/U -∞-
categories such that for each morphism f : U V in T, f∗(KV ) ⊂ KU ; we call such a collection closed.
For each V ∈ T, let K|V = {KU : [f : U → V ] ∈ T}. Recall the following definition from [Sha21b, Def. 2.8]

6.0.1. Definition. Let C be a T-∞-category. We say that C strongly admits K-indexed T-colimits if for all
U ∈ T, CU admits KU -indexed T/U -colimits. Likewise, for any V ∈ T, we may refer to CV strongly admitting
K|V -indexed T/V -colimits.

Given a T-functor F : C D, we say that F strongly preserves K-indexed T-colimits if for all U ∈ T,
the T/U -functor FU : CU DU preserves all KU -indexed T/U -colimits. Likewise, for any V ∈ T, we may
refer to FV strongly preserving K|V -indexed T/V -colimits. We then let

FunK
T (C,D) ⊂ FunT(C,D)

14For this, we need not suppose that T is atomic.
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be the full T-subcategory spanned in each fiber over V ∈ T by those T/V -functors that strongly preserve K|V -
indexed T/V -colimits. Note that the global sections FunK

T (C,D) of FunK
T (C,D) is then the full subcategory

of FunT(C,D) spanned by those T-functors that strongly preserve K-indexed T-colimits.
Suppose given a collection R = {RU : U ∈ T} of classes RU = {pα : K

✄
α CU} of T/U -diagrams

in CU (which are not necessarily T/U -colimit diagrams), such that for each morphism f : U V in T,
f∗(RV ) ⊂ RU . Then a T-functor F : C D strongly preserves R-indexed T-colimits if for all U ∈ T,
FU : CU DU sends each pα to T/U -colimit diagram in DU . Likewise, for any V ∈ T we have the same
notion for FV with respect to R|V . We then let

FunR
T (C,D) ⊂ FunT(C,D)

be defined as before.

6.0.2. Proposition. Let C be a T-∞-category and let R be as in Definition 6.0.1, such that each Kα lies in
KU .

Then there exists a T-∞-category PK
R(C) and a T-functor j : C PK

R(C) such that:
(1) PK

R(C) strongly admits K-indexed T-colimits.
(2) For all T-∞-categories D such that D strongly admits K-indexed T-colimits, precomposition with j

induces an equivalence of T-∞-categories
j∗ : FunK

T (PK
R(C),D) ≃ FunR

T (C,D)
which upon passage to global sections yields an equivalence of ∞-categories

j∗ : FunK
T (PK

R(C),D) ≃ FunR
T (C,D).

(3) Suppose that all T/U -functors pα : K
✄
α CU in RU are T/U -colimit diagrams. Then j is fully

faithful.

Proof. The proof is essentially identical to that of [Lur09, Prop. 5.3.6.2]; we spell out a few details for the
reader’s benefit. After enlarging universes, we may suppose C is small.15 Let j0 : C PT(C) be the
T-Yoneda embedding. For every pα ∈ RU , let pα = pα|Kα , let Yα ∈ PT(C)U be the image of the cone point
(in the fiber over U) under pα, let Xα ∈ PT(C)U be a T/U -colimit for (j0)U ◦ pα : Kα PT(C)U , let
sα : Xα j0(Yα) be the induced map, and let SU = {sα}.

Note that for all morphisms f : U V in T, f∗SV ⊂ SU by our closure hypothesis on R. Thus, we may
form the full T-subcategory S−1PT(C) ⊂ PT(C) given on each fiber over U ∈ T by the full subcategory of SU -
local objects of PT/U (CU ) = PT(C)U . We then have a T-left adjoint L : PT(C) S−1PT(C) given fiberwise
by the usual localization. Finally, we define PK

R(C) to be the smallest full T-subcategory of S−1PT(C) which
contains the essential image of L ◦ j0 and such that for each U ∈ T, PK

R(C) is closed under KU -indexed
colimits, and we let j = L ◦ j0 be the induced map.

Given this construction, the verification of properties (1)–(3) proceeds exactly as in the proof of [Lur09,
Prop. 5.3.6.2] (with parametrized analogues of non-parametrized statements involving colimits, left Kan
extensions, etc. substituted as appropriate). �

6.0.3. Remark. If K = All then we may also write PK
R(C) as PR(C).

Now let Cat⊗
T FT,∗ be the T-symmetric monoidal T-∞-category given by the T-cartesian T-symmetric

monoidal structure on CatT (Example 2.4.1). Objects of Cat⊗
T are then given by tuples

([f : U → V ] ∈ FT,∗, C1 ∈ CatT/U1 , ..., Cn ∈ CatT/Un )
where U ≃ U1 ⊔ ... ⊔ Un is an orbit decomposition.

To describe morphisms in Cat⊗
T , consider a morphism

U Z X

V Y Y

f

m

g

=

15Since we suppose T is small, a T-∞-category C is small if and only if it is fiberwise small.
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in FT,∗, let U ≃ ⊔n
i=1 Ui, X ≃

⊔m
j=1 Xj be orbit decompositions, and let mj : Zj ≃ Xj ×Y Z Xj

be the restriction over the summand Xj . Let {Ci ∈ CatT/Ui} and {Dj ∈ Cat
T

/Xj }. Let C =
⊔n
i=1 Ci

denote the given T/U -∞-category and let pr∗C denote the pullback of C to a T/U×V Y -∞-category along the
projection U ×V Y U . By definition, the map Z U ×V Y is a summand inclusion; let C′ denote
the corresponding summand of C regarded as a T/Z -∞-category, and also let C′

j denote the T/Zj -∞-category
given by the further summand of C′. Then a morphism

(f, {Ci}) (g, {Dj})
is given by a collection of T/Xj -functors Fj : (mj)∗(C′

j) Dj , or written more concisely, a T/X -functor
F : m∗(C′) D.

6.0.4. Definition. Let M ⊂ Cat⊗
T ×∆1 be the subcategory defined as follows:

• M0 = Cat⊗
T .

• An object ([f : U → V ], C1 ∈ CatT/U1 , ..., Cn ∈ CatT/Un ) belongs to Cat⊗
T ×{1} if and only if each

Ci strongly admits T/Ui -colimits.
• All morphisms (f, {Ci}, 0) (g, {Dj}, 1) belong to M.
• A morphism (f, {Ci}, 1) (g, {Dj}, 1) belongs to M if and only if each Fj is T/Xi -distributive.

Let p : M FT,∗ ×∆1 denote the composite of the inclusion and the structure map.

For the following, we have implicitly extended the notion of (closed) collection K = {KU} to be indexed
over all finite T-sets U .

6.0.5. Notation. Let f : U V be a morphism in FT and let C be a T/U -∞-category. Let R = {Rα :
[U ′ α−→ U ] ∈ FT} be a closed collection of diagrams in C, Rα = {pα : K✄

α CU ′}. We let f∗R denote the
closed collection of diagrams in f∗C specified at each morphism γ : V ′ V as follows:

(∗) Let U ′ = U×V V ′ and let f ′ : U ′ V ′ be the pullback of f . For every T/U
′ -diagram pα : K✄

α CU ′

in RU ′ , we may form the T/V
′ diagram

f ′
∗(Kα)✄ can f ′

∗(K✄
α ) f ′

∗(pα)
f ′

∗(CU ′) ≃ (f∗C)V ′ .

Let (f∗C)γ be the set of these diagrams.

6.0.6. Notation. Given a finite T-set U with orbit decomposition U ≃ ⊔ni=1 Ui, let PT/U (−) be given by
the coproduct of the PT/Ui (−).

6.0.7. Lemma. Let f : U V be a morphism of finite T-sets and let C be a T/U -∞-category. Consider
the T/V -functor

φ : f∗PT/U (C) PT/V (f∗C)
given by the composite of the T/U -Yoneda embedding (for f∗PT/U (C)) and restriction along f∗ of the T/V -
Yoneda embedding (for C). Then φ is T/V -distributive.

Proof. Suppose p : K PT/U (C) is a T/U -diagram. We need to show that the T/V -colimit of the composite

f∗K
f∗(p)

f∗PT/U (C) φ PT/V (f∗C)

evaluates to f∗(colimT/U

p). It suffices to check this after evaluation at all objects of f∗C, and without loss
of generality it suffices to consider x ∈ (f∗C)V ≃ CU (by the usual base-change argument). A diagram chase
then shows that the composite

f∗PT/U (C) φ PT/V (f∗C) evx Spc
T/V

identifies with the composite

f∗PT/U (C) f∗evx f∗Spc
T/U = f∗f

∗Spc
T/V

m Spc
T/V

where m is the multiplication given by the T-distributive T-cartesian T-symmetric monoidal structure on
Spc

T
. Thus, m is T/V -distributive, which implies that evxφ is distributive. �
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6.0.8. Lemma. Let f : U V be a morphism of finite T-sets, let C be a T/U -∞-category, and let D be a
T/U -cocomplete T/U -∞-category. Then a T/V -functor F : f∗PT/U (C) D is T/V -distributive if and only
if it is the T/V -left Kan extension of its restriction along f∗(j) : f∗C ⊂ f∗PT/U (C).

Proof. For the ‘if’ direction, it suffices to consider the universal example given by the T/V -functor φ of
Lemma 6.0.7, which we showed to be T/V -distributive.16 For the ‘only if’ direction, let F ′ = (f∗j)!(f∗j)∗F
and consider the comparison map θ : F ′ ⇒ F . Without loss of generality, it suffices to show that for all
x ∈ (f∗PT/U (C))V ≃ (PT/U (C))U , θx is an equivalence. On the one hand, by the pointwise formula for
T/V -left Kan extensions, we have that F ′(x) is given by the T/V -colimit of p : (f∗C)/x f∗C D. On
the other hand, since f∗ : CatT/U CatT/V preserves cotensors and limits, we have a natural equivalence
(f∗C)/x ≃ f∗(C/x) such that [(f∗C)/x f∗C] ≃ [f∗(C/x C)], and using that F is T/V -distributive, we
get that F (x) is also given by the T/V -colimit of p. The naturality of all operations considered shows further
that θx implements this equivalence. �

In the following corollary, we disambiguate our terminology for distributive functors by referring to the
morphism of finite T-sets and not just the target.

6.0.9. Corollary. Let U f V g W be a composite of morphisms of finite T-sets, let C be a T/U -cocomplete
T/U -∞-category, and let D be a T/W -cocomplete T/W -∞-category. Consider the composite T/W -functor

j : g∗f∗C
j0 g∗PT/V (f∗C) g∗Pf∗All(f∗C)

Then a T/W -functor F : g∗Pf∗All(f∗C) D is g-distributive if and only if j∗F is gf -distributive. Conse-
quently, we have an equivalence

P(gf)∗All((gf)∗C) ≃ Pg∗All(g∗Pf∗All(f∗C)).

Proof. The first claim follows immediately by restricting the equivalence of Lemma 6.0.8, noting that by
definition g∗Pf∗All(f∗C) is a localization of g∗PT/V (f∗C) at the relevant class of morphisms. The equivalence
then follows by universal property. �

6.0.10. Proposition. The map p is a cocartesian fibration.

Proof. We adapt the proof of [Lur17, Prop. 4.8.1.3] to the parametrized context. We first show that p is a
locally cocartesian fibration. This is clear if we restrict to the fiber over 0. For the other cases, first suppose
(f : U → V, {Ci}) ∈ M0 and let (f, 0) (g, 1) be a morphism in FT,∗ ×∆1, with notation as above. Let
Dj = P

T
/Xj ((mj)∗(C′

j)) and take Fj to be the identity. We then have a morphism (f, {Ci}, 0) (g, {Dj}, 1)
which is a locally cocartesian edge by the universal property of the T/Xj -presheaves.

Next, suppose (f : U → V, {Ci}) ∈ M1 and let (f, 1) (g, 1) be a morphism in FT,∗ × ∆1. Let C′

be the T/Z -∞-category as above. Let R be the closed collection of parametrized colimit diagrams in C′,
i.e., for each morphism α : Z ′ Z in FT , Rα is the collection of T/Z

′ -colimit diagrams in C′
Z′ . We let

D = PAll
m∗R(m∗C′) and F = j : m∗C′ D be the T/X -functor as in Proposition 6.0.2. We then have that

the morphism j : (f,C, 1) (g,D, 1) lies in M by definition. Moreover, it is a locally cocartesian edge in
view of the universal property supplied by Proposition 6.0.2.

To then see that p is a cocartesian fibration, we need to see that the composite of locally cocartesian edges
is again locally cocartesian. We already know the restriction over 0 is a cocartesian fibration. If the first
edge lies over [0→ 1], we may apply the parametrized analogue of [Lur09, Prop. 5.3.6.11]; since this step is
straightforward we leave the details to the reader. If both edges lie over 1, then without loss of generality
we may suppose both edges are fiberwise active as edges over FT,∗, in which case the claim follows from the
transitivity property established in Corollary 6.0.9. �

Let p0 and p1 denote the two fibers of p over 0, 1 ∈ ∆1.

6.0.11. Corollary. The maps p0 and p1 exhibit M0 and M1 as T-symmetric monoidal T-∞-categories.

16cf. https://math.stackexchange.com/questions/4094599/when-left-kan-extension-preserve-colimits for a description of this
standard reduction, which also works in the parametrized context.



PARAMETRIZED AND EQUIVARIANT HIGHER ALGEBRA 59

Proof. We already have that the map p0 is the structure map of Cat⊗
T . As for p1, since it is a cocartesian

fibration it remains to verify the parametrized Segal condition. But in the definition of M, all the inert
morphisms in Cat⊗

T continue to lie in M, so we see that M1 inherits the parametrized Segal condition from
Cat⊗

T . �

Now write (CatLT)⊗ = M1. The cocartesian fibration p classifies the T-symmetric monoidal T-functor

P⊗
T/− : Cat⊗

T (CatLT)⊗

whose underlying T-functor is given by the usual T-presheaf construction PT/− . Since PT/− admits a right
T-adjoint given by the forgetful T-functor U , U canonically inherits a lax T-symmetric monoidal structure.
Passing to T-commutative algebra objects and considering the unit of the adjunction, we obtain:

6.0.12. Corollary. Let C be a T-symmetric monoidal T-∞-category. Then PT(C) and the T-Yoneda embed-
ding j : C PT(C) inherit a T-symmetric monoidal structure such that:

(1) PT(C) is T-distributive.
(2) For every T-distributive T-symmetric monoidal T-∞-category D, restriction along j yields an equiv-

alence
FunL,⊗T (PT(C),D) ≃ Fun⊗

T (C,D).

6.0.13. Remark. Let C be a T-symmetric monoidal T-∞-category. Consider the T-distributive T-symmetric
monoidal structure on PT(C) = FunT(Cvop,Spc

T
) given by T-Day convolution (Theorem 3.2.6), where we

have the T-symmetric monoidal structure on Cvop induced by the opposite automorphism on Cat under the
equivalence of Theorem 2.3.9 and the T-cartesian T-symmetric monoidal structure on Spc

T
. Then one may

show directly that the full T-subcategory C ⊂ PT(C) is closed under this T-symmetric monoidal structure.
Using Corollary 6.0.12(2), it then follows that the T-Day convolution T-symmetric monoidal structure agrees
with that defined above.
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On normed E∞-rings in genuine equivariant Cp-spectra

Lucy Yang
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Abstract
Genuine equivariant homotopy theory is equipped with a multitude of coherently commuta-

tive multiplication structures generalizing the classical notion of an E∞-algebra. In this paper
we study the Cp-E∞-algebras of Nardin–Shah with respect to a cyclic group Cp of prime power
order. We show that many of the higher coherences inherent to the definition of parametrized
algebras collapse; in particular, they may be described more simply and conceptually in terms
of ordinary E∞-algebras as a diagram category which we call normed algebras. Our main result
provides a relatively straightforward criterion for identifying Cp-E∞-algebra structures. We visit
some applications of our result to real motivic invariants.
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1 Introduction

1.1 Motivation

Algebraic invariants such as integral cohomology H∗(−; Z) detect information about spaces;
identifying and applying such tools form the basic premise of algebraic topology. Moreover,
considering more structured algebraic objects leads to more refined invariants: Cochains with
integral coefficients X 7→ C∗(X; Z) considered as a functor from spaces to E∞-Z-algebras is better
at detecting information about spaces than integral cohomology. For instance, C∗(X; Z) inherits
power operations as a consequence of its E∞-structure, and two (non-equivalent) spaces X and Y
may have isomorphic cohomology rings but different power operations. In this way, we see that
the study of structured multiplications and their operations is foundational to homotopy theory.

In parallel, the study of structured multiplications is essential to the study of genuine equivariant
homotopy types. Our line of inquiry naturally leads to algebraic structures whose operations are
inherently genuine equivariant. To motivate the particular equivariant multiplicative structure we
will focus on, recall that an ordinary E∞-algebra in spectra may be modeled by a functor satisfying
certain conditions defined on the category of finite pointed sets [Seg74]. In particular, the smash
product A⊗ℓ parametrizes formal sums of ℓ-tuples in A, and said functor takes the collapse map
⟨2⟩ → ⟨1⟩ to a morphism A⊗2 → A. In particular, E∞-algebra structures are governed by the
category of finite pointed sets.

In genuine equivariant homotopy theory with respect to the finite cyclic group Cp of order
a prime p, the role of finite sets is supplanted by finite pointed sets with Cp-action [HH14, §4;

HH16, §3.3]. The Hill–Hopkins–Ravenel norm N
Cp
e A =: A⊗Cp parametrizes |Cp|-tuples in A

indexed by a free Cp-set. In [BH15], Blumberg and Hill introduced a genuine equivariant operads
encoding multiplications indexed by G-sets; the algebras they give rise to are called N∞-algebras.
In [NS22, Definition 2.2.2], Nardin and Shah defined an ∞-categorical analogue of the N∞-algebras
of Blumberg–Hill1; we shall refer to the latter as Cp-E∞-algebras (Definition 2.32, Example 2.33).
Their structure of operations is governed by the category of finite pointed Cp-sets FinCp ,∗.

Unravelling definitions, a Cp-E∞-algebra is the data of

(1) An underlying Cp-genuine equivariant spectrum R.

(2) For each morphism of finite Cp-sets S → T, a morphism of Cp-spectra NS
e R → NT

e R. In

particular, the collapse map Cp ↠ Cp/Cp indexes a morphism of E∞ rings nR : N
Cp
e R → R

called the norm.

(3) higher coherences...

To exhibit a Cp-E∞-algebra structure on a genuine Cp-spectrum R is no small task. In the literature,
one often resorts to simplifying assumptions such as requiring R to be Borel, e.g. [Hil22, Proposition
3.3.6]. We set out to provide a relatively straightforward criterion for identifying Cp-E∞-algebra
structures.

When p = 2, by [QS22, Definition 5.2] the category of C2-E∞-algebras is the natural domain of
definition for real (i.e. C2-equivariant) topological Hochschild homology and other real motivic
invariants. This work grew out of the author’s interest in real motivic invariants and will be used
in upcoming work on a real version of the Hochschild–Kostant–Rosenberg theorem.

1These notions are expected to agree.
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1.2 Main result

To motivate our main result, note that any morphism of Cp-sets S → Cp/Cp can be expressed as
the composite of ‘collapse the free Cp-orbits’ followed by a (non-equivariant) map of finite sets.
Thus a Cp-E∞ algebra, regarded as functor defined on Cp-sets, determines two pieces of data: its
restriction to sets on which Cp acts trivially, and its value on collapse maps. The former specifies an
E∞-algebra structure, while the latter specifies a norm map n. To assert that these data are enough
to specify a Cp-E∞-algebra structure means that any higher coherence conditions on the norm map
n collapse. We might hope that this is indeed the case, since the category FinCp ,∗ is freely generated
by the Cp-set Cp/Cp.

Let A ∈ E∞Alg(SpBCp) be an E∞-algebra with naïve Cp-action and σ ∈ Cp a generator.

Observation 1.1 (Observation 3.7). Write A⊗
∆ p for the object in E∞Alg(SpBCp) with the diagonal

action, i.e. such that σ acts by σ(a1 ⊗ · · · ⊗ ap) = σ(ap)⊗ σ(a1)⊗ · · · ⊗ σ(ap−1). Write A⊗
τ p for

the object in E∞Alg(SpBCp) with the transposition action, i.e. such that σ acts by σ(a1 ⊗ · · · ⊗ ap) =

ap⊗ a1⊗ · · · ⊗ ap−1. Then the endomorphism idA⊗ σ⊗ · · · ⊗ σp−1 of A⊗p ∈ E∞Alg(Sp) promotes

to an equivalence A⊗
∆ p → A⊗

τ p in E∞Alg(Sp)BCp –in particular it is Cp-equivariant.

Definition 1.2 (Definition 3.11). Write OCp for the category of finite sets with transitive Cp-action,
and let σ ∈ Cp be a generator. A normed E∞-algebra in Cp-spectra is the data of an E∞-algebra A
in SpCp , a morphism of E∞-rings nA : NCp(Ae

hCp
) → A, and a homotopy making the following

diagram OCp → E∞Alg(Sp)BCp

(Ae)⊗
τ p

Ae

(Ae)⊗
∆ p

∼id⊗σ⊗···⊗σp−1

ne
A

mA

commute, where the Cp-action on (Ae)⊗
∆ p corresponding to the inclusion BCp ⊆ OCp is the

transposition.

The main result of this paper both formalizes and confirms the aforementioned intuitive picture.

Theorem 1.3 (Corollary 4.7 & Theorem 4.23). The canonical forgetful functor from the category of Cp-E∞
algebras in Cp-spectra (Example 2.33) to the category of normed E∞-algebras in Cp-spectra is an equivalence.

A key input to the proof of Theorem 4.23 is an explicit description of the free Cp-E∞ algebra
in SpCp on an E∞-algebra A in SpCp . By Theorem 4.14 and Proposition 2.15, the underlying
Cp-spectrum of the free Cp-E∞ algebra F(A) on A is given by

F(A) ≃
AφCp ⊗ Ae

hCp

Ae AtCp

sA⊗νA

where u is the unit, sA : AφCp → AtCp is the structure map, and νA is the twisted Tate-valued norm
(Definition 3.8).
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Remark 1.4. There is an analogous statement (Theorem 5.15), proved in essentially the same way,
for relative normed algebras, i.e. Cp-E∞-algebras over a fixed Cp-E∞-algebra A.

One expects an analogous result to hold for arbitrary G, but we stick with Cp here because the
author’s motivating example is the case G = C2, and because the complexity of (3.12) seemingly
grows exponentially in the subgroup lattice of G.

1.3 Applications & Examples

The power of Theorem 4.23 is that, in many cases, it is easier to identify objects in the diagram
category Definition 3.11 than to produce a Cp-E∞-algebra in the sense of Definition 2.32, which
requires exhibiting an infinite amount of coherence data. In particular, a normed ring is the data of
an E∞-ring in SpCp plus the additional datum of a commutative diagram (3.18). As an application,
in §5 we show that various E∞-rings in SpCp admit natural lifts to Cp-E∞-rings in SpCp .

Corollary 1.5 (Theorem 5.1). Let k be a discrete commutative ring. The constant Cp-Mackey functor k on
k acquires an essentially unique structure of a Cp-E∞-ring.

Using our main theorem, we are able to give an alternative proof of a special case of a result
[Hil22, Proposition 3.3.6] of Kaif Hilman. In view of the expected correspondence between N∞-
algebras and Cp-E∞-algebras, the following result should also be compared to Theorem 6.26 of
[BH15].

Corollary 1.6 (Proposition 5.3). Every Borel E∞-algebra in Cp-spectra admits an essentially unique
refinement to a Cp-E∞-algebra.

Many examples arise in the case p = 2 because involutions are ubiquitous in topology. Natural
examples of E∞-rings in SpC2 include real topological and algebraic K-theories ([Ati66] & 5.8).

Corollary 1.7 (Corollary 5.10). ▲ Real topological K-theory KUR admits a unique refinement to a
C2-E∞ ring spectrum.

▲ If A satisfies the homotopy limit problem, then KR(A) admits a unique refinement to a C2-E∞ ring
spectrum.

A slightly less trivial class of examples are provided by the following

Corollary 1.8 (Proposition 5.5). Let B ∈ E∞Alg(Sp) be an E∞-algebra. Then NCp B admits a canonical
structure of a Cp-E∞-algebra.

Remark 1.9. Real motivic invariants and their associated real trace theories provided the impetus
for this work. In particular, Theorem 5.1 will be used in the author’s upcoming work on real trace
theories.

1.4 Outline

Despite the nice intuitive picture outlined in §1.1, handling the higher coherence conditions associ-
ated to n gets complicated quickly. Thus our proof strategy does not appeal directly to understand-
ing the operadic indexing category (although we will need some understanding of this to write
down a comparison functor).
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In §2, we collect background on genuine equivariant homotopy theory, as well as the parametrized
∞-categorical perspective on equivariant algebras. In §3, we define normed rings. In §4.1, we define
a comparison functor from parametrized algebras to normed rings. In §4.2, we exhibit a formula
for the free Cp-E∞-algebra on an E∞-algebra. In §4.3, we show that the free Cp-E∞-algebra on an
E∞-algebra also computes the free normed algebra, and conclude by the Barr–Beck–Lurie theorem.
In §5, we look into a few examples and applications.

1.5 Background, Notation, & Conventions

We assume some familiarity with the language of ∞-categories (in the form of quasi-categories)
as introduced by Joyal [Joy08] and developed in [Lur09]. All categories are understood to be
∞-categories unless otherwise specified. We do a cursory review of the theory of parametrized
∞-categories as developed by Barwick, Dotto, Glasman, Nardin, and Shah [Bar+16a; Bar+16b;
Bar+17; Nar17; Sha18], but the reader should consult the former references for more details. We will
assume some familiarity with the ∞-operads of [Lur17, Chapters 2 & 3], which we will compare to
the parametrized algebras of [NS22].

To reduce visual clutter, we regularly drop subscripts such as a prime p or a (Cp-)E∞-algebra A
when they are understood to be fixed (e.g. within the proof of a particular proposition).

1.6 Acknowledgements

The author is indebted to Denis Nardin and Jay Shah for numerous enlightening conversations and
for, in collaboration Clark Barwick, Emanuele Dotto, and Saul Glasman, setting up the foundations
of parametrized ∞-categories. The author would like to thank Elden Elmanto and Noah Riggenbach
for helpful conversations, and Andrew Blumberg and Elden Elmanto for feedback on an early draft.
The author was supported by a NSF Graduate Research Fellowship under Grant No. DGE 2140743
during the completion of this work.

2 Background

We collect some background on genuine equivariant homotopy theory and parametrized ∞-
categories here. In §2.1 and §2.3, we recall the parametrized ∞-categorical language and parametrized
algebras, resp. of Barwick–Dotto–Glasman–Nardin–Shah. In §2.2, we collect background and struc-
tural results on the Cp-genuine equivariant category.

2.1 Parametrized ∞-categories

Let G be a finite group.

Recollection 2.1. The orbit category OG is the category with objects finite transitive G-sets and
morphisms G-equivariant maps. We let FinG denote the finite coproduct completion of OG, i.e. the
category of finite G-sets and G-equivariant maps. We recall that Oop

G is an orbital ∞-category in the
sense of Definition 1.2 of [Nar17].

Definition 2.2. ([Nar17, between Examples 1.3 & 1.4; Bar+16b, Definition 1.3]) A G-∞-category is a
cocartesian fibration C → Oop

G .
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[Nar17, beginning of §1.2] A morphism of G-∞-categories is a functor F of ∞-categories over
Oop

G :

C D

Oop
G

p

F

q

which takes p-cocartesian arrows in C to q-cocartesian arrows in D. We denote the category of
G-functors by FunG(C,D).
Remark 2.3. [Lur09, §3.2.2; Sha18, Example 2.5] Let Cat∞ denote the large ∞-category of small
∞-categories. There is a universal cocartesian fibration U → Cat∞ such that pullback induces an
equivalence

Fun(Oop
G ,Cat∞) ≃ Catcocart

∞/Oop
G

.

Unraveling definitions and taking G = Cp, a Cp-∞-category is the data of

▲ an ∞-category CCp ,

▲ an ∞-category with Cp-action Ce, and

▲ a functor CCp → Ce which lifts along the Cp homotopy fixed points (Ce)hCp → Ce. In particular,
if Ce is endowed with the trivial Cp-action, then (Ce)hCp ≃ (Ce)BCp ≃ Fun(BCp, Ce) comprises
objects in Ce with (naïve) Cp-action.

In particular, we see that a cocartesian section σ : Oop
Cp
→ C is determined by its value on σ(Cp/Cp).

Informally, we regard the category of cocartesian sections of C as the category of objects in C.

Notation 2.4. Going forward, we use the notation T for Oop
Cp

to reduce notational clutter. While
most of the general theory in §2.1 and §2.3 applies to T a general atomic orbital ∞-category, we
will not need this level of generality to formulate our main results.

There is an (internal to T -parametrized categories) version of functor categories. The notion of
parametrized functor categories of [Sha18, §3] will be necessary to our investigation of parametrized
colimits.

Proposition 2.5. [Sha18, Proposition 3.1; Bar+16b, Construction 5.2] Let C → T op, D → T op be
cocartesian fibrations. Then there exists a cocartesian fibration Fun(C,D) → T op such that under the
straightening-unstraightening equivalence of Remark 2.3, Fun(C,D) represents the presheaf

E 7→ homT op (E ×T op C,D) .

Notice that an object of Fun(C,D) over t ∈ T is a (T op)t/-functor

(T op)t/ ×T op C → (T op)t/ ×T op D.

Construction 2.6 (T -category of objects). [Bar+16b, Definition 7.4] Let E be a (non-parametrized) ∞-
category. The product E× T op may be regarded as a T -∞-category via projection onto the second
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factor. Evaluation at the source exhibits the (non-parametrized) functor category Fun(∆1, T op)
ev0−→

T op as a cartesian fibration. The parametrized functor category of [Bar+16b, Recollection 5.1]

ET := FunT op

(
Fun(∆1, T op), E× T op

)

is the T -∞-category of T -objects in E.

Theorem 2.7. [Bar+16b, Theorem 7.8] Let C be a T -∞-category. Let D be an ∞-category. Then the
T -category of objects of Construction 2.6 satisfies

FunT op(C,D) ≃ Fun(C,D).

Example 2.8. Taking E = Spc and C = T op in Theorem 2.7, we see that cocartesian sections of
SpcT correspond exactly to Fun(T op, Spc).

We will need to know what a G-left Kan extension is. In service of keeping the background
section brief, we take Remark 10.2(3) of [Sha18], which is equivalent to Definition 10.1 of loc.cit.

Notation 2.9. [Sha18, Notation 2.29] Let p : D → T op be a T -∞-category. Given an object x ∈ D,
define

x := {x} ×D Arcocart(D).
Given a T -functor ψ : C → D, define the parametrized fiber of ψ over x ∈ D to be

Cx := x ×
D,ψ
C.

Observe that Cx may be naturally regarded as a (T op)p(x)/−-category.

Definition 2.10. [Sha18, Remark 10.2(3)] Suppose given a diagram of T -∞-categories

C E

D

ψ

F

G

η
.

We say that G is a left T -Kan extension of F along ψ if for all t ∈ T and all x ∈ Dt, G|x is a left
(T op)t/-Kan extension of F|x : Cx → Et along ψx.

2.2 Genuine equivariant homotopy theory

In this section, we introduce the stable Cp-genuine equivariant category, discuss a parametrized lift
(Example 2.14) and give an alternative presentation (Proposition 2.15) which will be useful to our
study of algebras. Finally, we recall the Hill–Hopkins–Ravenel norms.

Proposition 2.11. Let G be a finite group. Then there exists an ∞-category Span (FinG) having

▲ the same objects as FinG

▲ homotopy classes of morphisms from V to U in Span(FinG) are in bijection with diagrams V ← T → U
up to isomorphism of diagrams fixing V and U.
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▲ The composite of V ← T → U and U ← S→W is equivalent to the diagram V ← T ×U S→W.

Moreover, Span(FinG) is semiadditive, i.e. finite coproducts and products are isomorphic, and are given on
underlying G-sets by the disjoint union.

Proof. The construction of Span(FinG) is [Bar17, Proposition 5.6] applied to [Bar17, Example 5.4].
The (0-)semiadditivity of Span(FinG) follows from noticing that Span(FinG) is a module over
Span(Fin) and [Har20, Corollary 3.19].

The notion of a Mackey functor first appeared in [Dre71] in algebra and in [May96] in homotopy
theory; the following ∞-categorical version of the definition is taken from [Nar17, §2.3].

Definition 2.12. Let G be a finite group and let Span(FinG) be the span category of Proposition
2.11. Let C be a category which admits finite products. Then the category of C-valued G-Mackey
functors is given by

MackG(C) := FunΣ(Span(FinG), C)
where the right-hand side denotes the full subcategory on functors which take direct sums in
Span(FinG) to products in C. We will denote the category of genuine equivariant G-spectra by
SpG = MackG(Sp).

We identify the theory of orthogonal G-spectra (where weak equivalences are detected levelwise)
with G-spectral Mackey functors via the equivalence established in [GM17, §3].

Recollection 2.13 (Smash product of G-Mackey functors). The category Span(FinG) inherits a
symmetric monoidal structure from FinG given on underlying objects by cartesian product of finite
G-sets [BGS16, Proposition 2.9]. Suppose that C has a presentably symmetric monoidal structure2 ⊗.
Then we can equip MackG(C) = FunΣ(Span(FinG), C) with a symmetric monoidal structure given
by Day convolution [Gla16, Proposition 2.11]. When we take C = Sp and the symmetric monoidal
structure to be the smash product on spectra, this recovers the usual smash product of G-spectra.

The ∞-category of G-Mackey functors in spectra is equivalent to the category of cocartesian
sections of a G-parametrized ∞-category.

Example 2.14. The G-∞-category of G-spectra SpG is [Nar16, Definition 7.3 & Corollary 7.4.1]

applied to D = SpcG.

There is an alternative way of understanding MackCp(C) as a recollement when C is stable and
admits BCp-shaped colimits. The following is [MNN17, Theorem 6.24].

Proposition 2.15. There is an equivalence of stable ∞-categories

SpCp = MackCp(Sp)→ SpBCp ×Sp Ar(Sp)

X 7→
(

Xe, cofib
(
(Xe)hCp

tr−→ XCp
)
→ (Xe)tCp

)

where the map Ar(Sp) → Sp is evaluation at the target. We call XφCp := cofib
(
(Xe)hCp

tr−→ XCp
)

the
Cp-geometric fixed points of X.

2That is, the tensor product commutes with (small) colimits separately in each variable.
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Notation 2.16. We will denote the projection SpCp → Ar (Sp) by s(−), i.e. for any Cp-spectrum A
we have a map sA : AφCp → AtCp .

It will be convenient to know that the recollement of Proposition 2.15 is compatible with
symmetric monoidal structures.

Proposition 2.17. Let Cp be a cyclic group of prime power order. Then the recollement of Notation 2.15 is a
symmetric monoidal recollement in the sense of [Sha21, Definition 2.20].

Corollary 2.18. Let Cp be a cyclic group of prime power order. Then there is an equivalence of ∞-categories

AlgE∞
SpCp ∼−→ AlgE∞

SpBCp ×AlgE∞ Sp Ar(AlgE∞
Sp)

such that applying forgetful functors recovers the equivalence of Proposition 2.15.

Proof. The corollary follows from [Sha21, Theorem 1.2] and the definition of E∞-algebras.

Observation 2.19. Now suppose A, B ∈ E∞Alg
(

SpCp
)

. Then the morphism space is computed as

hom
E∞Alg(SpCp )

(A, B) ≃ hom
E∞Alg(SpBCp )

(Ae, Be) ×
homE∞Alg(Sp)(AtCp ,BtCp)

homAr(E∞Alg(Sp))




AφCp

AtCp

,
BφCp

BtCp




Recollection 2.20 (Tate diagonal). [NS18, Definition III.1.4] The Tate diagonal is a natural transfor-
mation id→ (−⊗p)tCp of exact functors Sp→ Sp where Cp acts on (A)⊗p via a cyclic permutation.

Recollection 2.21. Given a subgroup inclusion H ⊂ G, the Hill–Hopkins–Ravenel norm [HHR16,
Definition A.52] is a (non-exact) functor

NG
H : SpH → SpG.

When H = {e} ⊆ G = Cp, the norm is uniquely characterized by the existence of natural equiva-

lences
(

N
Cp
e X

)φCp ≃ X in Sp{e} ≃ Sp and
(

N
Cp
e X

)e
≃ X⊗p in SpBCp , where Cp acts on the smash

product by permuting the terms. The connecting map X → (X⊗p)tCp is given by the Tate diagonal
of [NS18, Theorem 1.7]. The functor NG

H enjoys the properties of being symmetric monoidal and it
preserves sifted colimits [HHR16, Proposition A.54], so it lifts to a functor [HHR16, Proposition
A.56]

NG
H : AlgE∞

SpH → AlgE∞
SpG.

Lemma 2.22. The Hill–Hopkins–Ravenel norm NCp : E∞Alg(Sp)→ E∞Alg
(

SpCp
)

preserves all small
colimits.

Proof. By [BH21, Lemma 2.8], it suffices to show that NCp preserves sifted colimits and finite
coproducts. The norm NCp preserves sifted colimits of algebras because they are computed at the
level of underlying spectra, and NCp preserves finite coproducts of algebras because it is symmetric
monoidal with respect to the smash product on Sp and SpCp (Recollections 2.2 & 2.21).
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2.3 Cp-E∞-rings

In this section we introduce the genuine equivariant algebraic structures of interest via the formalism
of parametrized operads of Nardin–Shah [NS22]. We fix notation for the remainder of the paper.

Notation 2.23. Let p be a prime and let T denote the orbital ∞-category OCp of Recollection 2.1.

Definition 2.24. The category FinT = FinCp of parametrized T -sets is the T -∞-category classified by
the functor V 7→ FinT /V . Equivalently, it is described by the fiber product Ar (FinT /V )×FinT {V}.
The category FinT ,∗ of parametrized pointed T -sets is the T -∞-category classified by the functor
V 7→ (FinT /V )idV /.

Finv
T := Ar (FinT /V ) ×

FinT
T

Example 2.25. We unpack the definition in the case T = OCp . For each orbit, the fiber is given by

(Finv
T )Cp/Cp

≃ FinCp (Finv
T )Cp

≃ FinFree
Cp

and the morphism Cp/Cp ← Cp classifies the functor FinCp → FinFree
Cp

, V 7→ V×Cp/Cp Cp.

Definition 2.26. [NS22, Definition 2.1.2] Let T be an atomic orbital ∞-category. The (T -parametrized)
∞-category of finite pointed T -sets is

FinT ,∗ = Span
(

Finv
T , (Finv

T )
si , (Finv

T )
tdeg
)

.

where a morphism [ϕ : f → g] of Finv
T

U X

V Y

h

f g
k

▲ belongs to (Finv
T )

tdeg if k is degenerate, and

▲ belongs to (Finv
T )

si if U → V ×Y X is a summand inclusion.

Definition 2.27. [NS22, Definition 2.1.7] A T -∞-operad is a pair (C⊗, p) consisting of a T -∞-category
C⊗ and a T -functor p : C⊗ → FinT ,∗ which is a categorical fibration and satisfies the following
additional conditions

(1) For every inert morphism ψ : f+ → g+ of FinT ,∗ and every object x ∈ C⊗f+ , there is a
p-cocartesian edge x → y covering ψ.

(2) For any object f+ = [U+ → V] of FinT ,∗, the p-cocartesian edges lying over the characteristic
morphisms {

χ[W⊆U] : f+ → I(W)+ |W ∈ Orbit(U)
}

together induce an equivalence

∏
W∈Orbit(U)

(
χ[W⊆U]

)
!

: C⊗f+
∼−→ ∏

W∈Orbit(U)

C⊗I(W)+
.
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(3) For any morphism
ψ : f+ = [U+ → V]→ g+ = [U′+ → V′]

of FinT ,∗, objects x ∈ C⊗f+ and y ∈ C⊗g+ , and any choice of p-cocartesian edges

{y→ yW |W ∈ Orbit(U′)}

lying over the characteristic morphisms
{

χ[W⊆U] : g+ → I(W)+ |W ∈ Orbit(U′)
}

,

the induced map

Mapψ
C⊗(x, y) ∼−→ ∏

W∈Orbit(U′)
Map

χ[W⊆U′ ]◦ψ
C⊗ (x, yW)

is an equivalence.

Given a T -∞-operad (C⊗, p), its underlying T -∞-category is the fiber product

C := T op ×
FinT ,∗

C⊗.

[NS22, Definition 2.1.8] Given a T -∞-operad (C⊗, p), an edge of C⊗ is inert if it is p-cocartesian
over an inert edge of FinT ,∗, and it is active if it factors as a p-cocartesian edge followed by an edge
lying over a fiberwise active edge in FinT ,∗.

Example 2.28 (Indexing systems). Let us recall that the Cp-E∞-operad is given by Com⊗Cp
= FinCp ,∗

theOCp -operad corresponding to the maximal indexing system [NS22, Example 2.4.7]. The minimal
indexing system Com⊗O≃Cp

is a Cp-∞ operad with underlying category the wide subcategory of

FinOCp ,∗ containing those morphisms

U Z X

V Y Y

m

where m is a coproduct of (possibly empty) fold maps. The structure map is the natural inclusion
Com⊗O≃Cp

⊆ Com⊗Cp
.

Definition 2.29. [NS22, Definition 2.2.3] Let p : C⊗ → FinT ,∗ be a fibration of T -∞-operads in which
p is moreover a cocartesian fibration. Then we will call C⊗ a T -symmetric monoidal T -∞-category.

Recollection 2.30. [NS22, Example 2.4.2; BH21, §9] The Cp-∞-category of Cp-spectra is endowed
with a Cp-symmetric monoidal structure via the Hill–Hopkins–Ravenel norm functors as follows:
Example 2.4.2 [NS22] and §9 of [BH21] define a functor

ζ := SH⊗ ◦ωCp : Span(FinCp)→ AlgE1
(Cat)

T 7→ SH⊗ ◦ωCp(T)
.
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Unravelling definitions, this functor takes

ζ : (Cp ↠ Cp/Cp) 7→ SpBCp

: (Cp = Cp) 7→ SpBCp

: (Cp/Cp = Cp/Cp) 7→ SpCp

:

Cp/Cp Cp

Cp/Cp Cp/Cp

7→
SpCp

SpBCp

(−)e

:

Cp Cp/Cp

Cp/Cp Cp/Cp

7→
Sp

SpCp

NCp

:

Cp Cp

Cp/Cp Cp

7→
SpBCp

SpBCp

id

. (2.31)

Under Theorem 2.3.9 of [NS22], this corresponds to a cocartesian fibration p :
∫

ζ :=
(

SpCp
)⊗
→

FinCp ,∗.

In this paper we use the notion of a Cp-E∞-ring in the sense of Nardin–Shah [NS22, Definition
2.2.1].

Definition 2.32. Let C⊗,D⊗ → O⊗ be fibrations of Cp-∞-operads. A T -functor p : C⊗ → D⊗ is a
morphism of T -∞-operads over O if p takes inert morphisms in C⊗ to inert morphisms in D⊗. Then
the category of C⊗-algebras in D

AlgO,T (C,D)

is the full T -subcategory of FunT (C,D) on the morphisms of T -∞-operads over O. We write
AlgO,T (C,D) for the (ordinary) ∞-category of T -objects in AlgO,T (C,D).

When O and/or C are equivalent to FinT ,∗, we drop them from notation.

We write AlgFinCp ,∗

(
FinCp ,∗,

(
SpCp

)⊗)
=: CpE∞Alg

(
SpCp

)
.

Example 2.33. The category of Cp-E∞-rings in Cp-spectra is CpE∞Alg(SpCp) the space of sections

of p :
(

SpCp
)⊗
→ FinCp ,∗ (Recollection 2.30) which take inert morphisms to inert morphisms.

The inclusion Com⊗T ≃ ⊆ Com⊗T of Example 2.28 induces a forgetful map

G : AlgT
(

ComCp ,D
)
→ AlgT

(
ComO≃Cp

,D
)

. (2.34)
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The discussion immediately following [NS22, Theorem 4.3.4] is summarized by the following
result.

Theorem 2.35. Suppose p : C⊗ → O⊗ is a fibration of T -∞-operads, and let E⊗ → O⊗ be a T -∞-operad.
Then the restriction functor

p∗ : AlgO,T (E)→ AlgO,T (C, E)
admits a left adjoint p!.

Definition 2.36. Suppose p : C⊗ → O⊗ is a fibration of T -∞-operads, and let E⊗ → O⊗ be a
T -∞-operad. Let A : C⊗ → E⊗ be an O-algebra map. Then the O-algebra map p! A of Theorem
2.35 will be referred to as the T -operadic left Kan extension of A.

Remark 2.37. [NS22, Remark 4.0.1] Definition 2.36 specializes to the theory of operadic left Kan
extensions of [Lur17, §3.1.2] when T = ∆0.

3 Normed rings

In defining the category of Cp-normed rings, §1.1 guides how we axiomatize the information
contained in a Cp-E∞ ring. We will see that this information is most naturally captured as the limit
of a diagram of ∞-categories (Definition 3.11). We then exhibit a formula for mapping spaces in
normed rings which will be used in the proof of our main theorem (in particular see Proposition
4.25). Finally, we close out this section by showing in Proposition 3.21 that the category of normed
E∞-rings is monadic over the category of ordinary E∞-algebras.

3.1 Preliminaries

Construction 3.1. Consider the functor

| − | : OCp → Fin∗

Cp 7→ ⟨p⟩
Cp/Cp 7→ ⟨1⟩

which takes the underlying set of a set-with-Cp-action. Since Span(Fin) is 0-semiadditive, the

composite OCp → Fin∗ ⊂ Span(Fin) induces Span
(
O⊔Cp

, f old, all
)
→ Span(Fin) which restricts to

m := −× | − | : Fin∗ ×OCp → Fin∗.

Denote the adjoint of m by m† : Fin∗ → Fun(OCp , Fin∗). Given a symmetric monoidal ∞-category
q : C⊗ → Fin∗, the induced map

FunFin∗

(
OCp , C⊗

)⊗
:= Fun

(
OCp , C⊗

)
×

Fun
(
OCp ,Fin∗

)
,m†

Fin∗ → Fin∗

is a cocartesian fibration of ∞-operads (cf. [Lur17, Remark 2.1.3.4]). Since C⊗ is symmetric monoidal,
given any morphism h : X → Y in OCp and any lift X̃ of |X|, there is a q-cocartesian morphism h̃
lifting |h|, so by [Lur09, Proposition 2.4.4.2] there is a functor

FunFin∗

(
OCp , C⊗

)
→ Fun

(
OCp , C

)
.
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Restriction along m induces a functor which we also denote by

m(−) : E∞Alg
(
C⊗
)
→ Fun

(
OCp , E∞Alg(C⊗)

)
. (3.2)

Informally, m takes an E∞-algebra A to the OCp -diagram mA : A⊗p → A.

Notation 3.3. The prime p is left implicit in the notation mA of Construction 3.1, and when A is
understood it may also be dropped from notation.

Remark 3.4. The parametrized norm map nA : NCp(Ae) → A is invariant with respect to the
Cp-action coming from Ae. On the other hand, (Ae)⊗p has a Cp-action via cyclic permutations
and ne

A may also be regarded as a Cp-equivariant map. The reader is warned to remember the
distinction between these two Cp-actions; the following observations clarify how these actions
interact differently with the structure maps inherent to a Cp-E∞-algebra.

Notation 3.5. Let A ∈ SpBCp and let σ ∈ Cp be a generator. Write A⊗
∆ p for the object in

E∞Alg(SpBCp) with the diagonal action, i.e. the composite

E∞Alg (Sp)BCp R◦m−−→ E∞Alg (Sp)BCp×BCp ∆∗−→ E∞Alg (Sp)BCp (3.6)

where m is (3.2), R is restriction along the inclusion BCp ⊆ OCp , and ∆∗ is restriction along the

diagonal ∆ : BCp → BCp × BCp. Informally, we regard A⊗
∆ p as being equipped with the Cp-action

where σ acts by σ(a1 ⊗ · · · ⊗ ap) = σ(ap) ⊗ σ(a1) ⊗ · · · ⊗ σ(ap−1). Write A⊗
τ p for the object in

E∞Alg(SpBCp) with the transposition action, i.e. the same definition as in (3.6) but with the map
{e} × id : BCp → BCp × BCp instead of ∆. Informally, we regard A⊗

τ p as being equipped with the
Cp-action where σ acts by σ(a1 ⊗ · · · ⊗ ap) = ap ⊗ a1 ⊗ · · · ⊗ ap−1.

Observation 3.7. Let A ∈ SpBCp .

(1) The shear endomorphism sh := idA ⊗ σ⊗ · · · ⊗ σp−1 of A⊗p ∈ E∞Alg(Sp) promotes to an
equivalence A⊗∆ A→ A⊗τ A in E∞Alg(Sp)BCp –in particular it is Cp-equivariant.

(2) Moreover, the Tate diagonal A→ (A⊗
τ p)tCp is equivariant with respect to the given Cp-action

on the source and the diagonal Cp-action on the target.

Definition 3.8. Let A ∈ E∞Alg
(

SpBCp
)

. The Tate-valued norm is the E∞-ring map defined by the
composite

νA : A ∆−→
(

A⊗
τ p
)tCp sh−→

(
A⊗

∆ p
)tCp mtCp

−−→ AtCp

where ∆ is the Tate diagonal of Recollection 2.20 and sh is the shear equivalence of Observation 3.7.
In particular, it is Cp-equivariant with respect to the given action on A, the diagonal Cp-action on
(A⊗

τ
S

p), and the trivial action on AtCp . We regard νA as a morphism AhCp → AtCp , or equivalently

as an object of Fun
(
OCp , E∞Alg(Sp)

)
.

Remark 3.9. Informally, we think of the Tate-valued norm as being a 7→ aγ(a) · · · γp−1(a), which is
a ring homomorphism modulo transfers. Note that when A is equipped with the trivial Cp-action,
this is simply the ordinary Tate-valued Frobenius (compare Definition IV.1.1 of [NS18]).
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3.2 Definition and properties

We introduce some notation for the indexing category.

Notation 3.10. Let K denote the ∞-categorical nerve of the 1-category

3

2

5

1 4

in which all triangles and squares commute.

Definition 3.11. Consider the diagram N : K → Cat∞ where K is as in Notation 3.10:

Fun
(
OCp , E∞Alg

(
SpBCp

))

Fun
(
OCp , E∞Alg

(
SpCp

))

E∞Alg(Sp)BCp×BCp ×E∞Alg(Sp)BCp

E∞Alg
(

SpCp
)

E∞Alg
(

SpCp
)BCp ×E∞Alg

(
SpCp

)

evCp ,evCp/Cp

evCp ,evCp/Cp

(−)e

NCp (−e)×id

m◦(−e)

(−)e×(−)e

(3.12)
where m is the functor of (3.2). Observe that the right-hand trapezoid of (3.12) commutes essentially

by definition, and the leftmost triangle commutes because
(

NCp A
)e
≃ (Ae)⊗p. We define the

category of normed Cp-E∞-rings to be the limit of the diagram

NE∞Alg
(

SpCp
)

:= lim
K
N . (3.13)

There is a canonical forgetful functor G′ : NE∞Alg
(

SpCp
)
→ E∞Alg

(
SpCp

)
given by the

canonical projection to the lower left corner of the diagram (3.12).

Notation 3.14. Write pi : NE∞Alg
(

SpCp
)
→ N (i) for the canonical projection functors.

We will often abuse notation and abbreviate an object of NE∞Alg
(

SpCp
)

as a pair (A, nA : NC2 A→ A)

(suppressing the data of the equivalence ne
A ≃ mAe ).

Remark 3.15. Note that all categories in (3.12) are presentable and all functors are left adjoints
(Lemma 2.22), so by [Lur09, Proposition 5.5.3.13] we may take the limit in either PrL or Cat∞.
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Proposition 3.16. The category NE∞Alg
(

SpCp
)

can be equivalently described as the limit of the diagram

Fun
(
OCp , E∞Alg(Sp)

)

Fun
(
OCp , Ar(E∞Alg(Sp))

)

E∞Alg(Sp)BCp ×E∞Alg(Sp)

E∞Alg
(

SpCp
)

Ar
(

E∞Alg
(

SpBCp
))
×Ar (E∞Alg (Sp))

evCp ,ev∗

evCp ,ev∗

ev1

((−)φCp→(−)tCp )◦(NCp×id)

mtCp :(−e)⊗p→(−e)

ev1

Proof. Follows from Corollary 2.18.

Remark 3.17. Recall the description of a limit of ∞-categories given by Corollary 3.3.3.2 of [Lur09].
Combining this with the description of mapping spaces in AlgE∞

(
SpCp

)
which is a consequence

of Corollary 2.18, we may equivalently characterize a normed E∞-ring as the data of a E∞-algebra

A in SpCp plus the data of a factorization n
φCp
A in E∞Alg(Sp) and a 2-cell making the diagram

A AφC2

(
A⊗

τ p
)tCp

AtCp

∆

nA

α

mtCp◦(sh)

(3.18)

commute such that, considered as a morphism g : ∆→ α, g is equivariant with respect to the given
Cp-action on the source and the trivial Cp-action on the target. Note that the composite of the left
arrow followed by the lower arrow in (3.18) is the Tate-valued norm of Definition 3.8.

When Cp acts trivially on Ae, it suffices to produce the 2-cell (3.18). More formally, given a
choice of multiplication map m : A⊗

∆ p → A, by Corollary 2.18 we have an equivalence of fibers

fib{m}

(
hom

E∞Alg(SpCp )BCp

(
NCp(Ae), A

)
(−)e

−−→ hom
E∞AlgSpBCp×BCp

(
(Ae)⊗

∆ p, Ae
))

≃ fib{mtCp}





hom
E∞Alg∆1×BCp




Ae AφCp

(
A⊗

τ
S

p
)tCp

, AtCp

∆ α




ev1−→ hom
E∞AlgBCp

((
A⊗

τ
S

p
)tCp

, AtCp

)





.

Observation 3.19 (Morphism spaces in normed algebras). Let s, t : K →
∫
N be objects in the

limit NE∞Alg(SpCp), which we identify as spaces of coCartesian sections of
∫
N → K where
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N : K → Cat∞ is the diagram defining (3.12). Now by definition of a limit of ∞-categories, we may
write the space of morphisms from s to t in NE∞ as limk homF(k)(s(k), t(k)).

Unravelling definitions, given a pair (A, nA : NCp A → A), (B, nB : NCp B → B) in the limit of
(3.12), the morphism space HomNE∞((A, nA : NCp A → A), (B, nB : NCp B → B)) is computed as
the limit of the diagram

hom


 Ae−→

(A⊗A)tCp

, Be−→

(B⊗B)tCp




hom




A
∆

−→
(A⊗p)tCp

, B
∆

−→

(B⊗p)tCp


×

hom




A
∆

−→

(A⊗p)
tCp

,B
φCp

∆

−→

BtCp




hom


AφCp

∆

−→

AtCp

, BφCp

∆

−→

BtCp




hom
(
(A⊗ A)tCp , (B⊗ B)tCp

)
× hom

(
AtCp , BtCp

)

hom
E∞Alg(SpCp)(A, B) hom




A
∆

−→

(A⊗p)tCp

, B
∆

−→

(B⊗p)tCp


× hom


AφCp

∆

−→

AtCp

, BφCp

∆

−→

BtCp




m:(−e)⊗p→(−e)

.

(3.20)

Proposition 3.21. The forgetful functor G′ : NE∞Alg
(

SpCp
)
→ E∞Alg

(
SpCp

)
of Definition 3.11 is

monadic.

Proof. The functor G′ is conservative by inspection.
Recall our notation pi : NE∞Alg(SpCp) → N (i) for the canonical projection functors. Now

suppose given a simplicial object A : ∆op → NE∞Alg
(

SpCp
)

which is G′-split. Then in particular

p0 ◦ A is a colimit diagram of E∞-algebras in SpCp . Since the norm preserves all colimits of algebras
by Lemma 2.22, p4 ◦ A ≃ (NCp × id) ◦ p0 ◦ A is a colimit diagram. By [Lur17, Corollary 5.1.2.3(2)]
applied to S = OCp , p2 ◦ A is a colimit diagram. Now by Remark 3.15 and Proposition 5.1.2.2(2) of
loc. cit. applied to S = K, A is a colimit diagram in NE∞Alg(SpCp), and said colimit is preserved
by G′. Thus G′ is monadic by the Barr–Beck–Lurie theorem [Lur17, Theorem 4.7.3.5].

17



4 Comparing Cp-E∞ and normed rings

In §4.1 we write down a functor from Cp-E∞-algebras to normed Cp-algebras. Our proof strategy
will be to show that the comparison functor of Corollary 4.7 exhibits both Cp-E∞-algebras and

normed E∞-algebras as categories of algebras over the same monad on E∞Alg
(

SpCp
)

, then appeal
to a variant of the Barr–Beck–Lurie theorem. In §4.2 we exhibit a formula for the free Cp-E∞-algebra
on an E∞-algebra, then we show in §4.3 that it induces an equivalence.

4.1 A comparison functor

Since a normed E∞-ring is a priori less data than a Cp-E∞-algebra, it is most natural to define a
‘forgetful’ functor from the latter to the former. In order to write down the functor, we need to
unpack the definition of a C2-E∞-algebra.

Notation 4.1. Observe that Span
(

Fin/V
Cp

)
is 0-semiadditive [BH21, Lemma C.3] and define Span(FinCp ,∗)

to be the colimit of the functor V 7→ Span
(

Fin/V
Cp

)
[Lur09, Corollary 3.3.4.3]. Since 0-semiadditive

∞-categories are closed under all colimits [Har20, Corollary 5.4], Span(FinCp) is 0-semiadditive.
Moreover, notice that there is an inclusion FinCp ,∗ ⊂ Span(FinCp).

Let δ : J → FinCp ,∗ be a diagram. Under the equivalence of [Har20, Theorem 4.1; BH21, Lemma
C.4] the diagram δ classifies a functor Span(J⊔, fold, all)→ Span(FinCp) which evidently restricts
to

ι J : Fin∗ × J → FinCp ,∗. (4.2)

When J = ∆0 and δ is the inclusion of a single object T ∈ FinCp ,∗, we write ιT .
Consider the diagrams α2, α3 : OCp → FinCp ,∗

Cp Cp Cp/Cp

Cp/Cp Cp/Cp Cp/Cp

C⊔p
p C⊔p

p Cp

Cp Cp Cp

∇ ∇

∇

resp., where Cp acts on C⊔p
p by permuting the terms of the disjoint union. The preceding discussion

shows that there are functors

ιαi := −× αi : Fin∗ ×OCp → FinCp ,∗. (4.3)

By a similar discussion to that of Construction 3.1, the ι(−) induce functors

ι J : CpE∞Alg
(

SpCp
)
→ Fun

(
J, E∞Alg

(
SpCp

))
. (4.4)

Construction 4.5. Recall that the category of Cp-E∞-algebras CpE∞Alg is given by sections of the

fibration
(

SpCp
)⊗

(Definition 2.32). By (4.4), restricting to certain subcategories of FinCp ,∗ gives
functors:

(a) γ1 : CpE∞Alg
(

SpCp
)
→ E∞Alg

(
SpCp

)
given by restriction along ιT of (4.2) for T = [Cp/Cp = Cp/Cp].
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(b) γ4 : CpE∞Alg
(

SpCp
)
→ E∞Alg

(
SpCp

)
×E∞Alg

(
SpCp

)
given by restriction along ιT × ιS

of (4.2) for T = [Cp ↠ Cp/Cp] and S = [Cp/Cp = Cp/Cp].

(c) γ5 : CpE∞Alg
(

SpCp
)
→ E∞Alg(Sp)BCp×BCp × E∞Alg(Sp)BCp given by restriction along

ιT × ιS of (4.2) for T =
[
C⊔p

p
∇−→ Cp

]
and S = [Cp = Cp], resp. Note that in the former case,

Cp acts by permuting the factors of C⊔p
p ≃ Cp × Cp cyclically.

(d) γ2 : CpE∞Alg→ Fun
(
OCp , E∞Alg(SpCp)

)
given by restriction along ια2 of (4.3).

(e) γ3 : CpE∞Alg→ Fun
(
OCp , E∞Alg(SpBCp)

)
given by restriction along ια3 of (4.3).

Proposition 4.6. The functors of Construction 4.5 are related in the following way:

(a) There is an equivalence m ◦ γe
1 ≃ γ3.

(b) There is an equivalence evCp × evCp/Cp ◦ γ3 ≃ γ5.

(c) There is an equivalence (((−)e)⊗2 × (−)e) ◦ γ1 ≃ γ5.

(d) There is an equivalence
(

evCp × evCp/Cp

)
◦γ2 ≃ γ4 of functors CpE∞Alg

(
SpCp

)
→ E∞Alg

(
SpCp

)×2
.

(e) There is an equivalence
(

NCp × id
)
◦ γ1 ≃ γ4 of functors CpE∞Alg

(
SpCp

)
→ E∞Alg

(
SpCp

)×2
.

(f) There is a commutative diagram

CpE∞Alg
(

SpCp
)

Fun
(
OCp , E∞Alg

(
SpCp

))

Fun
(
OCp , E∞Alg(SpBCp)

)γ3

γ2

(−)e

Corollary 4.7. There is a canonical functor

γ : CpE∞Alg
(

SpCp
)
→ NE∞Alg

(
SpCp

)
.

Proof. The functors of Construction 4.5 may be regarded as

γi : CpE∞Alg
(

SpCp
)
→ N (i)

where N : K → Cat∞ is as in Definition 3.11 and Notation 3.10. Proposition 4.6 shows that the
functors γi commute with the structure maps in the diagram N . By definition of a homotopy limit,
the γi assemble to the desired functor γ.
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Proof of Proposition 4.6. (a) Consider the diagram T := OCp × ∆1 → FinCp ,∗

Cp/C⊔p
p Cp/Cp

C⊔p
p Cp

Cp/Cp Cp/Cp

Cp Cp

∇

⌟ ⌟

∇
. (4.8)

Note that (m ◦ γ1)
e ≃ m ◦ (γe

1). Now notice that m ◦ γ1 is given by restriction along ι∇Cp/Cp

(i.e. the back face), while restriction along the front face implements γ3. We may regard
ιT (Notation 4.1) as a natural transformation β : (m ◦ γ1)

e =⇒ γ3 by (2.31). Since the
morphisms from the back face to the front face of (4.8) are inert, β is a natural equivalence.

(b) This is evident.

(c) Follows from (a) and (b).

(d) This is evident from the definitions of α2 and γ4.

(e) Consider the morphism w : ∆1 → FinCp ,∗

Cp/Cp Cp Cp

Cp/Cp Cp/Cp Cp/Cp

.

Notice that w is inert and recall that morphisms of operads take inert morphisms to inert

morphisms. Because a morphism in
(

SpCp
)⊗

factors canonically as a p-cocartesian morphism
and a fiberwise morphism, by definition of ζ (2.31) we see that restriction along ιw gives an
equivalence NCp(γe

1) ≃ π1γ4.

(f) Now consider the diagram T := OCp × ∆1 → FinCp ,∗

Cp Cp/Cp

Cp × Cp Cp

Cp/Cp Cp/Cp

Cp Cp

π1

⌟ ⌟

g=π2

(4.9)

considered as an inert morphism (in fact, ev1-cocartesian) from the back face α2 (Notation 4.1)
to the front face.
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Identifying the underlying set of Cp with {0, 1, . . . , p− 1}, notice that the shear equivalence

sh : {0, 1, . . . , p− 1} × Cp → Cp × Cp

(a, b) 7→ (a + b, b)

which is equivariant with respect to the diagonal Cp-action on the target and the action
by Cp on the second factor on the source. The shear map identifies g with the fold map
∇ : C⊔p

p → Cp, i.e. there is a commutative diagram

Cp × Cp

Cp

{0, 1, . . . , p− 1} × Cp

π2=g

π2=∇
sh ∼ .

Thus we see that the shear map induces an equivalence ιg ≃ ια3 ≃ γ3.

Now restriction along ιT (Notation 4.1) gives a natural transformation β

Fun
(
OCp , E∞Alg

(
SpCp

))

CpE∞Alg
(

SpCp
)

Fun
(
OCp , E∞Alg

(
SpBCp

))

(−)e

ια2≃γ2

ιg

β
.

Since the back-to-front arrows in (4.9) are inert, β is a natural equivalence.

4.2 A parametrized monoidal envelope

To apply the Barr–Beck–Lurie theorem [Lur17, Proposition 4.7.3.22], we will need to show that
γ of the free Cp-E∞-algebra on an E∞-algebra A computes the free normed algebra on A. A
general strategy for understanding free Cp-E∞ algebras is outlined in Remark 4.3.6 of [NS22]; we
introduce the ingredients first, then outline the strategy in Recollection 4.13. Then we apply the
aforementioned general strategy to exhibit a formula for the free Cp-E∞-algebra on an E∞-algebra
A in Theorem 4.14.

Definition 4.10. [NS22, Definition 2.8.4 & Notation 2.8.3] Let O⊗ be a T -operad. let

Aract
T (O⊗) := T op ×Ar(T op) Aract(O⊗)

where Aract(O⊗) is the T -full subcategory on the active morphisms.
Suppose given a fibration of T -operads p : C⊗ → O⊗. The O-monoidal envelope of C⊗ is

π : EnvO,T (C)⊗ := C⊗ ×O⊗ Aract
T (O⊗)→ O⊗.

When O = FinT ,∗ we drop it from notation.
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Remark 4.11. More informally, an object of EnvO,T (C)⊗ is a pair (c, g : p(c) → o) where c ∈ C⊗,
o ∈ O⊗, g is a fiberwise active arrow in O⊗. The forgetful map π takes this tuple to o. By [NS22,
Remark 2.8.5], the underlying T -∞-category of EnvO,T (C)⊗ is EnvO,T (C) ≃ Com⊗T ≃ ,act.

Proposition 4.12. [NS22, Proposition 2.8.7] Let p : C⊗ → O⊗ be a fibration of T -∞-operads, and let
D⊗ → O⊗ be a cocartesian fibration of T -∞-operads. Let i : C⊗ ⊆ EnvComT (C)

⊗ denote the inclusion of
C⊗ into its monoidal envelope. Then there is an adjunction

i! : AlgO,T (C,D) AlgO,T (EnvO,T (C)⊗ ,D) : i∗

and i! has essential image the full subcategory of the right-hand side given by Fun⊗O,T (EnvO,T (C)⊗ ,D).

Recollection 4.13. Consider O = FinT ,∗, E =
(

SpC2
)⊗

(Notation 3.10), and C = ComT ≃ (Example
2.28) in Theorem 2.35. Then there is an adjunction

F : E∞Alg(SpC2)⇆ C2E∞Alg(SpC2) : G.

where G is from (2.34). By Remarks 2.8.5 & 4.3.6 of [NS22], the free C2-E∞-algebra F(A) on an
E∞-algebra in SpC2 is computed by the C2-left Kan extension of i! A⊗ : EnvT (ComT ≃)

⊗ → SpC2

along the structure map π : EnvT (ComT ≃)
⊗ → Com⊗T , where i! is from Proposition 4.12.

Theorem 4.14. Let A ∈ E∞Alg
(

SpCp
)

(also see Lemma 4.30) and consider the adjunction F ⊣ G of
Recollection 4.13.

(1) The underlying Cp-spectrum of the free Cp-E∞ algebra F(A) on A is given by (via the recollement of
Proposition 2.15)

F(A) ≃
AφCp ⊗ Ae

hCp

Ae AtCp

sA⊗νA
(4.15)

where u is the unit, sA : AφCp → AtCp is the structure map, and νA is the twisted Tate-valued
Frobenius (Definition 3.8).

(2) There is a canonical E∞ ring map ηA : A → GF(A) given by idAφCp ⊗ (ηAe
hCp

: S0 → Ae
hCp

) on

geometric fixed points and the identity on underlying.

Proof. By Recollection 4.13, the Cp-E∞-algebra F(A) may be computed as the Cp-left Kan extension

of i! A⊗ : EnvT (ComT ≃)⊗ →
(

SpC2
)⊗

along the structure map π : EnvT (ComT ≃)⊗ → Com⊗T .

Denote x = [Cp/Cp = Cp/Cp] ∈ Com⊗T . In particular, the Cp-spectrum underlying F(A) may

be computed as the Cp-left Kan extension of i! A⊗x :
(

Com⊗T ≃ ,act

)
x
→ SpCp along the structure map

πx :
(

Com⊗T ≃ ,act

)
x
≃ EnvT (ComT ≃)⊗x →

(
Com⊗T

)
x ≃ T op.
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Let I =
(

Com⊗T ≃ ,act

)
x

q−→ T op be shorthand for our indexing diagram and write ICp and ICp/Cp

for the respective fibers (not parametrized fibers). We will write F|Cp for the restriction of a diagram
F defined on I to ICp .

By definition of a C2-left Kan extension and Definition 5.2 of [Sha18], we seek a T op-initial lift

FunT op

(
I ⋆T op T op, SpCp

)

T op FunT op

(
I, SpCp

)
i! A⊗x

F̃(A) . (4.16)

Informally, a lift F̃(A) of (4.16) is the data of

▲ a cocartesian section F(A) : T op → SpCp

▲ a morphism β from i! A⊗x
∣∣
Cp

to the constant ICp -indexed diagram at F(A)(Cp) in SpBCp

▲ a morphism α from i! A⊗x
∣∣
Cp/Cp

to the constant ICp/Cp -indexed diagram at F(A)(Cp/Cp) in

SpCp

▲ Choose a functor R : ICp/Cp → ICp classified by the map Cp ↠ Cp/Cp. Then we require the
data of an equivalence (α)e ≃ β ◦ R of natural transformations.

Now notice that the diagram i! A⊗x |Cp is defined on
(

Com⊗T ≃ ,act

)
x,Cp

, which has a final object

[Cp = Cp]. Thus for F̃(A)(Cp) to be an initial object of the Cp-fiber of (4.16), we must have
F(A)e ≃ Ae. An initial object of the Cp/Cp-fiber of (4.16) is equivalently an object F(A) : T op →
SpCp representing the functor

SpCp → Spc

B 7→ homFunT op (I,SpCp )

(
i! A⊗x , q∗B

)
.

By a similar argument to our earlier discussion of morphisms in categories of cocartesian sections
(Observation 3.19) and Proposition 2.15, the space of morphisms from the diagram i! A⊗x to q∗B sits
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in a fiber sequence

fib




hom
Fun

(
I|Cp/Cp ,Ar(Sp)

)




(i! A⊗x |Cp/Cp )
φCp−→

(i! A⊗x |Cp/Cp )
tCp

, (q
∗B|Cp/Cp )

φCp−→

q∗B|tCp
Cp/Cp



→ hom

Fun
(

I|Cp ,Sp
)
(
(i! A⊗x |Cp)

tCp , q∗B|tCp
Cp

)




homFunT op(I,SpCp)
(
i! A⊗x , q∗B

)
≃ hom

Fun
(

I|Cp/Cp ,SpCp
)
(

i! A⊗x |Cp/Cp , q∗B|Cp/Cp

)

hom
FunBCp

(
I|Cp ,SpBCp

)(i! A⊗x |Cp , q∗B|Cp)

(−)e

.

By the previous discussion, we have hom
FunBCp

(
I|Cp ,SpBCp

)(i! A⊗x |Cp , q∗Be) ≃ homSpBCp (Ae, Be).

Thus we see that for F̃(A)(Cp/Cp) to be an initial object of the Cp/Cp-fiber of (4.16), it suffices to
take F(A)φCp to be the colimit of the diagram

(
i! A⊗x

)φCp :
(

Com⊗T ≃ ,act

)
x,Cp/Cp

→ Sp.

By Lemma 4.18, the Cp-left Kan extension of i! A⊗x along πx : Env(ComT ≃)x → (ComT )x is
computed on Cp geometric fixed points by (4.15).

The existence of the unit ηA follows from monadicity (Proposition 4.29), and its exact form
follows from tracing through the definition of Cp-left Kan extension.

Warning 4.17. The G-∞-category of G-spectra SpG is not an example of the G-category of objects of
Construction 2.6. Thus many of the techniques to compute G-left Kan extensions of [Sha18] do not
apply to our proof of Theorem 4.14.

Lemma 4.18. Consider the fiber
(
Com⊗T ≃

)
act,Cp/Cp

(not parametrized fiber) over Cp/Cp of
(
Com⊗T ≃

)
act.

The inclusion
ι : BCp ⊔ ∗ ↪→

(
Com⊗T ≃

)
act,Cp/Cp

of the full subcategory spanned by the object

Cp ⊔ Cp/Cp Cp/Cp

Cp/Cp Cp/Cp

is cofinal.
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Proof. Since we consider the fiber over Cp/Cp, the target is always Cp/Cp and we omit it throughout
the following proof. Observe that there is a pullback diagram of simplicial sets

BCp ⊔ ∗
(
Com⊗T ≃

)
act,Cp/Cp

{⟨2⟩, ⟨1⟩, {∗, 2}} Sub

ι

Q .

By Lemma 4.21 and [Lur09, Proposition 4.1.2.15], Q is smooth. By Remark 4.1.2.10 of loc. cit. and
Lemma 4.20, ι is cofinal.

Recollection 4.19. Recall the category Sub of [Lur17, Definition 2.2.3.2] which was defined to have

(a) objects of Sub are triples (⟨n⟩, S, T) where S, T ⊆ ⟨n⟩ such that S ∪ T = ⟨n⟩ and S ∩ T = ⟨n⟩.
(b) a morphism of Sub from (⟨n⟩, S, T) to (⟨n′⟩, S′, T′) is a pointed map f : ⟨n⟩ → ⟨n′⟩ such that

f (S) ⊆ S′ and f (T) ⊆ T′.

The ∞-category Sub is an ∞-operad by Proposition 2.2.3.5 of loc. cit. applied to C⊗ = D⊗ = Fin∗.
Write π : Sub→ Fin∗ for the structure map.

Lemma 4.20. Let A ⊆ EnvFin∗(Sub) denote the full subcategory on the object (a, π(a) → ⟨1⟩) for
a = (⟨2⟩, ⟨1⟩, {2, ∗}). Then the inclusion

ι : A −→ EnvFin∗(Sub)

is cofinal.

Proof. We verify criterion (2) of [Lur09, Theorem 4.1.3.1]. Observe that for every object (⟨n⟩, S, T) of
Sub, there is a unique morphism (⟨n⟩, S, T)→ (⟨2⟩, ⟨1⟩, {2, ∗}) which sends all s ∈ S \ {∗} to 1 and
all t ∈ T \ {∗} to 2.

Lemma 4.21. There is a functor Q : ComO≃Cp
→ Sub ≃ Fin∗ ⊞ Fin∗ which takes a Cp-set T to its set of

Cp-orbits grouped by orbit type, i.e. Q : Cp 7→ (⟨1⟩, ⟨1⟩, {∗}) and Q : Cp/Cp 7→ (⟨1⟩, {∗}, ⟨1⟩). The
functor Q is a coCartesian fibration classified by the functor

Sub→ Cat

(⟨n⟩, S, T) 7→
⊔

S
BCp ⊔

⊔

T
∗.

Construction 4.22. Let A ∈ E∞Alg(SpCp). Given any (B, nB : NCp B → B) ∈ NE∞Alg
(

SpCp
)

,
there is a canonical map

f : hom
E∞Alg(SpCp )

(A, B)→ homNE∞Alg(SpCp )
(γF(A), (B, nB : NCp B→ B)).

By Observation 3.19 and Corollary 2.18, we may define f ‘componentwise.’ Denote homN (i)(piF(A), pi(B))
by Mi (Definition 3.11). We have

M0 = hom
E∞Alg(SpCp )

(F(A), B) ≃ homE∞Alg (A, B) ×
hom(AtCp ,BtCp)

hom




Ae
hCp

BφCp

AtCp , BtCp




=: M′0 ×Mt M′′0

.
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Take the identity on M′0 and define hom
E∞Alg(SpCp )

(A, B)→ M′′0 to be the composite

f ′′0 : hom
E∞Alg(SpCp )

(A, B) NCp
−−→ hom

E∞Alg(SpCp )

(
NCp A, NCp B

) g−→ M′

where g takes h : NCp A→ NCp B to the outermost trapezoid in the commutative diagram

Ae Be

((Ae)⊗p)tCp ((Be)⊗p)tCp BφCp

AtCp BtCp

∆

h

∆
n

φCp
B

(h⊗p)tCp

mtCp
n

tCp
B

htCp

where by definition n
tCp
B ≃ m

tCp
Be and the lower trapezoid is the Tate construction (−)tCp on m of

(3.2) applied to h. Clearly f ′0 and f ′′0 lift canonically to a functor f0 : hom
E∞Alg(SpCp )

(A, B)→ M0.

Take f4 : hom
E∞Alg(SpCp )

(A, B)→ M4 to be the product NCp(−e)× id. The map f4 clearly lifts

to f2 : hom
E∞Alg(SpCp )

(A, B) → M2 and is identified canonically with (NCp(−e)× id) ◦ f0. Since

F(A)e ≃ Ae, we may define f3 and f5 as m(−)e and (−e)⊗2 × (−)e, respectively.
The fi assemble to give the desired map.

4.3 Proof of main theorem

Equipped with an explicit description of the free Cp-E∞-algebra on an E∞-algebra A in Cp-spectra
from the previous section, here we show that γ of the free Cp-E∞-algebra on an E∞-algebra A
computes the free normed algebra on A using our description of mapping spaces in the category
of normed E∞-algebras. The main result then follows from an application of the Barr–Beck–Lurie
theorem.

Theorem 4.23. The functor γ : CpE∞Alg
(

SpCp
)
→ NE∞Alg

(
SpCp

)
of Corollary 4.7 is an equivalence.

Proof. Consider the diagram of forgetful functors

CpE∞Alg
(

SpCp
)

NE∞Alg
(

SpCp
)

E∞Alg
(

SpCp
)

γ

G G′
(4.24)

where G′ is from Definition 3.11 and G is (2.34). The diagram (4.24) evidently commutes.
The functor G is monadic by Proposition 4.29. The functor G′ is monadic by Proposition 3.21.

Now for any A ∈ E∞Alg
(

SpC2
)

, the unit A → γF(A) of Theorem 4.14 induces an equivalence

F′(A) ≃ γF(A) by Corollary 4.27. The result follows from [Lur17, Proposition 4.7.3.16].
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Proposition 4.25. Let A be an E∞-ring in SpCp and let (B, nB : NCp B → B) be a normed E∞-ring in
SpCp . Then precomposition with the E∞-map ηA : A→ GF(A) of Theorem 4.14 induces an equivalence of
morphism spaces

HomNE∞

((
γF(A), nF(A) : NCp γF(A)→ γF(A)

)
,
(

B, nB : NCp B→ B
))

HomE∞(G
′γF(A), G′(B))

HomE∞(A, G′(B)).

G′

∼

η∗

(4.26)

where G′ is the forgetful functor of Definition 3.11 and γ is the functor of Corollary 4.7. That is, η(−) is a
unit for the functors (γ ◦ F, G′) in the sense of [Lur09, Definition 5.2.2.7].

Corollary 4.27. The natural transformation η(−) exhibits γ ◦ F as a left adjoint to G′.

Proof. Follows from [Lur09, Proposition 5.2.2.8] and Proposition 4.25.

Proof of Proposition 4.25. By Observation 3.19, the space of morphisms
HomNE∞((F(A), nF(A) : NCp F(A)→ F(A)), (B, nB : NCp B→ B)) is computed by the limit of the
diagram

hom


 Ae−→

(A⊗p)tCp

, Be−→

(B⊗p)tCp




hom




A
∆

−→

(A⊗p)tCp

, B
∆

−→

(B⊗p)tCp


×

hom




A
∆

−→

(A⊗p)
tCp

,B
φCp

∆

−→

BtCp




hom




AφCp⊗AhCp

sA⊗νA

−→

AtCp

, BφCp

∆

−→

BtCp




hom
(
(A⊗p)tCp , (B⊗p)tCp

)
× hom

(
AtCp , BtCp

)

hom
E∞Alg(SpCp)(F(A), B) hom




A
∆

−→

(A⊗p)tCp

, B
∆

−→

(B⊗p)tCp


× hom




AφCp⊗AhCp

∆

−→

AtCp

, BφCp

∆

−→

BtCp




m:(−e)⊗p→(−e)

.

(4.28)
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where all morphisms are computed in either E∞Alg
(

SpBCp
)

or ArE∞Alg
(

SpBCp
)

. Notice that

hom
E∞Alg(SpCp)(F(A), B) ≃ hom

E∞Alg(SpCp)(A, B) ×
hom(AtCp ,BtCp)

hom




AhCp
νA

−→
AtCp

, BφCp

∆
−→

BtCp




and moreover the composite

homNE∞Alg(F(A), B) G′−→ hom
E∞Alg(SpCp)(F(A), B)

π1−→ hom
E∞Alg(SpCp)(A, B)

is equivalent to η∗ ◦G′. Unravelling definitions, we see that given a point f ∈ hom
E∞Alg(SpCp)(A, B),

the fiber of η∗ ◦ G′ over f is given by the space of fillings of the below diagram to a commutative
diagram OCp × (∆1)×2 → E∞Alg(Sp):

Ae Be

Ae
hCp

BφCp

(A⊗p)tCp (B⊗p)tCp

AtCp BtCp

f e

nB

( f⊗p)tCp

f tCp

νAe

wherein all but the top and front face are given. This space is contractible by the adjunction

(−)triv : Sp⇆ SpCp : (−)hCp .

Now by Construction 4.22, η∗ ◦ G′ admits a right inverse f , hence it is surjective on connected
components. Thus the result follows.

Proposition 4.29. The forgetful functor G : CpE∞Alg
(

SpCp
)
→ E∞Alg

(
SpCp

)
of (2.34) is monadic.

Proof. We consider the commuting triangle of forgetful functors

CpE∞Alg
(

SpCp
)

E∞Alg
(

SpCp
)

SpCp

G

.

The upper horizontal arrow is given by restricting along the Cp operadic inclusion Com⊗T ≃ ↪→
Com⊗T and applying the equivalence of Lemma 4.30. By [NS22, Corollary 5.1.5], the diagonal arrows
are monadic; in particular by the Barr–Beck–Lurie theorem the right diagonal arrow is conservative.
By [NS22, Theorem 4.3.4] applied to the morphism Com⊗T ≃ ↪→ Com⊗T , the upper horizontal arrow
admits a left adjoint. Thus the result follows from [Lur17, Proposition 4.7.3.22.].
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Lemma 4.30. For the minimal indexing system ComT ≃ (Example 2.28), we have a canonical identification

of ComT ≃ -algebras in
(

SpCp
)⊗

with Oop
Cp

-families of E∞-algebras in spectra, or equivalently E∞-algebras

in SpCp .

Proof. Compare [NS22, Corollary 2.4.15] and [Lur17, Example 2.1.3.5].
Let A : Com⊗T ≃ → C⊗ be a section of p : C⊗ → FinT ,∗. Notice that A is a ComT ≃ -algebra if and

only if A is T -right Kan extended from the full subcategory of Com⊗T ≃ spanned by coproducts of
[Cp/Cp = Cp/Cp]. The result follows from [Lur17, Proposition 4.3.2.15].

5 Applications & examples

5.1 Examples

The example which will be used in the author’s upcoming work on real (C2-equivariant) trace
theories is

Theorem 5.1. Let k be a discrete commutative ring. The constant Cp-Mackey functor k on k uniquely
acquires the structure of a Cp-E∞-ring.

Proof. In view of Theorem 4.23, it suffices to show that k can be lifted to an object of Definition 3.11.
Note that the isotropy separation sequence for k is

kCp kφCp

khCp ktCp

τ≥0 .

The left vertical arrow is a connective cover; hence so is the right vertical arrow and kφCp = τ≥0ktCp .
Note that τ≥0ktCp is an E∞-ring in spectra because the Tate construction and connective cover
are lax symmetric monoidal functors. By Theorem 4.23 and Remark 3.17, it suffices to exhibit a
commutative diagram

k kφCp

(k⊗p)
tCp ktCp

Tate diagonal

nk

α

mtCp

.

The dotted arrow and 2-cell making the diagram commute exist up to contractible choice because
the inclusion of connective E∞-algebra spectra into all E∞-algebra spectra admits a right adjoint
[Lur17, Proposition 7.1.3.13], and our assumption that k is connective.

There is a natural class of equivariant Cp-spectra for which the data of (3.18) is no extra data at
all.

Recollection 5.2. The ∞-category SpCp ,Borel of Borel Cp-spectra is the image of SpBCp under the fully

faithful right adjoint to the ‘underlying’ spectrum functor of Proposition 2.15. Write CpE∞AlgBorel
(

SpCp
)
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for the pullback
CpE∞Alg

(
SpCp

)
×

SpCp
SpCp ,Borel.

In words, this is the category of Cp-E∞-algebras whose underlying Cp-spectrum is Borel. A Cp-
spectrum is Borel if and only if the structure map AφCp → AtCp is an equivalence.

In view of the expected correspondence between the theories of N∞-algebras of Blumberg–Hill
and the Cp-E∞-algebras of Nardin–Shah, we have the following analogue of [BH15, Theorem 6.26].

Proposition 5.3. Every Borel E∞-algebra in Cp-spectra admits an essentially unique structure of a CpE∞-
algebra. More precisely, there is an equivalence of categories

E∞AlgBorel
(

SpCp
) ∃−→ CpE∞AlgBorel

(
SpCp

)

with inverse the forgetful functor G (2.34).

This result may also be regarded as a special case of [Hil22, Proposition 3.3.6].

Proof. Let A ∈ E∞AlgBorel
(

SpCp
)

. Then by Theorem 4.23, it suffices to produce a lift

Ae AφCp

(A⊗p)
tCp AtCp

∆

∃?

sA

mtCp

which is functorial in A. By definition of Borel spectra, sA is an equivalence, so the space of choices
of 99K and a 2-cell making the diagram commute is contractible.

Corollary 5.4. The real bordism spectrum MUR admits a unique refinement to C2-E∞-algebra.

Proof. Follows from [HK01, Theorem 4.1(1)] and Proposition 5.3.

Proposition 5.5. Let B ∈ E∞Alg (Sp) be an E∞-algebra. Then NCp B admits a canonical structure of a
Cp-E∞-algebra. That is, there is a factorization

NE∞Alg
(

SpCp
)

E∞Alg (Sp) E∞Alg
(

SpCp
)

G′

∃

NCp

.

Proof. Then by Theorem 4.23, it suffices to produce a dotted arrow and a commutative diagram
OCp × ∆1 → E∞Alg (Sp)

B⊗p B

(
B⊗p2

)tCp
(B⊗p)tCp

∆

∃?

∆

mtC2

which is functorial in B. We can choose the dotted arrow to be mB and a commutative diagram to
be functorial in B because the Tate diagonal is functorial.
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5.2 Real motivic invariants

Here, we briefly recall that algebras with C2-actions naturally give rise to motivic invariants valued
in genuine C2-spectra. These real motivic invariants and their associated real trace theories provided
the impetus for this work.

We only provide brief sketches of the required constructions and definitions; readers who are
unfamiliar with the following notions should refer to sources cited below for details.

Recollection 5.6 (Real topological K-theory). [Ati66; Dug05] The space Z× BU has a C2-action
coming from complex conjugation on the unitary group U, with C2-fixed points Z× BO. Further-
more, there is a C2-equivariant form of Bott periodicity Z× BU ≃ Ωρ(Z× BU). Real K-theory
KUR is the associated C2-spectrum (under the equivalence in [GM17, §3]).

By Appendix A (see discussion after Theorem A.5) of [LN14], KUR is an E∞ algebra in C2-
spectra.

Recollection 5.7 (Poincaré ∞-categories). There is an ∞-category Catp
∞ of Poincaré ∞-categories

([Cal+20a, Definitions 1.2.7-8]) whose objects are pairs (C, Ϙ) consisting of a small stable ∞-category
and a quadratic functor Ϙ : Cop → Sp, and morphisms are given by duality-preserving exact
functors. Moreover, the ∞-category Catp

∞ has a symmetric monoidal structure [Cal+20a, Theorem
5.2.7(iii)] lifting the Lurie tensor product on small stable ∞-categories.

Definition 5.8 (Real algebraic K-theory). Let A be a C2-E∞-algebra. We may associate to A the
module with genuine involution (M = Ae, N = AφC2 , sA : AφC2 → AtC2) (Definition 3.2.2 of loc. cit.
To such a module with genuine involution there is an associated Poincaré ∞-category

(
PerfAe , ϘsA

Ae

)

([Cal+20a, Construction 3.2.5]). The real algebraic K-theory KR(A) of A is the real algebraic K-theory

KR(A) ≃ GWghyp (PerfAe , ϘsA
Ae

)
∈ SpC2

in the sense of [Cal+20b, Definition 4.5.1].

Proposition 5.9. (1) The assignment A 7→
(
PerfAe , ϘsA

Ae

)
of Definition 5.8 (compare examples from §3.2,

in particular Example 3.2.11 of [Cal+20a]) promotes to a symmetric monoidal functor

C2E∞Alg
(

SpC2
)
→ Catp

∞.

(2) The real algebraic K-theory of a C2-E∞-algebra R canonically refines to an E∞-algebra in C2-spectra.

Proof. To prove (1), it suffices to observe that a morphism of C2-E∞-algebras ϕ : A→ B induces a
canonical triple (δ, γ, σ) in the sense of Corollary 3.3.2 of [Cal+20a] (corresponding to a hermitian
functor

(
PerfAe , ϘsA

Ae

)
→
(
PerfBe , ϘsB

Be
)
covering the induction ϕ∗ : ModAe → ModBe ). Furthermore,

the triple (δ, γ, σ) automatically satisfies the criterion of Lemma 3.3.3 & Definition 3.3.4 of loc.cit.,
hence the associated hermitian functor is in fact Poincaré.

To prove (2), it suffices to exhibit a composite functor C2E∞Alg
(

SpC2
)
→ Catp

∞ → SpC2 which
is lax symmetric monoidal. The former functor is lax symmetric monoidal by (1). The latter functor
is that of [Cal+20b, Definition 4.5.1]. That it is lax symmetric monoidal will appear in [Cal+].

A ring R is said to satisfy the homotopy limit problem if its genuine symmetric real K-theory is a
Borel C2-spectrum [Tho83; Cal+21, §3].
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Corollary 5.10. ▲ Real topological K-theory KUR admits a unique refinement to a C2-E∞ ring spec-
trum.

▲ If A satisfies the homotopy limit problem, then KR(A) admits a unique refinement to a C2-E∞ ring
spectrum.

Proof. By [Ati66] (also see [Rog08, proof of Proposition 5.3.1; Dug05, Corollary 7.6]), KUR is Borel.
Both results follow from Proposition 5.3.

5.3 A relative enhancement

In this section we state a version of our main theorem relative to an arbitrary base Cp-E∞-algebra
A (Example 2.33). In order to make sense of a Cp-E∞-algebra over A, we require a Cp-symmetric
monoidal structure on the category of A-modules. That this is possible is suggested by the following

Definition 5.11. Let A be a Cp-E∞-ring in SpCp . The (A-linear or relative) norm is the functor

N
Cp
e : ModAe −→ ModA

(
SpCp

)

M 7→ A⊗
N

Cp
e (Ae)

N
Cp
e M

Note that the reasoning of Lemma 2.22 applies to show that N
Cp
e lifts to a colimit-preserving functor

E∞AlgAe → E∞AlgA.

By Proposition A.9 (communicated by Jay Shah), we may regard the category of A-modules as a
Cp-symmetric monoidal ∞-category.

Definition 5.12. Let A be a Cp-E∞-algebra (Example 2.33). The ∞-category of Cp-E∞-A-algebras is

AlgFinCp ,∗

(
FinCp ,∗,

(
ModA

)⊗)
=: CpE∞AlgA (Definition 2.32). In other words, it is the category of

sections of Mod⊗A → FinCp ,∗ which take inert morphisms to inert morphisms.

There is moreover a relative notion of normed algebras over A.

Definition 5.13. Let A be a Cp-E∞-ring. We define the category NE∞AlgA of normed E∞-A-algebras
to be the limit of the diagram

Fun
(
OCp , E∞AlgAe

)

Fun
(
OCp , E∞AlgA

)

E∞Alg(Ae)⊗p ×E∞AlgAe

E∞AlgA E∞AlgNCp (Ae)
×E∞AlgA

evCp ,evCp/Cp

evCp ,evCp/Cp

(−)e

NCp (−e)×id

m◦(−e)

(−)e×(−)e
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where we have abbreviated E∞AlgA = E∞AlgA

(
SpCp

)
, E∞Alg(Ae)⊗p = E∞Alg(Ae)⊗p

(
SpBCp×BCp

)
,

etc.

There is a relative version of the main results of this paper.

Proposition 5.14. Let A be a Cp-E∞-ring. There is a canonical forgetful functor

γA : CpE∞AlgA → NE∞AlgA

Proof. Proceeds as in proof of Corollary 4.7.

Theorem 5.15. Let A be a Cp-E∞-ring. Then the canonical comparison functor γA of Proposition 5.14 is
an equivalence.

Proof. Proceeds as in proof of Theorem 4.23.

A Modules over normed equivariant algebras

In this appendix, we show that the category of modules over a Cp-E∞-ring naturally acquires a
structure of a Cp-symmetric monoidal ∞-category in the sense of Nardin–Shah via a relative norm
(cf. Definition 5.11). The author would like to thank Jay Shah who communicated details of this
construction.

Fix κ a regular cardinal and let K denote the collection of κ-small simplicial sets.

Recollection A.1. [Lur17, Notation 4.8.3.5.] Write AlgE1
(Cat∞). It has objects given by monoidal

∞-categories which are compatible with κ-indexed colimits and whose morphisms are monoidal
functors F : C⊗ → D⊗ whose preserve κ-indexed colimits. Write U : AlgE1

(Cat∞)→ Cat∞ for the
forgetful functor which forgets the monoidal structure.

[Lur17, Definition 4.8.3.7.] There is an ∞-category CatAlg
∞ (K). Informally its objects are given by

pairs (C⊗, A) where C is a monoidal ∞-category and A is an algebra object of C. Morphisms from
(C⊗, A) to (D⊗, B) are given by monoidal functors F : C → D such that F(A) ≃ B.

Similarly, there is an ∞-category CatMod
∞ (K) whose objects are pairs (C⊗,M) where C is a

monoidal ∞-category andM is an ∞-category left tensored over C. In particular, there is a forgetful
functor

Υ : CatMod
∞ (K)→ Cat∞

(C⊗,M) 7→ M
. (A.2)

[Lur17, Construction 4.8.3.24] There is a functor Θ making the following diagram commute:

CatAlg
∞ (K) CatMod

∞ (K)

AlgE1
(Cat∞)

Θ:(C⊗ ,A) 7→(C⊗ ,ModA(C))

ua um
(A.3)

where the vertical arrows are the universal fibrations classifying families of E1-algebras in C and
modules over said algebras in C, respectively [Lur17, Remarks 4.8.3.8. & 4.8.3.20.].
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Notation A.4. Hereafter, we drop κ,K from notation.

Lemma A.5. Let A be a Cp-E∞-algebra object of
(

SpCp
)⊗

, and recall the functor ζ : Span(FinCp) →
AlgE1

(Cat) of Recollection 2.30. Then A lifts to a cocartesian section Ã of
∫

ζ.

Proof. Let T → Cp/H be an object of FinCp ,∗. There is a natural functor ιT := −× T : Fin∗ → FinCp ,∗.
Moreover, ι(−) assembles to give the functor

ι : Fin∗ × FinCp ,∗ → FinCp ,∗
(S, T → Cp/H) 7→ S× T → Cp/H

.

Consider the restriction ι∗T A of A along ιT . We may further precompose ι∗T A with the structure
morphism Assoc⊗ → Fin∗ where Assoc⊗ is the E1 operad of [Lur17, Definition 4.1.1.3]. Then
by the characterization of inert morphisms of Theorem 2.3.3 of [NS22], ι∗T A and by definition of
morphisms of operads (both parametrized and non-parametrized), ι∗T A defines an associative
algebra object in ζ(T). Likewise ι∗A defines a FinCp ,∗-family of associative algebra objects, hence

the existence of Ã follows by the universal property characterizing CatAlg
∞ .

Variant A.6. Let K0 denote the full subcategory of the arrow category Ar(Fin∗) on those arrows
given by the inclusion of the basepoint {∗} ↪→ S. There is a variant functor

ιη : K0 × FinCp ,∗ → FinCp ,∗
({∗} ↪→ S, T) 7→ ({∗} ↪→ S)× T

which defines a ∆1 × FinCp ,∗-family of associative algebra objects.

Now consider the commutative diagram

∫
ζ CatAlg

∞ CatMod
∞ Cat∞

FinCp ,∗ AlgE1
(Cat) AlgE1

(Cat)

u∗a (ζ) Θ

ua

Υ

um

ζ

Ã

where Ã exists by Lemma A.5 and the center square is (A.3).

Definition A.7. Let A be a Cp-E∞-algebra in Cp-spectra. Recall the Grothendieck construction
[Lur09, Theorem 2.2.1.2]. Let Mod⊗A be the Cp-symmetric monoidal ∞-category classified by the
morphism Υ ◦Θ ◦ u∗a(ζ) ◦ Ã. Let ModA denote the corresponding underlying Cp-∞-category of
Mod⊗A .

Examples A.8. (1) When A = S0, we recover ModA ≃ SpCp .

(2) Suppose A is a Cp-E∞-ring. Then ModA may be regarded as the OCp -diagram of stable
∞-categories

ModA

(
SpCp

)
ModAe(Sp)

(−)e

σ∗

.
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The morphism [Cp → Cp/Cp]→ [Cp/Cp = Cp/Cp] in FinCp ,∗ classifies the relative norm NCp

of Definition 5.11.

The previous discussion shows that

Proposition A.9. Let A be a Cp-E∞-algebra in Cp-spectra. Then the Cp-∞-category of Definition A.7
naturally acquires a Cp-symmetric monoidal structure in the sense of [NS22, Definition 2.2.1].

Remark A.10. By the proof of Lemma A.5, each AT for T → Cp/H an object of FinCp ,∗ is in fact an
E∞-algebra in ζ(T). Thus we write modules instead of left modules [Lur17, Corollary 4.5.1.6].

Construction A.11 (Parametrized base change). Since FinCp ,∗ is unital, the category of Cp-E∞-
algebras in Cp-spectra has an initial object 1 [NS22, Definition 5.2.1 & Theorem 5.2.11, resp.] given
fiberwise by the sphere spectrum. As in Lemma A.5, 1 lifts to a coCartesian section 1̃ of

∫
ζ.

Suppose A is a Cp-E∞-ring spectrum. Variant A.6 shows that the unit map η : 1 → A induces a
natural transformation η̃ : 1̃ → Ã. Under the Grothendieck construction, the unstraightening of
Υ ◦Θ ◦ u∗a(ζ)(η) corresponds to a Cp-functor of Cp-∞-categories which we denote by

−⊗S0 A : SpCp → ModA.

Categories of modules behave in the expected way.

Proposition A.12. Let A be a Cp-E∞-algebra in Cp-spectra. Then the Cp-functor −⊗S0 A : SpCp →
ModA participates in a Cp-adjunction which is fiberwise monadic.

Proof. Notice that essentially by definition, the Cp-functor −⊗S0 A preserves coCartesian arrows.
By (the dual to) [Lur17, Proposition 7.3.2.6], it suffices to check that −⊗S0 A admits a fiberwise
right adjoint, which is classical.

Remark A.13. The strategy outlined here generalizes straightforwardly to endow the G-∞-category
of modules over a normed G-E∞-ring spectrum with the structure of a G-symmetric monoidal
structure for any finite group G.

Remark A.14. One expects a equivariant form of the Tannaka reconstruction theorem [Lur17,
Propositions 7.1.2.6-7] by which a G-E∞-ring A can be recovered from its category of modules
endowed with its G-symmetric monoidal structure.
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Normed equivariant ring spectra
and higher Tambara functors

Bastiaan Cnossen, Rune Haugseng, Tobias Lenz, and Sil Linskens

July 11, 2024

Abstract

In this paper we extend equivariant infinite loop space theory to take
into account multiplicative norms: For every finite group 𝐺 , we construct
a multiplicative refinement of the comparison between the ∞-categories
of connective genuine 𝐺-spectra and space-valued Mackey functors, first
proven by Guillou–May, and use this to give a description of connective
normed equivariant ring spectra as space-valued Tambara functors.

In more detail, we first introduce and study a general notion of ho-
motopy-coherent normed (semi)rings, and identify these with product-
preserving functors out of a corresponding ∞-category of bispans. In the
equivariant setting, this identifies space-valued Tambara functors with
normed algebras with respect to a certain normed monoidal structure on
grouplike𝐺-commutative monoids in spaces. We then show that the latter
is canonically equivalent to the normed monoidal structure on connective
𝐺-spectra given by the Hill–Hopkins–Ravenel norms. Combining our
comparison with results of Elmanto–Haugseng and Barwick–Glasman–
Mathew–Nikolaus, we produce normed ring structures on equivariant
algebraic K-theory spectra.
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1 Introduction

Infinite loop space theory has played an important role in algebraic topology
since the 1970’s, giving a way to construct interesting examples of spectra from
space-level data. At its heart lies the Recognition Theorem [May72,BV73,Seg74],
which in modern language describes connective spectra as commutative group
objects in the ∞-category of spaces, i.e.

Sp≥0 ≃ CGrp(Spc). (1)

Such commutative groups arise in nature, for instance, by group-completing
the classifying spaces of symmetric monoidal (∞-)categories. As an important
example, applying this to the groupoid of finitely generated projective modules
over a ring 𝑅 with symmetric monoidal structure via direct sum yields the
algebraic K-theory spectrum of the ring 𝑅 [May74,Seg74].

In order to obtain spectra with algebraic structures, we need to upgrade
(1) to take into account multiplicative structures. For 1-categorical inputs, such
multiplicative infinite loop spaces machines have been considered for example by
May [May77, May09] and Elmendorf–Mandell [EM06]. Working in the ∞-
categorical framework, Gepner–Groth–Nikolaus [GGN15] both generalized
and elucidated these constructions: they show that there is a canonical symmetric
monoidal structure on the ∞-category CMon(Spc) of commutative monoids in
spaces, which localizes to commutative groups, and that (1) uniquely upgrades
to an equivalence of symmetric monoidal ∞-categories where we equip Sp≥0

with the smash product. The tensor product on CGrp(Spc) is an ∞-categorical
analogue of the tensor product of abelian groups, so it is natural to think of a

2



commutative algebra object of CGrp(Spc) as a commutative ring in Spc; as a
direct consequence of the multiplicative comparison, we then have an equivalence

CAlg(Sp≥0) ≃ CAlg(CGrp(Spc)) C CRing(Spc) (2)

between connective commutative ring spectra and commutative ring spaces.

A multiplicative equivariant recognition theorem

Our first goal is to extend the above story to equivariant spectra over a finite
group 𝐺 . While the study of such equivariant infinite loop space machines began in
the late 70’s (in unpublished work of Segal and Hauschild–May–Waner), the
subject has experienced a renaissance in recent years. As part of this, its point-set
level foundations have been rewritten and extended by May and his collaborators
[GM11,GM17,MMO17], and new ∞-categorical approaches to the subject have
been introduced by Barwick and collaborators [Bar17,BDG+16].

In the present paper, we will adopt the latter perspective. For this, recall
from [CMNN20, A.1] that the ∞-category Sp𝐺 of 𝐺-spectra, defined classically
as the Dwyer–Kan localization of a suitable model category of orthogonal or
symmetric spectra with 𝐺-action, admits a purely ∞-categorical description as

Sp𝐺 ≃ Fun× (Span(F𝐺 ), Sp),
that is, as product-preserving functors from a (2, 1)-category of spans of finite
𝐺-sets to spectra; see also [GM11] for a model-categorical version.

From this equivalence and (1), one immediately obtains an Equivariant Recog-
nition Theorem, in the form of a space-level description of connective 𝐺-spectra
as Sp≥0

𝐺 ≃ Fun×grp(Span(F𝐺 ), Spc); (3)

here the right-hand side consists of functors 𝐹 : Span(F𝐺 ) → Spc that preserve
products and that are grouplike, in the sense that for every 𝐺-set 𝑋 the commuta-
tive multiplication given by

𝐹 (𝑋 ) × 𝐹 (𝑋 ) ≃ 𝐹 (𝑋 ⨿ 𝑋 ) −→ 𝐹 (𝑋 )

makes 𝐹 (𝑋 ) a commutative group. Analogously to the non-equivariant situation,
such objects arise naturally from ∞-categorical data, and this provides one
possible approach to equivariant algebraic K-theory [BGS20].

To shed some light on this equivalence, recall [Dre71] that a Mackey functor
𝑀 for 𝐺 consists of abelian groups 𝑀 (𝑋 ) for every finite 𝐺-set 𝑋 together with
restriction and additive norm (or “transfer”) maps

𝑓 ∗ : 𝑀 (𝑋 ) −→ 𝑀 (𝑌 ), 𝑓⊕ : 𝑀 (𝑌 ) −→ 𝑀 (𝑋 )

for every morphism 𝑓 : 𝑌 → 𝑋 of 𝐺-sets, such that 𝑀 takes disjoint unions to
products, both restrictions and norms are functorial, and they compose according
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to a double coset formula. The zeroth homotopy groups of any 𝐺-spectrum
form a Mackey functor, and Mackey functors are the most general coefficients
for ordinary equivariant (co)homology [LMS86, §V.9]. The data of a Mackey
functor can be neatly organized into a product-preserving functor

Span(F𝐺 ) −→ Ab,
or equivalently a functor Span(F𝐺 ) → Set that preserves products and such
that the induced (commutative) multiplication on the value at every 𝐺-set has
inverses. Thus we may think of the equivalence (3) as saying that connective
𝐺-spectra are space-valued Mackey functors.

Just like a space-valued Mackey functor contains more information than
a commutative group in the ∞-category of 𝐺-spaces (namely, in the form
of additive norms), a multiplicative refinement of the equivalence (3) should
not just take the ordinary symmetric monoidal structures on both sides into
account (arising via the smash product and Day convolution, respectively), but
additionally respect suitable symmetric monoidal norms. To make this precise, note
that if C is any ∞-category with finite products, we can more generally define
a normed 𝐺-monoid in C to be a functor

𝑀 : Span(F𝐺 ) −→ C

that preserves finite products; this amounts to specifying a commutative monoid
𝑀 (𝐺/𝐻 ) with an action of the Weyl group𝑊𝐺𝐻 B 𝑁𝐺𝐻/𝐻 for every subgroup
𝐻 of 𝐺 , together with restrictions Res𝐾𝐻 : 𝑀 (𝐺/𝐾) → 𝑀 (𝐺/𝐻 ) and norm maps
Nm𝐾

𝐻 : 𝑀 (𝐺/𝐻 ) → 𝑀 (𝐺/𝐾) for all subgroups 𝐻 ⩽ 𝐾 ⩽ 𝐺 as well as various
coherences. The equivalence (2) can then be restated as saying that genuine
𝐺-spectra are normed 𝐺-monoids in spectra, while the equivalence (3) says that
connective 𝐺-spectra are equivalently “grouplike” normed 𝐺-monoids in spaces,
or normed 𝐺-groups for short.

On the other hand, taking C to be Cat∞, we obtain the notion of a normed𝐺-
∞-category as the equivariant version of a symmetric monoidal∞-category. Many
important symmetric monoidal ∞-categories studied in equivariant homotopy
theory turn out to admit natural refinements to normed 𝐺-∞-categories; in
particular, there is a normed 𝐺-∞-category

Sp𝐺 : 𝐺/𝐻 ↦→ Sp𝐻
whose contravariant functoriality is given by the evident restrictions, and whose
covariant functoriality encodes the smash product of equivariant spectra together
with the Hill–Hopkins–Ravenel norms [HHR16]. We then prove:

Theorem A. (See Theorem 5.6.1) The 𝐺-∞-category

NMon𝐺 (Spc) : 𝐺/𝐻 ↦→ Fun× (Span(F𝐻 ), Spc)
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of 𝐺-normed monoids in spaces has a canonical normed structure that localizes toNGrp𝐺 (Spc). Furthermore, the equivalence (3) upgrades to an equivalence

Sp≥0
𝐺 ≃ NGrp𝐺 (Spc)

of normed 𝐺-∞-categories, where the left-hand side carries the restriction of the normed
structure described above.

Normed 𝑮-ring spectra

As a direct consequence of Theorem A, we obtain equivalences between con-
nective 𝐺-spectra equipped with extra “parametrized algebraic structure” and
𝐺-commutative groups equipped with the same structure. To make this pre-
cise, note that by straightening–unstraightening we can equivalently regard a
normed 𝐺-∞-category C as a cocartesian fibration

C⊗ −→ Span(F𝐺 ).
Following Bachmann–Hoyois [BH21] we define a 𝐺-normed algebra in C as a
section Span(F𝐺 ) → C⊗ that takes the backward maps to cocartesian morphisms
in C⊗; this amounts to specifying a commutative algebra 𝐴 in the underly-
ing ∞-category C(𝐺/𝐺) together with suitably coherent normed multiplications
Nm𝐺

𝐻 Res𝐺𝐻 𝐴→ 𝐴 for every 𝐻 ⩽ 𝐺 .
In particular, we get a notion of 𝐺-normed algebras in Sp𝐺 , or normed 𝐺-

spectra for short, which are generally expected to be equivalent to the objects
obtained as strict commutative algebras in the 1-categories of symmetric or
orthogonal 𝐺-spectra. Theorem A then shows that connective normed 𝐺-spectra
can equivalently be described as normed algebras in NGrp𝐺 (Spc), i.e. as “normed
𝐺-rings.” As our second main result, we then build on this comparison to give a
space-level description of connective normed 𝐺-spectra, generalizing the result
for 𝐺 = 1 proven in [CHLL24]:

Theorem B. (See Theorem 5.6.3) There is an equivalence of ∞-categories

NAlg𝐺 (Sp≥0
𝐺 ) ≃ Fun×grp(Bispan(F𝐺 ), Spc). (4)

Here Bispan(F𝐺 ) is the (2, 1)-category of bispans of finite 𝐺-sets in the sense
of [EH23]: its objects are finite 𝐺-sets, and morphisms are given by diagrams

𝐴
𝑅←−− 𝐵 𝑁−−→ 𝐶

𝑇−−→ 𝐷; (5)

the composition law in Bispan(F𝐺 ) is somewhat involved and encodes both the
Mackey double coset formulas for commuting restrictions past norms and trans-
fers, as well as a distributivity relation between norms and transfers. Moreover,Fun×grp again denotes the full subcategory of those product-preserving functors
that are grouplike in a suitable sense (see Definition 4.3.5 for details).
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Recall [Tam93] that a Tambara functor 𝑋 for a finite group 𝐺 is an assignment
of an abelian group 𝑋 (𝐺/𝐻 ) for every subgroup of 𝐺 together with compatible
restriction, transfer, and norm maps for every subgroup inclusion. A Tambara
functor is thus a multiplicative enhancement of a Mackey functor, and this is
precisely the structure existing on the zeroth equivariant homotopy groups of a
strictly commutative 𝐺-ring spectrum, see [Bru07, §7.2] and [Ull13]. Tambara
functors can equivalently be described [Str12] as grouplike product-preserving
functors Bispan(F𝐺 ) → Set (with restrictions, transfers, and norms correspond-
ing to the functoriality in the components 𝑅, 𝑇 , and 𝑁 of the bispan (5), re-
spectively), and we can therefore think of the equivalence (4) as identifying
connective normed 𝐺-spectra with space-valued Tambara functors.

In fact, we deduce Theorem B from a much more general result: follow-
ing Bachmann [Bac22], we consider normed ∞-categories as functors from suit-
able span ∞-categories into Cat∞, and we give a general description of normed
(semi)rings in this context in terms of product-preserving functors out of an
∞-category of bispans, see Theorems 4.2.4 and 4.3.6. This in particular allows us
to deduce a version of Theorem B with fewer normed multiplications, in which
case we can describe the corresponding connective normed algebras as a space-
valued version of the incomplete Tambara functors considered by Blumberg–Hill
[BH18].

Multiplicative equivariant K-theory

As a concrete application of Theorem B, we can construct normed multiplica-
tive structures on equivariant algebraic K-theory spectra: Recall that Elmanto
and Haugseng [EH23, §4.3] show that if 𝐸 is a normed 𝐺-spectrum, then the
assignment

𝐻 ↦→ Mod𝐸𝐻 (Sp𝐻 )
extends naturally to a functor

Bispan(F𝐺 ) −→ Cat∞
that preserves products and takes values in the subcategory of stable∞-categories
and polynomial functors. Combining this with the polynomial functoriality
of (connective) algebraic K-theory of Barwick, Glasman, Mathew, and Niko-
laus [BGMN21], we obtain a space-valued Tambara functor given by

𝐻 ↦→ Ω∞𝐾 (Mod𝐸𝐻 (Sp𝐻 )) .
Now Theorem B identifies this with a normed 𝐺-spectrum; as the constructions
involved are functorial, we obtain:

Corollary C. Connective equivariant algebraic K-theory can be enhanced to a functor

𝐾 : NAlg𝐺 (Sp𝐺 ) −→ NAlg𝐺 (Sp≥0
𝐺 ) .
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More generally, we obtain normed 𝐺-spectra from suitable normed stable
∞-categories [EH23, 4.3.2]. Specializing this as in [EH23, 4.3.9] we in particular
obtain a refinement of connective equivariant algebraic 𝐾-theory of stable ∞-
categories to a functor from symmetric monoidal stable∞-categories to normed
𝐺-spectra. In the case where𝐺 is a finite 2-group, an entirely different approach
to such a refinement has previously been worked out by Hilman [Hil22b]; to
the best of our knowledge, ours is the first construction in this generality.

Related work

During the long history of equivariant infinite loop space theory, a wide range
of notions of “𝐺-commutative monoids” have been introduced and studied,
for example Shimakawa’s special Γ-𝐺-spaces [Shi89], the operadic models of
Guillou–May [GM17], various “ultra-commutative” models [Len20,LS23], and
the ∞-categorical model [GM11,Bar17] used in this paper. All of these notions
are known to be equivalent to each other [MMO17, Len23, Mar24], and in
particular each of them comes with an equivariant recognition theorem relating
the corresponding grouplike objects to connective 𝐺-spectra.

Since the early days of the subject, much effort went into the search for
multiplicative refinements of these comparisons, with several breakthroughs in
the last couple of years. In particular, Guillou–May–Merling–Osorno studied
multiplicative properties of the operadic machine, culminating in the article
[GMMO23] where they refine equivariant infinite loop space theory to an
enriched multifunctor, allowing the construction of non-commutative 𝐺-ring
spectra from space-level or categorical data. Yau [Yau24] recently improved this
to a symmetric enriched multifunctor, which then in particular can also be used
to produce commutative 𝐺-ring spectra.

In contrast to our approach, the aforementioned authors work with strict
(non-parametrized) algebraic structures on the level of 1-categorical models.
While commutative structures on symmetric/orthogonal 𝐺-spectra are expected
to model ∞-categorical 𝐺-normed spectra, a symmetric monoidal or symmetric
multifunctor structure on the functor from 𝐺-commutative monoids to connec-
tive 𝐺-spectra does not induce any such structure on the inverse functor, and
accordingly there is no analogue of our Theorem B known in these settings. In
fact, there are serious obstructions to achieving a complete space-level descrip-
tion of connective commutative 𝐺-ring spectra along these lines: for example,
Lawson [Law09] proved that even for 𝐺 = 1 not all connective commutative
ring spectra arise from strictly commutative algebras in Γ-spaces.

Outline

In Section 2 we recall some necessary background about ∞-categories of spans
and bispans. We then introduce the framework of normed monoids, normed ∞-
categories, and normed algebras in Section 3 as a very mild generalization of work
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of Bachmann and Hoyois. As the main new result of that section, we construct a
Day convolution normed structure on certain∞-categories of product-preserving
functors and give a description of normed algebras in it, see Proposition 3.3.1.

Specializing this, we then construct normed∞-categories of normed monoids
in Section 4, which in particular allows us to define normed (semi)rings. Com-
bining the description of normed algebras with respect to the Day convolution
structure with our results in [CHLL24], we then show that normed rings can
be equivalently described as certain higher Tambara functors (Theorem 4.3.6).

In Section 5 we introduce and compare various normed∞-categories related
to equivariant homotopy theory, in particular proving Theorem A. Combining
this with the results of the previous section, we then finally deduce Theorem B.

The paper ends with a short appendix on a Borel construction due to Hilman
[Hil22a] that builds normed𝐺-∞-categories from ordinary symmetric monoidal
∞-categories with 𝐺-action, which is used in various constructions in Section 5.

Notations and conventions

▶ We write F for the category of finite sets, and n B {1, . . . , 𝑛} for the standard
set with 𝑛 elements. For an ∞-category C, we write F [C] for the finite
coproduct completion of C. When C is the orbit category O𝐺 of a finite
group 𝐺 , we denote the category of finite 𝐺-sets by F𝐺 = F [O𝐺 ].

▶ Functors that preserve finite products will be referred to as product-preserving
for short, and similarly for coproducts. We will never speak about arbitrary
products and coproducts.

▶ We write Cat∞ for the ∞-category of ∞-categories and Spc for the ∞-
category of spaces (a.k.a. ∞-groupoids).

▶ If C is an ∞-category, then we denote its underlying ∞-groupoid by C≃ or
Ceq, depending on context.

▶ We write Ar(C) B Fun( [1], C) for the arrow ∞-category of C.

▶ Throughout, we use the word subcategory to refer to what is sometimes called
a replete subcategory: that is, for us a subcategory C0 ⊆ C is always required
to contain all equivalences between its objects. A subcategory is called wide
if it in addition contains all objects.
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2 Spans and bispans

The goal of this section is to recall some basic properties of ∞-categories of
spans and bispans, and to formulate conditions guaranteeing that a (bi)span
∞-category admits (co)products.

2.1 Spans

Let us begin by recalling some basic definitions and results concerning ∞-
categories of spans. Our main references for this are Barwick’s original article
[Bar17] and the more recent treatment in [HHLN23].

Definition 2.1.1. A span pair (C, C𝐹 ) consists of an∞-category C together with
a wide subcategory C𝐹 of “forward” maps, such that base changes of morphisms
in C𝐹 exist in C and are again contained in C𝐹 . We write SpanPair for the
∞-category of span pairs; a morphism (C, C𝐹 ) → (D, D𝐹 ) here is a functor
C→ D that preserves the forward maps as well as pullbacks along forward maps.

Remark 2.1.2. Both [Bar17] and [HHLN23] work more generally with so-
called adequate triples (C, C𝐹 , C𝐵). Span pairs correspond to the special case
C𝐵 = C.

Example 2.1.3. For any ∞-category C, we always have the minimal span pair
(C, C≃). If C has all pullbacks, then we also have the maximal span pair (C, C).

[HHLN23, 2.12] constructs a functor

Span : SpanPair −→ Cat∞,
sending a span pair (C, C𝐹 ) to its span ∞-category

Span𝐹 (C) := Span(C, C𝐹 ).
This ∞-category has the same objects as C, and a map in Span𝐹 (C) from 𝑥 to 𝑦
is given by a span

𝑧

𝑥 𝑦,

𝑏 𝑓

where 𝑓 is in C𝐹 and 𝑏 is arbitrary; composition is given by taking pullbacks in
C. If Chas all pullbacks, we abbreviate Span(C) for the span category associated
to the span pair (C, C).
Example 2.1.4 ([HHLN23, 2.15]). We have Spaneq(C) = Span(C, C≃) ≃ Cop.

Remark 2.1.5. The ∞-category SpanPair has limits, which are computed inCat∞ [HHLN23, 2.4], and the functor Span preserves these [HHLN23, 2.18].
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We will need the following special case of Barwick’s “unfurling” theorem:

Proposition 2.1.6. Suppose (B,B𝐹 ) is a span pair and Φ : B→ Cat∞ is a functor
such that

▶ for every morphism 𝑓 : 𝑏 → 𝑏′ in B𝐹 , the functor 𝑓! = Φ(𝑓 ) has a right adjoint 𝑓 ∗,

▶ and for every pullback square

𝑎′ 𝑏′

𝑎 𝑏

𝑓 ′

⌟
𝛼 𝛽

𝑓

in Bwith 𝑓 in B𝐹 , the induced Beck–Chevalley transformation

𝛼! 𝑓
′∗ −→ 𝑓 ∗𝛽!

is an equivalence.

Let 𝑝 : E→ B be the cocartesian fibration for Φ, and write E𝐹-cart for the subcategory
containing the morphisms that are 𝑝-cartesian over morphisms in B𝐹 . Then (E, E𝐹-cart)
is a span pair, 𝑝 is a morphism of span pairs, and

Span(𝑝)op : Span𝐹-cart(E)op −→ Span𝐹 (B)op

is the cocartesian fibration for a functor Span𝐹 (B)op → Cat∞ that restricts to Φ on B

and to the functor obtained by passing to right adjoints from Φ on B
op
𝐹 .

Proof. It follows from [Bar17, 11.6] that (E, E𝐹-cart) is a span pair, that 𝑝 is a
morphism of span pairs, and that Span(𝑝)op is a cocartesian fibration. For the
convenience of the reader we recall the proof, giving some additional details. It
follows from [Bar17, 11.2] that (E, E𝐹-cart) is a span pair, and the pullback

𝑤 𝑧

𝑥 𝑦

𝑓 ′

𝑔′
⌟

𝑔

𝑓

of 𝑓 : 𝑥 → 𝑦 in E𝐹-cart over 𝑓 : 𝑎 → 𝑏 along a morphism 𝑔 : 𝑧 → 𝑦 over 𝑔 : 𝑐 → 𝑏
is obtained by taking the pullback

𝑑 𝑐

𝑎 𝑏

⌟

𝑓 ′

𝑔′ 𝑔

𝑓
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in B, picking a 𝑝-cartesian morphism 𝑓 ′ : 𝑤 → 𝑧 over 𝑓 ′, and letting 𝑔′ be the
unique factorization of 𝑔𝑓 ′ through the 𝑝-cartesian morphism 𝑓 .

To show that Span(𝑝)op is a cocartesian fibration, it suffices to show that any
span

𝑥
𝑓←−− 𝑦 𝑔−−→ 𝑧

in Span𝐹-cart(E)op, where 𝑓 is 𝑝-cartesian over B𝐹 and 𝑔 is 𝑝-cocartesian, is
a cocartesian morphism, since then Span𝐹-cart(E)op has all cocartesian lifts of
morphisms in Span𝐹 (B)op. To see this we apply [Bar17, 12.2], in the guise of
[HHLN23, 3.1]:

▶ Condition (1) is immediate since 𝑝 is a cocartesian fibration.

▶ Unwinding the definitions, condition (2) says that given a pullback square

𝑎 𝑏′

𝑏 𝑐

𝑔′

𝑓 ′
⌟

𝑓

𝑔

in Bwith 𝑓 in B𝐹 and a commutative square

𝑓 ′∗𝑥 𝑦

𝑥 𝑔!𝑥

𝛾

𝑓 ′ 𝜙

𝑔

where 𝑔 is 𝑝-cocartesian over 𝑔 and 𝑓 ′ is 𝑝-cartesian over 𝑓 ′, then 𝛾 is 𝑝-
cocartesian if and only if 𝜙 lies in E𝐹-cart and the square is a pullback. Indeed,
in the former case 𝜙 factors as the canonical map 𝑔′! 𝑓

′∗𝑥 → 𝑓 ∗𝑔!𝑥 followed by
a cartesian morphism over 𝑓 , while in the latter case 𝛾 factors as a cocartesian
morphism over 𝑔′ followed by the same map. Since this Beck–Chevalley
map is by assumption invertible, the two conditions are equivalent.

It remains to identify the fibrations we get over B and B
op
𝐹 . Since the functorSpan(–) is compatible with pullbacks, we see that over Bwe recover 𝑝 : E→ B,

while over B𝐹 we get Span(E𝐹 , E𝐹,fw, E𝐹-cart) → B
op
𝐹 , where E𝐹 B E×B B𝐹

and E𝐹,fw denotes the subcategory of morphisms that map to equivalences in
B

op
𝐹 . This is the cocartesian fibration that describes the same functor as the

cartesian fibration E𝐹 → B𝐹 , by [BGN18, 1.4] or [HHLN23, 3.18]. □

2.2 Products in span ∞-categories

In this subsection we provide criteria for ∞-categories of spans to have products
and coproducts.
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Definition 2.2.1. Recall that an ∞-category C is called extensive if C has finite
coproducts and the coproduct functor

⨿ :
𝑛∏
𝑖=1

C/𝑥𝑖 −→ C/∐𝑖 𝑥𝑖

is an equivalence for all objects 𝑥1, . . . , 𝑥𝑛 ∈ C. A span pair (C, C𝐹 ) is called
extensive if the following conditions are satisfied:

▶ C is extensive,

▶ the morphisms in C𝐹 are closed under finite coproducts,

▶ and for every 𝑥 ∈ C, the maps ∅ → 𝑥 and 𝑥 ⨿ 𝑥 → 𝑥 are in C𝐹 .

More generally, we say that (C, C𝐹 ) is weakly extensive if

▶ Chas finite coproducts,

▶ the morphisms in C𝐹 are closed under finite coproducts,

▶ and the coproduct functor

⨿ :
𝑛∏
𝑖=1

C𝐹/𝑥𝑖 −→ C𝐹/⨿𝑖𝑥𝑖

is an equivalence for all 𝑛 ≥ 0 and 𝑥1, . . . , 𝑥𝑛 ∈ C. Here C𝐹/𝑦 denotes the full
subcategory of C/𝑦 spanned by those maps 𝑧 → 𝑦 that belong to 𝐹 .

If C is an extensive ∞-category, then a wide subcategory C𝐹 ⊆ C is called a
(weakly) extensive subcategory if the pair (C, C𝐹 ) is (weakly) extensive span pair.

Remark 2.2.2. Note that a span pair (C, C𝐹 ) is extensive if and only if C and
C𝐹 are both extensive ∞-categories and the inclusion C𝐹 ↩→ C preserves finite
coproducts. Also note that every extensive span pair is weakly extensive.

Remark 2.2.3. Let (C, C𝐹 ) be a span pair such that the morphisms in C𝐹 are
closed under finite coproducts. Then the coproduct functor

∏𝑛
𝑖=1 C𝐹/𝑥𝑖 → C𝐹/⨿𝑖 𝑥𝑖

admits a right adjoint C𝐹/⨿𝑖 𝑥𝑖 →
∏𝑛
𝑖=1 C𝐹/𝑥𝑖 given by pullback along the maps

𝑥𝑖 → ⨿𝑖 𝑥𝑖 , see [Lur09, 5.2.5.1], and it follows that (C, C𝐹 ) is weakly extensive if
and only if this functor is an equivalence. In this case, the canonical squares

𝑦𝑖 ⨿𝑖 𝑦𝑖

𝑥𝑖 ⨿𝑖 𝑥𝑖
𝑓𝑖 ⨿𝑖 𝑓𝑖

are pullback squares for all morphisms 𝑓𝑖 : 𝑦𝑖 → 𝑥𝑖 in C𝐹 .
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One may similarly characterize extensiveness of C by means of the right
adjoint C/⨿𝑖𝑥𝑖 →

∏𝑛
𝑖=1 C/𝑥𝑖 to the coproduct functor; in this case we need to

assume that the morphism ∅ → 𝑥 is in C𝐹 for each object 𝑥 to guarantee that
the relevant pullbacks exist.

Proposition 2.2.4. A span pair (C, C𝐹 ) is weakly extensive if and only if the
following conditions hold:

▶ the ∞-category C has finite coproducts,

▶ the coproduct functor C× C→ C is a morphism of span pairs (i.e. morphisms in
C𝐹 are closed under coproducts and coproducts of pullbacks of morphisms in C𝐹 are
again pullbacks),

▶ and the commutative squares

𝑥 ⨿ 𝑥 𝑦 ⨿ 𝑦

𝑥 𝑦

∅ ∅

𝑥 𝑦

are pullbacks for all morphisms 𝑥 → 𝑦 in C𝐹 .

The pair (C, C𝐹 ) is extensive if and only if in addition we have:

▶ the above two squares are pullbacks for any morphism 𝑥 → 𝑦 in C,

▶ the maps ∅ → 𝑥 and 𝑥 ⨿ 𝑥 → 𝑥 are in C𝐹 for all 𝑥 ∈ C.

Proof. First assume that (C, C𝐹 ) is weakly extensive. By assumption, Chas finite
coproducts and morphisms in C𝐹 are closed under finite coproducts. For the
second condition, consider pullback squares

𝑥 ′𝑖 𝑥𝑖

𝑦′𝑖 𝑦𝑖

⌟

ℎ𝑖

𝑓 ′𝑖 𝑓𝑖

𝑔𝑖

for 𝑖 = 1, . . . , 𝑛, with 𝑓𝑖 ∈ C𝐹 . We need to show that their coproduct is again a
pullback square, or, equivalently, that the map

⨿𝑖 𝑥 ′𝑖 −→ (⨿𝑖 𝑥𝑖) ×⨿𝑖𝑦𝑖 (⨿𝑖 𝑦′𝑖 )

is an equivalence in C𝐹/⨿𝑖𝑦′𝑖
. But since (C, C𝐹 ) is weakly extensive, this may be

checked after pulling back along each of the maps 𝑦′𝑖 → ⨿𝑖 𝑦′𝑖 , where it becomes
clear. For the third condition, we must show that the maps 𝑥 ⨿ 𝑥 → (𝑦 ⨿𝑦) ×𝑦 𝑥
in C𝐹/𝑦⨿𝑦 and ∅ → ∅ ×𝑦 𝑥 in C𝐹/∅ are equivalences. The latter is clear since
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C𝐹/∅
∼−−→ ∗. For the former, it again suffices to check this after pulling back along

the two inclusions 𝑦 → 𝑦 ⨿ 𝑦, where it is also clear.
For the converse, assume that the first three conditions in the proposition

are satisfied. We show that (C, C𝐹 ) is a weakly extensive span pair. It suffices to
prove that the pullback functor

C𝐹/∐𝑛
𝑖=1𝑥𝑖
−→

𝑛∏
𝑖=1

C𝐹/𝑥𝑖

is an equivalence when 𝑛 = 0 and 𝑛 = 2. For 𝑛 = 0 we want to show that C𝐹/∅ ≃ ∗,
which follows because for 𝑥 → ∅ in C𝐹 we have a pullback square

∅ ∅

𝑥 ∅,

⌟

so that ∅ → 𝑥 is an equivalence. For 𝑛 = 2, the coproduct functor determines a
left adjoint ⨿ : C𝐹/𝑥1

× C𝐹/𝑥2
→ C𝐹/𝑥1⨿𝑥2

of the pullback functor by [Lur09, 5.2.5.1],
and it will suffice that both the unit and the counit are equivalences. For the
counit, consider a map 𝑦 → 𝑥1 ⨿ 𝑥2 in C𝐹 , and let 𝑦𝑖 → 𝑥𝑖 be the pullback of 𝑦
along the inclusion of 𝑥𝑖 in the coproduct, which is again in C𝐹 ; we must show
that the canonical map 𝑦1 ⨿ 𝑦2 → 𝑦 is an equivalence. To see this, consider the
commutative diagram

𝑦1 ⨿ 𝑦2 𝑦 ⨿ 𝑦 𝑦

𝑥1 ⨿ 𝑥2 (𝑥1 ⨿ 𝑥2) ⨿ (𝑥1 ⨿ 𝑥2) 𝑥1 ⨿ 𝑥2.

Here the left square is cartesian since it’s a coproduct of two pullback squares
along morphisms in C𝐹 , and the right square is cartesian since it’s a square of
fold maps for a morphism in C𝐹 . The composite square is then cartesian, and
the bottom horizontal composite is the identity, which implies that the top
horizontal composite is indeed an equivalence.

We now show that the unit of the adjunction is an equivalence. Given
morphisms 𝑦1 → 𝑥1 and 𝑦2 → 𝑥2 in C𝐹 , this amounts to showing that the
canonical squares

𝑦𝑖 𝑦1 ⨿ 𝑦2

𝑥𝑖 𝑥1 ⨿ 𝑥2

are pullback squares. Writing 𝑥1 = 𝑥1 ⨿ ∅ and similarly for 𝑥2, 𝑦1 and 𝑦2, these
squares can be expressed as a coproduct of squares we know are pullbacks along
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morphisms in C𝐹 , hence are pullback squares by assumption. This finishes the
proof of the characterization of being weakly extensive.

The proof for extensive span pairs is identical; the additional assumption that
C𝐹 contains the maps ∅ → 𝑥 and 𝑥 ⨿ 𝑥 → 𝑥 is to ensure that all the relevant
pullbacks that appear in the proof exist in C. □

We will now show that the extensiveness properties on a span pair imply
good behavior of products and coproducts in the associated span ∞-category.

Proposition 2.2.5 (cf. [BH21, C.3]). Suppose (C, C𝐹 ) is a span pair.

(1) If (C, C𝐹 ) is weakly extensive, then the coproduct in Cgives a product in Span𝐹 (C).
(2) If (C, C𝐹 ) is extensive, then the coproduct in C is also a coproduct in Span𝐹 (C).

Moreover, the ∞-category Span𝐹 (C) is semiadditive.

For the last statement, recall that an ∞-category D is called semiadditive if
it admits finite products and coproducts, the unique morphism ∅ → ∗ is an
equivalence, and for all 𝑥1, 𝑥2 ∈ D, the morphism

(
id𝑥1 0
0 id𝑥2

)
: 𝑥1 ⨿ 𝑥2 −→ 𝑥1 × 𝑥2

is an equivalence, where 0 denotes the unique map that factors through ∗.
Proof. For the first part apply [BH21, C.21(2)] together with the characterization
from Proposition 2.2.4 to the adjunctions

⨿ : C× C⇄ C : Δ and {∅} : ∗⇄ C : 𝑝.

For the second part apply part (1) of the same corollary, to see that ∅ is also initial
and Span(⨿) is also left adjoint to the restriction, so that Span𝐹 (C) has finite
coproducts. It is then clear that Span𝐹 (C) is pointed. To see that it is semiadditive,
we now observe that in any pointed ∞-category with finite (co)products the
canonical comparison map 𝑥 ⨿ 𝑦 → 𝑥 × 𝑦 factors as

𝑥 ⨿ 𝑦 ≃ (𝑥 × 0) ⨿ (0 × 𝑦) −→ (𝑥 ⨿ 0) × (0 ⨿ 𝑦) ≃ 𝑥 × 𝑦,

so it is an equivalence in the case of Span𝐹 (C) as the coproduct functor is a right
adjoint by the above, and hence preserves products. □

Remark 2.2.6. Our definition of “extensive span pairs” is closely related to
Barwick’s disjunctive triples [Bar17, 5.2]. Thus, Proposition 2.2.5 is essentially a
variant of the proof of semiadditivity in [Bar17, 4.3 and 5.8].
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2.3 Bispans

Finally, let us recall ∞-categories of bispans from [EH23].

Definition 2.3.1. A bispan triple (C, C𝐹 , C𝐿) consists of an ∞-category C to-
gether with two wide subcategories C𝐹 , C𝐿 ⊆ C such that both (C, C𝐹 ) and
(Span𝐹 (C)op, C𝐿) are span pairs. In this case, we define

Bispan𝐹,𝐿 (C) B Span𝐿 (Span𝐹 (C)op) .

For C𝐿 = Cwe abbreviate this to Bispan𝐹 (C), and if moreover also C𝐹 = C, we
will simply write Bispan(C).
Remark 2.3.2. By [EH23, 2.5.2(1)], a triple (C, C𝐹 , C𝐿) is a bispan triple if and
only if it satisfies the following more explicit conditions:

(1) Both (C, C𝐹 ) and (C, C𝐿) are span pairs.

(2) Let C𝐿/𝑥 ⊆ C/𝑥 again denote the full subcategory spanned by the maps to 𝑥
that lie in C𝐿. Then the functor 𝑓 ∗ : C𝐿/𝑦 → C𝐿/𝑥 given by pullback along 𝑓

has a right adjoint 𝑓∗ for every map 𝑓 in C𝐹 .

(3) For any pullback square

𝑥 ′ 𝑦′

𝑥 𝑦

𝑓 ′

𝜉
⌟

𝜂

𝑓

with 𝑓 a map in C𝐹 , the commutative square

C𝐿/𝑦 C𝐿/𝑥

C𝐿/𝑦′ C𝐿/𝑥 ′

𝑓 ∗

𝜂∗ 𝜉∗

𝑓 ′∗

is right adjointable, i.e. the Beck–Chevalley transformation 𝜂∗ 𝑓∗ → 𝑓 ′∗ 𝜉∗ is
invertible.

Note that if C𝐿 = C, then condition (2) precisely says that C is locally
cartesian closed. In this case, condition (3) is actually automatic as it can be
checked after passing to left adjoints.

Definition 2.3.3. Let (C, C𝐹 , C𝐿) and (D, D𝐹 , D𝐿) be bispan triples. A morphism
of bispan triples is a functor Φ : C→ D that induces morphisms of span pairs
(C, C𝐹 ) → (D, D𝐹 ), (C, C𝐿) → (D, D𝐿), and

(Span𝐹 (C)op, C𝐿) −→ (Span𝐹 (D)op, D𝐿) .
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Remark 2.3.4. In order to unpack the final condition, let us describe pullbacks
in Span𝐹 (C)op along morphisms in C𝐿 more concretely, for which it will be
enough to describe pullbacks of backwards and forwards maps individually:

▶ Given a forward map 𝑥
=←− 𝑥 𝑔−→ 𝑦, its pullback along a map 𝑙 : 𝑧 → 𝑦 in C𝐿 is

given by
𝑑 𝑑 𝑧

𝑑 𝑑 𝑧

𝑥 𝑥 𝑦,

⌟

⌝

⌞
𝑙

𝑔

see [EH23, 2.5.10].

▶ Given a backwards map 𝑥
𝑓←− 𝑦 =−→ 𝑦 with 𝑓 in C𝐹 , [EH23, 2.5.12] shows that

its pullback along 𝑙 : 𝑧 → 𝑦 is of the form

𝑒 𝑑 𝑧

𝑒 𝑑 𝑧

𝑥 𝑦 𝑦,

𝜖

𝑓∗𝑙

𝜖

𝑓 ∗ 𝑓∗𝑙

⌝

⌞
𝑙

𝑓

where 𝜖 is the counit map 𝑓 ∗ 𝑓∗𝑙 → 𝑙 .

In particular, we see that if Φ : C → D is such that (C, C𝐿) → (D, D𝐿) and
(C, C𝐹 ) → (D, D𝐹 ) are maps of span pairs, then Φ is a a map of bispan triples if
and only if the Beck–Chevalley map

Φ ◦ 𝑓∗ −→ Φ(𝑓 )∗ ◦ Φ
induced by the commutative square

C𝐿/𝑦 C𝐿/𝑥

D𝐿
/Φ(𝑦) D𝐿

/Φ(𝑥 )

𝑓 ∗

Φ Φ

Φ(𝑓 )∗

is an equivalence.

Proposition 2.3.5. Suppose (C, C𝐹 , C𝐿) is a bispan triple such that both of the span
pairs (C, C𝐹 ) and (C, C𝐿) are weakly extensive. Then the span pair (Span𝐹 (C)op, C𝐿)
is also weakly extensive. In particular, Bispan𝐹,𝐿 (C) has finite products, and these are
given by coproducts in C.
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Proof. By Proposition 2.2.5(1), the coproduct in C gives a product in Span𝐹 (C)
and hence a coproduct in Span𝐹 (C)op.

We now claim that pullback squares along C𝐿 are closed under finite coprod-
ucts. Using the explicit description of pullbacks from the previous remark, the
only non-obvious part of this is that, given 𝑓𝑖 : 𝑦𝑖 → 𝑥𝑖 in C𝐹 and 𝑙𝑖 : 𝑧𝑖 → 𝑦𝑖 in
C𝐿 for 𝑖 = 1, 2, we have

(𝑓1 ⨿ 𝑓2)∗(𝑙1 ⨿ 𝑙2) ≃ 𝑓1,∗(𝑙1) ⨿ 𝑓2,∗(𝑙2) .

To see this we use Proposition 2.2.4 with the argument from [EH23, 2.6.12]:
Given 𝑔 : 𝑎 → 𝑥1 ⨿ 𝑥2 in C𝐿, if 𝑔𝑖 : 𝑎𝑖 → 𝑥𝑖 for 𝑖 = 1, 2 are the pullbacks along
the summand inclusions, we get

MapC𝐿/𝑥1⨿𝑥2
(𝑔, 𝑓1,∗(𝑙1) ⨿ 𝑓2,∗(𝑙2)) ≃ MapC𝐿/𝑥1

(𝑔1, 𝑓1,∗(𝑙1)) ×MapC𝐿/𝑥2
(𝑔2, 𝑓2,∗(𝑙2))

≃ MapC𝐿/𝑦1
(𝑓 ∗1 𝑔1, 𝑙1) ×MapC𝐿/𝑦2

(𝑓 ∗2 𝑔2, 𝑙2)
≃ MapC𝐿/𝑦1⨿𝑦2

(𝑓 ∗1 𝑔1 ⨿ 𝑓 ∗2 𝑔2, 𝑙1 ⨿ 𝑙2)
≃ MapC𝐿/𝑦1⨿𝑦2

((𝑓1 ⨿ 𝑓2)∗(𝑔1 ⨿ 𝑔2), 𝑙1 ⨿ 𝑙2)
≃ MapC𝐿/𝑥1⨿𝑥2

(𝑔, (𝑓1 ⨿ 𝑓2)∗(𝑙1 ⨿ 𝑙2)) .

The remaining part of the conditions for a weakly extensive span pair hold
because they by assumption hold for (C, C𝐿). With this established, the final
statement is another instance of Proposition 2.2.5(1). □

3 Normed ∞-categories

We recall the definition of normed ∞-categories and normed algebras from
[BH21,Bac22] and give various examples of normed ∞-categories.

3.1 Normed monoids

Our starting point is the following generalization of the notion of a commutative
monoid:

Definition 3.1.1. Let 𝐹 = (F,F𝑁 ) be a weakly extensive span pair and let C

be an ∞-category with finite products. An 𝐹-normed monoid in C is a product-
preserving functor

𝑀 : Span𝑁 (F) −→ C.

We denote its contravariant functoriality by 𝑓 ∗ : 𝑀 (𝑌 ) → 𝑀 (𝑋 ) for morphisms
𝑓 : 𝑋 → 𝑌 in F, and refer to these maps as restriction maps. We denote its
covariant functoriality by either 𝑛⊕ : 𝑀 (𝑋 ) → 𝑀 (𝑌 ) or 𝑛⊗ : 𝑀 (𝑋 ) → 𝑀 (𝑌 ) for

18



morphisms 𝑛 : 𝑋 → 𝑌 in F𝑁 , and refer to these maps as (additive/multiplicative)
norm maps. We write

NMon𝐹 (C) B Fun× (Span𝑁 (F), C)
for the full subcategory of Fun(Span𝑁 (F), C) spanned by the 𝐹-normed monoids.

Observation 3.1.2. If 𝐹 is actually extensive (and not only weakly so), then
semiadditivity of Span𝑁 (F) implies that all its objects carry unique commutative
monoid structures, and so the values 𝑀 (𝑋 ) of an 𝐹-normed monoid at 𝑋 ∈ F

inherit commutative monoid structures in C. In fact, by [GGN15, 2.5] we get
an equivalence NMon𝐹 (C) ≃ NMon𝐹 (CMon(C)) (6)

inverse to the forgetful functor.

Observation 3.1.3. If C is presentable and F is small, then NMon𝐹 (C) is an
accessible localization of Fun(Span𝑁 (F), C), and so is a presentable ∞-category.

Let us discuss various examples of normed monoids:

Example 3.1.4. Our main example of an extensive span pair is the pair 𝐹 =
(F𝐺 , F𝐺 ) where F𝐺 is the category of finite 𝐺-sets for a finite group 𝐺 . In this
case, 𝐹-normed monoids in C are also known as C-valued 𝐺-Mackey functors:

Mack𝐺 (C) := Fun× (Span(F𝐺 ), C) .
More generally, we obtain a notion of incomplete 𝐺-Mackey functors by taking
𝐹 = (F𝐺 , 𝐼 ) for some weakly extensive subcategory 𝐼 ⊆ F𝐺 :

Mack𝐼𝐺 (C) := NMon(F𝐺 ,𝐼 ) (C) = Fun× (Span𝐼 (F𝐺 ), C).
These are most typically considered when 𝐼 ⊆ F𝐺 is in fact an extensive subcate-
gory of F𝐺 (and not only weakly extensive), in which case 𝐼 is usually called an
indexing system for 𝐺 [BH18, 1.2 and 1.4].

Remark 3.1.5. To see how our approach relates to classical equivariant infinite
loop space theory, consider an indexing system 𝐼 ⊆ F𝐺 . By the discussion
after [Rub21, 3.9], we can associate to 𝐼 a so-called 𝑁∞-operad O in 𝐺-spaces,
and all 𝑁∞-operads arise this way; see also [GW18, BP21]. The main result of
[Mar24] connects space-valued Mackey-functors to 𝑁∞-algebras by showing
that Mack𝐼𝐺 (Spc) is equivalent to the Dwyer–Kan localization of the 1-category
of O-algebras in 𝐺-spaces at a certain class of equivariant weak equivalences.

Example 3.1.6. Specializing example Example 3.1.4 to the trivial group, we
obtain the extensive span pair (F , F ), where F is the category of finite sets. By
[BH21, C.1] there is an equivalence

NMonF (C) ≃ CMon(C)
between F -normed monoids in C and commutative monoids in C, defined as
functors F∗ → C satisfying the Segal condition.
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Example 3.1.7. Let F be an extensive ∞-category and let Ffold be the wide
subcategory whose morphisms are finite coproducts of fold maps

∐
𝑛 𝑥 → 𝑥

for 𝑥 ∈ F and 𝑛 ≥ 0. Then the pair (F,Ffold) is an extensive span pair, and
[BH21, C.5] provides an equivalence

NMon(F,Ffold ) (C) ≃ Fun× (Fop, CMon(C)) .
Example 3.1.8. Given a span pair 𝐹 = (F,F𝑁 ) and an object 𝑥 ∈ C, we may
consider the wide subcategory F/𝑥,𝑁 B F/𝑥 ×FF𝑁 of the slice F/𝑥 consisting
of those morphisms over 𝑥 that are contained in F𝑁 . We note that 𝐹/𝑥 :=
(F/𝑥 ,F/𝑥,𝑁 ) is again a span pair, which is (weakly) extensive if (F,F𝑁 ) is so. In
particular we may speak of 𝐹/𝑥-normed monoids in C.

Example 3.1.9. Let 𝑇 be any small∞-category, and let F [𝑇 ] be the∞-category
obtained by freely adjoining finite coproducts to 𝑇 , i.e. F [𝑇 ] is the full sub-
category of the ∞-category of presheaves spanned by finite coproducts of rep-
resentables. An orbital subcategory of 𝑇 [CLL23a, 4.2.2] is a wide subcategory
𝑃 ⊆ 𝑇 such that (F [𝑇 ], F [𝑃]) is a span pair. In this case, (F [𝑇 ], F [𝑃]) is always
extensive: indeed, pullbacks in F [𝑇 ] are also pullbacks in Fun(𝑇 op, Spc) as F [𝑇 ]
contains all representables, whence it suffices to check the compatibility axioms
between coproducts and pullbacks in Spc, which is straightforward.

In particular, if 𝑇 is any orbital category in the sense of [Nar16, 4.1] (i.e. 𝑇 is
orbital as a subcategory of itself ), then (F [𝑇 ], F [𝑇 ]) is extensive. Note that for
𝑇 = O𝐺 the orbit category of 𝐺 (i.e. the 1-category of finite transitive 𝐺-sets), we
precisely recover Example 3.1.4.

Remark 3.1.10. If 𝐹𝑇 B (F [𝑇 ], F [𝑇 ]) is the extensive span pair arising from an
orbital ∞-category 𝑇 , then our definition of 𝐹𝑇 -normed monoids fits into the
framework for algebraic structures defined by Segal conditions from [CH21]: We
can endow Span(F [𝑇 ]) with the structure of an algebraic pattern where the inert–
active factorization system is that given by the backwards and forwards maps,
and the objects of𝑇 are the elementary objects. Then a Segal Span(F [𝑇 ])-object
in C is a functor 𝑀 : Span(F [𝑇 ]) → C such that

𝑀
(∐

𝑖 𝑡𝑖
) ∼−−→∏𝑛

𝑖=1𝑀 (𝑡𝑖)
for all 𝑡𝑖 ∈ 𝑇 , which is equivalent to 𝑀 preserving finite products.

3.2 Normed ∞-categories and normed algebras

In this subsection we fix a weakly extensive span pair 𝐹 = (F,F𝑁 ). Specializing
Definition 3.1.1 to Cat∞ leads to the following definition:

Definition 3.2.1 (Bachmann). An 𝐹-normed ∞-category is an 𝐹-normed monoid
in Cat∞, i.e. a product-preserving functor C: Span𝑁 (F) → Cat∞. We denote
its contravariant functoriality by 𝑓 ∗ : C(𝑦) → C(𝑥) for morphisms 𝑓 : 𝑥 → 𝑦 in
F, and denote its covariant functoriality by 𝑓⊗ : C(𝑥) → C(𝑦) whenever 𝑓 is in
F𝑁 .
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Remark 3.2.2. When 𝐹 is actually an extensive span pair, our definition of a
normed ∞-category is identical to that of Bachmann [Bac22, 3.1].

Remark 3.2.3. Since the product in Span𝑁 (F) is the coproduct in F, a functorSpan𝑁 (F) → Cat∞ is an 𝐹-normed ∞-category if and only if its restriction to
Fop preserves finite products. We will sometimes refer to product-preserving
functors Fop → Cat∞ as F-∞-categories, and refer to the restriction of an 𝐹-
normed ∞-category C to Fop as the underlying F-∞-category of C. Similarly,
we may sometimes refer to 𝐹-normed ∞-categories as 𝑁 -normed F-∞-categories
whenever we wish to emphasize the collection of morphisms F𝑁 along which
we have norms.

Note that for 𝐹𝑇 = (F [𝑇 ], F [𝑇 ]), 𝑇 some orbital ∞-category, an F [𝑇 ]-∞-
category is equivalently a functor 𝑇 op → Cat∞ by the universal property of
finite coproduct completion. This is the definition of a 𝑇 -∞-category used e.g. in
[BDG+16,Nar16,CLL23a].

Notation 3.2.4. Given an 𝐹-normed structure on an ∞-category C, we will
denote the corresponding cocartesian and cartesian fibrations by

C⊗ −→ Span𝑁 (F), C⊗ −→ Span𝑁 (F)op.

We say that a morphism in C⊗ is inert if it is cocartesian over a backwards
morphism in Span𝑁 (F); similarly, a morphism in C⊗ is inert if it is cartesian
over a (reversed) backwards morphism in Span𝑁 (F)op.

Definition 3.2.5. Suppose C⊗, D⊗ → Span𝑁 (F) are 𝐹-normed ∞-categories.
An 𝐹-normed functor from C to D is a commutative triangle

C⊗ D⊗

Span𝑁 (F)

Φ

where Φ preserves cocartesian morphisms. We say that Φ is lax 𝐹-normed if it
instead only preserves inert morphisms. We write

Funlax
/Span𝑁 (F) (C⊗, D⊗) ⊆ Fun/Span𝑁 (F) (C⊗, D⊗)

for the full subcategory spanned by the lax 𝐹-normed functors.

Remark 3.2.6. In the non-parametrized case, i.e. the case 𝐹 = (F , F ), it follows
from [BHS22, 5.1.15] that this definition of lax symmetric monoidal functors
agrees with the more standard one, with F∗ in place of Span(F ).
Definition 3.2.7. An 𝐹-normed algebra in an 𝐹-normed ∞-category C is a lax
𝐹-normed functor from ∗⊗ = Span𝑁 (F) to C; in other words, it is a section of
the cocartesian fibration

C⊗ −→ Span𝑁 (F)
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that takes backward maps in Span𝑁 (F) to cocartesian morphisms. We write

NAlg𝐹 (C) B Funlax
/Span𝑁 (F) (Span𝑁 (F), C⊗)

for the ∞-category of 𝐹-normed algebras in C.

Remark 3.2.8. By an easy extension of [BHS22, 5.2.14], our definitions of
𝐹-normed ∞-categories and lax 𝐹-normed functors are equivalent to those of
Nardin and Shah [NS22] in the case where 𝐹 = 𝐹𝑇 for a so-called “atomic”
orbital ∞-category 𝑇 . In particular, the ∞-categories of 𝐹-normed algebras
are equivalent, cf. [BHS22, 5.3.17]. For extensive 𝐹 , our 𝐹-normed algebras are
also studied in [Bac22], as a generalization of the normed spectra introduced in
[BH21, 7.1].

We end this section by considering a construction of normed structures on
spans:

Construction 3.2.9. Since the functor Span : SpanPair→ Cat∞ preserves limits,
hence in particular finite products, any 𝐹-normed monoid in SpanPair gives
rise to an 𝐹-normed ∞-category by applying Span pointwise. Observe that an
𝐹-normed monoid in SpanPair is an 𝐹-normed ∞-category

C: Span𝑁 (F) −→ Cat∞
equipped with a subfunctor C𝑄 ⊆ C such that (C(𝑋 ), C𝑄 (𝑋 )) is a span pair for
every 𝑋 ∈ F and the induced functor 𝑚⊗ 𝑓 ∗ : C(𝑋 ) → C(𝑌 ) is a map of span
pairs for every morphism 𝑋

𝑓←− 𝑍 𝑚−→ 𝑌 in Span𝑁 (F). In this case, the composite

Span𝑄 (C) B Span ◦ (C, C𝑄 ) : Span𝑁 (F) −→ Cat∞
endows Span𝑄 (C) with an 𝐹-normed structure inherited from that of C.

The following result provides an explicit description of the cocartesian fibra-
tions associated to such normed structures:

Proposition 3.2.10. Let 𝑝 : C⊗ → Span𝑁 (F)op be a cartesian fibration corresponding
to an 𝐹-normed monoid in SpanPair. Then the cocartesian fibration Span𝑄 (C)⊗ →Span𝑁 (F) for the induced 𝐹-normed structure on spans from Construction 3.2.9 is given
by Span𝑄 (C)⊗ ≃ Span𝑄−fw(C⊗),
where (C⊗)𝑄−fw denotes the subcategory of maps that go to equivalences under 𝑝 and
fiberwise lie in C⊗ (–)𝑄 .

Proof. This is a special case of [HHLN23, 3.9]. □
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3.3 Norms on product-preserving functors

In this subsection we will construct a (low-tech) version of “parametrized Day
convolution” for ∞-categories of product-preserving functors. More precisely,
we will show the following:

Proposition 3.3.1. Let X be a cocomplete ∞-category with finite products, where the
product functor preserves colimits in each variable. Suppose 𝐹 = (F,F𝑁 ) is a weakly
extensive span pair, and consider an 𝐹-normed ∞-category C: Span𝑁 (F) → Cat∞
such that C(𝑋 ) has finite products for every 𝑋 ∈ F (but the morphisms in the diagram
need not preserve these).

(i) There is a functor

Q = Fun× (C(–),X) : Span𝑁 (F) −→ Ĉat∞
obtained by left Kan extension from C. This preserves finite products, and so defines
another 𝐹-normed ∞-category.

(ii) If C⊗ → Span𝑁 (F) is the cocartesian fibration for C, then 𝐹-normed algebras in
Q = Fun× (C(–),X) are equivalent to functors

𝐴 : C⊗ −→ X

such that

▶ for every 𝑋 ∈ F the restriction

𝐴𝑋 : C(𝑋 ) −→ X

of 𝐴 to the fiber over 𝑋 is a product-preserving functor,
▶ and for every morphism 𝑓 : 𝑋 → 𝑌 in F, viewed as a backward morphism inSpan𝑁 (F), the natural transformation

C(𝑌 ) C(𝑋 )

X

𝑓 ∗

𝐴𝑌 𝐴𝑋

exhibits 𝐴𝑋 as a left Kan extension of 𝐴𝑌 along 𝑓 ∗.

More precisely, NAlg𝐹 (Q) is equivalent to the full subcategory A⊆ Fun(C⊗,X) of
functors that satisfy these conditions, and for every 𝐴 ∈ F this equivalence fits into
a commutative diagram

NAlg𝐹 (Q) A.

Fun× (C(𝐴),X)ev𝐴

≃

res
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The key input to the construction is the following observation about left
Kan extensions of product-preserving functors:

Proposition 3.3.2. Suppose A and B are small ∞-categories with finite products,
and C is an ∞-category with small colimits and finite products such that the cartesian
product preserves colimits in each variable. If 𝐹 : A→ C is a product-preserving functor
and 𝑔 : A→ B is an arbitrary functor, then the left Kan extension 𝑔!𝐹 also preserves
finite products. In other words, left Kan extension restricts to a functor

𝑔! : Fun× (A, C) −→ Fun× (B, C) .
Remark 3.3.3. For 1-categories, a version of this result apparently goes back to
Lawvere’s thesis [Law04]. See also for instance [Day70, Appendix 2] or [BD77]
for generalizations to enriched categories and [Str14] for another variant and a
historical discussion.

Proof of Proposition 3.3.2. Our assumptions guarantee that 𝑔!𝐹 is computed by the
pointwise formula,

𝑔!𝐹 (𝑏) ≃ colimA/𝑏 𝐹 .

In particular, 𝑔!𝐹 (∗) is a colimit over A×B B/∗ ≃ A; since this has a terminal
object ∗ → ∗, we see

𝑔!𝐹 (∗) ≃ 𝐹 (∗) ≃ ∗.
For objects 𝑏1, 𝑏2 ∈ B, consider the functor

𝜋𝑏1,𝑏2 : A/𝑏1×𝑏2 −→ A/𝑏1 ×A/𝑏2

given by composition with the projections 𝑏1 × 𝑏2 → 𝑏𝑖 . We claim that this
functor has a right adjoint 𝑅 = 𝑅𝑏1,𝑏2 , given on a pair (Φ1,Φ2) of objects Φ𝑖 B
(𝑎𝑖 , 𝜙𝑖 : 𝑔(𝑎𝑖) → 𝑏𝑖) in A/𝑏𝑖 by 𝑅(Φ1,Φ2) = (𝑎1 × 𝑎2, 𝑟 (𝜙1, 𝜙2)), where 𝑟 (𝜙1, 𝜙2)
is defined as the composite

𝑔(𝑎1 × 𝑎2) → 𝑔(𝑎1) × 𝑔(𝑎2)
𝜙1×𝜙2−−−−−→ 𝑏1 × 𝑏2.

To see this, observe that for an object Ψ = (𝑥,𝜓 : 𝑔(𝑥) → 𝑏1 × 𝑏2) of A/𝑏1×𝑏2 the
mapping space MapA/𝑏1×𝑏2

(Ψ, 𝑅(Φ1,Φ2)) sits in a pullback diagram as follows:

MapA/𝑏1×𝑏2
(Ψ, 𝑅(Φ1,Φ2)) MapB/𝑏1×𝑏2

(𝜓, 𝑟 (𝜙1, 𝜙2)) {𝜓 }

MapA(𝑥, 𝑎1 × 𝑎2) MapB(𝑔(𝑥), 𝑔(𝑎1 × 𝑎2)) MapB(𝑔(𝑥), 𝑏1 × 𝑏2).

⌟ ⌟

𝑔 𝑟 (𝜙1,𝜙2 )◦−

Under the identification of MapA(𝑥, 𝑎1×𝑎2) with MapA(𝑥, 𝑎1) ×MapA(𝑥, 𝑎2) and
of MapB(𝑔(𝑥), 𝑏1 × 𝑏2) with MapB(𝑔(𝑥), 𝑏1) ×MapB(𝑔(𝑥), 𝑏2), the bottom map
turns into a product of the two maps

MapA(𝑥, 𝑎𝑖) 𝑔−−→ MapB(𝑔(𝑥), 𝑔(𝑎𝑖)) 𝜙𝑖◦−−−−→ MapB(𝑔(𝑥), 𝑏𝑖),
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and so by passing to fibers we obtain a natural equivalence

MapA/𝑏1×𝑏2
(Ψ, 𝑅(Φ1,Φ2)) ∼−−→ MapA/𝑏1

((𝑥, pr1𝜓 ),Φ1) ×MapA/𝑏2
((𝑥, pr2𝜓 ),Φ2) .

Since the target is canonically identified with MapA/𝑏1×A/𝑏2
(𝜋𝑏1,𝑏2Ψ, (Φ1,Φ2)),

this shows that 𝑅𝑏1,𝑏2 is the desired right adjoint.
Since right adjoints are cofinal, composition with 𝑅𝑏1,𝑏2 therefore induces an

equivalence

𝑔!𝐹 (𝑏1)×𝑔!𝐹 (𝑏2) ≃ colim(𝑎,𝑎′ ) ∈A/𝑏1×A/𝑏2
𝐹 (𝑎×𝑎′) −→ colim𝑥∈A/𝑏1×𝑏2

𝐹 (𝑥) ≃ 𝑔!𝐹 (𝑏1×𝑏2) .

Moreover, these right adjoints are compatible with composition in B, so for
maps 𝑏1 → 𝑐1, 𝑏2 → 𝑐2 we get a commutative square

𝑔!𝐹 (𝑏1) × 𝑔!𝐹 (𝑏2) 𝑔!𝐹 (𝑏1 × 𝑏2)

𝑔!𝐹 (𝑐1) × 𝑔!𝐹 (𝑐2) 𝑔!𝐹 (𝑐1 × 𝑐2) .

∼

∼

Taking 𝑐1 = 𝑏1 and 𝑐2 = ∗, we see in particular that projection to 𝑔!𝐹 (𝑏1) on
the left corresponds to composition with 𝑏1 × 𝑏2 → 𝑏1 on the right, so that the
canonical map 𝑔!𝐹 (𝑏1×𝑏2) → 𝑔!𝐹 (𝑏1) ×𝑔!𝐹 (𝑏2) is an equivalence. In other words,
the functor 𝑔!𝐹 is product-preserving, as required. □

Lemma 3.3.4. Suppose A1, . . . ,A𝑛 and B are ∞-categories with finite products. If
A B

∏
𝑖 A𝑖 , then left Kan extension along the projections 𝜋𝑖 : A → A𝑖 gives an

equivalence
Fun× (A,B) ∼−−→∏

𝑖

Fun× (A𝑖 ,B),
with inverse given by

(𝐹𝑖 : A𝑖 −→ B) ↦→
(∏
𝑖

𝐹𝑖 ◦ 𝜋𝑖 : A−→ B

)

Proof. For 𝑖 = 0 we indeed have Fun× (∗,B) ≃ ∗ as the only product-preserving
functor is the one constant at the terminal object. Suppose therefore that 𝑖 > 1.
The pointwise left Kan extension of 𝐹 : A→ B along 𝜋𝑖 , if it exists, is given at
𝑥 ∈ A𝑖 by taking a colimit over

A/𝑥 ≃ A𝑖/𝑥 ×
∏
𝑗≠𝑖

A𝑗

This has a terminal object, so the colimit (and hence the pointwise Kan extension)
always exists, and is given by

(𝜋𝑖,!𝐹 ) (𝑥) ≃ 𝐹 (∗, . . . , ∗, 𝑥, ∗, . . . , ∗) .
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The functor we claim is an equivalence is the composite

Fun× (A,B) −→∏
𝑖

Fun× (A,B) ∏
𝑖 𝜋𝑖,!−−−−→

∏
𝑖

Fun× (A𝑖 ,B) .
Since Fun× (A,B) has finite products (computed pointwise), this functor has a
right adjoint, given by

∏
𝑖

Fun× (A𝑖 ,B)
∏
𝜋∗𝑖−−−→

∏
𝑖

Fun× (A,B) ×−−→ Fun× (A,B) .
To see that this adjunction is in fact an equivalence, it suffices to observe that for
𝐹𝑖 ∈ Fun× (A𝑖 ,B) we have(

𝜋 𝑗,!

(∏
𝑖

𝐹𝑖 ◦ 𝜋𝑖
))
(𝑥) ≃ 𝐹 𝑗 (𝑥) ×

∏
𝑖≠𝑗

𝐹𝑖 (∗) ≃ 𝐹 𝑗 (𝑥)

and that for 𝐹 ∈ Fun× (A,B) we have

𝐹 (𝑥1, . . . , 𝑥𝑛) ∼−−→
∏
𝑖

(𝜋𝑖,!𝐹 ) (𝑥𝑖),

since (𝑥1, . . . , 𝑥𝑛) is the finite product

(𝑥1, ∗, · · · ∗) × (∗, 𝑥2, ∗, . . . , ∗) × · · · (∗, . . . , ∗, 𝑥𝑛)

in A. □

Remark 3.3.5. Let R be any collection of diagram shapes containing both
the empty set and the two-point set. Then the same argument shows that the
categories of R-shaped limit preserving functors satisfy FunR-lim(∏𝑛

𝑖=1 A𝑖 ,B) ≃∏𝑛
𝑖=1 FunR-lim(A𝑖 ,B).

We now come to our main construction:

Construction 3.3.6. Let Xbe a cocomplete ∞-category with finite products,
such that the cartesian product preserves colimits in each variable, and let 𝐹 : I→Cat∞ be a functor such that 𝐹 (𝑖) has finite products for all 𝑖 ∈ I (but these are
not necessarily preserved by the morphisms in the diagram).

Let 𝑝 : E→ Ibe the cartesian fibration for the functor

Fun(𝐹 (–),X) : Iop −→ Ĉat∞,
and note that by [GHN17, 7.3] there is a natural equivalence

Fun/I(K, E) ≃ Fun(K×I F,X), (7)

where F→ I is the cocartesian fibration for 𝐹 . Here 𝑝 is also a cocartesian
fibration, since we can left Kan extend functors to X. Moreover, if we define E′
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as the full subcategory containing the functors 𝐹 (𝑖) → X that preserve products
for all 𝑖, then Proposition 3.3.2 implies that E′ → I is again a cocartesian
fibration. Note that for 𝑓 : 𝑖 → 𝑗 in I, a morphism 𝜙 in Eover 𝑓 corresponds
under the equivalence (7) to a functor [1] ×I F→ X. Here the source is the
cocartesian fibration over [1] encoding the functor 𝐹 (𝑓 ) : 𝐹 (𝑖) → 𝐹 ( 𝑗) and so
can be described as the pushout 𝐹 (𝑖) × [1] ⨿𝐹 (𝑖 )×{1} 𝐹 ( 𝑗), see [GHN17, 3.1]. We
can thus identify the morphism 𝜙 with a natural transformation

𝐹 (𝑖) 𝐹 ( 𝑗)

X,

𝐹 (𝑓 )

and 𝜙 is a cocartesian morphism if and only if this diagram exhibits 𝐹 ( 𝑗) → X

as a left Kan extension of 𝐹 (𝑖) → X along 𝐹 (𝑓 ).
Proof of Proposition 3.3.1. To prove that Q is 𝐹-normed we must show that given
a finite coproduct 𝑋 ≃ ∐

𝑖 𝑋𝑖 in F, with 𝜄 𝑗 : 𝑋 𝑗 → 𝑋 the summand inclusions,
the functor

(𝜋 𝑗,!) 𝑗 : Fun× (C(𝑋 ),X) −→∏
𝑗

Fun× (C(𝑋 𝑗 ),X),
where 𝜋 𝑗 B C(𝜄 𝑗 ), is an equivalence. This is the content of Lemma 3.3.4.

Part (ii) follows immediately from Construction 3.3.6 specialized to I =Span𝑁 (F): note that the straightening of the cocartesian fibration E → I

dicussed there agrees by definition with the functor 𝑋 ↦→ Fun(C(𝑋 ),X) with
functoriality via left Kan extension, so that the cocartesian subfibration E′ → I

classifies the functor Fun× (C(−),X) in question. □

Observation 3.3.7. In the situation above, suppose the functor 𝑓 ∗ : C(𝑌 ) →
C(𝑋 ) has a right adjoint 𝑓∗ for every backwards map 𝑓 . Then the condition for
𝐴 : C⊗ → X to define an 𝐹-normed algebra in Q can be rephrased as requiring
an equivalence

𝐴𝑋 ≃ 𝐴𝑌 ◦ 𝑓∗.
In this case C⊗ also has cartesian morphisms over backwards maps, and we can
phrase this condition more precisely as: If �̄� is in C⊗𝑋 and 𝜙 : 𝑌 → �̄� is cartesian
over a backwards map in Span𝑁 (F), then 𝐴(𝜙) is an equivalence.

In the special case 𝐹 = (F , F ), the resulting normed structure on Fun× (C,X)
corresponds by Example 3.1.6 to a symmetric monoidal structure. We will now
compare it to the Day convolution monoidal structure:

Proposition 3.3.8. Let X be a cocomplete ∞-category with finite products, where the
product functor preserves colimits in each variable. Suppose C: Span(F ) → Cat∞ is a
symmetric monoidal ∞-category whose underlying ∞-category has finite products.
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▶ The symmetric monoidal structure on Fun× (C,X) from Proposition 3.3.1 is a full
symmetric monoidal subcategory of the Day convolution on Fun(C,X).

▶ If X is presentable and the tensor product on C preserves finite products in each
variable, it is moreover a symmetric monoidal localization.

The proof will require some preparations.

Lemma 3.3.9. Let C, D→ I be cocartesian fibrations, and let 𝐹 : C→ D be a
functor over I. Then the following are equivalent:

(i) 𝐹 preserves cocartesian edges.

(ii) For every cocartesian edge [1] → C the composite [1] → D is the relative left
Kan extension (over I) of its restriction to 0.

(iii) For every 𝑖 ∈ Iand every I𝑖/ → Cover I landing in the subcategory of cocartesian
edges, the composite I𝑖/ → D is relatively left Kan extended from id𝑖 ∈ I𝑖/.

Proof. Recall that if J→ I is arbitrary and Jhas an initial object ∅, then the
relative left Kan extension along {∅} ↩→ J exists for every cocartesian fibration
E → I, and J → E is relatively left Kan extended if and only if it factors
through cocartesian edges [Lur24, Tag 043G]. The equivalence between (1) and
(2) follows immediately, while for the equivalence between (1) and (3) it suffices
to observe in addition that every cocartesian edge 𝑥 → 𝑦 of C is contained in
the image of some cocartesian I𝑖/ → C: namely, if 𝑖 is the image of 𝑥 , then the
relative left Kan extension of 𝑥 along {∅} ↩→ I𝑖/ has the required properties. □

Proposition 3.3.10. Let C: Span(F ) → Cat∞ be a symmetric monoidal∞-category,
let Xbe a cocomplete category with finite products such that the product preserves colimits
in each variable, and let E′ → Span(F ) denote the cocartesian fibration classifying the
functor Fun× (C(−),X) with functoriality via left Kan extension.

If O⊗ → Span(F ) is any symmetric monoidal ∞-category, then C⊗ ×Span(F ) O⊗
has finite products, and a functor O⊗ → E′ over Span(F ) is lax symmetric monoidal if
and only if the functor 𝐹 : C⊗ ×Span(F ) O⊗ → X associated to 𝐹 via (7) preserves finite
products.

Proof. We first recall from [Hau23, 2.2.6] that C⊗ and O⊗ have finite products
and that the maps C⊗ → Span(F ) and O⊗ → Span(F ) preserve them; thus,
C⊗ ×Span(F ) O⊗ again has finite products, which are computed componentwise.
The cited reference moreover shows that any 𝑋 ∈ On is the product of its
cocartesian pushforwards along the backwards maps n← 1 = 1; thus, we see that
a functor C⊗ ×Span(F ) O⊗ → X preserves products if and only if its restriction to
C⊗ ×Span(F ) (F/n)op does so for every map (F/n)op → O⊗ over Span(F ) landing
in cocartesian edges.

Write now E → Span(F ) for the cocartesian fibration from Construc-
tion 3.3.6 classifying Fun(C(−),X), of which E′ → Span(F ) is a subfibration.
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We then have for every n ∈ F and (F/n)op → O⊗ over Span(F ) a commutative
diagram

Fun/Span(F ) (O⊗, E) Fun(C⊗ ×Span(F ) O⊗,X)

Fun/Span(F ) ((F/n)op, E
) Fun(C⊗ ×Span(F ) (F/n)op,X

)

Fun({𝑂}, Fun(Cn,X)
) Fun(C⊗ ×Span(F ) {𝑂}︸               ︷︷               ︸

=Cn

,X
)

∼

∼

∼

(8)

where the horizontal equivalences are as in Construction 3.3.6 and the vertical
maps are the restrictions. By the previous lemma applied to I= F op, 𝐹 : O⊗ → E

preserves inert edges if and only if restriction to (F/n)op is contained in the
image of the left adjoint of the lower left vertical map for every (F/n)op → O⊗

factoring through cocartesian edges. It follows formally from commutativity
of (8) that this is equivalent to the restriction of the corresponding functor 𝐹 to
C⊗ ×Span(F ) (F/n)op being left Kan extended from Cn; it remains to show that if
𝐹 factors through E′ ⊆ E (i.e. if the restriction of 𝐹 to C⊗ ×Span(F ) {𝑃} preserves
products for every 𝑃 ∈ O⊗), then the latter condition is in turn equivalent to the
restriction of 𝐹 to C⊗ ×Span(F ) (F/n)op → X preserving products.

Proposition 3.3.2 shows that the left Kan extension of any product-preserving
functor Cn → X to C⊗ ×Span(F ) (F/n)op is again product-preserving, so the
above condition is indeed sufficient for 𝐹 to preserve products. To see that it
is also necessary, it will suffice to show that any product-preserving functor
𝐺 : C⊗ ×Span(F ) (F/n)op → Xwhose restriction to Cn again preserves products
is left Kan extended from its restriction to Cn.

If we let 𝑗 : Cn ↩→ C⊗ ×Span(F ) (F/n)op denote the inclusion, then the counit
𝑗! 𝑗
∗𝐺 → 𝐺 is an equivalence for any (𝑋, id𝑛) ∈ C⊗ ×Span(F ) (F/n)op by full faith-

fulness of 𝑗 . We claim that it is in fact also an equivalence for every (𝑋, 𝑖 : 1→ n);
with this established, the claim will follow as both 𝐺 (by assumption) and 𝑗! 𝑗

∗𝐺
(by the above) preserve products and every object of C⊗ ×Span(F ) (F/n)op decom-
poses as a finite product of objects (𝑋, 1→ n).

To prove the claim, note that for any 𝑋1, . . . , 𝑋𝑛 ∈ C1

Cn ∋ (𝑋1, . . . , 𝑋𝑛; idn) ≃
𝑛∏
𝑘=1

(𝑋𝑘 , 𝑘 : 1 −→ n);

thus, the product of the counits 𝑗! 𝑗∗𝐺 (𝑋𝑘 , 𝑘 : 1 → n) → 𝐺 (𝑋𝑘 , 𝑘 : 1 → n) is an
equivalence as 𝐺 and 𝑗! 𝑗

∗𝐺 preserve products. Specializing to 𝑋𝑘 = ∗ for 𝑘 ≠ 𝑖,
it will therefore suffice that 𝐺 (∗, 𝑘 : 1→ n) ≃ ∗ ≃ 𝑗! 𝑗∗𝐺 (∗, 𝑘 : 1→ n) for every
1 ≤ 𝑘 ≤ 𝑛. For this, we further set 𝑋𝑖 = ∗ to see that

𝑛∏
𝑘=1

𝐺 (∗, 𝑘 : 1 −→ n) ≃ 𝐺 (∗, idn) ≃ 𝑗! 𝑗∗𝐺 (∗, idn) ≃
𝑛∏
𝑘=1

𝑗! 𝑗
∗𝐺 (∗, 𝑘 : 1 −→ n) .
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As the restriction of𝐺 to Cn preserves finite products,𝐺 (∗, idn) is terminal; since
a product is terminal if and only if all of its factors are, this completes the proof
of the claim and hence of the proposition. □

Proof of Proposition 3.3.8. Recall first that the Day convolution of 𝐹,𝐺 : C→ X is
given by the left Kan extension of

C× C
𝐹×𝐺−−−→ X×X

∏
−→ X (9)

along ⊗ : C× C→ C [Lur17, 2.2.6.17]. If 𝐹 and𝐺 preserve products, so does (9),
whence so does the Day convolution by Proposition 3.3.2. On the other hand,
the unit is given by the left Kan extension of ∗ along {1} ↩→ C, and the same
argument shows that this is again product preserving, i.e. the Day convolution
structure indeed restricts to Fun× (C,X). Moreover, we saw in [CHLL24, 3.3.4]
that this is also a symmetric monoidal localization when X is presentable and
the tensor product on C preserves products in each variable.

It remains to compare this symmetric monoidal structure to the one above,
for which we will show that both represent the same functor in the ∞-category
of symmetric monoidal ∞-categories and lax symmetric monoidal functors.

For this we first recall that Day convolution is defined in such a way that
lax symmetric monoidal functors O⊗ → Fun(C,X)⊗Day correspond bijectively
to lax symmetric monoidal functors C⊗ ×Span(F ) O⊗ → X×, which are in turn
identified with product-preserving functors C⊗×Span(F )O⊗ → X[CHLL24, 2.4.5
and 2.4.6]. Thus, functors into the restricted Day convolution on Fun× (C,X)
correspond bijectively to product-preserving functors C⊗ ×Span(F ) O⊗ → X such
that in addition the restriction Cn ≃ C⊗ ×Span(F ) {𝑂} → Xpreserves products
for all 𝑛 ≥ 0, 𝑂 ∈ On.

On the other hand, we have seen in Construction 3.3.6 that functors 𝐹 : O⊗ →Fun× (C,X)⊗ over Span(F ) correspond to functors

𝐹 : C⊗ ×Span(F ) O⊗ −→ X (10)

that preserve products when restricted to each C⊗ ×Span(F ) {𝑂}, and Proposi-
tion 3.3.10 shows that such a functor 𝐹 is indeed lax symmetric monoidal if and
only if 𝐹 preserves finite products. □

3.4 The cartesian normed structure on F

Consider an extensive ∞-category Fwith pullbacks, taken to be fixed through-
out this subsection. We will see that we may equip Fwith a “cartesian” normed
structure whenever F is suitably locally cartesian closed.

Notation 3.4.1. We define a parametrized version Fof Fas the functor

F: Fop → Cat∞, 𝑋 ↦→ F/𝑋 ,

with functoriality coming from pullbacks. Since F is extensive, this functor
preserves products, and hence defines an F-∞-category.
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Definition 3.4.2. Given a weakly extensive subcategory F𝑁 ⊆ F, we say that
F is 𝑁 -locally cartesian closed if the functor 𝑓 ∗ : F/𝑌 → F/𝑋 given by pullback
along 𝑓 : 𝑋 → 𝑌 in F𝑁 has a right adjoint 𝑓∗.

Proposition 3.4.3. Let F𝑁 ⊆ Fbe a weakly extensive subcategory and suppose F is
𝑁 -locally cartesian closed. Then the following hold:

▶ The pair (Ar(F), Ar(F)𝑁−pb) is a span pair, where Ar(F)𝑁−pb consists of the
pullback squares along morphisms in F𝑁 .

▶ The functor ev1 : Ar(F) → F is a morphism of span pairs.

▶ The functor

Span(ev1)op : Span𝑁−pb(Ar(F))op −→ Span𝑁 (F)op

is the cartesian fibration for an 𝑁 -normed structure on F.

Proof. Consider the cocartesian fibration

ev1 : Ar(F) −→ F

classified by the functor F/(–) : F→ Cat∞, with functoriality given by composi-
tion. By assumption we have right adjoints (given by pullback) for morphisms
in F𝑁 , and by unpacking the definitions and applying the pasting lemma for
pullbacks we see that these satisfy base change. Applying Proposition 2.1.6 to
this situation, we obtain the first two bullet points, and we get that Span(ev1)op

is a cocartesian fibration. To see that it is also a cartesian fibration, it suffices
by [Lur09, 5.2.2.4op] to show that it is a locally cartesian fibration, which we
can check separately over Fand F

op
𝑁 . Over F𝑁 we get the cocartesian fibration

for the functor F/(–) : F
op
𝑁 → Cat∞, with functoriality given by pullback; since

these pullback functors have right adjoints due to 𝑁 -locally cartesian closedness
of F, it is also a cartesian fibration over F

op
𝑁 . On the other hand, over Fwe

get the functor ev1 : Ar(F) → F. Since this is the cartesian fibration for F, we
indeed get the cartesian fibration for an 𝐹-normed structure on F. □

Notation 3.4.4. In the context of Proposition 3.4.3, we write

F× B Span𝑁−pb(Ar(F))op

and refer to it as the cartesian normed structure on F. In the non-parametrized
case, this construction indeed gives the cartesian fibration for the cartesian
symmetric monoidal structure on F by [CHLL24, 3.1.4]. We expect that our
construction more generally agrees with [NS22, 2.4.1] whenever the two frame-
works overlap; however, as this won’t be relevant for the purposes of this paper,
we will not prove this here.
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4 Normed rings

In this section, we introduce the notion of a normed ring and show it may
equivalently be encoded as a space-valued Tambara functor.

4.1 Normed semirings

We want to consider notions of normed semirings where we have two potentially
different families of (“additive” and “multiplicative”) norms, generalizing the
addition and multiplication operations that exist in an ordinary semiring. To
capture such structures, we introduce the following definition:

Definition 4.1.1. A semiring context 𝐹 = (F,F𝑀 ,F𝐴) consists of an extensive
∞-category F together with two weakly extensive subcategories F𝑀 and F𝐴
such that:

(1) Fhas pullbacks.

(2) For 𝑚 : 𝑋 → 𝑌 in F𝑀 , the pullback functor 𝑚∗ : F/𝑌 → F/𝑋 has a right
adjoint𝑚∗ : F/𝑋 → F/𝑌 which preserves morphisms whose image in F lies
in F𝐴.

We write 𝐹𝑀 B (F,F𝑀 ) and 𝐹𝐴 B (F,F𝐴) for the resulting two weakly
extensive span pairs.

Observation 4.1.2. Every semiring context is a bispan triple:

▶ The Beck–Chevalley condition for the functors𝑚∗ is automatically satisfied,
since it may be checked after passing to left adjoints.

▶ For 𝑚 : 𝑋 → 𝑌 in F𝑀 , the functor 𝑚∗ : F/𝑋 → F/𝑌 preserves terminal
objects, hence it sends F𝐴

/𝑋 into F𝐴
/𝑌 .

Example 4.1.3. When F𝐴 = F≃, the triple (F,F𝑀 ,F≃) is a semiring context if
and only if F is extensive, admits pullbacks, and is 𝑀-locally cartesian closed, in
the sense of Definition 3.4.2.

Example 4.1.4. Let Fbe an extensive∞-category that is locally cartesian closed.
Then the triple (F,F,F) is a semiring context.

Example 4.1.5. For a finite group𝐺 , the category F𝐺 of finite𝐺-sets is extensive
and locally cartesian closed, so that the triple (F𝐺 , F𝐺 , F𝐺 ) is a semiring con-
text. More generally we obtain a semiring context (F𝐺 , 𝐼 , F𝐺 ) for every weakly
extensive subcategory 𝐼 ⊆ F𝐺 .

We fix a semiring context 𝐹 = (F,F𝑀 ,F𝐴). Our goal in the rest of this
subsection is to construct the ∞-category NRig𝐹 (X) of 𝐹-normed semirings in
X for suitable choices of ∞-categories X. We start by constructing a certain
𝐹𝑀-normed ∞-category Span𝐴 (F) of spans in F.
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Construction 4.1.6. As Fadmits pullbacks, the evaluation map ev1 : Ar(F) → F

is a cartesian fibration, classifying the functor F: Fop → Cat∞ from Nota-
tion 3.4.1. Since morphisms in F𝐴 are closed under base change, we obtain a
functor

Fop −→ SpanPair, 𝑋 ↦→ (F/𝑋 ,F/𝑋,𝐴)
where (F/𝑋 ,F/𝑋,𝐴) is the span pair from Example 3.1.8; we define the F-∞-
category Span𝐴 (F) by composing with the functor Span : SpanPair → Cat∞.
Since limits in SpanPair are computed in Cat∞ and Span(–) preserves limits, this
is indeed an F-∞-category.

Lemma 4.1.7. The 𝐹𝑀-normed ∞-category F from Proposition 3.4.3 induces, via
Construction 3.2.9, an 𝐹𝑀-normed structure on Span𝐴 (F).
Proof. Equipping each F/𝑋 with the span pair structure (F/𝑋 ,F/𝑋,𝐴) from Con-
struction 4.1.6, the functors𝑚∗ 𝑓 ∗ : F/𝑋 → F/𝑌 are morphisms of span pairs by
our assumptions on 𝐹 , hence we obtain an 𝐹𝑀-normed ∞-category Span𝐴 (F)⊗
using Construction 3.2.9. □

Definition 4.1.8. Let X be a cocomplete ∞-category with finite products,
such that the cartesian product preserves colimits in each variable. We defineNMon𝐹𝐴 (X) to be the 𝐹𝑀-normed ∞-category Fun× (Span𝐴 (F),X) obtained
by applying Proposition 3.3.1 to the 𝐹𝑀-normed structure on Span𝐴 (F) from
Construction 4.1.6.

Note that the value ofNMon𝐹𝐴(X) at𝑋 ∈ Fis the∞-category of (F/𝑋 ,F/𝑋,𝐴)-
normed monoids in X.

Example 4.1.9. Combining Proposition 3.3.8 with [CHLL24, 3.3.5], we see
that when X is a cartesian closed presentable ∞-category, then the symmetric
monoidal structure on NMonF (X) ≃ CMon(X) from Definition 4.1.8 agrees with
the “standard” one constructed in [GGN15].

Remark 4.1.10. Let 𝑓 : 𝑋 → 𝑌 be any map in F. By [BH21, C.21(2)], the
adjunction 𝑓! : F/𝑋 ⇄ F/𝑌 : 𝑓 ∗ induces a “wrong way” adjunction

𝑓 ∗ : Span𝐴 (F/𝑌 ) ⇄ Span𝐴 (F/𝑋 ) : 𝑓!.

The underlying F-∞-category of NMon𝐹𝐴 (X) therefore admits the following
alternative description: it is given by the composite

Fop Span𝐴 (F/– )−−−−−−−−−→ (Cat×∞)op Fun× (–,X)−−−−−−−−→ Cat∞,
i.e. its functoriality is given via restriction along pushforwards.

Remark 4.1.11. If X is presentable and (F,F𝐴) = (F [𝑇 ], F [𝑃]) for a small
∞-category 𝑇 and a left-cancellable orbital subcategory 𝑃 ⊆ 𝑇 consisting of
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truncated maps, then the F-∞-category NMon𝐹𝐴 (X) is studied in [CLL24, §9.2]
under the name Mack𝑃𝑇 (X). Corollary 9.9 of said article establishes a universal
property for this F-∞-category, and shows that whenever 𝑃 is a so-called
atomic orbital subcategory it agrees with the F-∞-category CMon𝑃𝑇 (X𝑇 ) of
[CLL23a, §4.8]. In particular, if in addition 𝑃 = 𝑇 , this further agrees with
Nardin’s CMon𝑇 (X𝑇 ) [Nar16, 4.9].

Definition 4.1.12. Let X be as in Definition 4.1.8. An 𝐹-normed semiring in X is
an 𝐹𝑀-normed algebra in NMon𝐹𝐴 (X); we write

NRig𝐹 (X) B NAlg𝐹𝑀 (NMon𝐹𝐴 (X)) .
Example 4.1.13. Let 𝐹 = (F , F , F ). Combining Examples 3.1.6 and 4.1.9, we see
that NRig𝐹 (X) agrees with the ∞-category Rig

E∞ (X) of E∞-semirings consid-
ered by Gepner, Groth, and Nikolaus [GGN15, 7.1].

4.2 The Lawvere theory of normed semirings

Let 𝐹 = (F,F𝑀 ,F𝐴) be a semiring context. Since 𝐹 is in particular a bispan triple
by Observation 4.1.2, we may form its bispan category Bispan𝑀,𝐴 (F). Our goal
in this subsection is to show that the ∞-category Bispan𝑀,𝐴 (F) is the Lawvere
theory for 𝐹-normed semirings: for any ∞-category X satisfying the conditions
from Definition 4.1.8, the ∞-category of 𝐹-normed semirings in X is equivalent
to the ∞-category of product-preserving functors Bispan𝑀,𝐴 (F) → X. This
in particular allows us to think of an 𝐹-normed semiring 𝑅 in X as a family of
objects 𝑅(𝑋 ) for all 𝑋 ∈ Fequipped with restrictions 𝑓 ∗ : 𝑅(𝑌 ) → 𝑅(𝑋 ), additive
norms 𝑎⊕ : 𝑅(𝑋 ) → 𝑅(𝑌 ), and multiplicative norms𝑚⊗ : 𝑅(𝑋 ) → 𝑅(𝑌 ), which
satisfy various compatibility relations exhibited by the respective composition
laws in Bispan𝑀,𝐴 (F).

We start with some preliminary statements.

Proposition 4.2.1. The 𝐹𝑀-normed structure on Span𝐴 (F) induced by the cartesian
𝐹𝑀-normed structure on F is given by

Span𝐴 (F)⊗ ≃ Bispan𝑀−pb,𝐴−fw(Ar(F)) = Span𝐴−fw(Span𝑀−pb(Ar(F))op)

where Ar(F)𝑀−pb denotes the wide subcategory of Ar(F) whose morphisms are pullback
squares over F𝑀 , and Span𝑀−pb(Ar(F))𝐴−fw denotes the subcategory of morphisms
whose image under ev1 is an equivalence in Span𝑀 (F) and whose forward part lives
over F𝐴 .

Proof. This follows by combining Proposition 3.2.10 with the description of F×
from Proposition 3.4.3. □
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Explicitly this means a morphism in Span𝐴 (F)⊗ is represented by a diagram

𝑋 𝑌 𝑋 ′ 𝑋 ′′

𝑆 𝑇 𝑆 ′ 𝑆 ′

⌟
𝑎

𝑚

with𝑚 in F𝑀 and 𝑎 in F𝐴; the cocartesian fibration to Span𝑀 (F) is given by
restricting to the bottom row.

Example 4.2.2. For the semiring context 𝐹 = (F,F𝑀 ,F≃) from Example 4.1.3,
we obtain the 𝐹𝑀-normed structure on Fop given by

Span𝑀−pb(Ar(F))op ≃ (F×)op.

Moreover, the underlying F-∞-category of NMon𝑇𝐴 (X) is the F-∞-category

XFB Fun× (Fop,X) = Fun× (−,X) ◦Fop

of F-objects in X.

Corollary 4.2.3. The∞-category NRig𝐹 (X) of 𝐹-normed semirings in X is naturally
equivalent to the full subcategory R ⊆ Fun(Bispan𝑀−pb,𝐴−fw(Ar(F)),X) spanned by
functors

Φ : Bispan𝑀−pb,𝐴−fw(Ar(F)) −→ X

such that

(1) For every object 𝐸 → 𝑋 in Bispan𝑀−pb,𝐴−fw(Ar(F)), where 𝐸 decomposes as a
coproduct

∐𝑛
𝑖=1 𝐸𝑖 in F, evaluating Φ at the morphisms

𝐸 𝐸𝑖 𝐸𝑖 𝐸𝑖

𝑋 𝑋 𝑋 𝑋

⌟ (11)

gives an equivalence

Φ(𝐸 −→ 𝑋 ) ∼−−→
𝑛∏
𝑖=1

Φ(𝐸𝑖 −→ 𝑋 ) .

(2) Φ takes morphisms of the form

𝐸 𝐸 𝐸 𝐸

𝑌 𝑋 𝑋 𝑋

⌟ (12)

in Bispan𝑀−pb,𝐴−fw(Ar(F)) to equivalences in X.
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Moreover, for every 𝑋 ∈ F this equivalence fits into a commutative diagram

NRig𝐹 (X) R

Fun× (Span𝐴 (F/𝑋 ),X)
ev𝐴

≃

𝜄∗𝑋

(13)

where 𝜄𝑋 is induced by (F/𝑋 , (F/𝑋 )≃,F/𝑋,𝐴) ↩→ (Ar(F), Ar(F)𝑀−pb, Ar(F)𝐴−fw).

Proof. In light of Proposition 4.2.1, we only have to show that the description of
the full subcategory R is equivalent to the description given in Proposition 3.3.1.

Since products in Span𝐴 (F/𝑋 ) are given by coproducts in F, the first condi-
tion amounts to asking for the restriction

Φ𝑋 : Span𝐴 (F/𝑋 ) −→ X

of Φ to preserve products for every𝑋 ∈ F, which is the first condition formulated
in Proposition 3.3.1.

We now claim that (12) defines a cartesian edge over 𝑌 ← 𝑋 = 𝑋 ; Observa-
tion 3.3.7 will then immediately show that our second condition is indeed equiva-
lent to the second condition of Proposition 3.3.1. For this we observe that restrict-
ing in the target to Fop = Spaneq(F) recovers the map Span𝐴−fw(Ar(F)) → Fop

classifying Span𝐴 (F). The subfibration Ar(F)op → Fop is both cartesian and
cocartesian, with cartesian edges given by the squares in question (the cocartesian
edges of Ar(F) → F). We therefore want to show that this is still carte-
sian in Span𝐴−fw(Ar(F)). However, this simply means that the adjunction
𝑓 ∗ : (F/𝑋 )op ⇄ (F/𝑌 )op : 𝑓! ought to extend to Span𝐴 (F/𝑋 ) ⇄ Span𝐴 (F/𝑌 ),
which was observed in Remark 4.1.10 above. □

Theorem 4.2.4. Composition with ev0 : Bispan𝑀−pb, 𝐴−fw(Ar(F))→Bispan𝑀,𝐴(F)
induces an equivalence

NRig𝐹 (X) ∼−−→ Fun× (Bispan𝑀,𝐴 (F),X)
fitting into commutative diagrams

NRig𝐹 (X) Fun× (Bispan𝑀,𝐴 (F),X)

Fun× (Span𝐴 (F/𝑋 ),X)

≃

ev𝑋
𝑝∗𝑋

(14)

where 𝑝𝑋 is induced by the forgetful map (F/𝑋 , (F/𝑋 )≃,F/𝑋,𝐴) → (F,F𝑀 ,F𝐴).
Proof. By [CHLL24, 4.2.2], the functor ev0 on bispans is a localization. Let𝑊
be the class of morphisms it takes to equivalences, which we can immediately
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simplify to those of the form

𝑋 𝑋 𝑋 𝑋

𝑆 𝑇 𝑆 ′ 𝑆 ′,

⌟

and let 𝑆 ⊆𝑊 be the morphisms of the form (12). Arguing as in the proof of
[CHLL24, 4.3.1], we see that a functor that inverts 𝑆 must invert all of𝑊 . From
Corollary 4.2.3 we know that an 𝐹-normed semiring inverts the morphisms
in 𝑆 , and it therefore factors through the localization. All that remains for
the equivalence NRig𝐹 (X) ≃ Fun× (Bispan𝑀,𝐴 (F),X) is to show that a functor
Φ : Bispan𝑀,𝐴 (F) → X preserves products if and only if the composite Ψ B
Φ ◦ ev0 satisfies

Ψ(𝐸 −→ 𝑋 ) ∼−−→
∏
𝑖

Ψ(𝐸𝑖 −→ 𝑋 )

for 𝐸 ≃∐
𝑖 𝐸𝑖 . Since the product in Bispan𝑀,𝐴 (F) is given by the coproduct in

Fby Proposition 2.3.5, the condition for Ψ is immediate if Φ preserves products.
Conversely, for any coproduct decomposition 𝐸 ≃ ∐

𝐸𝑖 , we can apply the
condition for Ψ with 𝑋 = 𝐸 to conclude that Φ preserves this product.

Finally, the commutativity of (14) follows at once from the commutativity
of (13) and the observation 𝑝𝑋 = ev0 ◦ 𝜄𝑋 . □

Remark 4.2.5. By Theorem 4.2.4, an 𝐹-normed semiring in Xmay be identified
with a product-preserving functor 𝑅 : Bispan𝑀,𝐴 (F) → X, and thus gives rise
to maps 𝑓 ∗ : 𝑅(𝑌 ) → 𝑅(𝑋 ), 𝑎⊕ : 𝑅(𝑋 ) → 𝑅(𝑌 ) and 𝑚⊗ : 𝑅(𝑋 ) → 𝑅(𝑌 ) for
morphisms 𝑓 , 𝑎,𝑚 : 𝑋 → 𝑌 in F such that 𝑎 ∈ F𝐴 and 𝑚 ∈ F𝑀 . Each of these
classes of maps are compatible with composition in F. Furthermore, given
pullback squares

𝑋 ′ 𝑋

𝑌 ′ 𝑌

𝑎′

𝑔

⌟
𝑎

𝑓

and
𝑋 ′ 𝑋

𝑌 ′ 𝑌

𝑚′

𝑔

⌟
𝑚

𝑓

with 𝑎 ∈ F𝐴 and𝑚 ∈ F𝑀 , the composition relations in Bispan𝑀,𝐴 (F) give rise
to relations 𝑓 ∗𝑎⊕ ≃ 𝑎′⊕𝑔∗ and 𝑓 ∗𝑚⊗ ≃ 𝑚′⊗𝑔∗ of maps 𝑅(𝑋 ) → 𝑅(𝑌 ′). Finally,
given morphisms 𝑎 : 𝑋 → 𝑌 in F𝐴 and𝑚 : 𝑌 → 𝑍 in F𝑀 , we may consider their
associated “distributivity diagram” [EH23, 2.4.1]

𝑋 𝑚∗𝑚∗(𝑋 ) 𝑚∗(𝑋 )

𝑌 𝑍,

𝑎 𝑏′

𝑚′𝑒

⌟
𝑏=𝑚∗ (𝑎)

𝑚

where 𝑒 is the counit of the adjunction𝑚∗ ⊣𝑚∗; we then obtain a distributivity
relation𝑚⊗𝑎⊕ ≃ 𝑏⊕𝑚′⊗𝑒∗ of maps 𝑅(𝑋 ) → 𝑅(𝑍 ).
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Example 4.2.6. Specializing Theorem 4.2.4 to 𝐹 = (F , F , F ) as in Example 4.1.13,
we obtain equivalences Rig

E∞ (X) ≃ NRig𝐹 (X) ≃ Fun× (Bispan(F ),X), recover-
ing the main result of [CHLL24].

Example 4.2.7. Our main interest is the case 𝐹 = (F𝐺 , F𝐺 , F𝐺 ) for a finite group
𝐺 , which will be discussed extensively in Section 5.

Example 4.2.8. Applying Theorem 4.2.4 to the case for trivial additive norms
from Example 4.2.2, we deduce that 𝐹-normed monoids in X admit an interpre-
tation as 𝐹-normed algebras:

NAlg𝐹 (Fun× (Fop,X)) ≃ Fun× (Span𝑁 (F),X) = NMon𝐹 (X) .
We may think of this as the normed analogue of the statement that commuta-
tive monoids in X are the commutative algebras with respect to the cartesian
symmetric monoidal structure on X.

4.3 Normed rings and Tambara functors

Fix a cocomplete ∞-category X with finite products such that the cartesian
product preserves colimits in each variable. Among the normed semirings in X,
we are especially interested in those that behave like rings, in the sense that their
underlying additive monoid is in fact a group:

Definition 4.3.1. Suppose 𝐹𝐴 = (F,F𝐴) is an extensive span pair (and not only
a weakly extensive one). We then say an 𝐹𝐴-normed monoid 𝑀 : Span𝐴 (F) →
X is grouplike if the induced commutative monoid structure on 𝑀 (𝑋 ) from
Observation 3.1.2 is grouplike in the usual sense for every 𝑋 ∈ F. We also refer
to grouplike 𝐹𝐴-normed monoids as 𝐹𝐴-normed groups and write NGrp𝐹𝐴 (X) ⊆NMon𝐹𝐴 (X) for the full subcategory of these. Note that under the equivalence
(6), the full subcategory NGrp𝐹𝐴 (X) corresponds to the subcategory

NMon𝐹𝐴 (CGrp(X)) ⊆ NMon𝐹𝐴 (CMon(X)) ≃ NMon𝐹𝐴 (X).
If X is presentable, then NGrp𝐹𝐴 (X) is an accessible localization of NMon𝐹𝐴 (X),
and so is again presentable.

Definition 4.3.2. A ring context is a semiring context 𝐹 = (F,F𝑀 ,F𝐴) such that
the span pair 𝐹𝐴 = (F,F𝐴) is extensive. An 𝐹-normed ring in X is an 𝐹-normed
semiring 𝑅 : Span𝑀 (F) → NMon𝐹𝐴 (X)⊗ such that for all 𝑋 ∈ F the resulting
𝐹/𝑋,𝐴-normed monoid 𝑅𝑋 : Span𝐴 (F/𝑋 ) → X is an 𝐹/𝑋,𝐴-normed group; here
𝐹/𝑋,𝐴 = (F/𝑋 ,F/𝑋,𝐴) denotes the span pair from Example 3.1.8.

Example 4.3.3. The semiring contexts arising in equivariant mathematics,
discussed in Example 4.1.5, are always ring contexts.
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Warning 4.3.4. In the generality of our setup, the 𝐹𝑀-normed structure onNMon𝐹𝐴 (X) need not descend to grouplike objects: the latter may only form
what should be called a 𝐹𝑀-∞-operad, and the previous definition could then
be more succinctly phrased as saying that an 𝐹-normed ring is an 𝐹𝑀-normed
algebra in this parametrized ∞-operad.

However, we will show in the next section that such a normed structure does
exist in the setting of equivariant homotopy theory, which is the main case of
interest to us.

Definition 4.3.5. A product-preserving functor Bispan𝑀,𝐴 (F) → X is called
an (X-valued) 𝐹-Tambara functor if its restriction to Span𝐴 (F) ≃ Bispaneq,𝐴 (F)
is grouplike in the sense of Definition 4.3.1. We write

Tamb𝐹 (X) ⊆ Fun× (Bispan𝑀,𝐴 (F),X)
for the full subcategory spanned by the Tambara functors.

Theorem 4.3.6. Let 𝐹 = (F,F𝑀 ,F𝐴) be a ring context. Then the equivalenceNRig𝐹 (X) ≃ Fun× (Bispan𝑀,𝐴 (F),X) constructed in Theorem 4.2.4 restricts to

NRing𝐹 (X) ≃ Tamb𝐹 (X) .
Proof. Write Φ : NRig𝐹 (X) → Fun× (Bispan𝑀,𝐴 (F),X) for the equivalence from
Theorem 4.2.4; we have to show that an 𝐹-normed semiring 𝑅 ∈ NRig𝐹 (X) is
an 𝐹-normed ring if and only if Φ(𝑅) is grouplike.

By commutativity of (14), 𝑅 is an 𝐹-normed ring if and only if Φ(𝑅) ◦ 𝑝𝑋
is grouplike for every 𝑋 ∈ F; we have to show that this is in turn equivalent
to the composite 𝜙 : Span𝐴 (F) → Bispan𝑀,𝐴 (F) → X being grouplike. But
indeed, if 𝜙 : Span𝐴 (F) → CMon(X) is the unique lift of 𝜙 , its restriction alongSpan𝐴 (F/𝑋 ) → Span𝐴 (F) is a lift of Φ(𝑅) ◦ 𝑝𝑋 ; the claim follows as the functorsSpan𝐴 (F/𝑋 ) → Span𝐴 (F) for varying 𝑋 ∈ Fare jointly surjective. □

5 Normed equivariant spectra

In this section, we will prove the main results of our paper: In particular, we will
define the 𝐺-normed ∞-category of 𝐺-spectra, compare it to 𝐺-commutative
groups, and then finally specialize the results of the previous sections to describe
connective normed 𝐺-spectra in terms of Tambara functors.

Convention 5.0.1. We will fix the ring context 𝐹 = (F𝐺 , F𝐺 , F𝐺 ) throughout
the whole section, write “𝐺-∞-category” instead of “F𝐺-∞-category”, and write
“normed” instead of “𝐹-normed.” It will be convenient to think of normed 𝐺-
∞-categories as functors Span(F𝐺 ) → CMon(Cat∞), via Observation 3.1.2. We
will furthermore repurpose the notation C⊗ to refer to a normed 𝐺-∞-categorySpan(F𝐺 ) → CMon(Cat∞) with underlying 𝐺-∞-category C: F op

𝐺 → Cat∞.
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5.1 Presentable 𝑮-∞-categories

Unlike in the rest of this paper, we will need a fair bit of parametrized higher
category theory [BDG+16, MW21] in this section, and we begin by recalling
some of the basic terminology. For simplicity, we will restrict to the case of
𝐺-∞-categories here, although our references work in much greater generality.

Construction 5.1.1. The ∞-category Fun× (F op
𝐺 , Cat∞) ≃ Fun(Oop

𝐺 , Cat∞) of 𝐺-
∞-categories is cartesian closed. We write Fun𝐺 for the internal hom, andFun𝐺 = ev𝐺/𝐺 ◦ Fun𝐺 for its underlying ordinary ∞-category.

Using Fun𝐺 , we can view the ∞-category of 𝐺-∞-categories as an (∞, 2)-
category; all that we will need below is that this enhances the homotopy 1-
category to a 2-category. In particular, we obtain a natural notion of adjunctions
between 𝐺-∞-categories. The following recognition principle will be useful:

Lemma 5.1.2 ([MW21, 3.2.9 and 3.2.11]). A functor 𝐹 : C→ D of 𝐺-∞-categories
admits a right adjoint if and only if the following hold:

(1) For each 𝑋 ∈ O𝐺 (or equivalently for each 𝑋 ∈ F𝐺 ), the functor 𝐹𝑋 : C(𝑋 ) →
D(𝑋 ) admits a right adjoint 𝐺𝑋 in the usual sense.

(2) For each 𝑓 : 𝑋 → 𝑌 in O𝐺 (or equivalently for 𝑓 in F𝐺 ) the Beck–Chevalley
transformation 𝑓 ∗𝐺𝑌 → 𝐺𝑋 𝑓

∗ is invertible. □

Definition 5.1.3. A 𝐺-∞-category C: F𝐺 → Cat∞ is called presentable if it
satisfies all of the following conditions:

(1) It factors through PrL.

(2) For each 𝑔 : 𝐶 → 𝐷 in F𝐺 the functor 𝑔∗ : C(𝐷) → C(𝐶) admits a left adjoint
𝑔!, and for any pullback square

𝐴 𝐵

𝐶 𝐷

𝑓

⌟
𝑝 𝑞

𝑔

the Beck–Chevalley map 𝑓!𝑝∗ → 𝑞∗𝑔! is invertible.

Corollary 5.1.4 ([MW22, 6.3.1]). A functor 𝐹 : C → D of presentable 𝐺-∞-
categories is a left adjoint if and only if it preserves 𝑮-colimits in the following
sense: 𝐹 is left adjointable, and for every 𝑋 ∈ O𝐺 (or equivalently F𝐺 ) the functor
C(𝑋 ) → D(𝑋 ) preserves ordinary colimits.

Proof. By the Adjoint Functor Theorem the latter condition is equivalent to
each C(𝑋 ) → D(𝑋 ) admitting a right adjoint𝐺𝑋 . By passing to total mates, the
former condition is then equivalent to the Beck–Chevalley maps 𝑓 ∗𝐺𝑌 → 𝐺𝑋 𝑓

∗

being invertible. Thus, the claim follows from Lemma 5.1.2. □
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Definition 5.1.5. We denote the ∞-category of presentable 𝐺-∞-categories
and left adjoint (equivalently: 𝐺-cocontinuous) functors by PrL𝐺 .

Remark 5.1.6. For every C, D ∈ PrL𝐺 , there is a 𝐺-subcategory FunL
𝐺 (C, D) ⊆Fun𝐺 (C, D) of the internal hom, given in degree 𝐺/𝐺 by the full subcategory

of left adjoint functors C → D; we refer the reader to [CLL23a, 2.3.22] or
[MW21, discussion before 3.3.6] for details. As we will recall in the proof of
Theorem 5.4.10 below, this is the internal hom for a parametrized analogue of
the Lurie tensor product.

5.2 The 𝑮-∞-category of 𝑮-spaces

As a warm-up and an ingredient for the construction of the normed 𝐺-∞-
category of 𝐺-spectra, we will recall two equivalent constructions of the 𝐺-∞-
category of 𝐺-spaces in this subsection, and show that it admits a unique normed
structure interacting suitably with (pointwise) colimits.

We begin with a construction via classical equivariant homotopy theory:

Construction 5.2.1. Let SSet be the 1-category of simplicial sets. Applying
Construction A.1.1, we obtain a Borel 𝐺-category SSet♭, given slightly informally
as follows: SSet♭ sends 𝐺/𝐻 to the category of simplicial sets with (strict) 𝐻-
action, with contravariant functoriality via restricting the action.

We now equip each SSet♭ (𝐺/𝐻 ) = Fun(𝐵𝐻, SSet) with the 𝐻-equivariant
weak equivalences, i.e. those maps 𝑓 such that 𝑓 𝐾 is a weak homotopy equivalence
for every 𝐾 ⩽ 𝐻 . As these are clearly stable under restriction, this defines a lift
of SSet♭ to a functor from Oop

𝐺 to relative categories. Postcomposing with
Dwyer–Kan localization, we therefore obtain a 𝐺-∞-category S𝐺 .

We moreover write F𝐺 for the Borel 𝐺-category F ♭; equivalently, this is the
full subcategory of S𝐺 spanned in degree 𝐺/𝐻 by the finite 𝐻-sets.

Next, let us compare this to a purely ∞-categorical construction.

Construction 5.2.2. We write F𝐺 for the𝐺-∞-category 𝑋 ↦→ (F𝐺 )/𝑋 and Spc𝐺
for the𝐺-∞-category PΣ (F𝐺 ) B Fun× (F op

𝐺 , Spc), with functoriality via left Kan
extension (cf. Proposition 3.3.2). By [HHLN23, 8.1] the Yoneda embeddings
assemble into a 𝐺-functor F𝐺 ↩→ Spc𝐺 , exhibiting the target as the pointwise
sifted cocompletion.

Remark 5.2.3. Equivalently, Spc𝐺 is obtained from the “co-𝐺-∞-category”
F𝐺 → Cat∞, 𝑋 ↦→ (F𝐺 )/𝑋 (functoriality via pushforward) by applying the con-
travariant functor Fun× (–, Spc). As the inclusion (O𝐺 )/𝑋 ↩→ (F𝐺 )/𝑋 is the finite
coproduct completion for every 𝑋 ∈ O𝐺 , we can also describe this as the func-
tor Oop

𝐺 → Cat∞, 𝑋 ↦→ Fun((O𝐺 )op
/𝑋 , Spc). The latter description serves as the

definition of Spc𝐺 in [CLL23b].
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Theorem 5.2.4. There are unique equivalences S𝐺 ≃ Spc𝐺 and F𝐺 ≃ F𝐺 of
𝐺-∞-categories. Moreover, these equivalences fit into a commutative diagram

F𝐺 S𝐺

F𝐺 Spc𝐺 .

≃ ≃

Yoneda

Proof. By [CLL23b, 5.12] there exists a unique equivalence Φ : S𝐺
∼−−→ Spc𝐺 . By

virtue of being an equivalence, this preserves (levelwise) terminal objects and
𝐺-colimits.

Let now 𝐾 ⩽ 𝐻 ⩽ 𝐺 . Then both the restriction 𝑖∗ : Fun(𝐵𝐻, SSet) →Fun(𝐵𝐾, SSet) as well as its 1-categorical left adjoint 𝑖! are homotopical; thus, the
∞-categorical left adjoint 𝑖! : S𝐺 (𝐺/𝐾) → S𝐺 (𝐺/𝐻 ) can simply be computed
by the 1-categorical left adjoint. In the same way, we see that terminal objects
and coproducts in S𝐺 can be computed in the 1-category SSet. In particular,
we have 𝐻/𝐾 = 𝑖!𝑖∗(1𝐾 ) in S𝐺 , whence

Φ(𝐻/𝐾) ≃ 𝑖!𝑖∗(id𝐺/𝐻 ) ≃ (𝐺/𝐾 ↠ 𝐺/𝐻 ) ∈ (F𝐺 )/(𝐺/𝐻 ) .
It follows by direct inspection thatΦmaps O𝐻 ⊆ F𝐺 (𝐺/𝐻 ) essentially surjectively
into (O𝐺 )/(𝐺/𝐻 ) ⊆ F𝐺 (𝐺/𝐻 ), and closing up under finite coproducts we see that
the equivalence Φ restricts to a functor 𝜙 : F𝐺 → F𝐺 that is essentially surjective,
and hence itself an equivalence.

Finally, F𝐺 has no non-trivial automorphisms by [CLL23a, 4.2.17], which
completes the proof of the proposition. □

Remark 5.2.5. As recalled in [CLL23a, 2.4.11], Spc𝐺 is the free presentable 𝐺-
∞-category on a point in the following sense: for any C ∈ PrL𝐺 evaluation at the
terminal object of Spc𝐺 (𝐺/𝐺) defines an equivalence FunL

𝐺 (Spc𝐺 , C) ∼−−→ C.

We can also give a pointed version of the above comparison:

Construction 5.2.6. Consider the category SSet∗ of pointed simplicial sets. As
before, we can associate to this a 𝐺-1-category SSet♭∗,𝐺/𝐻 ↦→ Fun(𝐵𝐻, SSet∗),
which we then localize at the (underlying) equivariant weak equivalences to
obtain a 𝐺-∞-category S𝐺,∗. As the equivariant weak equivalences are part
of a left proper model structure, we get a natural equivalence S𝐺,∗ ≃ (S𝐺 )∗
compatible with the forgetful functors.

We further write F𝐺,∗ for the full subcategory spanned in degree 𝐺/𝐻 by
the finite pointed 𝐻-sets, so that F𝐺,∗ ≃ (F𝐺 )∗.
Corollary 5.2.7. There is a commutative diagram

F𝐺,∗ S𝐺,∗

(F𝐺 )∗ (Spc𝐺 )∗.
≃ ≃

42



in which the vertical maps are equivalences and the top and bottom vertical arrow exhibit
their targets as sifted cocompletion of the respective sources.

Proof. In light of Theorem 5.2.4, the only non-trivial statement is that the
horizontal maps define sifted cocompletions. For this it will be enough to
consider the bottom arrow, where this is an immediate consequence of [BH21,
4.1] as every (𝑌 → 𝑋 → 𝑌 ) ∈ ((F𝐺 )/𝑌 )∗ is disjointly based. □

Next, we turn our attention to normed structures on these 𝐺-∞-categories;
we restrict to the pointed case here (as this is the only one we will need below),
although the unbased case is analogous.

Proposition 5.2.8. There exists a unique normed structure on F𝐺,∗ with unit 𝑆0 such
that the symmetric monoidal product on F𝐺,∗(𝐺/𝑒) = F∗ preserves finite coproducts in
each variable.

Proof. By Corollary A.2.4, it will suffice that F∗ (with trivial 𝐺-action) has
a unique lift to Fun(𝐵𝐺, CMon(Cat∞)) with unit 𝑆0 and for which the tensor
product preserves finite coproducts in each variable. Consider for this the version
of the Lurie tensor product on Cat⨿ representing functors that preserve finite
coproducts in each variable. Then (F∗, 𝑆0) is an idempotent object for this tensor
product by e.g. [CLL23a, 4.7.6], whence it is also idempotent in Fun(𝐵𝐺, Cat⨿)
with the levelwise symmetric monoidal structure. The claim now follows from
[Lur17, 4.8.2.9]. □

Combining this with Corollary 5.2.7 and the universal property of sifted
cocompletion, we get:

Corollary 5.2.9. There exists a unique 𝐺-normed structure on S𝐺,∗ together with a
lift of F𝐺,∗ ↩→ S𝐺,∗ to a normed 𝐺-functor such that the following two conditions are
satisfied:

(1) For each 𝑋 ∈ F𝐺 , S𝐺,∗(𝑋 ) is presentably symmetric monoidal.

(2) For each 𝑓 : 𝑋 → 𝑌 in F𝐺 , the functor 𝑓⊗ : S𝐺,∗(𝑋 ) → S𝐺,∗(𝑌 ) preserves sifted
colimits.

The analogous statement for F𝐺,∗ ↩→ Spc𝐺,∗ holds, and for these normed structures there
is a unique normed equivalence S⊗𝐺,∗ ≃ Spc⊗𝐺,∗. □

Let us make the normed structure from Corollary 5.2.9 explicit for our
favorite model:

Construction 5.2.10. We equip SSet∗ with the symmetric monoidal struc-
ture coming from the smash product. This then yields a normed structure on
the Borel 𝐺-category SSet♭∗ via Proposition A.2.1. The symmetric monoidal
structure on the individual categories SSet♭∗(𝐺/𝐻 ) is then given by the usual
smash product (Observation A.2.5), while Corollary A.3.6 shows that the map
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𝑖⊗ : Fun(𝐵𝐾, SSet∗) → Fun(𝐵𝐻, SSet∗) for subgroups 𝐾 ⩽ 𝐻 ⩽ 𝐺 is given by the
classical symmetric monoidal norm, i.e. it sends a 𝐾-simplicial set 𝑋 to 𝑋∧𝑛 where
𝑛 = |𝐻/𝐾 | and 𝐻 acts on 𝑋∧𝑛 by restricting the natural Σ𝑛 ≀ 𝐾-action along a
certain homomorphism 𝐻 → Σ𝑛 ≀ 𝐾 ; see Construction A.3.4 for details.

Proposition 5.2.11. The previous construction localizes to a normed structure on S𝐺,∗,
and this is the normed structure from Corollary 5.2.9.

Proof. Since SSet♭∗ comes with a normed𝐺-functor F ♭∗ → SSet♭∗ by construction,
the only non-trivial statement is that this localizes to a normed structure satisfying
the assumptions (1) and (2) of Corollary 5.2.9.

It is clear that the smash product of pointed 𝐻-simplicial sets preserves weak
equivalences in each variable and is a left Quillen bifunctor (with respect to the
model structures where cofibrations are levelwise injections). Thus, it descends
to make each S𝐺,∗(𝐺/𝐻 ) into a presentably symmetric monoidal ∞-category.
It remains to show that for every 𝐾 ⩽ 𝐻 the symmetric monoidal norm functor
𝑖⊗ : Fun(𝐵𝐾, SSet∗) → Fun(𝐵𝐻, SSet∗) preserves weak equivalences, and that the
resulting functor on localizations preserves sifted colimits.

For the first statement, let 𝑓 be a 𝐾-equivariant weak equivalence; we have to
show that for any 𝑗 : 𝐿 ↩→ 𝐻 the map ( 𝑗∗𝑖⊗ 𝑓 )𝐿 is a weak equivalence. Rewriting
the cospan 𝐺/𝐻 → 𝐺/𝐾 ← 𝐺/𝐿 as a span, we see that this splits as a smash
product of maps (𝑖′⊗ 𝑗 ′∗ 𝑓 )𝐿, i.e. after renaming we are reduced to showing that
(𝑖⊗ 𝑓 )𝐻 is a weak equivalence. But this map agrees with 𝑓 𝐾 by direct inspection.

For the second statement, we claim that the functor of 1-categories𝑋 ↦→ 𝑋∧𝑛

preserves filtered colimits and geometric realization up to isomorphism: the first
statement is clear, while the second one follows from the fact that geometric
realization is given by taking the diagonal of the associated bisimplicial set.
As both of these operations are homotopical by [Len20, 1.1.2 and 1.2.57], it
follows that 𝑖⊗ : S𝐺,∗(𝐺/𝐾) → S𝐺,∗(𝐺/𝐻 ) commutes with filtered colimits and
Δop-shaped colimits, hence with all sifted colimits as claimed. □

5.3 Norms on 𝑮-Mackey functors

As a next step, we will show that also the𝐺-∞-category of normed𝐺-monoids/𝐺-
Mackey functors from Example 3.1.4 admits a unique normed structure. As a
special case of Definition 4.1.8, we obtain one such normed structure

NMon𝐺 B NMon𝐺 (Spc) = Fun× (Span(F𝐺 ), Spc) .
We begin by relating it to the unstable world:

Proposition 5.3.1. There exists a unique 𝐺-left adjoint P : S𝐺,∗ → NMon𝐺 sending
𝑆0 to Map(1, –). Moreover, this functor upgrades (canonically) to a normed 𝐺-functor.

Proof. For the first statement, we may equivalently consider Spc𝐺,∗ = Spc𝐺 ⊗Spc∗
in lieu of S𝐺,∗. In this case, the existence and uniqueness of the 𝐺-left adjoint P
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follows via [CLL24, 7.39] from the universal property of Spc𝐺 (Remark 5.2.5)
and the fact that the non-parametrized presentable∞-category Spc∗ is the mode
for pointed presentable ∞-categories [Lur17, 4.8.2.11].

To complete the proof, we will now construct a 𝐺-left adjoint normed
𝐺-functor S⊗𝐺,∗ → NMon⊗𝐺 . For this, note first that by [CLL23a, 4.7.6] the
inclusion F ↩→ Span(F ) extends (uniquely) to a coproduct-preserving functor
𝑗 : F∗ → Span(F ), and as both sides are idempotents in Cat⨿ (see [Har20, 5.3] for
the target) this uniquely upgrades to a symmetric monoidal functor. Passing to
Borel 𝐺-∞-categories we obtain a normed 𝐺-functor

F𝐺,∗ = F ♭
𝐺 −→ Span(F )♭ ≃ Span(F𝐺 )

sending 𝑆0 to 1; here the final equivalence uses that Span(F𝐺 ) ≃ Span ◦ F𝐺,∗ is a
Borel 𝐺-∞-category as postcomposing with the limit preserving functor Span
preserves right Kan extensions. Passing to sifted cocompletions and using that

Fun× (Span(F𝐺 ), Spc) ≃ Fun× (Span(F𝐺 )op, Spc) = PΣ (Span(F𝐺 )),
we then get a normed 𝐺-functor S⊗𝐺,∗ → NMon⊗𝐺 , whose underlying 𝐺-functor
agrees up to equivalence with PΣ ( 𝑗♭) : PΣ (F ♭∗ ) → PΣ (Span(F )♭), i.e. it is the
restriction of the left Kan extension along ( 𝑗♭)op to product-preserving functors.

To see that this is a 𝐺-left adjoint, we first note that each PΣ ( 𝑗♭) (𝐺/𝐻 )
admits a right adjoint (given by restriction); it therefore only remains to check
the Beck–Chevalley condition of Corollary 5.1.4. For this we observe that for
any inclusion 𝑖 : 𝐾 ↩→ 𝐻 of subgroups of 𝐺 , the functors 𝑖∗ : Fun(𝐵𝐻, F∗) →Fun(𝐵𝐾, F∗) and Fun(𝐵𝐻, Span(F )) → Fun(𝐵𝐾, Span(F )) admit left adjoints 𝑖!,
given non-equivariantly by an |𝐻/𝐾 |-fold coproduct. Thus, we may check
the Beck–Chevalley condition before passing to sifted cocompletions, i.e. we
want to show that 𝑖! ◦ Fun(𝐵𝐾, 𝑗) → Fun(𝐵𝐻, 𝑗) ◦ 𝑖! is an equivalence of functorsFun(𝐵𝐾, F∗) → Fun(𝐵𝐻, Span(F )). But this may be checked after forgetting toSpan(F ), where this follows from the fact that 𝑗 preserves finite coproducts by
construction. □

Restricting, we in particular get a normed structure on the𝐺-functor F𝐺,∗ →NMon𝐺 . In fact, this once again uniquely characterizes the normed structure if
we in addition impose compatibility with colimits:

Proposition 5.3.2. There exists a unique pair of a normed structure on NMon𝐺 and
a normed structure on the 𝐺-functor F𝐺,∗ → NMon𝐺 such that the following conditions
are satisfied:

(1) For each 𝐻 ⩽ 𝐺 , the symmetric monoidal∞-category NMon𝐺 (𝐺/𝐻 ) is presentably
symmetric monoidal.

(2) For each 𝐾 ⩽ 𝐻 ⩽ 𝐺 the norm NMon𝐺 (𝐺/𝐻 ) → NMon𝐺 (𝐺/𝐾) preserves sifted
colimits.
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Proof. We will first prove this statement with F𝐺,∗ replaced by Span(F𝐺 ). AsNMon𝐺 is defined as the sifted cocompletion of the latter, the same argument
as in Corollary 5.2.9 reduces this to showing that (Span(F ), 1) is idempotent inCat⨿, which was already recalled above.

To complete the proof, we now observe that the data in question is equivalent
to a normed structure on NMon𝐺 (satisfying the above two axioms) that preserves
the full subcategory Span(F𝐺 ), together with a lift of F𝐺,∗ → Span(F𝐺 ) to a
normed 𝐺-functor. The former is no data by the above, while Corollary A.2.2
together with the idempotency of F∗ and Span(F ) shows that also the latter is
unique. □

5.4 𝑮-spectra and their symmetric monoidal structure

Let us begin by giving two equivalent descriptions of the 𝐺-∞-category of
𝐺-spectra:

Construction 5.4.1. We define the 𝐺-∞-category Sp𝐺 of 𝐺-spectra as the
pointwise stabilization of NMon𝐺 , i.e. it is the 𝐺-∞-category

𝑋 ↦→ Fun× (Span((F𝐺 )/𝑋 ), Sp)
with functoriality via restriction along pushforwards. This comes with a natural
stabilization map ℓ : NMon𝐺 → Sp𝐺 , induced by the usual stabilization/delooping
map CMon(Spc) → Sp. We write S𝐺 for the image of Map(1, –) ∈ NMon𝐺 (𝐺/𝐺)
under ℓ .

Construction 5.4.2. Write SpΣ for the 1-category of symmetric spectra in
simplicial sets. For each finite group 𝐻 , the category SpΣ carries an equivariant
flat model structure [Haus17, 4.7] whose weak equivalences are the so-called
𝐻-equivariant weak equivalences and whose cofibrations are the so-called flat
cofibrations; the latter are independent of the group 𝐻 . We write SpΣflat for the full
subcategory of flat spectra (i.e. those 𝑋 for which ∅ → 𝑋 is a flat cofibration).

We now consider the Borel𝐺-category (SpΣflat)♭, and we equip each category
(SpΣflat)♭ (𝐺/𝐻 ) = Fun(𝐵𝐻, SpΣflat) with the 𝐻-equivariant weak equivalences. By
[Haus17, §5.2] these are preserved under restriction, so we can Dwyer–Kan
localize this to obtain a 𝐺-∞-category Sp𝐺 .

Remark 5.4.3. The inclusion (SpΣflat)♭ ↩→ (SpΣ)♭ induces an equivalence of
Dwyer–Kan localizations (being pointwise the inclusion of the cofibrant objects
of a model category), so we could equivalently have worked without restricting to
flat spectra. However, flatness will come in handy below to define the symmetric
monoidal and normed structures on Sp𝐺 .

Theorem 5.4.4. There is a unique equivalence Sp𝐺 ≃ Sp𝐺 sending S𝐺 to S𝐺 .

Proof. Combine [CLL23b, 9.13] with [CLL24, 9.9]. □
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Our goal is to make both sides into normed ∞-categories and then upgrade
the above equivalence to a normed equivalence. As a stepping stone for this,
we will first prove a comparison that does not take norms into account. We
therefore introduce:

Definition 5.4.5. A (naïve) symmetric monoidal 𝐺-∞-category is a functor F op
𝐺 →CMon(Cat∞).

Equivalently, we can view a symmetric monoidal 𝐺-∞-category as a com-
mutative monoid in the (ordinary) ∞-category of 𝐺-∞-categories with respect
to the cartesian product. Restricting along F

op
𝐺 ↩→ Span(F𝐺 ), every normed

𝐺-∞-category has an underlying symmetric monoidal 𝐺-∞-category.
We will be particularly interested in the case where the underlying 𝐺-∞-

category C is presentable and the tensor product − ⊗ − : C× C→ C preserves
𝐺-colimits in each variable, i.e. for each 𝐺/𝐻 the symmetric monoidal structure
on C(𝐺/𝐻 ) is closed, and for all 𝑖 : 𝐻 ↩→ 𝐾 the projection map

𝑖!(𝑋 ⊗ 𝑖∗𝑌 ) −→ 𝑖!𝑋 ⊗ 𝑌
(the Beck–Chevalley map associated to 𝑖∗𝑋 ⊗ 𝑖∗𝑌 ≃ 𝑖∗(𝑋 ⊗ 𝑌 )) is invertible. We
call a symmetric monoidal 𝐺-∞-category 𝐺-presentably symmetric monoidal in
this case. Similarly we say that a normed𝐺-∞-category is𝐺-presentably normed if
the underlying symmetric monoidal 𝐺-∞-category is 𝐺-presentably symmetric
monoidal.

Example 5.4.6. We have already seen that the normed structure on S𝐺,∗ coming
from the smash product is presentably symmetric monoidal in each degree. As
all functors in sight are homotopical, the projection formula can be checked on
the pointset level, where it is a trivial computation.1

Example 5.4.7. The usual smash product of (𝐻-)symmetric spectra is homotopi-
cal when restricted to flat spectra [Haus17, 6.1], making Sp𝐺 into a symmetric
monoidal 𝐺-∞-category. This is again 𝐺-presentably symmetric monoidal: the
statement for the levelwise tensor product is again clear, while for the projection
map we observe that the corresponding non-derived map is again an isomor-
phism by direct inspection, and that all functors in sight are homotopical on flat
spectra.

Example 5.4.8. Also the normed structure on NMon𝐺 is 𝐺-presentably sym-
metric monoidal. For this note first that Proposition 3.3.8 shows that eachNMon𝐺 (𝑋 ) is presentably symmetric monoidal. For the projection formula
𝑖!(𝑋 ⊗ 𝑖∗𝑌 ) ≃ 𝑖!𝑋 ⊗ 𝑌 we observe that both sides preserve colimits in 𝑋 and
𝑌 , so we may assume that 𝑋 and 𝑌 are both in the image of the free functor
P : S𝐺,∗ → NMon𝐺 . In this case, the claim follows by Proposition 5.3.1 together
with Example 5.4.6.

1This isomorphism of pointed 𝐺-(simplicial) sets is sometimes referred to as the shearing
isomorphism.

47



Example 5.4.9. As Sp is idempotent, Sp𝐺 = Sp ⊗ NMon𝐺 inherits a symmetric
monoidal structure from NMon𝐺 such that each Sp𝐺 (𝑋 ) is presentably symmetric
monoidal, see [GGN15, 5.1]. This is again 𝐺-presentably symmetric monoidal:
by the universal property of stabilization, the projection formula can be checked
after restricting along NMon𝐺 → Sp𝐺 , where this was verified in the previous
example.

In fact, the 𝐺-presentably symmetric monoidal structures considered in the
above examples are unique:

Theorem 5.4.10.

(1) The 𝐺-∞-categories Spc𝐺,∗ and S𝐺,∗ admit unique 𝐺-presentably symmetric
monoidal structures with unit 𝑆0.

(2) The 𝐺-∞-category NMon𝐺 admits a unique 𝐺-presentably symmetric monoidal
structure with unit Map(1, –).

(3) The 𝐺-∞-categories Sp𝐺 and Sp𝐺 admit unique 𝐺-presentably symmetric mon-
oidal structures with unit S𝐺 .

Moreover, the 𝐺-functors S𝐺,∗ → NMon𝐺 → Sp𝐺 considered above enhance uniquely
to maps of symmetric monoidal 𝐺-∞-categories, as do the equivalences Spc𝐺,∗ ≃ S𝐺,∗
and Sp𝐺 ≃ Sp𝐺 .

Proof. By [MW22, §8.2], the ∞-category of presentable 𝐺-∞-categories comes
with a parametrized Lurie tensor product, corepresenting bifunctors that preserve
𝐺-colimits in each variable. The unit is the 𝐺-∞-category Spc𝐺 , and the tensor
product can be computed by the formula

C⊗ D = FunR
𝐺 (Cop, D) ≃ FunL

𝐺 (C, Dop)op

with functoriality in Cgiven via precomposition, see [MW22, 8.2.11].
It now suffices to show that (Spc𝐺,∗, 𝑆0), (NMon𝐺 ,Map(1, –)), and (Sp𝐺 ,S𝐺 )

are all idempotent with respect to this tensor product. By the above explicit
formula for the tensor product, the statement for Sp𝐺 is an instance of [CLL23b,
9.13(2)], while the statement for NMon𝐺 follows by combining [CLL23a, 4.8.11]
with [CLL24, 9.9].

Finally, for Spc𝐺,∗ = Spc𝐺 ⊗ Spc∗, we recall that Spc𝐺 ⊗ – : PrL → PrL𝐺 admits
a strong symmetric monoidal structure [MW22, end of 8.3.8]. In particular, it
sends the idempotent Spc∗ to an idempotent, finishing the proof. □

5.5 Normed structures on 𝑮-spectra

In this subsection we will finally construct the 𝐺-normed structure on Sp𝐺 ; in
particular, we will show:
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Theorem 5.5.1. There exists a unique pair of a normed structure on Sp𝐺 together with
a lift of ℓ : NMon𝐺 → Sp𝐺 to a normed 𝐺-functor ℓ⊗ : NMon⊗𝐺 → Sp⊗𝐺 that satisfies
the following two properties:

(1) For each 𝑋 ∈ F𝐺 , Sp⊗𝐺 (𝑋 ) is presentably symmetric monoidal.

(2) For each 𝑓 : 𝑋 → 𝑌 in F𝐺 , the norm functor 𝑓⊗ : Sp⊗𝐺 (𝑋 ) → Sp⊗𝐺 (𝑌 ) preserves
sifted colimits.

This will require some further preparations.

Lemma 5.5.2. Let I be a small ∞-category with finite coproducts equipped with a
symmetric monoidal structure that preserves coproducts in each variable. Then the Day
convolution on Fun(Iop, Spc) restricts to a symmetric monoidal structure on PΣ (I) =Fun× (Iop, Spc). Moreover, this is a presentably symmetric monoidal structure, and the
tensor product of compact objects is compact again.

Proof. The fact that this restricts is the content of Proposition 3.3.8, where it
is also shown that this is equivalently the localization of the Day convolution
structure, whence in particular presentably symmetric monoidal.

For the second statement, we now claim that any compact object in PΣ (I)
is a retract of a finite colimit of representables. To prove the claim, consider
any 𝑋 ∈ PΣ (I), and write it as a colimit colim𝑖∈𝐼 𝑥𝑖 in P(I) = Fun(Iop, Spc)
of representables. Applying the localization functor P(I) → PΣ (I) we then
also get such a colimit decomposition in PΣ (I). Restricting along a cofinal
functor, we may assume that 𝐼 is a poset [Lur09, 4.2.3.15], and filtering it by its
finite subsets, we can express 𝑋 as a filtered colimit in PΣ (I) of finite colimits
of representables, i.e. we have an equivalence

𝜙 : 𝑋
≃−−→ colim𝐽 ⊆𝐼 finite colim𝑗∈ 𝐽 𝑥 𝑗 .

By compactness of 𝑋 , 𝜙 has to factor through a map 𝜓 : 𝑋 → colim𝑗∈ 𝐽 𝑥 𝑗 for
some finite 𝐽 ⊆ 𝐼 . The composite colim𝑗∈ 𝐽 𝑥 𝑗 → colim𝐽 ⊆𝐼 finite colim𝑗∈ 𝐽 𝑥 𝑗 ≃ 𝑋
is then a retraction of 𝜓 , finishing the proof of the claim.

With this, we can now easily prove the second statement: if 𝑋 and 𝑌 are
compact, then the above shows that 𝑋 ⊗ 𝑌 is again a retract of a finite colimit of
representables (using that ⊗ preserves colimits in each variable). As representables
are compact in P, and hence also in PΣ (using that the latter is closed under
filtered colimits), this immediately implies that 𝑋 ⊗ 𝑌 is compact, as desired. □

Lemma 5.5.3. Let D be presentably symmetric monoidal and pointed. Then the
stabilization map Σ∞ : D→ Sp(D) lifts uniquely to a map in CAlg(PrL), and this lift
is symmetric monoidal inversion of Σ1.

Proof. The existence and uniqueness of the symmetric monoidal structure follows
from idempotency of (Sp,S) in PrL, see [GGN15, 5.1]. It therefore only remains
to prove that this map is symmetric monoidal inversion.
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As the symmetric monoidal product ⊗ preserves colimits in each variable,
Σ1 ⊗ – is equivalent to the suspension functor Σ. Expressing Σ∞ : D→ Sp(D)
as the sequential colimit in PrL along Σ, the claim is therefore an instance of
[GM23, C.6] once we show that Σ1 is a symmetric object, in the sense that for
some 𝑛 ≥ 2 the automorphism of (Σ1)⊗𝑛 induced by the permutation 𝜎 B
(1 2 . . . 𝑛) ∈ Σ𝑛 is trivial. This is in fact true for any odd 𝑛 as in this case 𝜎 has
sign +1, so that the induced automorphism of 𝑆𝑛 also has degree 1. □

Proposition 5.5.4. For any 𝑋 ∈ F𝐺 , the functor ℓ : NMon𝐺 (𝑋 ) → Sp𝐺 (𝑋 ) is
symmetric monoidal inversion of the object Σ1 in both CAlg(PrL) and CAlg(Catsifted).
Proof. Observe first that 1 = Map(1, –) is compact, whence so is Σ1. Moreover,
we have seen in the proof of Lemma 5.5.3 that Σ1 is a symmetric object, while
Lemma 5.5.2 shows that the the symmetric monoidal product preserves compact
objects and colimits in each variable. Thus, [BH21, 4.1] shows that the universal
map in CAlg(PrL) inverting Σ1 agrees with the universal map in CAlg(Catsifted).
The claim therefore follows from the previous lemma. □

Lemma 5.5.5. Let 𝑓 : 𝑋 → 𝑌 be any map in F𝐺 . Then the symmetric monoidal
functor ℓ : NMon𝐺 (𝑌 ) → Sp𝐺 (𝑌 ) sends 𝑓⊗ (Σ1) to an invertible object.

Proof. Consider first the special case that 𝑓 is the projection 𝐺/𝐻 → 𝐺/𝐾 for
some 𝐻 ⩽ 𝐾 . By Theorem 5.4.10, it will be enough to show that the composite

L : NMon𝐺 ℓ−−→ Sp𝐺 ∼−−→ Sp𝐺

sends 𝑓⊗ΣMap(1, –) to an invertible object (with respect to the derived smash
product of 𝐾-equivariant symmetric spectra). For this we compute

L(𝑓⊗ΣMap(1, –)) = L𝑓⊗ΣP(𝑆0) ≃ (LP) (𝑓⊗𝑆1) ≃ (LP) (𝑆𝐾/𝐻 )
where P : S𝐺,∗ → NMon𝐺 is the normed 𝐺-left adjoint from Proposition 5.3.1,
and the last equation uses the explicit description of the normed structure on S𝐺,∗.
Now L ◦P : S𝐺,∗ → Sp𝐺 is a 𝐺-left adjoint sending 𝑆0 to S𝐺 , so it is necessarily
the suspension spectrum functor. But the representation sphere Σ∞𝑆𝐾/𝐻 is
invertible with respect to the smash product of 𝐾-spectra by [Haus17, 4.9(i)],
finishing the proof of the special case.

In the case of a general map 𝑓 : 𝑋 → 𝑌 in F𝐺 , we first note that an object is
invertible in Sp𝐺 (𝑌 ) if and only if it is so after restricting to each orbit. By the
double coset formula, we may therefore assume that 𝑌 = 𝐺/𝐻 . Decomposing 𝑋
into its orbits then provides a factorization of 𝑋 → 𝐺/𝐻 as

𝑋 =
𝑟∐
𝑖=1

𝑋𝑖

∐
𝑓𝑖−−−→

𝑟∐
𝑖=1

𝐺/𝐻 ∇−→ 𝐺/𝐻,

whence ℓ (𝑓⊗ΣMap(1, –)) ≃ ℓ
(⊗𝑟

𝑖=1 𝑓𝑖⊗Σ(Map(1, –))) ≃ ⊗𝑟
𝑖=1 ℓ 𝑓𝑖⊗ (ΣMap(1, –)).

As invertible elements are closed under tensor product, this completes the proof
of the lemma. □
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Proof of Theorem 5.5.1. By Theorem 5.4.10, ℓ lifts uniquely to a natural transfor-
mation of functors into the ∞-category of presentably symmetric monoidal
∞-categories and sifted-colimit-preserving functors, and by Proposition 5.5.4
this map is pointwise given by symmetric monoidal inversion of Σ1. This then
uniquely extends to the desired map of normed 𝐺-∞-categories (viewed as
functors Span(F𝐺 ) → CMon(Cat∞) as per our standing convention) by the uni-
versal property of symmetric monoidal inversion combined with the previous
lemma. □

Let us now give alternative interpretations of this normed 𝐺-∞-category:

Proposition 5.5.6 (cf. [BH21, 9.11 and 9.13]). For every 𝐻 ⩽ 𝐺 , the symmetric
monoidal functor (ℓ ◦ P) (𝐺/𝐻 ) : Spc⊗𝐺,∗(𝐺/𝐻 ) → Sp⊗𝐺 (𝐺/𝐻 ) is given by universally
inverting the objects of the form 𝑓⊗Σ1 in CAlg(PrL), or equivalently in CAlg(Catsifted).

Note that Nardin and Shah use this as the definition of the normed structure
on Sp𝐺 [NS22, 2.4.2], following [BH21, §9.2]. Thus, this result in particular
shows that our approach agrees with their construction.

Proof. First note that this holds for Σ∞ : S𝐺,∗(𝐺/𝐻 ) → Sp𝐺 (𝐺/𝐻 ) by [GM23,
C.7] together with [Haus17, 7.5].2 Thus, it will suffice to lift the commutative
triangle

S𝐺,∗

Sp𝐺 Sp𝐺
Σ∞ ℓ◦P

≃

(15)

observed in the proof of Theorem 5.5.1 to a commutative diagram of symmetric
monoidal 𝐺-∞-categories with respect to the symmetric monoidal structures
inherited from the normed structures considered above. This is however clear
from Theorem 5.4.10 (using that all of these structures are indeed 𝐺-presentably
symmetric monoidal by the above). □

Finally, we can also describe the normed structure in terms of models:

Proposition 5.5.7. The normed structure on (SpΣflat)♭ given by the smash product lo-
calizes to a𝐺-presentably normed structure on Sp𝐺 such that the norm 𝑓⊗ : Sp⊗ (𝑋 ) →
Sp⊗ (𝑌 ) preserves sifted colimits for every 𝑓 : 𝑋 → 𝑌 in F𝐺 .

Proof. In view of Example 5.4.7 it only remains to show that the symmetric
monoidal norms 𝑁𝐻

𝐾 : Fun(𝐵𝐾, SpΣflat) → Fun(𝐵𝐻, SpΣflat) (known as the Hill–
Hopkins–Ravenel norms) are homotopical and that the resulting functors on
localizations preserve sifted colimits.

2Hausmann a priori just provides a Quillen equivalence without referring to the symmetric
monoidal structures on both sides, but the left Quillen functor from symmetric to orthogonal
spectra is strong symmetric monoidal with respect to Day convolution, so this automatically gives
an equivalence of symmetric monoidal ∞-categories.
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The first statement is [Haus17, 6.8]. For the second statement we first observe
that both filtered colimits and geometric realization in SpΣ are homotopical:
namely, both are left Quillen (with respect to the projective model structures
on the respective source functor categories) and moreover preserve levelwise
weak equivalences (maps 𝑓 : 𝑋 → 𝑌 such that each 𝑓 (𝐴) is a (𝐺 × Σ𝐴)-weak
equivalences) as observed in the proof of Proposition 5.2.11. We moreover claim
that both of these constructions preserve flat spectra. To see this, we recall
that a symmetric spectrum 𝑋 is flat if and only if for each finite set 𝐴 a certain
natural latching map 𝐿𝐴 (𝑋 ) → 𝑋 (𝐴) is levelwise injective, see [Haus17, 2.18];
all that we will need to know is that 𝐿𝐴 is defined as a certain colimit, and in
particular commutes with geometric realization and all colimits. The two claims
now immediately follow as injections of simplicial sets are preserved by filtered
colimits and geometric realization.

With this established, it will be enough to show that 𝑁𝐺𝐻 commutes with
geometric realization and filtered colimits on the point-set level, up to isomor-
phism. In particular, we can forget about all the actions and simply consider the
endofunctor 𝑋 ↦→ 𝑋∧𝑛 of SpΣ ⊇ SpΣflat. The statement about filtered colimits is
then clear as the smash product preserves colimits in each variable. Similarly,
the statement about geometric realizations reduces to showing that for any
𝑋• : Δop → SpΣflat and 𝑛 ≥ 1 the map∫ [𝑘 ]∈Δop

𝑋𝑘 ∧ Δ𝑘+ −→
∫ [𝑘1 ],...,[𝑘𝑛 ]∈ (Δop )𝑛

𝑋𝑘1 ∧ · · · ∧ 𝑋𝑘𝑛 ∧ Δ𝑘1+ ∧ · · · ∧ Δ𝑘𝑛+

induced by the diagonal embedding is an isomorphism. By induction, we reduce
to proving this for the map∫ [𝑘 ]

𝑌𝑘,𝑘 ∧ Δ𝑘+ −→
∫ [𝑘1 ]∫ [𝑘2 ]

𝑌𝑘1,𝑘2 ∧ Δ𝑘1+ ∧ Δ𝑘2+

for any bisimplicial object 𝑌 in SpΣ. Arguing levelwise, this follows at once
from the fact that the geometric realization of a simplicial object in (pointed)
simplicial sets is just given by its diagonal. □

Theorem 5.5.8. The equivalence Sp𝐺 ≃ Sp𝐺 of𝐺-∞-categories upgrades canonically
to an equivalence Sp⊗𝐺 ≃ Sp⊗𝐺 of normed 𝐺-∞-categories.

Proof. Of the maps of 𝐺-∞-categories comprising the diagram (15), all except
for the lower one have been lifted to maps in NAlg𝐺 (Cat∞) above. As Σ∞ is given
by universally inverting representation spheres, and we have shown that they
become invertible in Sp𝐺 , there is then a unique normed pointwise left adjoint
Sp⊗𝐺 → Sp⊗𝐺 making the diagram commute. It only remains to show that this
map forgets to our equivalence Sp𝐺 ≃ Sp𝐺 .

For this we simply note that after forgetting to symmetric monoidal 𝐺-∞-
categories there is still a unique map making the diagram commute, and we have
lifted the equivalence Sp𝐺 ≃ Sp𝐺 to such a map in the proof of Proposition 5.5.6.

□

52



5.6 The multiplicative equivariant recognition theorem

As an upshot of all the hard work done in the previous subsections, we can now
easily prove Theorem A from the introduction:

Theorem 5.6.1.

(1) The normed structure on NMon𝐺 localizes to a normed structure on NGrp𝐺 .

(2) The normed structure onSp𝐺 restricts to a normed structure on the full𝐺-subcategory
Sp≥0

𝐺 spanned by the connective equivariant spectra.

(3) The delooping functor NMon𝐺 → Sp𝐺 acquires a canonical normed structure, and
this restricts to a normed equivalence NGrp⊗𝐺 ≃ (Sp≥0

𝐺 )⊗ .

Proof. By Theorem 5.5.8, we may replace Sp𝐺 by Sp𝐺 ; under this identification,
the 𝐺-subcategory Sp≥0

𝐺 corresponds to Sp≥0
𝐺 B Fun(Span((F𝐺 )/−), Sp≥0).

We now observe that the essential image of ℓ : NGrp𝐺 → Sp𝐺 is preciselySp≥0
𝐺 . As we have lifted ℓ to a normed functor in Theorem 5.5.1, this shows

that Sp≥0
𝐺 is indeed a normed subcategory. Since ℓ factors as the localization

functor NMon𝐺 → NGrp𝐺 followed by an equivalence NGrp𝐺 ≃ Sp≥0
𝐺 , this then

immediately implies the remaining statements. □

Corollary 5.6.2. The cocartesian fibration NMon⊗𝐺 → Span(F𝐺 ) restricts to a co-
cartesian fibration NGrp⊗𝐺 → Span(F𝐺 ), and the inclusion 𝜄 : NGrp⊗𝐺 ↩→ NMon⊗𝐺 is
lax normed.

Proof. For each𝑋 ∈ F𝐺 , the functor ℓ : NMon𝐺 (𝑋 ) → Sp≥0
𝐺 (𝑋 ) has a fully faithful

right adjoint, induced by the right adjoint Sp≥0 → CMon of the delooping
functor, and this induces a relative adjunction of cocartesian fibrations over F op

𝐺 .
As a consequence of [Lur17, 7.3.2.6] (parallel to [Lur17, 7.3.2.8]), the right adjoint
𝜄 then canonically lifts to a lax normed functor 𝜄⊗ : (Sp≥0

𝐺 )⊗ ↩→ NMon⊗𝐺 , which
is fully faithful with essential image the subcategory NGrp𝐺 . □

We now immediately obtain the following generalization of Theorem B
from the introduction:

Theorem 5.6.3. For a weakly extensive subcategory 𝐼 ⊆ F𝐺 , there is an equivalence
between

▶ the∞-category NAlg𝐼 ((Sp≥0
𝐺 )⊗

)
B NAlg(F𝐺 ,𝐼 ) ((Sp≥0

𝐺 )⊗
)

of connective 𝑰 -normed
𝑮-spectra, and

▶ the ∞-category Tamb(F𝐺 ,𝐼 ) (Spc) ⊆ Fun× (Bispan𝐼 (F𝐺 ), Spc) of space-valued
(F𝐺 , 𝐼 )-Tambara functors.
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Proof. By Theorem 5.6.1, NAlg(F𝐺 ,𝐼 ) ((Sp≥0
𝐺 )⊗

)
is equivalent toNAlg(F𝐺 ,𝐼 ) (NGrp⊗𝐺 ).

The inclusion NAlg(F𝐺 ,𝐼 ) (NGrp⊗𝐺 ) ↩→ NAlg(F𝐺 ,𝐼 ) (NMon⊗𝐺 ) = NRig(F𝐺 ,𝐼 ) (Spc) iden-
tifies its source with the subcategory NRing(F𝐺 ,𝐼 ) (Spc) ⊆ NRig(F𝐺 ,𝐼 ) (Spc) of
normed𝐺-rings in the∞-category of spaces. By Theorem 4.3.6, the equivalence
between NRig(F𝐺 ,𝐼 ) (Spc) ≃ Fun× (Bispan𝐼 (F𝐺 ), Spc) of Theorem 4.2.4 restricts
to an equivalence between NRing(F𝐺 ,𝐼 ) (Spc) and Tamb(F𝐺 ,𝐼 ) (Spc). Combining
these three equivalences gives the result. □

If 𝐼 ⊆ F𝐺 is even an extensive subcategory (i.e. an indexing system), then set-
valued (F𝐺 , 𝐼 )-Tambara functors are known under the name incomplete Tambara
functors [BH18, 4.1]; thus, we may think of the right-hand side of the theorem as
“higher” incomplete Tambara functors.

Remark 5.6.4. Let 𝐼 ⊆ F𝐺 be an indexing system and C⊗ an 𝐼-normed 𝐺-∞-
category. As we will now explain, the ∞-category NAlg𝐼 (C) can be identified
with that of algebras for the 𝐺-∞-operad Com⊗𝐼 as defined by Nardin and
Shah [NS22, 2.4.10]: By definition, the∞-category NAlg𝐼 (C⊗) is that of sectionsSpan𝐼 (F𝐺 ) → C⊗ that are cocartesian over F op

𝐺 . Here the inclusion Span𝐼 (F𝐺 ) →Span(F𝐺 ) exhibits Span𝐼 (F𝐺 ) as an equivariant∞-operad when these are defined
over the base Span(F𝐺 ) (see [BHS22, §5.2]), and 𝐼-normed algebras in C⊗ are
precisely algebras for this ∞-operad. In [NS22] the theory of equivariant ∞-
operads is instead developed over a different base F𝐺,∗ (a specific model of
the cocartesian unstraightening of the functor F𝐺,∗ : F𝐺 → Cat∞ considered
above), but these two versions of 𝐺-∞-operads were shown to be equivalent
under pullback along a certain functor F𝐺,∗ → Span(F𝐺 ) in [BHS22, 5.2.14]. It
is clear from the definitions that Com⊗𝐼 is precisely the pullback F𝐺,∗ ×Span(F𝐺 )Span𝐼 (F𝐺 ), so by [BHS22, 5.3.17] we get an equivalence between the∞-category
of Span𝐼 (F𝐺 )- and Com⊗𝐼 -algebras in C⊗ . In particular, our 𝐼-normed𝐺-spectra
are equivalently Com⊗𝐼 -algebras in Sp⊗𝐺 in the sense of [NS22].

Remark 5.6.5. Recall from Remark 3.1.5 that any indexing system 𝐼 ⊆ F𝐺 has an
associated 𝑁∞-operad O in𝐺-spaces. It is generally expected that the∞-category
of Com⊗𝐼 -algebras in Sp⊗𝐺 is modelled by O-algebras in a good model category
of 𝐺-spectra, like 𝐺-symmetric spectra; however, to our knowledge no rigorous
proof of this comparison has appeared in the literature.

A The Borel construction

In this appendix, we recall from [Hil22a] how any ∞-category with 𝐺-action
gives rise to a 𝐺-∞-category and how similarly any symmetric monoidal ∞-
category with 𝐺-action yields a normed 𝐺-∞-category.
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A.1 Borel 𝑮-∞-categories

We start by constructing the functor

(−)♭ : Fun(𝐵𝐺, Cat∞) −→ Fun× (F op
𝐺 , Cat∞)

from∞-categories with𝐺-action to𝐺-∞-categories, which is used, for instance,
to define the 𝐺-∞-categories S𝐺 and Sp𝐺 .

Construction A.1.1. Write 𝑘 : (𝐵𝐺)op ↩→ F𝐺 for the inclusion of the full sub-
category on the free 𝐺-set 𝐺 . Then 𝑘 is fully faithful, so 𝑘∗ : Fun(F op

𝐺 , Cat∞) →Fun(𝐵𝐺, Cat∞) has a fully faithful right adjoint (−)♭, which is uniquely charac-
terized by demanding that we have a counit equivalence 𝜖 : 𝑘∗(−)♭ → id and
that each individual C♭ be right Kan extended.

We will now give an explicit construction of (−)♭. For this we note that
the inclusion Fun(𝐵𝐺, Spc) ↩→ Fun(𝐵𝐺, Cat∞) is cocontinuous, hence (by the
universal property of presheaves) left Kan extended from the functor (𝐵𝐺)op →Fun(𝐵𝐺, Cat∞) classifying the right 𝐺-set 𝐺 . Restricting to a full subcategory,
we see that also the inclusion 𝑖 : F𝐺 ↩→ Fun(𝐵𝐺, Cat∞) is left Kan extended from
the same functor. Thus, Fun𝐺 (𝑖 (−), C) is right Kan extended, and we see that
(−)♭ is given by the assignment C ↦→ Fun𝐺 (𝑖 (−), C), where the right-hand side
denotes the internal hom in Fun(𝐵𝐺, Cat∞); the counit is the evident equivalenceFun𝐺 (𝐺, C) ≃ C. Note that (−)♭ lands in the ∞-category Fun× (F op

𝐺 , Cat∞) of
𝐺-∞-categories, so that we obtain an adjunction

𝑘∗ : Fun× (F op
𝐺 , Cat∞) ⇄ Fun(𝐵𝐺, Cat∞) : (−)♭ .

Definition A.1.2. We will refer to 𝐺-∞-categories in the essential image of
(−)♭ as Borel 𝐺-∞-categories.

Remark A.1.3. In all of our examples, we apply the above right adjoint (−)♭ to
an ordinary ∞-category, which is then to be understood as coming equipped
with the trivial 𝐺-action. By adjointness, the resulting functor is given by

Cat∞ −→ Fun× (F op
𝐺 , Cat∞) ≃ Fun(Oop

𝐺 , Cat∞)
C ↦−→ Fun(𝑖 (−)ℎ𝐺 , C) .

In particular, the value of C♭ on an orbit 𝐺/𝐻 is the ∞-category C𝐵𝐻 :=Fun(𝐵𝐻, C) of objects of C with an 𝐻-action, with the evident restriction
functoriality. This suggests the following alternative description of the Borel
𝐺-∞-category C♭ that connects it to the constructions of [CLL23a,CLL23b]:

Write Orb for the ∞-category of finite connected groupoids and faithful
functors: in other words, the objects are groupoids of the form 𝐵𝐻 for a finite
group 𝐻 , and the morphisms 𝐵𝐾 → 𝐵𝐻 are those induced by injective group
homomorphisms 𝐾 → 𝐻 . By [CLL23b, 5.10] there is an equivalence O𝐺 ≃Orb/𝐵𝐺 sending 𝐺 to the homomorphism 1 → 𝐵𝐺 ; postcomposing with the
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forgetful functor and the inclusion yields a functor𝜐 : O𝐺 → Cat∞. We claim that
𝜐 agrees with 𝑖 (−)ℎ𝐺 . For this we observe that both agree on the full subcategory
spanned by the object𝐺 (where they are constant with value the terminal object),
so it suffices that both are left Kan extended from this subcategory.

For 𝑖 (−)ℎ𝐺 this is clear since it is the restriction of a cocontinuous functorFun(𝐵𝐺, Spc) → Cat∞. For 𝜐, it suffices that Orb/𝐵𝐺 → Cat∞ is left Kan extended.
But Orb/𝐵𝐺 is a full subcategory of (Spc)/𝐵𝐺 , so it will be enough that the
forgetful functor Spc/𝐵𝐺 → Cat∞ is left Kan extended from the full subcategory
spanned by 1 → 𝐵𝐺 . However, straightening–unstraightening provides an
equivalence Spc/𝐵𝐺 ≃ Fun(𝐵𝐺, Spc) sending 1 → 𝐵𝐺 to the corepresented
functor 𝐺 = Map𝐵𝐺 (∗, –) so this follows again from cocontinuity.

A.2 Normed structures on Borel 𝑮-∞-categories

Recall from Definition 3.2.1 that a normed structure on a 𝐺-∞-category F
op
𝐺 →Cat∞ is an extension to a product-preserving functor Span(F𝐺 ) → Cat∞. Given

a symmetric monoidal ∞-category Cwith 𝐺-action, the Borel 𝐺-∞-category
C♭ comes equipped with a canonical normed structure that we will refer to as
the Borel normed structure:

Proposition A.2.1 ([Pü24, 3.4 and 3.6], [Hil22a, 3.3.3]). The adjunction from
Construction A.1.1 lifts to an adjunction

Fun× (Span(F𝐺 ), Cat∞) ⇄ Fun(𝐵𝐺, CMon(Cat∞)) : (−)♭,

i.e. the forgetful functor Fun× (Span(F𝐺 ), Cat∞) → Fun(𝐵𝐺, CMon(Cat∞)) has a right
adjoint (−)♭, and the Beck–Chevalley transformation

Fun(𝐵𝐺, CMon(Cat∞)) Fun× (Span(F𝐺 ), Cat∞)

Fun(𝐵𝐺, Cat∞) Fun× (F op
𝐺 , Cat∞)

U

(−)♭

U

(−)♭

is invertible. □

Corollary A.2.2. The right adjoint

(−)♭ : Fun(𝐵𝐺, CMon(Cat∞)) −→ Fun× (Span(F𝐺 ), Cat∞)
is fully faithful, with essential image those normed 𝐺-∞-categories whose underlying
𝐺-∞-category is Borel.

Proof. As U is conservative, the Beck–Chevalley condition readily implies that
the counit is invertible, as it is so for the original adjunction Fun× (F op

𝐺 , Cat∞) ⇄Fun(𝐵𝐺, Cat∞), proving full faithfulness. Arguing in the same way about the
units yields the characterization of the essential image. □
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Corollary A.2.3. Let 𝐹 : Fun(𝐵𝐺, CMon(Cat∞)) → Fun× (Span(F𝐺 ), Cat∞) be
any functor equipped with a natural equivalence 𝜖 : ev𝐺 ◦ 𝐹 → id, and assume that 𝐹
takes values in Borel 𝐺-∞-categories. Then 𝐹 is right adjoint to the evaluation functor,
with counit given by 𝜖 .

Proof. By adjointness, there is a unique natural transformation 𝐹 → (−)♭ that
upon evaluation at 𝐺 ∈ F𝐺 recovers 𝜖. As this evaluation functor is conservative
on Borel 𝐺-∞-categories, this map is then an equivalence as desired. □

In the same way one shows the following pointwise version:

Corollary A.2.4. If the 𝐺-∞-category C: F op
𝐺 → Cat∞ is Borel, then any 𝐺-

equivariant symmetric monoidal structure on C(𝐺) ∈ Fun(𝐵𝐺, Cat∞) lifts uniquely to
a normed structure on C. □

Observation A.2.5. If C is a symmetric monoidal ∞-category with 𝐺-action,
then we get two natural symmetric monoidal structures on Cℎ𝐻 ≃ C♭ (𝐺/𝐻 ) for
any 𝐻 ⩽ 𝐺 : on the one hand, we can equip Cℎ𝐻 with the symmetric monoidal
structure obtained from the one on C by taking homotopy fixed points; on
the other hand, we can restrict C♭ along the functor Span(F ) → Span(F𝐺 )
induced by𝐺/𝐻 ×–. The Eckmann–Hilton argument then shows that these two
structures agree, i.e. the covariant functoriality of C♭ in fold maps is induced by
the given symmetric monoidal structure by passing to homotopy fixed points.

A.3 The classical case

Let C be a symmetric monoidal ∞-category with 𝐺-action. So far, we have
completely described the contravariant functoriality of C♭, as well as the covari-
ant functoriality with respect to fold maps. The goal of this final subsection is to
provide the only missing piece of information, namely the covariant functoriality
with respect to maps 𝐺/𝐾 → 𝐺/𝐻 for 𝐾 ⩽ 𝐻 ⩽ 𝐺 , when C is a 1-category.

It turns out that the hardest part of this is actually not understanding the
∞-categorical side, but rather translating this back through the equivalence
between (classical, biased) symmetric monoidal 1-categories and the∞-category
of commutative monoids in Cat [SS79,Sha20]. We therefore take a somewhat
different route here: namely, we will give a general result characterizing the
structure maps Cℎ𝐾 → Cℎ𝐻 uniquely, and then give a (classical) construction
satisfying these assumptions. As an upshot, we will never need to recall how
the functor Φ from symmetric monoidal 1-categories to symmetric monoidal
∞-categories actually works, except for the following basic facts:

▶ Φ is fully faithful with essential image those symmetric monoidal ∞-cate-
gories whose underlying category is a 1-category.

▶ Φ preserves underlying categories, and for every C the maps ∗ → C and
C×2 → C obtained via the functoriality of Φ(C) in 0 → 1 and 2 → 1 are
given by the inclusion of the unit and the tensor product, respectively.
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For definiteness, we fix Φ to be the equivalence from [Sha20, 6.19] betweenCMon(Cat) and the ∞-category obtained from the 1-category PermCatstrict
1 of

permutative categories (i.e. symmetric monoidal categories in which associativ-
ity and unitality hold on the nose) and strict symmetric monoidal functors by
Dwyer–Kan localizing at the underlying equivalences of categories. Below,
we will frequently and implicitly extend Φ to the analogous localizations of
the 1-categories SymMonCatstrict

1 of symmetric monoidal categories and strict
symmetric monoidal functors as well as SymMonCatstrong

1 using the following
reformulation of Mac Lane’s coherence theorem, as refined symmetrically in
[May74, 4.2]:

Lemma A.3.1. The inclusions

PermCatstrict
1 ↩→ SymMonCatstrict

1 ↩→ SymMonCatstrong
1

induce equivalences on Dwyer–Kan localizations.

Proof. For the composite PermCatstrict
1 ↩→ SymMonCatstrong

1 this appears for ex-
ample as [Len21, 1.19]. As part of the proof, the reference constructs a functor
Π : SymMonCatstrong

1 → PermCatstrict
1 together with a natural strong symmetric

monoidal equivalence 𝜈 : C→ ΠC for any symmetric monoidal category C. It
will therefore suffice to show that there exists a natural zig-zag of strict symmetric
monoidal equivalences between C and ΠC.

This is actually an instance of a general construction: Define ΞC to be the
category with objects triples of an object 𝑋 ∈ C, an object 𝑌 ∈ ΠC, and an
isomorphism 𝜎 : 𝜈 (𝑋 ) ∼−−→ 𝑌 . A morphism in (𝑋,𝑌, 𝜎) → (𝑋 ′, 𝑌 ′, 𝜎 ′) is given
by a pair of a map 𝑋 → 𝑋 ′ and a map 𝑌 → 𝑌 ′ making the obvious diagram
commute. This becomes a functor in C in the obvious way, and the forgetful
maps provide natural equivalences C ∼←−− ΞC ∼−−→ ΠC.

We now make ΞC into a symmetric monoidal category as follows: the tensor
product of objects is given by

(𝑋,𝑌, 𝜎) ⊗ (𝑋 ′, 𝑌 ′, 𝜎 ′) = (
𝑋 ⊗ 𝑋 ′, 𝑌 ⊗ 𝑌 ′, (𝜎 ⊗ 𝜎 ′) ◦𝜓 −1)

where 𝜓 : 𝜈 (𝑋 ) ⊗ 𝜈 (𝑋 ′) ∼−−→ 𝜈 (𝑋 ⊗ 𝑋 ′) denotes the structure isomorphism of
the symmetric monoidal functor 𝜈 . The unit is given by the inverse structure
isomorphism 𝜈 (1) ∼−−→ 1 of 𝜈 , while the tensor product of morphisms as well as
the associativity, unitality, and symmetry isomorphisms for ΞC are simply given
pointwise. We omit the straightforward verification that this is well-defined
and a symmetric monoidal category. It is then clear from the definitions that
the projections C ← ΞC → ΠC are strict symmetric monoidal. By direct
inspection, they are still natural when considered as maps in SymMonCatstrong

1 ,
which then completes the proof of the lemma. □

We can now state our key technical lemma, whose proof will be given below
after some preparations.
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Proposition A.3.2. Let 𝐾 ⩽ 𝐻 ⩽ 𝐺 , and let ℎ1, . . . , ℎ𝑟 be orbit representatives for
𝐻/𝐾 . Then there exists a unique natural transformation

𝜈 : Cℎ𝐾 −→ Cℎ𝐻

of functors Fun(𝐵𝐺, SymMonCatstrict
1 ) → Cat lifting C→ C, 𝑋 ↦→⊗𝑟

𝑖=1 ℎ𝑖 .𝑋 .

Example A.3.3. If C is any symmetric monoidal ∞-category with 𝐺-action,
then the structure map C♭ (𝐺/𝐾 = 𝐺/𝐾 → 𝐺/𝐻 ) : Cℎ𝐾 → Cℎ𝐻 lifts the twisted
𝑟-fold tensor product 𝑋 ↦→⊗𝑟

𝑖=1 ℎ𝑖 .𝑋 : this follows at once by computing the
composition

𝐺/𝐾 𝐺

𝐺/𝐾 𝐺/𝐻 𝐺

in Span(F𝐺 ), cf. [Hil22a, 3.2.1].

Construction A.3.4. Let C be a symmetric monoidal 1-category with 𝐺-
action. Recall that the symmetric monoidal norm Nm𝐻

𝐾 : Cℎ𝐾 → Cℎ𝐻 is given as
follows: we send a 𝐾-homotopy fixed point 𝑋 (with structure isomorphisms
𝜙𝑘 : 𝑋 → 𝑘.𝑋 ) of C to

⊗𝑟
𝑖=1 ℎ𝑖 .𝑋 with structure isomorphisms

𝜓ℎ :
𝑟⊗
𝑖=1

ℎ𝑖 .𝑋 −→
𝑟⊗
𝑖=1

ℎℎ𝑖 .𝑥

given as follows: if 𝜎 ∈ Σ𝑛 and ℓ1, . . . , ℓ𝑟 ∈ 𝐾 satisfy ℎℎ𝑖 = ℎ𝜎 (𝑖 )ℓ𝑖 for 𝑖 = 1, . . . , 𝑟 ,
then 𝜓ℎ is given as the composite

𝑟⊗
𝑖=1

ℎ𝑖 .𝑋
∼−−→

𝑟⊗
𝑖=1

ℎ𝜎 (𝑖 ) .𝑋
⊗

ℎ𝜎 (𝑖 ) .𝜙ℓ𝑖−−−−−−−−−→
𝑟⊗
𝑖=1

ℎ𝜎 (𝑖 )ℓ𝑖 .𝑋 =
𝑟⊗
𝑖=1

ℎℎ𝑖 .𝑥

where the unlabelled isomorphism is given by permuting the tensor factors
according to 𝜎 ; on morphisms, Nm𝐾

𝐻 is simply given by 𝑓 ↦→⊗𝑟
𝑖=1 ℎ𝑖 .𝑓 .

We omit the straightforward but rather lengthy verification that this is well-
defined. Note that this is clearly natural in strict symmetric monoidal functors,
and hence also satisfies the assumptions of the proposition.

Observation A.3.5. If C carries the trivial 𝐺-action, the above construction
simplifies as follows: the assignment ℎ ↦→ (𝜎 ; ℓ1, . . . , ℓ𝑟 ) defines a homomorphism
𝜄 : 𝐻 → Σ𝑟 ≀𝐾 , and the 𝐻-object Nm𝐻

𝐾𝑋 is given by equipping
⊗𝑟

𝑖=1𝑋 with the
restriction of the natural Σ𝑟 ≀ 𝐾-action on 𝑋 (by permuting the factors and via
the individual 𝐾-actions) along 𝜄.

The uniqueness part of Proposition A.3.2 now immediately implies:

Corollary A.3.6. Let C be a symmetric monoidal 1-category with 𝐺-action. Then
the structure map Cℎ𝐾 = C♭ (𝐺/𝐾) → C♭ (𝐺/𝐻 ) = Cℎ𝐻 of the associated Borel 𝐺-
∞-category is given by the classical symmetric monoidal norm of Construction A.3.4. □
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It remains to prove the proposition.

Lemma A.3.7. Let P : Fun(𝐵𝐺, Cat∞) → Fun(𝐵𝐺, CMon(Cat∞)) denote the left
adjoint of the forgetful functor. Then the restriction of P to F𝐺 is given by 𝑋 ↦→
(F/𝑋 )≃, with functoriality and 𝐺-action via postcomposition. The unit is given by
𝑋 → (F/𝑋 )≃, 𝑥 ↦→ (𝑥 : {∗} → 𝑋 ).
Proof. Note that the claim is clear for 𝐺 = 1 and 𝑋 = {∗}. For trivial 𝐺 and
general 𝑋 , we now observe that since P is a left adjoint, it in particular pre-
serves finite coproducts. As CMon(Cat∞) is semiadditive, it therefore suffices that∏
𝑥∈𝑋 F/{𝑥 } ≃ F/𝑋 via the coproduct functor, which is simply the statement that

F is extensive.
This finishes the proof for trivial 𝐺 . The lemma follows as the left adjoint

for general 𝐺 is simply given by taking the non-equivariant left adjoint and
equipping it with the induced 𝐺-action. □

Proof of Proposition A.3.2. The existence of such a map was observed in Exam-
ple A.3.3, so it only remains to prove uniqueness.

As both (−)ℎ𝐾 and (−)ℎ𝐻 preserve underlying equivalences of categories, we
may replace the source by its Dwyer–Kan localization. Combining the above
with [Len20, 4.1.36], we see that this localization is given by Fun(𝐵𝐺, CMon(Cat))
(with the evident localization functor).

On the other hand, we observe that since the forgetful functor Cℎ𝐻 → C is
faithful (here it is crucial that C is a 1-category!), a functor 𝑓 : Cℎ𝐾 → Cℎ𝐻 is
uniquely described by its effect on cores together with the composition Cℎ𝐾 →
Cℎ𝐻 → C. Thus, we are altogether reduced to showing that there is at most
one natural transformation ((−)ℎ𝐾 )≃ → ((−)ℎ𝐻 )≃ of functors CMon(Cat) → Spc
lifting the twisted 𝑟-fold tensor product.

Combining the Yoneda lemma with the representability result proven in
Lemma A.3.7, this translates to saying that the object

𝑟⊗
𝑖=1

ℎ𝑖 .(1 −→ 𝐺/𝐾) � (𝐻/𝐾 ↩→ 𝐺/𝐾)

of F ≃/(𝐺/𝐾 ) admits at most one lift to an 𝐻-homotopy fixed point. But this is
immediate since it admits no non-trivial automorphisms. □
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PARAMETRIZED STABILITY

AND THE UNIVERSAL PROPERTY OF GLOBAL SPECTRA

BASTIAAN CNOSSEN, TOBIAS LENZ, AND SIL LINSKENS

Abstract. We develop a framework of parametrized semiadditivity and sta-
bility with respect to so-called atomic orbital subcategories of an indexing
∞-category T , extending work of Nardin. Specializing this framework, we in-
troduce global ∞-categories and the notions of equivariant semiadditivity and
stability, yielding a higher categorical version of the notion of a Mackey 2-
functor studied by Balmer-Dell’Ambrogio. As our main result, we identify the
free presentable equivariantly stable global ∞-category with a natural global
∞-category of global spectra for finite groups, in the sense of Schwede and
Hausmann.
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1. Introduction

Equivariant homotopy theory combines classical homotopy theory with ideas from
representation theory to study geometric objects with symmetries. Many con-
structions from homotopy theory carry over to the equivariant setting, leading for
example to equivariant analogues of important cohomology theories like topolog-
ical K-theory and (stable) bordism. The resulting tools and methods have been
successfully applied to various other branches of mathematics, for example in the
proof of the Atiyah-Segal Completion Theorem [AS69], Carlson’s proofs of the Se-
gal [Car84] and Sullivan Conjecture [Car91], or in the resolution of the Kervaire
invariant one problem by Hill, Hopkins, and Ravenel [HHR16].

While one can study equivariant homotopy theory for a single group G at a time,
there are many equivariant phenomena which occur uniformly and compatibly in
large families of groups, such as the families of all finite groups or all compact
Lie groups. The study of such phenomena is known as global homotopy theory
[GH07, Boh14, Sch18, Hau19, Len20, LNP22]. This framework has led to improved
understanding of a variety of equivariant phenomena, where previously a direct
description for each individual group was either much more opaque or not avail-
able, for example for equivariant stable bordism and equivariant formal group laws
[Hau22]. The study of global homotopy theory moreover admits connections to the
geometry of stacks [GH07, Jur20, Par20, SS20].

Just like non-equivariant and G-equivariant homotopy theory, global homotopy
theory comes in various different flavours: unstable global homotopy theory studies
global spaces [GH07] while stable global homotopy theory is concerned with so-
called global spectra [Sch18]; in-between, one can also consider a variety of algebraic
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structures on global spaces [Bar21], with the most prominent example being ultra-
commutative monoids or the equivalent notion of special global Γ-spaces [Len20].
The goal of this article is to understand the relationship between these different
variants.

Stability and equivariant semiadditivity. Classically the passage from the homotopy
theory of spaces to the homotopy theory of spectra is known as stabilization. More
generally, a homotopy theory C (e.g. given in the form of a model category or an
∞-category) is said to be stable if it is pointed and the suspension-loop adjunction
in C is an equivalence. Stability of a homotopy theory leads to a lot of algebraic
structure: for example, its homotopy category Ho(C) is additive, and it canonically
admits the structure of a triangulated category. If C is not yet (known to be)
stable, there is a universal way to stabilize it by forming a homotopy theory Sp(C)
of suitable spectrum objects in C.
Although one may apply this stabilization procedure to the homotopy theory of
global spaces, the resulting theory is in many ways not sufficient, and in particular
does not yield the homotopy theory of global spectra. This issue in fact already
arises in the case of equivariant homotopy theory for a fixed group G: applying
the general stabilization procedure to the homotopy theory of G-spaces for some
finite group G only results in the homotopy theory of naive G-spectra, which for
example does not support a good theory of duality. Instead, one defines the ho-
motopy theory of genuine G-spectra by stabilizing more generally with respect to
the representation spheres SV for each finite-dimensional G-representation V . This
genuine stabilization leads to a much richer algebraic structure on the associated
homotopy category than naive stabilization: for example, the homotopy category
of genuine G-spectra admits a canonical enrichment in Mackey functors, refining
the enrichment in abelian groups.

Non-equivariantly, the algebraic structure on hom sets in a stable homotopy theory
comes from semiadditivity: finite coproducts agree with finite products. In a similar
way, the Mackey enrichment of the homotopy theory of genuine G-spectra comes
from a form of equivariant semiadditivity. To explain what this means, consider a
subgroup H of the finite group G; the restriction functor from genuine G-spectra to
genuine H-spectra then admits both a left adjoint indGH and a right adjoint coindGH ,
called induction and coinduction, respectively. From the perspective of this article,
the main feature of genuine equivariant spectra is that there is a natural equivalence
indGH ≃ coindGH between these two functors, called the Wirthmüller isomorphism

[Wir74]. If we think of indGH as a ‘G-coproduct over G/H ’ and coindGH as a ‘G-
product over G/H ,’ this may be seen as an equivariant analogue of the usual notion
of semiadditivity. These Wirthmüller isomorphisms are then precisely what gives
rise to the transfer maps in the aforementioned Mackey enrichment.

Parametrized higher category theory. In light of the above, it is natural to ask
whether one can modify the stabilization procedure for G-spaces in a way that
additionally enforces equivariant semiadditivity, and, if so, whether this will result
in the homotopy theory of genuine G-spectra. One subtlety with this question is
that the Wirthmüller isomorphisms described above do not only depend on the ho-
motopy theory of genuine G-spectra but also on the homotopy theories of genuine
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H-spectra for every subgroup H of G, together with all the restriction functors re-
lating them. Based on suggestions by Mike Hill in 2012, Clark Barwick, Emanuele
Dotto, Saul Glasman, Denis Nardin, and Jay Shah [BDG+16] began developing
the theory of G-∞-categories for a finite group G, in which these ideas could be
made precise. More generally, given an ∞-category T , they introduced the no-
tion of a T -∞-category, thought of as an family of ∞-categories parametrized by
T , and showed that many concepts and foundational results from the theory of
∞-categories have analogues in this parametrized setting. Using this framework,
Nardin [Nar16] worked out a notion of parametrized semiadditivity which neatly
recovers the equivariant Wirthmüller isomorphisms described earlier. He further
sketched a proof that the G-∞-category of genuine G-spectra is obtained from the
G-∞-category of G-spaces by enforcing both stability and parametrized semiaddi-
tivity.

1.1. Global ∞-categories. The goal of this article is to develop an analogue of
the above story, and in particular of Nardin’s result, in the global setting. A distin-
guishing feature that was not present in the equivariant setting is the appearance
of inflation functors : restriction functors along surjective group homomorphisms
α : H ։ G. This extra structure leads to the notion of a global∞-category. Roughly
speaking, such an object consists of

(i) an ∞-category C(G) for every finite group G;
(ii) a restriction functor α∗ : C(G)→ C(H) for every homomorphism α : H → G;
(iii) higher structure which in particular witnesses that conjugations act as the

identity.

Examples of global∞-categories abound in representation theory, and more gener-
ally equivariant mathematics; here we only mention categories of representations,
genuine equivariant spectra, and equivariant Kasparov categories, referring the
reader to [BD20] for a detailed discussion of these examples. In this paper, on
the other hand, we will be mainly interested in examples coming from G-global
homotopy theory in the sense of [Len20]; namely, we consider:

• the global ∞-category Sgl of global spaces, given at a group G by G-global
spaces (see Section 3.2 for a precise definition);
• the global ∞-category ΓSgl, spc of special global Γ-spaces, given at a group
G by special G-global Γ-spaces (see Section 5.1 for a precise definition);
• the global∞-category Spgl of global spectra, given at a group G by G-global
spectra (see Section 7.1 for a precise definition).

As the main results of this paper we establish universal properties for these three
global ∞-categories:

Presentability. A global∞-category C is said to be presentable if C(G) is presentable
for allG and the restriction functors α∗ : C(G)→ C(H) admit left and right adjoints
a! and α∗ for all α : H → G satisfying a base change condition, which may be
thought of as a categorified version of the Mackey double coset formula. We refer
to Section 2.4 for a precise definition. The universal example is provided byG-global
homotopy theory:

Theorem A (Universal property of global spaces, 3.3.2). The global ∞-category
Sgl is presentable. For every presentable global ∞-category D, evaluation at the
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point ∗ ∈ Sgl(1) induces an equivalence

FunLGlo(S
gl,D)→ D

of global∞-categories. Put differently, Sgl is the free presentable global∞-category
on one generator ∗.

We will in fact provide a stronger version of Theorem A based on a notion of global
cocompleteness, see Section 2.3. Our proof of this result can be regarded as a highly
coherent version of Schwede’s global Elmendorf theorem [Sch20].

Equivariant semiadditivity. Following ideas of [Nar16], we introduce a notion of
equivariant semiadditivity in our context; namely, a global ∞-category C is equiv-
ariantly semiadditive if the following conditions are satisfied:

• Fiberwise semiadditivity: The ∞-category C(G) is semiadditive for every
G and the functor α∗ : C(G) → C(H) preserves finite biproducts for every
α : H → G;
• Ambidexterity: For every injective homomorphism i : H → G, the restric-
tion functor i∗ : C(G) → C(H) admits a both left adjoint i! and a right
adjoint i∗ satisfying a base change condition as before, and a certain norm
map Nmi : i! → i∗ is a natural equivalence between these two adjoints.

A 2-categorical analogue of this definition was studied under the name Mackey 2-
functor by Balmer-Dell’Ambrogio [BD20]. The examples of representations, equi-
variant spectra, and Kasparov categories referred to above are all equivariantly
semiadditive – for example, in the case of equivariant spectra, ambidexterity pre-
cisely comes from the Wirthmüller isomorphism. Once again, G-global homotopy
theory provides the universal example in this setting:

Theorem B (Universal property of global Γ-spaces, 5.3.5). The global∞-category
ΓSgl, spc is presentable and equivariantly semiadditive. For every presentable equiv-
ariantly semiadditive global ∞-category D, evaluation at the free special global
Γ-space P(∗) induces an equivalence

FunLGlo(ΓS
gl, spc,D) ∼−−→ D

of global∞-categories. Put differently, ΓSgl, spc is the free presentable equivariantly
semiadditive global ∞-category on one generator P(∗).

Equivariant stability. A global ∞-category C is called equivariantly stable if it is
equivariantly semiadditive and fiberwise stable, meaning that the ∞-category C(G)
is stable for every finite group G and the restriction functors α∗ : C(G)→ C(H) are
exact for all α : H → G.

Theorem C (Universal property of global spectra, 7.3.2). The global ∞-category
Spgl is presentable and equivariantly stable. For every presentable equivariantly
stable global ∞-category D, evaluation at the global sphere spectrum S defines an
equivalence

FunL
Glo(Sp

gl,D) ≃−−→ D
of global ∞-categories. Put differently, Spgl is the free presentable equivariantly
stable global ∞-category on one generator S.
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Combining this with Theorem A, this makes precise that Spgl is obtained from Sgl

by universally stabilizing and enforcing Wirthmüller isomorphisms, answering the
question from the beginning. In particular, global ∞-categories provide a natural
and convenient home for studying global homotopy theory. Conversely, once one is
interested in global ∞-categories, global (and more generally G-global) homotopy
theory appears naturally in the form of the universal examples. For example one
can show using the above that for every equivariantly stable global ∞-category
C, the ∞-category C(G) is canonically enriched over G-global spectra, with strong
compatibilities as the group G varies.

1.2. Parametrized higher category theory. In setting up the formalism of
equivariant semiadditivity and stability, we work in the more general context of
T -∞-categories for an arbitrary ∞-category T , in the sense of [BDG+16]. Global
∞-categories arise as the special case where T is the (2, 1)-category Glo of finite
connected groupoids, see Example 2.1.3. We introduce the notion of an atomic
orbital subcategory P ⊆ T , generalizing a notion due to [Nar16]; in this setting, we
can then more generally define P -semiadditivity and P -stability, which for the sub-
category Orb ⊆ Glo of faithful morphisms specializes to the notions of equivariant
semiadditivity/stability discussed before.

Given a T -∞-category C with sufficiently many parametrized limits, we provide
a universal way to turn it into a P -semiadditive T -∞-category by passing to the
T -∞-category CMonP (C) of P -commutative monoids, a parametrized version of
commutative monoid objects in higher algebra. In a similar way, we construct a
universal P -stabilization SpP (C) of C. Combining this with Theorem A, the key
step in the proof of Theorem B and Theorem C is then to produce equivalences of
global ∞-categories

ΓSgl,spc ≃ CMonOrb(Sgl), Spgl ≃ SpOrb(Sgl).

1.3. Acknowledgements. The authors would like to thank Branko Juran for
pointing out an omission in a draft of this article, which led to the inclusion of
Appendix A. B.C. would like to thank Louis Martini and Sebastian Wolf for many
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by the Max Planck Institute for Mathematics in Bonn. S.L. is supported by the
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2. Parametrized higher category theory

In this section, we will recall some of the basic notions of parametrized higher
category theory. A first development of such theory was given by Clark Barwick,
Emanuele Dotto, Saul Glasman, Denis Nardin and Jay Shah, cf. [BDG+16, Sha21,
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Nar16]. From the perspective of categories internal to ∞-topoi, an alternative de-
velopment was given by Louis Martini and Sebastian Wolf [Mar21, MW21, MW22].

2.1. T -∞-categories. We introduce the notion of a T -∞-category for a small ∞-
category T and discuss various constructions and examples.

Definition 2.1.1. Let T be a small ∞-category. A T -∞-category is a functor
C : T op → Cat∞. If C and D are T -∞-categories, then a T -functor F : C → D is
a natural transformation from C to D. The ∞-category CatT of T -∞-categories is
defined as the functor category CatT := Fun(T op,Cat∞).

If C is a T -∞-category and f : A→ B is a morphism in T , we will write f∗ for the
functor C(f) : C(B)→ C(A) and refer to this as restriction along f .

Example 2.1.2. Let G be a finite group and let OrbG denote the orbit category of
G, defined as the full subcategory of the category of G-sets spanned by the orbits
G/H for subgroups H 6 G. When T = OrbG, T -∞-categories are referred to as
G-∞-categories, c.f. [BDG+16].

We will be mainly interested in the following example.

Example 2.1.3. Define Glo as the strict (2, 1)-category of finite groups, group
homomorphisms, and conjugations. In particular, Glo comes with a fully faithful
functor B : Glo →֒ Grpd into the (2, 1)-category of groupoids given by sending
a finite group G to the corresponding 1-object groupoid BG, a homomorphism
f : G → H to the functor Bf : BG → BH given on homomorphisms by f , and a
conjugation h : f ⇒ f ′ (i.e. an h ∈ H such that f ′(g) = hf(g)h−1 for all g ∈ G) to
the natural transformation Bf ⇒ Bf ′ whose value at the unique object of BG is
the edge h.

We define the ∞-category Glo as the Duskin nerve of the (2, 1)-category Glo. We
will use the term global ∞-category for a Glo-∞-category, global functor for a Glo-
functor, etc.

Remark 2.1.4. The straightening-unstraightening equivalence (see [Lur09, Theo-
rem 3.2.0.1]) provides an equivalence of ∞-categories CatT ≃ (Cat∞)cocart/T op , where

(Cat∞)cocart/T op denotes the (non-full) subcategory of the slice (Cat∞)/T op spanned by

the cocartesian fibrations over T op and the functors over T op that preserve cocarte-
sian edges. The cocartesian fibration over T op corresponding to a T -∞-category
C : T op → Cat∞ is denoted by

∫
C → T op and is referred to as the cocartesian un-

straightening of C. A T -functor F : C → D corresponds to a functor
∫
F :

∫
C →

∫
D

over T op which preserves cocartesian edges. In fact, in the articles [BDG+16],
[Sha21] and [Nar16], a T -∞-category is defined as a cocartesian fibration over T op.

Definition 2.1.5. Let C : T op → Cat∞ be a T -∞-category. We define the under-
lying ∞-category Γ(C) of C as the limit of C:

Γ(C) := lim
B∈T op

C(B).

This defines a functor Γ: CatT → Cat∞. Note that when T has a final object,
Γ(C) is obtained by evaluating C at the final object.

Remark 2.1.6. By [Lur09, Corollary 3.3.3.2], the ∞-category Γ(C) is equivalent
to the ∞-category of cocartesian sections of

∫
C → T op.
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We discuss some important examples of T -∞-categories.

Example 2.1.7. Every∞-category E gives rise to a T -∞-category constE : T op →
Cat∞ given by constE(t) = E for all t ∈ T . This provides a functor const : Cat∞ →
CatT . We will refer to T -∞-categories in the essential image of this functor as
constant T -∞-categories.

Remark 2.1.8. Note that the functor const: Cat∞ → CatT is left adjoint to the
underlying ∞-category functor Γ: CatT → Cat∞: for every T -∞-category C and
every ∞-category E there is an equivalence

HomCatT (constE , C) ≃ HomCat∞(E ,Γ(C)).
Example 2.1.9. Every presheaf B : T op → Spc on T gives rise to a T -∞-category
B : T op → Cat∞ by composing it with the inclusion Spc ⊆ Cat∞ of ∞-groupoids
into all ∞-categories, and we obtain a fully faithful inclusion

PSh(T ) = Fun(T op, Spc) →֒ Fun(T op,Cat∞) = CatT .

The T -∞-categories in the essential image of this functor will be referred to as
T -∞-groupoids.

In particular, every object B ∈ T gives rise to a T -∞-category B via the Yoneda
embedding T →֒ PSh(T ).

Remark 2.1.10. The inclusion PSh(T ) ⊆ CatT admits a right adjoint ι : CatT →
PSh(T ). It is given on C by ι ◦ C, where ι : Cat∞ → Spc is the functor which assigns
to an ∞-category its core, the largest ∞-groupoid contained in it.

Example 2.1.11. Let E be an ∞-category. A T -object in E is a functor T op → E .
We obtain a T -∞-category ET of T -objects in E by assigning to an object B ∈ T the
∞-category Fun((T/B)

op, E) of T/B-objects in E . More precisely, the T -∞-category
ET is defined as the following composite

T op B 7→(T/B)op−−−−−−−−→ (Cat∞)op
Fun(−,E)−−−−−−→ Cat∞,

where the functoriality of the first functor is via post-composition in T , i.e. the
straightening of the cocartesian fibration ev1 : T

[1] → T . It is clear that sending E
to ET gives rise to a functor Cat∞ → CatT .

As a special case, we obtain the following T -∞-categories:

(1) taking E = Spc gives a T -∞-category SpcT of T -spaces or T -∞-groupoids.
(2) taking E = Spc∗ gives a T -∞-category SpcT,∗ := Spc∗T of pointed T -spaces.

(3) taking E = Sp gives a T -∞-category SpT of naive T -spectra.1

(4) taking E = cat∞, the ∞-category of small ∞-categories, gives a T -∞-category
catT := cat∞T of small T -∞-categories.

Remark 2.1.12. For every T -∞-category C and every ∞-category E , there is an
equivalence

HomCatT (C, ET ) ≃ HomCat∞(
∫
C, E)

which is natural in C and E . In other words, the construction of Example 2.1.11
provides a right adjoint to the cocartesian unstraightening

∫
: CatT → Cat∞ which

1The term ‘naive spectra’ is used in equivariant homotopy theory to contrast it with ‘genuine
spectra’.
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assigns to a T -∞-category C : T op → Cat∞ the total category
∫
C of its unstraight-

ening
∫
C → T op. We will prove this in Lemma 2.2.13 below.

Remark 2.1.13. One may alternatively describe T -∞-categories as Cat∞-valued
sheaves on the presheaf ∞-topos PSh(T ) = Fun(T op, Spc), i.e., as limit-preserving
functors PSh(T )op → Cat∞. Indeed, the functor

Fun(PSh(T )op,Cat∞)→ Fun(T op,Cat∞)

given by precomposition with the Yoneda embedding T →֒ PSh(T ) becomes an
equivalence when restricting the domain to the full subcategory of limit-preserving
functors, see [Lur09, Theorem 5.1.5.6].

Remark 2.1.14. For an ∞-topos B, the ∞-category FunR(Bop,Cat∞) of sheaves
of ∞-categories on B is equivalent to the full subcategory of Fun(∆op,B) spanned
by the internal ∞-categories (or complete Segal objects). We refer to [Mar21,
Definition 3.2.4] for a precise definition of an internal ∞-category, and to [Mar21,
Section 3.5] for a proof of this equivalence. By Remark 2.1.13, the study of T -∞-
categories is thus equivalent to the study of ∞-categories internal to the presheaf
topos PSh(T ). Although we will never use this perspective in this article, we will
not hesitate to cite results from [Mar21, MW21, MW22] which are formulated in
the language of internal ∞-categories.

Convention 2.1.15. Henceforth, we will abuse notation and denote the extension
of a T -∞-category C to a limit preserving functor PSh(T )op → Cat∞ again by C.
At various points in this article, we will write expressions such as A×A or A×B A
for objects A,B ∈ T , meaning implicitly that this pullback is taken in the presheaf
∞-category PSh(T ). In particular, when we write C(A×B) or C(A×B A), we are
referring to the values of the limit-extension C : PSh(T )op → Cat∞ at the relevant
objects. This abuse of notation is justified by the fact that the Yoneda embedding
T →֒ PSh(T ) preserves all limits that exist in T , cf. [Lur09, Proposition 5.1.3.2]. In
a similar way, all colimits of objects of T are understood to be taken in the presheaf
∞-category PSh(T ): expressions such as

⊔n
i=1 Ai will always mean formal disjoint

union.

Remark 2.1.16. It will be useful to observe that the limit-extension of the T -∞-
category SpcT of T -spaces is equivalent to the slice functor

PSh(T )/− : PSh(T )op → Cat∞,

A 7→ PSh(T )/A,

[f : A→ B] 7→ f∗ : PSh(T )/B → PSh(T )/A,

which is defined as the functor which classifies the cartesian fibration

t : Ar(PSh(T ))→ PSh(T ) : (A→ B) 7→ B.

Indeed, since this slice functor preserves limits by [Lur09, Theorem 6.1.3.9, Propo-
sition 6.1.3.10], it suffices to show that its restriction to T op is equivalent to SpcT .
Consider the Yoneda embedding T →֒ PSh(T ). By considering the functoriality in
over-categories on both sides we obtain a natural transformation

T/− → PSh(T )/−
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of functors in T . The universal property of presheaves implies that this extends to
a natural equivalence

PSh(T/−)
∼→ PSh(T )/−.

By the naturality of the Yoneda embedding (see [HHLN22b, Theorem 8.1] or
[Ram22, Theorem 2.4]) we get that upon passing to right adjoints the diagram
PSh(T/−) agrees with SpcT , completing the proof.

Example 2.1.17. For an object B ∈ T there is an adjunction

πB : PSh(T )/B ⇄ PSh(T ) :−×B,

where πB is the forgetful functor. Since both functors preserve colimits we obtain
by precomposition an adjunction

π∗
B : CatT ⇄ CatT/B : (πB)∗ = (−×B)∗.

Lemma 2.1.18. Consider an object B ∈ T . Then there is for every ∞-category E
an equivalence of T/B-∞-categories

π∗
BET ≃ ET/B

,

natural in E.

Proof. It will suffice to prove that the composite

T/B
πB−−→ T

A 7→(T/A)op−−−−−−−→ Cat∞

is equivalent to the slice functor of T/B. This is immediate from the observation

that the target map ev1 : (T/B)
[1] → T/B of T/B is the pullback along πB of the

target map ev1 : T
[1] → T . �

2.2. Parametrized functor categories. In this subsection, we establish a variety
of basic results on parametrized functor categories.

Definition 2.2.1. Since T is small and Cat∞ is cartesian closed, the ∞-category
CatT = Fun(T op,Cat∞) is again cartesian closed. Given two T -∞-categories C and
D, we define the T -∞-category of T -functors C → D, denoted FunT (C,D), as the
internal hom-object between C and D in the ∞-category CatT . In particular, for
any triple of T -∞-categories C, D and E there is a natural equivalence

FunT (C ×D, E) ≃ FunT (C,FunT (D, E)).

Definition 2.2.2. Given two T -∞-categories C and D, we define the ∞-category
FunT (C,D) of T -functors C → D as the underlying∞-category of the T -∞-category
FunT (C,D):

FunT (C,D) := Γ(FunT (C,D)).

Remark 2.2.3. The objects of FunT (C,D) may be identified with T -functors C →
D. If F and F ′ are two such T -functors, we refer to a morphism α : F → F ′ in
FunT (C,D) as a natural transformation of T -functors. A natural transformation of
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T -functors is given by a collection of natural transformations ηA : F (A) → F ′(A)
together with a coherent collection of 3-cells which fill the cylinders

C(B) D(B)

C(A) D(A),

f∗

F (B)

F ′(B)

f∗

ηB

F (A)

F ′(A)

ηA

for every morphism f : A→ B in T .

Example 2.2.4. The T -functors of the form Cop → SpcT are called T -presheaves
on C. There is an analogue of the Yoneda embedding,

y : C → FunT (Cop, SpcT ),
see [BDG+16, Section 10] or [Mar21, Section 4.7], which is fully faithful by [Mar21,
Theorem 4.7.8].

Natural transformations between ordinary categories induce natural transforma-
tions between their associated T -∞-categories of T -objects.

Construction 2.2.5. Given ∞-categories E and E ′, we will construct a functor

Fun(E , E ′)→ FunT (ET , E ′T )
which on groupoid cores reduces to the functoriality of the construction E 7→ ET
of Example 2.1.11. By adjunction we may equivalently specify a T -functor of the
form

constFun(E,E′)×ET → E ′T .
At level B ∈ T , we define this as the composition functor

Fun(E , E ′)× Fun((T/B)
op, E)→ Fun((T/B)

op, E ′).
By precomposing with the functors T op

/A → T op
/B this specifies a T -functor.

The following result of [MW21] relates the ∞-category of T -functors from Defini-
tion 2.2.2 to the identically named ∞-category of T -functors from [BDG+16, p.3].

Proposition 2.2.6 ([MW21, Proposition 3.2.1]). For any two T -∞-categories C
and D there is a natural equivalence

FunT (C,D) ≃ Funcocart
/T op (

∫
C,

∫
D),

where the right-hand side denotes the full subcategory of Fun/T op(
∫
C,

∫
D) spanned

by those functors
∫
C →

∫
D over T op that preserve cocartesian edges. �

To give a pointwise description of the parametrized functor category FunT (C,D),
we need the following enhanced version of the Yoneda lemma.
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Lemma 2.2.7 (Categorical Yoneda lemma). For every B ∈ T and C ∈ CatT ,
evaluation at the identity idB ∈ HomT (B,B) = B(B) induces a natural equivalence
of ∞-categories

FunT (B, C) ∼−−→ C(B).

Proof. By the Yoneda lemma and Remark 2.1.10 there is a natural equivalence

HomCatT (B, C) ≃ ι(C(B))

between the ∞-groupoid of T -functors B → C and the groupoid core of the ∞-
category C(B), so the statement holds on groupoid cores. To obtain the statement
on the level of categories, we use that the ∞-category CatT is cotensored over
Cat∞: for every T -∞-category C and every∞-category E , the cotensor CE is given
at B ∈ T by CE(B) ≃ Fun(E , C(B)). It follows that for any ∞-category E we have
natural equivalences

HomCat∞(E ,FunT (B, C)) ≃ HomCatT (B, CE) ≃ ι(CE(B))

≃ ι(Fun(E , C(B)) = HomCat∞(E , C(B)),

and thus the claim follows from the Yoneda lemma. �

By limit-extending the previous equivalence to presheaves, we immediately obtain:

Corollary 2.2.8. There is a unique natural equivalence FunT (X, C) ≃ C(X) of
functors PSh(T )×CatT → Cat that for representable presheaves recovers the equiv-
alence from the previous lemma. �

Corollary 2.2.9. Let X ∈ PSh(T ) and let C and D be T -∞-categories. Then there
are natural equivalences of ∞-categories

FunT (C,D)(X) ≃ FunT (X,FunT (C,D)) ≃ FunT (X×C,D) ≃ FunT (C,FunT (X,D)).

Proof. The first equivalence is Corollary 2.2.8, while the others are immediate. �

Our next goal is to give an alternative description of the functor T -∞-category
FunT (C,D).
Construction 2.2.10. Let B ∈ T and let C and D be T -∞-categories. We define
a T/B-functor

π∗
B : π∗

BFunT (C,D)→ FunT/B
(π∗
B C, π∗

B D)
as adjoint to the composite

π∗
BFunT (C,D)× π∗

B C ≃ π∗
B(FunT (C,D)× C)

π∗
B(ev)−−−−→ π∗

B D .
We obtain T -functors

FunT (B,D)→ (πB)∗π
∗
B D and (πB)!π

∗
B C → B × C .

The first one is adjoint to the composite T/B-functor

π∗
BFunT (B,D)

π∗
B−−→ FunT/B

(π∗
BB, π

∗
B D)

evidB−−−→ π∗
B D,

while the second one is adjoint to the composite

π∗
B C

(ι,id)−−−→ π∗
BB × π∗

B C ≃ π∗
B(B × C).
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Here evidB
denotes evaluation at the object idB ∈ Γ(π∗

BB) = HomT (B,B), and
ι picks out idB ∈ Γ(π∗

BB) = HomT (B,B). Observe that the resulting map
(πB)!π

∗
B C → B × C is the total mate of the map FunT (B,D)→ (πB)∗π∗

B D.
Corollary 2.2.11. Let C and D be T -∞-categories and let B ∈ T . The following
hold:

(1) The T -functors

FunT (B,D) ∼−−→ (πB)∗π
∗
B D and (πB)!π

∗
B C ∼−−→ B × C

from Construction 2.2.10 are equivalences of T -∞-categories.
(2) The T/B-functor

π∗
B : π∗

BFunT (C,D) ∼−−→ FunT/B
(π∗
B C, π∗

B D)
from Construction 2.2.10 is an equivalence of T/B-∞-categories.

(3) In particular, passing to global sections gives an equivalence of ∞-categories

FunT (C,D)(B) ∼−−→ FunT/B
(π∗
B C, π∗

B D).

Proof. For part (1), it suffices to show the first equivalence, since the second equiv-
alence follows by passing to total mates. For this, we have to show that for every
object A ∈ T the induced map FunT (B,D)(A)→ (πB)∗π∗

B D(A) = D(A×B) is an
equivalence. Given Lemma 2.2.7, it will suffice to show that the following diagram
commutes:

FunT (A,FunT (B,D)) FunT (A×B,D)

FunT (B,D)(A) D(A×B).

∼2.2.7

∼

∼2.2.7

This follows from unwinding the definitions, using the observation that the equiva-
lence FunT (B,D)→ D(B) from Lemma 2.2.7 is the map induced on global sections
by the map FunT (B,D)→ (πB)∗π∗

B D.
We will next prove part (3). It suffices to show that the following diagram com-
mutes:

FunT (B,FunT (C,D)) FunT (C,FunT (B,D)) FunT (C, (πB)∗π∗
B D)

FunT (C,D)(B) FunT/B
(π∗
B C, π∗

B D).
∼2.2.7

∼ ∼
(1)

∼
π∗
B(B)

This is again a matter of unwinding definitions, using that the equivalence of (1) is
defined in terms of the map π∗

B and evaluation at idB.

Finally, for part (2) it remains to show that the map π∗
B induces an equivalence

when evaluated at every object A ∈ T/B. To see this, consider the following two
T/A-functors:

π∗
AFunT (C,D)→ π∗

AFunT/B
(π∗
B C, π∗

B D)→ FunT/A
(π∗
A C, π∗

AD).
Here we abuse notation by writing A both for an object in T/B and for its underlying
object in T . By part (3), both the second map and the composite map induce
equivalences on global sections, and therefore so does the first. This finishes the
proof. �
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For later use let us describe the functoriality of FunT (π
∗
B C, π∗

B D) in B. While
this can be done in a fully coherent fashion using the results and techniques of
[HHLN22a], for the purposes of the present paper the following more elementary
lemma will be sufficient:

Lemma 2.2.12. Let f : A → B be a map in T , and let σ : πB ◦ T/f ≃ πA be the
usual equivalence. Then the diagram

HomT/B
(π∗
B C, π∗

B D) HomT/A
(T ∗
/fπ

∗
B C, T ∗

/fπ
∗
B D) HomT/A

(π∗
A C, π∗

AD)

FunT/B
(π∗
B C, π∗

B D) FunT/A
(π∗
A C, π∗

AD)

FunT (C,D)(B) FunT (C,D)(A)

T∗
/f σ∗

∼ 2.2.11 ∼ 2.2.11

f∗

of natural transformations of functors CatopT ×CatT → Cat∞ commutes up to ho-
motopy.

Proof. Unravelling the definitions and using the naturality of the equivalences from
the previous corollary, it suffices to construct a homotopy filling

HomT/B
(π∗
B C, π∗

B D) HomT/A
(T ∗
/fπ

∗
B C, T ∗

/fπ
∗
B D) HomT/A

(π∗
A C, π∗

AD)

HomT (πB!π
∗
B C,D) HomT (πA!π

∗
A C,D)

HomT (B × C,D) HomT (A× C,D)

∼

T∗
/f σ∗

∼

j∗B j∗A

(f×C)∗

where the unlabelled equivalences come from adjunction and jA : πA!π
∗
A C → A×C,

jB : πB!π
∗
B C → B × C are as in Corollary 2.2.11 again.

Obviously, we can make the lower half commute by adding the restriction along the
composite πA!π

∗
A C ≃ A × C → B × C ≃ πB!π

∗
B as the middle arrow. Similarly, we

can make the upper portion commute by taking the restriction along

f♦ : (πA)!π∗
A C

σ∗
−−→∼ (πA)!T

∗
/fπ

∗
B C −→ (πB)!π

∗
B C

instead, where the second map is the mate of σ∗. It will therefore suffice to show that
these two natural transformations πA!π

∗
A ⇒ πB!π

∗
B are in fact homotopic. Plugging

in the definitions of the equivalences jA and jB , this amounts to saying that jBf♦ is
adjunct to the map π∗

A C → π∗
AB×π∗

A C picking out f ∈ (π∗
AB)(idA) = Hom(A,B).

Further plugging in definitions, the adjunct of jf♦ is the top right composite in

π∗
A C T ∗

/fπ
∗
B C T ∗

/fπ
∗
B(πB)!π

∗
B C π∗

A(πB)!π
∗
B C

T ∗
/fπ

∗
B(B × C) π∗

A(B × C).

σ∗ η (σ−1)∗

jB jB

(σ−1)∗
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The square on the right commutes by naturality and the dashed composite is by
definition the adjunct of jB , i.e. it is induced by the map π∗

B C → π∗
B(B × C)

classifying idB ∈ B(B). It follows that after postcomposing with the projection
π∗
A(B × C) → π∗

A C the above is simply the identity, and it remains to show that
the natural map π∗

A C → π∗
AB obtained by postcomposing with the other projection

classifies f ∈ B(A). But indeed, as a functor of CatT the right hand side is constant,
so any natural transformation into it is determined by its value on the terminal
object. Together with application of the Yoneda lemma it therefore suffices that
for C = ∗ the map (π∗

A∗)(idA) → (π∗
AB)(idA) hits f . However, by the above

commutative diagram this can be identified with (π∗
B∗)(f)→ (π∗

BB)(f), which hits
f = f∗(idB) for formal reasons. �

We will now prove the adjunction between E 7→ ET and C 7→
∫
C promised in

Remark 2.1.12.

Lemma 2.2.13. The functor
∫
: CatT → Cat∞, sending a T -∞-category C : T op →

Cat∞ to the total space
∫
C of the cocartesian fibration

∫
C → T op it classifies, ad-

mits a right adjoint given by the construction E 7→ ET of Example 2.1.11.

Proof. The functor
∫
: CatT → Cat∞ can be expanded into the following composite

functor:

CatT
2.1.4≃ (Cat∞)cocart/T op →֒ (Cat∞)/T op

fgt−−→ Cat∞

By [Lur17, Example B.2.10, Remark B.0.28], the functor in the middle is the un-
derlying functor of a left Quillen functor between model categories, so that it ad-
mits a right adjoint by [Hin16, Proposition 1.5.1]. The second functor clearly
admits a right adjoint. It follows that

∫
: CatT → Cat∞ admits a right adjoint

R : Cat∞ → CatT .

As a formal consequence we obtain for each T -∞-category C and for each ∞-
category E a natural equivalence

FunT (C, R(E)) ≃ Fun(
∫
C, E)

between the ∞-category T -functors C → R(E) and the ∞-category of functors∫
C → E : for every other ∞-category E ′ there is a natural equivalence

HomCatT (E ′,FunT (C, R(E))) ≃ HomCatT (C × constE′ , R(E))
≃ HomCat∞(

∫
(C × constE′), E)

≃ HomCat∞(
∫
C ×E ′, E)

≃ HomCat∞(E ′,Fun(
∫
C, E)),

where we use that the cocartesian unstraightening of constE′ is T op × E ′ and that
the inclusion (Cat∞)cocart/T op →֒ (Cat∞)/T op preserves finite products. The claim now

follows from the Yoneda lemma.

The description of R as the functor E 7→ ET from Example 2.1.11 now follows
immediately by recalling that the cocartesian unstraightening of the functor B =
HomT (−, B) : T op → Spc is by definition given by the target functor (T/B)

op →
T op. Namely for any E ∈ Cat∞ and B ∈ T we have a natural equivalence

R(E)(B)
2.2.7≃ FunT (B,R(E)) ≃ Fun(

∫
B, E) ≃ Fun((T/B)

op, E) = ET (B). (1)
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This finishes the proof. �

Remark 2.2.14. Combining the previous lemma and Corollary 2.2.9 we obtain a
natural equivalence

FunT (C, ET ) ≃ Fun(
∫
C ×(−), E).

Remark 2.2.15. Let B ∈ T arbitrary. Unravelling the chain of equivalences (1)
we see that the diagram

FunT (B, ET ) Fun(
∫
B, E)

ET (B) Fun(T/B, E)

adjunction

Yoneda f∗

of equivalences commutes up to natural equivalence where f is the chosen identifi-
cation of

∫
B with T/B over T .

Now assume T has a final object 1. Specializing the above to B = 1 (and identifying
T/1 with T as usual), we see that

FunT (1, ET ) Fun(
∫
1, E)

ET (1) Fun(T op, E)
Yoneda ≃

adjunction

≃

π∗

commutes up to natural equivalence, where π :
∫
1→ T op is the cocartesian projec-

tion. Combining this with the naturality of the adjunction equivalence, we conclude
that we have for every T -∞-category C and c ∈ C(1) a natural equivalence filling

FunT (C, ET ) Fun(
∫
C, E)

ET (1) Fun(T op, E)
evc

adjunction

≃

ĉ∗

where ĉ : T op →
∫
C is the essentially unique map over T op sending the fiber over

1 ∈ T to c (i.e. the unstraightening of c viewed as a T -functor 1→ C).
Remark 2.2.16. We can make the equivalence FunT (C, ET ) ≃ Fun(

∫
C, E) of

Lemma 2.2.13 more explicit. Consider a functor F̃ :
∫
C → E . The associated

T -functor F : C → ET is given at B ∈ T by the functor

FB : C(B)→ Fun(T op
/B, E),

where FB(X)(h : C → B) = F̃ (h∗(X)), the value of F̃ on the cocartesian pushfor-
ward of X ∈ C(B) along h to C(C). The value of FB(X) on a triangle

C D

B
h

f

g

is given by applying F̃ to the cocartesian edge over f from g∗(X) to h∗(X). More

generally, for another object B′ ∈ T and a functor F̃ :
∫
(C ×B′)→ E , the associated
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T -functor F : C → Fun(B, E) is given at B ∈ T by the functor FB : C(B) →
Fun(T op

/B×B′ , E) given by

FB(X)(A
(fB ,fB′ )−−−−−→ B ×B′) = F̃ (A, f∗

BX, fB′).

2.3. Parametrized adjunctions, limits and colimits. We will briefly recall the
parametrized versions of adjunctions, limits and colimits, following Sections 3 and
4 of [MW21] (see Remark 2.1.14). An alternative treatment in the language of
cocartesian fibrations over T op is given by [Sha21, Sections 8 and 9].

Definition 2.3.1 ([MW21, Definition 3.1.1]). Let C and D be T -∞-categories.
An adjunction between C and D is a tuple (L,R, η, ε), where L : C → D and
R : D → C are T -functors and where η : idD → RL and ε : LR → idC are natural
transformations of T -functors fitting in commutative triangles

L LRL

L

Lη

εL and

RLR R

R.

Rε

ηR

Note that the notion of an adjunction between two T -∞-categories only depends
on the (homotopy) 2-category associated to CatT and in particular many of the
standard 2-categorical results about adjunctions hold in this setting.

Example 2.3.2. Every adjunction E ⇄ E ′ of∞-categories gives rise to an adjunc-
tion constE ⇄ constE′ on associated constant T -∞-categories.

Example 2.3.3. By Construction 2.2.5, every adjunction E ⇄ E ′ of ∞-categories
gives rise to an adjunction ET ⇄ E ′T on associated T -∞-categories of T -objects.

Important will be the following ‘pointwise’ criterion for checking that a T -functor
has a parametrized adjoint.

Proposition 2.3.4 ([MW21, Proposition 3.2.8 and Corollary 3.2.10]). A T -functor
F : C → D admits a (parametrized) right adjoint if and only if the following two
conditions hold:

(1) For every object B ∈ T , the induced functor F (B) : C(B) → D(B) admits a
right adjoint G(B) : D(B)→ C(B);

(2) For every morphism f : A→ B in T , the Beck-Chevalley transformation

f∗ ◦G(B) =⇒ G(A) ◦ f∗

given as the mate of the naturality square

C(B) D(A)

C(A) D(A)

F (B)

f∗ f∗

F (A)

is an equivalence.

If this is the case, the right adjoint G : D → C of F is given on an object B ∈ T by
the functor G(B) : D(B) → C(B). Moreover, if Y ∈ PSh(T ) is any presheaf, then
also the functor F (Y ) : C(Y )→ D(Y ) admits a right adjoint G(Y ) in this case, and
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for any map f : X → Y in PSh(T ) the Beck-Chevalley map f∗ ◦G(Y )⇒ G(X)◦f∗

is an equivalence.

The dual statement for parametrized left adjoints also holds. �

We will now move to parametrized limits and colimits, of which we will only give a
brief treatment sufficient for the purposes of the present article.

Definition 2.3.5. Let K and C be T -∞-categories. We say that C admits K-
indexed colimits if the diagonal functor diag : C → FunT (K, C) given by precom-
posing withK → 1 admits a left adjoint colimK : FunT (K, C)→ C. Similarly we say
that C admits K-indexed limits if diag admits a right adjoint limK : FunT (K, C)→
C.
Definition 2.3.6. Let K, C and D be T -∞-categories and assume that C and D
admit K-indexed colimits. We will say that a T -functor F : C → D preserves K-
indexed colimits if the Beck-Chevalley transformation colimK ◦ FunT (K,F ) =⇒
F ◦ colimK of the naturality square

C FunT (K, C)

D FunT (K,D)

diag

F Fun
T
(K,F )

diag

is an equivalence.

In the non-parametrized context, one often asks an ∞-category to admit (co)limits
for a certain class of indexing diagrams. In the parametrized setting, one should
work with the following parametrized notion of ‘class of indexing diagrams’.

Definition 2.3.7. Let T be an ∞-category. A class of T -∞-categories is a full
parametrized subcategory U ⊆ catT of the T -∞-category of small T -∞-categories.

Definition 2.3.8 ([MW21, Definition 5.2.1 and Remark 5.2.4]). Let U be a class
of T -∞-categories and let C and D be T -∞-categories.

(1) We will say that C admits U-colimits if the T/B-∞-category π∗
B C of Exam-

ple 2.1.17 admits K-indexed T/B-colimits for every B ∈ T and K ∈ U(B) ⊆
Cat(T/B).

(2) If C and D admit U-colimits, a T -functor F : C → D is said to preserve U-
colimits if π∗

BF preserves K-indexed T/B-colimits for every B ∈ T and K ∈
U(B).

Dually, C is said to admit U-limits if for every B ∈ T and K ∈ U(B), the T/B-
∞-category π∗

B C admits K-indexed T/B-limits. A T -functor F : C → D is said
to preserve U-limits if π∗

BF preserved K-indexed T/B-limits for every B ∈ T and
K ∈ U(B).

If U = catT consists of all T -∞-categories, we will say that C is T -cocomplete or
T -complete respectively.

From the pointwise criterion Proposition 2.3.4 of parametrized adjunctions, we
immediately obtain characterizations of T -(co)limits indexed by constant T -∞-
categories and T -∞-groupoids, respectively. We start with the case of constant
T -∞-categories.
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Lemma 2.3.9 (cf. [MW21, Example 4.1.10 and Remark 4.1.11]). Let C be a T -
∞-category, let K be an ∞-category, and let constK be the associated constant
T -∞-category. Then the following conditions are equivalent:

(1) The T -∞-category C admits constK-indexed colimits;
(2) For every object B ∈ T the ∞-category C(B) admits K-indexed colimits, and

for every morphism β : B′ → B in T the restriction functor β∗ : C(B)→ C(B′)
preserves K-indexed colimits.

(3) For every presheaf Y ∈ PSh(T ), the ∞-category C(Y ) admits K-indexed colim-
its, and for every morphism β : Y ′ → Y in PSh(T ) the restriction β∗ : C(Y )→
C(Y ′) preserves K-indexed colimits.

The dual statement for limits also holds.

Proof. We apply the natural identification

FunT (constK , C)(B)
2.2.9≃ FunT (constK ,FunT (B, C))
2.1.8≃ Fun(K,FunT (B, C))
2.2.7≃ Fun(K, C(B)).

Because each equivalence above is natural in K, we find that under this identifica-
tion the T -functor diag : C → FunT (K, C) corresponds at B ∈ T to the standard
diagonal functor. Furthermore the Beck-Chevalley transformation associated to the
naturality square

C(B) Fun(K, C(B))

C(B′) Fun(K, C(B′))

β∗

diag

diag

Fun(K,β∗)

is the standard comparison colim ◦Fun(K,β∗)⇒ F ◦ colimK . Therefore the equiv-
alence of the first two statements is an instance of Proposition 2.3.4.

The equivalence between the first and the third statement is proven in exactly the
same way. �

The following result is proved similarly and will be left to the reader.

Lemma 2.3.10. Let K be an ∞-category and let C and D be two T -∞-categories
that admit constK-indexed T -colimits. Then a T -functor F : C → D preserves
constK-indexed T -colimits if and only if for each B ∈ T the functor F (B) : C(B)→
D(B) preserves K-indexed colimits. Moreover, in this case F (Y ) : C(Y ) → D(Y )
preserves K-indexed colimits for all Y ∈ PSh(T ).

The dual statement for limits also holds. �

Definition 2.3.11. If the equivalent conditions of Lemma 2.3.9 are satisfied, we
say that C admits fiberwise K-indexed colimits. If S is a collection of small ∞-
categories such that C admits fiberwise K-indexed colimits for every K ∈ S, we say
that C admits fiberwise S-indexed colimits. We say that C is fiberwise cocomplete if
C admits fiberwise K-indexed colimits for every small ∞-category K.

Dually one defines when C admits fiberwise K-indexed limits or is fiberwise complete.
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We next describe parametrized colimits indexed by T -∞-groupoids.

Definition 2.3.12. A class of T -∞-groupoids2 is a full parametrized subcategory
U ⊆ SpcT of the T -∞-category of T -∞-groupoids. A morphism f : X → Y in
PSh(T ) is said to be inU if it is an object in the full subcategoryU(Y ) ⊆ PSh(T )/Y .

Remark 2.3.13. In the above definition, we have again viewed U as a sheaf on
PSh(T ) via limit extension. For later use, let us make explicit what this means in
terms of the original functor T op → Cat∞: a map f : X → Y in PSh(T ) belongs to
U if and only if for every map β : B → Y from a representable presheaf B ∈ T the
pulled back map β∗f : β∗X → B is an object of U(B).

Lemma 2.3.14 (cf. [MW21, Example 4.1.9], [Sha21, Proposition 5.12]). Let U
be a class of T -∞-groupoids. Then a T -∞-category C admits U-colimits if and
only if for every morphism p : A → B in U, with B ∈ T , the restriction functor
p∗ : C(B) → C(A) admits a left adjoint p! : C(A) → C(B), and for every pullback
square

A′ A

B′ B

p′

α

p

β

(2)

in PSh(T ) with β : B′ → B in T and p : A→ B in U, the Beck-Chevalley transfor-
mation p′! ◦ α∗ ⇒ β∗ ◦ p! associated to the commutative diagram

C(B) C(B′)

C(A) C(A′)

β∗

p∗ p′∗

α∗

is a natural equivalence.

Dually, C admits U-limits if and only if p∗ : C(B) → C(A) admits a right adjoint
p∗ : C(A)→ C(B) for every morphism p : A→ B in U and for every pullback square
(2), the Beck-Chevalley transformation β∗ ◦ p∗ ⇒ p′∗ ◦ α∗ is a natural equivalence.

Proof. Let (p : A → B) ∈ U(B) ⊆ PSh(T )/B be a morphism in U. It suffices to
show that the T/B-∞-category π∗

B C admits A-indexed colimits if and only if for
every pullback diagram

A′′ A′ A

B′′ B′ B

α′

p′′ p′

α

p

β′ β

the functors p′∗ and p′′∗ admit left adjoints p′! and p′′! , and the Beck-Chevalley
transformation p′′! ◦α′∗ ⇒ β′∗ ◦ p′! is a natural equivalence. By replacing T by T/B,
we may assume B = 1 is a terminal object of T . Using the natural identifications

FunT (A, C)(B′)
2.2.9≃ FunT (A×B′, C)) ≃ FunT (A×B′, C)) 2.2.7≃ C(A×B′),

this is an instance of Proposition 2.3.4 applied to the T -∞-category FunT (A, C). �

2This is called a ‘subuniverse’ in [Mar21, Definition 3.9.13]
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Remark 2.3.15. If C is U-cocomplete, then [MW21, Remark 5.2.4] shows that the
left adjoint p! : C(A) → C(B) exists more generally for any presheaf B ∈ PSh(T )
and any p ∈ U(B); similarly, the Beck-Chevalley condition holds for any pullback
square (2) in which p ∈ U(B), B ∈ PSh(T ). Put differently, we can drop all
representability conditions in the above lemma.

The following lemma is proved in a similar way and is left to the reader.

Lemma 2.3.16. Let U be a class of T -∞-groupoids and let C and D be two T -
∞-categories which admit U-colimits. Then a T -functor F preserves U-colimits
if and only if for every B ∈ T morphism f : A → B in U, the Beck-Chevalley
transformation f! ◦ F (A)⇒ F (B) ◦ f! is an equivalence. Moreover, in this case the
Beck-Chevalley map is an equivalence more generally for any presheaf B ∈ PSh(T )
and any f ∈ U(B).

The dual statement for preserving U-limits also holds. �

Using this we now give an easy criterion ensuring that cocontinuity is preserved
under changing the indexing category:

Lemma 2.3.17. Let f : PSh(S) → PSh(T ) be a cocontinuous functor preserving
pullbacks, let U be a class of S-∞-groupoids, and let V be a class of T -∞-groupoids
such that f(u) ∈ V(f(B)) for any B ∈ S and (u : A→ B) ∈ U(B).

Then f∗ : CatT → CatS sends V-cocomplete T -∞-categories to U-cocomplete S-
∞-categories and V-cocontinuous T -functors to U-cocontinuous S-functors.

Proof. Let C be a V-cocomplete T -∞-category. If B ∈ S, (u : A → B) ∈ U(S),
then u∗ : (f∗ C)(B) → (f∗ C)(A) agrees with (f(u))∗ : C(f(B)) → C(f(A)), so it
admits a left adjoint by Remark 2.3.15 and V-cocompleteness of C. Similarly, given
any pullback in PSh(S) as on the left

A′ A

B′ B

α

p′
y

p

β

f(A′) f(A)

f(B′) f(B)

f(α)

f(p′)
y

f(p)

f(β)

with B,B′ representable and p ∈ U(B), also the diagram on the right is a pullback
by assumption, and the Beck-Chevalley map p′!α

∗ ⇒ β∗p! for f∗ C agrees with
the Beck-Chevalley map f(p′)!f(α)∗ ⇒ f(β)∗f(p)! for C. In particular, it is an
equivalence again, so Lemma 2.3.14 shows that f∗ C is U-cocomplete.

The statement about cocontinuity follows similarly from the previous lemma. �

It turns out that the parametrized colimits indexed by the constant T -∞-categories
and the T -∞-groupoids already determine all parametrized colimits.

Proposition 2.3.18 ([MW21, Proposition 4.7.1]). A T -∞-category is T -cocomplete
if and only if it admits fiberwise colimits and SpcT -colimits. A T -functor between
T -cocomplete T -∞-categories preserves T -colimits if and only if it preserves fiber-
wise colimits and SpcT -colimits. �
Corollary 2.3.19. Let f : PSh(S) → PSh(T ) as in Lemma 2.3.17. Then the
restriction f∗ : CatT → CatS sends T -cocomplete T -∞-categories to S-cocomplete
S-∞-categories and T -cocontinuous T -functors to S-cocontinuous S-functors.



22 BASTIAAN CNOSSEN, TOBIAS LENZ, AND SIL LINSKENS

Proof. Clearly, f∗ preserves fiberwise cocompleteness and cocontinuity. The claim
therefore follows from the previous proposition together with Lemma 2.3.17. �

An important example of a T -(co)complete T -∞-category is the T -∞-category of
T -spaces.

Example 2.3.20. The T -∞-category SpcT is both T -cocomplete and T -complete.
Recall from Remark 2.1.16 that SpcT (B) ≃ PSh(T )/B for every B ∈ T , with func-
toriality given via pullback in PSh(T ). The functor f∗ : PSh(T )/B → PSh(T )/A
admits a left adjoint given by postcomposition with f , and since PSh(T ) is locally
cartesian closed it also admits a right adjoint. It follows that SpcT admits all fiber-
wise limits and colimits. The left Beck-Chevalley condition is a consequence of the
pasting law of pullback squares. The right Beck-Chevalley condition follows from
this by passing to total mates.

Example 2.3.21. It follows directly from Example 2.3.20 that also the T -∞-
categories SpcT,∗ and SpT of pointed T -spaces and naive T -spectra are both T -
cocomplete and T -complete, since they may be obtained from SpcT by pointwise

tensoring with Spc∗ and Sp inside PrL, respectively. For later use, we will make
the left adjoint functors p! of SpcT,∗ explicit. First note that giving a basepoint to
an object (X, f : X → A) ∈ SpcT (A) ≃ PSh(T )/A amounts to providing a section
s : A → X of the map f , so that we can identify objects of SpcT,∗(A) with triples
(X, f, s). Given a morphism p : A → B in PSh(T ), we get p!(X, f, s) ≃ (X ′, f ′, s′)
defined via the following pushout diagram:

A X A

B X ′ B.

s

p

f

p

s′ f ′

We end this subsection with a discussion of categories of T -cocontinuous functors.

Definition 2.3.22. Let C,D be T -cocomplete T -∞-categories, and let A ∈ T .
We write FunLT (C,D)(A) ⊂ FunT (C,D) for the full subcategory spanned by the
T/A-cocontinuous functors π

∗
A C → π∗

AD.
Lemma 2.3.23. This defines a T -subcategory FunLT (C,D) ⊂ FunT (C,D).

Proof. By Lemma 2.2.12 it suffices to show that for any f : A → B in T and
T/B-cocontinuous F : C′ → D′, the restriction T ∗

/fF is T/A-cocontinuous. This

follows at once from Corollary 2.3.19 as (T/f )! : PSh(T/A) → PSh(T/B) agrees
up to equivalence with the pullback preserving functor PSh(T )/f : PSh(T )/A →
PSh(T )/B. �

We will now give an alternative description in terms of the adjunct functors F : C →
πA∗π∗

AD ≃ FunT (A,D), which will in particular allow us to describe the value of
FunLT (C,D) at non-representable presheaves. For this we will need:

Proposition 2.3.24 ([MW21, Proposition 4.3.1]). Let K and D be T -∞-categories
such that D admits all K-indexed parametrized limits. Then FunT (C,D) admits
all K-indexed limits for any T -∞-category C. Furthermore, the precomposition
functor i∗ : FunT (C′,D) → FunT (C,D) preserves K-indexed limits for every T -
functor i : C → C′. The dual statement for colimits is true as well. �
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Combining this with Corollary 2.2.11 we get:

Corollary 2.3.25. Let C,D be T -∞-categories.

(1) If D is U-(co)complete for some U ⊂ SpcT , then so is FunT (C,D). More-
over, if F : C → C′ is any functor, then F ∗ : FunT (C′,D) → FunT (C,D) is
U-(co)continuous.

(2) If D is fiberwise (co)complete, then so is FunT (C,D). For any C → C′, the
restriction FunT (C′,D)→ FunT (C,D) is fiberwise (co)continuous. �

Proposition 2.3.26. Let C be a T -cocomplete T -∞-category and let D be a T/A-
cocomplete T -∞-category. Then πA∗D is T -cocomplete, and a functor F : π∗

A → D
is T/A-cocontinuous if and only if its adjunct F̃ : C → πA∗D is T -cocontinuous.

Proof. Assume first that F is T/A-cocontinuous. Its adjunct F̃ is then given by

C η−→ πA∗π
∗
A C

πA∗F−−−→ πA∗D .
Applying Corollary 2.3.19 to A × –: PSh(T ) → PSh(T )/A ≃ PSh(T/A), we see
that πA∗D is T -cocomplete and πA∗F is T -cocontinuous, so it suffices to show that
η is T -cocontinuous. Unravelling definitions, this simply amounts to the functor
C → C(A×–) given by restriction along the projections A×B → B, which is clearly
fiberwise cocontinuous. On the other hand, if p : B′ → B is arbitrary, then the Beck-
Chevalley map p!η ⇒ ηp! is precisely the Beck-Chevalley map (A×p)!◦pr∗ ⇒ pr∗◦p!
associated to the pullback

A×B′ B′

A×B B

pr

y
A×p p

pr

and hence an equivalence by T -cocompleteness of C.
Conversely, assume F̃ is T -cocontinuous. Then F factors as

π∗
A C

π∗
AF̃−−−→ π∗

AπA∗D ε−→ D,
where the first functor is T/A-cocontinuous by Corollary 2.3.19 (or in fact, simply
by definition). Similarly to the above, the counit is given by restriction along the
unit maps B → A × πA(B), and the claim follows by observing that we also have
pullbacks

B′ A× πA(B′)

B A× πA(B)

p
y
η

A×πA(p)

η

in PSh(T/A) for any p : B
′ → B in T/A. �

Remark 2.3.27. Analogously one sees that for a class U of T -∞-groupoids a func-
tor F : π∗

A C → D is π∗
AU-cocontinuous if and only if its adjunct is U-cocontinuous.

Proposition 2.3.28. Let C,D be T -cocomplete T -∞-categories, let X ∈ PSh(T ),
and let (F : C → FunT (X,D)) ∈ FunT (C,D)(X). Then F belongs to FunLT (C,D)(X)
if and only if F is T -cocontinuous.
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Proof. If X is representable, this is immediate from Proposition 2.3.26. It therefore
suffices to show that for generalX a functor F : C → FunT (X,D) is T -cocontinuous
if and only if for every map A → X from a representable the composite C →
FunT (A,D) is T -cocontinuous.
The ‘only if’ part is immediate from Proposition 2.3.24. For the converse we ob-
serve that the functors FunT (X,D) → FunT (A,D) exhibit the left hand side as a
limit, and so are jointly conservative. It follows immediately that F is fiberwise
cocontinuous. For the Beck-Chevalley condition we now let p : C → D be any map
in T and consider

C(D) FunT (X,D)(D) FunT (A,D)(D)

C(C) FunT (X,D)(C) FunT (A,D)(C).
p∗

F

p∗ p∗

F

By cocontinuity of the restriction functors, the mate of the right hand square is
an equivalence, and so is the mate of the total rectangle by assumption. By the
compatibility of mates with pasting we see that the mate of the left hand square
is an equivalence after postcomposing with FunT (X,D)(C)→ FunT (A,D)(C); the
claim follows from joint conservativity again. �

2.4. Presentable T -∞-categories. For the statement of various universal prop-
erties we need to restrict to presentable T -∞-categories. The notion of parametrized
presentability was introduced by Nardin [Nar17] and was subsequently further de-
veloped by Hilman [Hil22] in the case where the∞-category T is orbital (in the sense
of Definition 4.2.2 below). A more general theory of parametrized presentability
which works for arbitrary T was developed by Martini and Wolf [MW22] in terms
of internal higher category theory. In this subsection, we will recall the main results
on parametrized presentability.

Definition 2.4.1. A T -∞-category C is called presentable if the following two
conditions hold:

(1) C is fiberwise presentable, meaning that the functor C : T op → Cat∞ factors

(necessarily uniquely) through PrL;
(2) C is T -cocomplete.

Observe that fiberwise presentability guarantees that C has fiberwise colimits, so
that condition (2) holds if and only if C admits SpcT -indexed colimits.

By [MW22, Theorem A], this definition agrees with the definition of [MW22, Sec-
tion 6] applied to the ∞-topos PSh(T ). When T is orbital, this definition agrees
with that of [Hil22, Section 4].

Remark 2.4.2. Any presentable T -∞-category C is automatically T -complete:
fiberwise completeness and the existence of right adjoints f∗ : C(A)→ C(B) follow
from fiberwise presentability, and for every pullback square of the form (2), the
Beck-Chevalley map β∗ ◦ p∗ ⇒ p′∗ ◦α∗ is the total mate of the Beck-Chevalley map
α! ◦ p′∗ ⇒ p∗ ◦ β! and thus an equivalence.
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Definition 2.4.3. We define PrLT to be the (non-full) subcategory of CatT spanned
by the presentable T -∞-categories and left adjoint T -functors between them. Sim-
ilarly we define PrRT to be the (non-full) subcategory of CatT spanned by the pre-
sentable T -∞-categories and right adjoint T -functors between them. There is a
canonical equivalence PrLT ≃ (PrRT )

op, see [MW22, Proposition 6.4.7].

Example 2.4.4. The T -∞-category SpcT of T -spaces is presentable: fiberwise
presentability follows from presentability of PSh(T ) while T -cocompleteness was
argued for in Example 2.3.20.

Example 2.4.5. Let K be a small T -∞-category and let C be a presentable T -∞-
category. Then the functor T -∞-category FunT (K, C) is again presentable [MW22,
Corollary 6.2.6], [Hil22, Lemma 4.6.1].

Example 2.4.6. Accessible Bousfield localizations of presentable T -∞-category
are again presentable.

In more detail, let C be a presentable T -∞-category and let S be a parametrized
family of morphisms in C, i.e. a specification of a set S(B) of morphisms of C(B)
for every B ∈ T such that f∗(u) ∈ S(A) for every u ∈ S(B) and every morphism
f : A → B in T . An object X ∈ C(B) is said to be S-local if for every morphism
f : A → B in T the object f∗X ∈ C(A) is S(A)-local, meaning that for every
morphism u : Y → Z in S(A) the induced map of spaces HomC(A)(Z, f

∗X) →
HomC(A)(Y, f

∗X) is an equivalence. We let LocS(C) ⊆ C denote the full subcategory
spanned by the S-local objects.

By [MW22, Lemma 6.1.3, Corollary 6.2.8] the T -∞-category LocS(C) is again pre-
sentable and the inclusion LocS(C) ⊂ C admits a left adjoint.

Remark 2.4.7. It follows from the previous three examples that the subcategory of
S-local objects of a T -∞-category of T -presheaves PShT (K) := FunT (K

op, SpcT )
is presentable whenever S is a parametrized family of morphisms in PShT (K).
Conversely, any presentable T -∞-category is of this form, see [MW22, Theorem B],
[Hil22, Theorem 4.1.2]

Proposition 2.4.8 (Adjoint functor theorem, [MW22, Proposition 6.3.1]). If C
and D are large T -∞-categories such that C is presentable and D is locally small, a
T -functor C → D preserves T -colimits if and only if it admits a right adjoint. �

Given a small T -∞-category K, the T -∞-category PShT (K) is freely generated
under parametrized colimits by K:

Theorem 2.4.9 ([MW21, Theorem 6.1.1]). Let K be a small T -∞-category and let
D be a T -cocomplete T -∞-category. Then restriction along the Yoneda embedding
y : K →֒ PShT (K) induces an equivalence of T -∞-categories

FunLT (PShT (K),D) ∼−−→ FunT (K,D). �
Remark 2.4.10. Let A ∈ T and let f : π∗

AK → π∗
AD define an element of

FunT (K,D)(A), which by the proposition then extends to a left adjoint T -functor
F : π∗

APShT (K) → π∗
AD. As in the classical non-parametrized situation, the right

adjoint G of F is actually easy to describe [MW21, Remark 7.1.4]: it is given by
the composition

π∗
AD

y−→ FunT/A
(π∗
ADop, SpcT/A

)
f∗
−→ FunT/A

(π∗
AK, SpcT/A

) ≃ π∗
APShT (K).
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Applying the theorem to the case where K is the terminal T -∞-category 1, we see
that the T -∞-category SpcT is the free T -cocomplete T -∞-category on a single
generator:

Corollary 2.4.11. Let D be a T -cocomplete T -∞-category. Then evaluation at the
terminal object 1 ∈ PSh(T ) = Γ(SpcT ) induces an equivalence of T -∞-categories

FunL
T (SpcT ,D) ∼−−→ D . �

3. The universal property of global spaces

In this section we will give a parametrized interpretation of unstable global homo-
topy theory in the sense of [Sch18, Chapter 1] with respect to finite groups. For
this, the key idea will be to more generally consider unstable G-global homotopy
theory in the sense of [Len20, Chapter 1] for finite groups G, which we recall in
Subsection 3.1 below. In 3.2 we will then explain how these models for varying
G assemble into a global ∞-category Sgl (in the sense of Example 2.1.3), and in
Subsection 3.3 we will finally provide a universal description of Sgl as the free
cocomplete global ∞-category generated by the terminal object.

3.1. A reminder on global and G-global homotopy theory. Let G be a finite
group; [Len20, Chapter 1] studies various models of unstable G-global homotopy
theory. We will recall two of these models that will be particularly convenient for
us:

Definition 3.1.1. We write M for the monoid (under composition) of injective
self-maps of the countably infinite set ω := {0, 1, . . .}.

The functor SSet → Set, X 7→ X0 sending a simplicial set to its set of vertices
admits a right adjoint E, given explicitly by (EX)n = X1+n with functoriality
induced by the identification X1+n ∼= Hom({0, . . . , n}, X); equivalently, this is the
nerve of the groupoid with objects X and a unique map between any two objects.
As a right adjoint, E in particular preserves products, so EM inherits a natural
monoid structure fromM.

We occasionally call the resulting simplicial monoid EM the ‘universal finite group.’
While EM is of course neither finite nor a group, this terminology is motivated by
the fact that we can embed any finite group into EM in a particularly nice way:

Definition 3.1.2. LetH be a finite group. A countableH-set U is called a complete
H-set universe if every other countable H-set embeds equivariantly into U .
Definition 3.1.3. A finite subgroup H ⊂M is called universal if the tautological
H-action on ω makes the latter into a complete H-set universe.

Lemma 3.1.4 (See [Len20, Lemma 1.2.8]). Let H be a finite group. Then there
exists an injective homomorphism i : H →M with universal image. If j : H →M
is another such map, then there exists an invertible ϕ ∈ M such that i(h) =
ϕj(h)ϕ−1 for all h ∈ H. �
Remark 3.1.5. Somewhat loosely speaking, the reason to pass from the discrete
monoidM to the simplicial monoid EM is to eliminate the indeterminacy of the
invertible element ϕ in the above lemma, see [Len20, Subsections 1.2.2–1.2.3] for
more details.
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Definition 3.1.6. Let G be any group. We write EM-G-SSet for the 1-category
(or simplicially enriched category) of simplicial sets with a strict action of the
simplicial monoid EM×G, together with the strictly (EM×G)-equivariant maps.

The categoryEM-G-SSetwill be our first model forG-global homotopy theory. In
order to define the weak equivalences of this model structure we recall the following
notation:

Notation 3.1.7. Let G1, G2 be groups, let H ⊂ G1, and let ϕ : H → G2 be a
homomorphism. The graph subgroup ΓH,ϕ ⊂ G1 ×G2 is the subgroup {(h, ϕ(h)) :
h ∈ H}. If X is a (G1 ×G2)-simplicial set, then we abbreviate Xϕ := XΓH,ϕ , and
similarly for (G1 ×G2)-equivariant maps.

Proposition 3.1.8. The category EM-G-SSet carries a (unique) combinatorial
model structure in which a map is a weak equivalence or fibration if and only if fϕ

is a weak homotopy equivalence or Kan fibration, respectively, for every universal
subgroup H ⊂M and homomorphism ϕ : H → G. We call this the G-global model
structure and its weak equivalences the G-global weak equivalences.

Moreover, there is also a unique model structure on EM-G-SSet whose weak
equivalences are the G-global weak equivalences and whose cofibrations are the in-
jective cofibrations, i.e. the levelwise injections. We call this the injective G-global
model structure.

Proof. These are special cases of [Len20, Propositions 1.1.2 and 1.1.15], respec-
tively; also see Corollary 1.2.34 of op. cit. for the former model structure. �

For G = 1 the above recovers a version of Schwede’s global homotopy theory where
one only considers equivariant information for finite groups (‘Fin-global homotopy
theory’), see Remark 3.1.14 below. On the other hand, for general finite G one
can exhibit ordinary G-equivariant homotopy theory explicitly as a Bousfield local-
ization of G-global homotopy theory, see [Len20, Subsection 1.2.6]. In this sense,
G-global homotopy theory can be thought of as a ‘synthesis’ of the usual equivariant
and global approaches.

Lemma 3.1.9 (See [Len20, Corollaries 1.2.76–1.2.79]). Let α : G→ G′ be any group
homomorphism. Then the restriction functor α∗ : EM-G′-SSet→ EM-G-SSet
is homotopical and it takes part in Quillen adjunctions

α! : EM-G-SSetG-gl ⇄ EM-G′-SSetG′-gl :α
∗

α∗ : EM-G′-SSetinj. G′-gl ⇄ EM-G-SSetinj. G-gl :α∗.

Moreover, if α is injective, then we also have Quillen adjunctions

α! : EM-G-SSetinj. G-gl ⇄ EM-G′-SSetinj. G′-gl :α
∗

α∗ : EM-G′-SSetG′-gl ⇄ EM-G-SSetG-gl :α∗. �

Next, we come to another model in terms of suitable ‘diagram spaces’ that will
become useful later to relate the unstable and stable theory to each other:

Definition 3.1.10. We write I for the category of finite sets and injections.
Moreover, we write I for the simplicially enriched category obtained by applying
E : Set→ SSet to all hom-sets.
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We write I-SSet for the category Fun(I,SSet) of simplicially enriched functors
I → SSet. Moreover, if G is any group, then we write G-I-SSet for the category
of G-objects in I-SSet.
Construction 3.1.11. Let X be any I-simplicial set. Then we define

X(ω) := colim
A⊂ω
finite

X(A).

This admits an EM-action via the original functoriality of X in I, see [Len20,
Construction 1.4.14] for details, giving rise to a functor evω : I-SSet→ EM-SSet.
If G is any group, then we obtain a functor evω : G-I-SSet → EM-G-SSet by
pulling through the G-actions.

Theorem 3.1.12 (See [Len20, Proposition 1.4.3 and Theorem 1.4.30]). There is a
unique model structure on G-I-SSet with

• weak equivalences those maps f for which evωf =: f(ω) is a G-global weak
equivalence, and
• acyclic fibrations those maps f for which f(A)ϕ is an acyclic Kan fibration
for every finite set A, H ⊂ ΣA, and ϕ : H → G.

We call this the G-global model structure and its weak equivalences the G-global
weak equivalences again.

Moreover, the functor evω is the left half of a Quillen equivalence G-I-SSet ⇄
EM-G-SSetinj. G-gl. �
Remark 3.1.13. One can also define a G-global model structure on the category
G-I-SSet (whose weak equivalences are somewhat intricate). The forgetful functor
G-I-SSet→ G-I-SSet is then the right half of a Quillen equivalence, see [Len20,
Theorem 1.4.31].

Remark 3.1.14. Schwede [Sch18, Theorem 1.2.21] originally studied unstable
global homotopy theory in terms of so-called orthogonal spaces, which are topolog-
ically enriched functors from the topological category L of finite dimensional inner
product spaces and linear isometric embeddings into Top. While Schwede’s global
equivalences on L-Top see equivariant information for all compact Lie groups, there
is a natural notion of ‘Fin-global weak equivalences’ [Len20, Definition 1.5.13], and
with respect to these the evident forgetful functor L-Top → I-SSet becomes an
equivalence of homotopy theories, see [Len20, Corollary 1.5.29]. In this sense, the
above two models generalize global homotopy theory with respect to finite groups.

Finally, we again have suitable restriction functoriality analogous to Lemma 3.1.9.
We will only recall one aspect that we will need later:

Lemma 3.1.15 (See [Len20, Lemma 1.4.40]). Let α : G→ G′ be any group homo-
morphism. Then the adjunction

α! : G-I-SSet ⇄ G′-I-SSet :α∗

is a Quillen adjunction with homotopical right adjoint. �

3.2. The global ∞-category of global spaces. We will now bundle the ∞-
categories associated to the above model categories into a global ∞-category, i.e. an
∞-category parametrized over the ∞-category Glo from Example 2.1.3:
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Construction 3.2.1. We define the strict 2-functor EM-•-SSet as the compo-
sition

Gloop B−֒→ Grpdop Fun(–,EM-SSet)−−−−−−−−−−−→ Cat; (3)

put differently, this sends a finite group G to the 1-categoryEM-G-SSet, a homo-
morphism α : G→ G′ to the restriction map α∗ : EM-G′-SSet→ EM-G-SSet,
and a 2-cell g′ : α ⇒ β in Glo to the transformation α∗ ⇒ β∗ given by acting with
g′.

We now want to obtain a global ∞-category of global spaces by pointwise localizing
at the G-global weak equivalences. To this end we recall:

Definition 3.2.2. A relative category is a 1-category C together with a wide subcat-
egory W ⊆ C, whose morphisms we call weak equivalences. We let RelCat denote
the (2, 1)-category of relative categories, weak equivalence preserving functors, and
natural isomorphisms, and we write RelCat for its Duskin nerve.

By Lemma 3.1.9, the restriction functor α∗ : EM-G′-SSet→ EM-G-SSet sends
G′-global weak equivalences to G-global weak equivalences for any homomorphism
α : G→ G′. In particular, (3) lifts to a 2-functor into RelCat this way.

Construction 3.2.3. To every relative category (C,W ), one can associate an ∞-
category C[W−1] together with a functor C → C[W−1] that exhibits it as a Dwyer-
Kan localization of C at W in the sense of [Lur17, Definition 1.3.4.1]. We will now
recall the argument of [GM20, Section C.1] that the ∞-category C[W−1] is in fact
functorial in the pair (C,W ).

Let ι : Cat∞ → Spc denote the left adjoint to the inclusion Spc ⊆ Cat∞ of ∞-
groupoids into ∞-categories. Sending an ∞-category C to the adjunction counit
ι C →֒ C refines to a functor

R : Cat∞ → Fun(∆1,Cat∞).

We let L∞ : Fun(∆1,Cat∞) → Cat∞ denote a left adjoint to this functor. By
associating to a relative category (C,W ) the inclusion W →֒ C and regarding
both W and C as ∞-categories via their nerve, we obtain a functor RelCat →
Fun(∆1,Cat∞). In particular we obtain a localization functor

L : RelCat→ Fun(∆1,Cat∞)
L∞−−→ Cat∞ .

It follows directly from the definition of L∞ that L is on objects given by sending
a relative category (C,W ) to the Dwyer-Kan localization L(C,W ) ≃ C[W−1].

Postcomposing with this, we get a global ∞-category LC from any global relative
category C, and this comes with a global functor C → LC that is pointwise a
Dwyer-Kan localization. By uniqueness of adjoints, this actually pins down LC up
to essentially unique equivalence; in particular, we can (and will at times) freely
choose a specific construction of the above localization for a given C.

Definition 3.2.4. We define the global ∞-category Sgl of global spaces as the
composite

Gloop = N∆(Glo)op
N∆(EM-•-SSet)−−−−−−−−−−−→ N∆(RelCat) = RelCat

L−→ Cat∞ .
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In particular, for a finite group G the∞-category Sgl(G) =: Sgl
G is the ∞-category

of G-global spaces and for a group homomorphism α : G→ G′, the functor Sgl(α)
is induced by the restriction functor α∗ : EM-G′-SSet→ EM-G-SSet.

Analogously, we get a global ∞-category Sgl
I sending G to the Dwyer-Kan local-

ization of G-I-SSet, with functoriality via restrictions.

By design, the maps evω are homotopical and strictly compatible with restrictions,
and so they assemble into a strictly 2-natural transformation between functors

Gloop → RelCat. Upon localization, we therefore get a global functor Sgl
I → Sgl

that we again call evω. Theorem 3.1.12 then implies:

Corollary 3.2.5. The global functor evω : Sgl
I → Sgl is an equivalence of global

∞-categories. �

3.3. Proof of Theorem A. As a basis for the universal properties of special global
Γ-spaces and global spectra, we will now relate the global∞-category Sgl (defined
above in terms of a purely model categorical construction) to the global∞-category
SpcGlo (constructed using parametrized higher category theory alone). Namely we
will prove:

Theorem 3.3.1. The global ∞-category Sgl is presentable. Moreover, the essen-

tially unique globally cocontinuous functor SpcGlo → Sgl that sends the terminal

object of SpcGlo(1) to the terminal object of Sgl = Sgl
1 is an equivalence.

Together with Corollary 2.4.11 this will then immediately imply Theorem A from
the introduction:

Theorem 3.3.2. The presentable global ∞-category Sgl is freely generated under

global colimits by ∗ ∈ Sgl, i.e. for any globally cocomplete global ∞-category D
evaluating at ∗ induces an equivalence

FunLGlo(S
gl,D)→ D

of global ∞-categories. �

Corollary 3.2.5 then shows:

Corollary 3.3.3. The global ∞-category Sgl
I is presentable, and it is freely gen-

erated under global colimits by ∗ ∈ Sgl
I , i.e. for any globally cocomplete global ∞-

category D evaluating at ∗ induces an equivalence

FunLGlo(S
gl
I ,D)→ D

of global ∞-categories. �

The way Theorem 3.3.1 is phrased naturally suggests a proof strategy: show that
the (fiberwise presentable) global ∞-category Sgl is globally cocomplete, use the
universal property to construct the map, and then check that it is an equivalence. In
fact, one can use the functoriality properties of Lemma 3.1.9 together with [Len20,
Proposition 1.1.22] to verify global cocompleteness, and it is not hard to show using
some adjunction yoga that the resulting functor sends corepresented objects to the
standard ‘generators’ of G-global homotopy theory (see Proposition 3.3.5 below)
while a concrete computation reveals that the mapping spaces on both sides are
abstractly equivalent. However, proving that actually the universal functor induces
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equivalences between these mapping spaces is a totally different story, and in fact
the authors do not know a direct argument for this.

Instead, our proof of the theorem will proceed backwards: we will construct an
equivalence between Sgl and SpcGlo by hand, and deduce the remaining statements
from this. Since this comparison is somewhat lengthy, let us outline the general
strategy first: by definition, SpcGlo is levelwise given by∞-categories of presheaves,

and the first step will be to likewise express the levels of Sgl in terms of model
categories of presheaves. To complete the proof, we will then give a comparison
between the indexing categories on both sides, as well as a comparison between
presheaves in the model categorical and ∞-categorical setting.

3.3.1. The G-global Elmendorf Theorem. Recall that the classical Elmendorf The-
orem [Elm83] expresses the homotopy theory of G-CW-complexes in terms of fixed
point systems, yielding a presheaf model of unstable G-equivariant homotopy the-
ory. We will now recall a G-global version of this, which is most easily formulated
using the model of EM-G-simplicial sets:

Construction 3.3.4. Let G be finite. We write Ogl
G for the full simplicial subcat-

egory of EM-G-SSet spanned by the objects EM×ϕ G := (EM×G)/H for all
universal subgroups H ⊂ M and homomorphisms ϕ : H → G, where H acts on
EM from the right in the evident way and on G from the right via ϕ.

We now define a functor

Φ: EM-G-SSet→ Fun((Ogl
G)

op,SSet),

where Fun denotes the 1-category of simplicially enriched functors, via the formula
Φ(X)(EM×ϕ G) = maps(EM×ϕ G,X) with the evident (enriched) functoriality
in each variable, i.e. Φ is the composition

EM-G-SSet
Yoneda−−−−→ Fun(EM-G-SSetop,SSet)

restriction−−−−−−→ Fun((Ogl
G)

op,SSet).

Proposition 3.3.5. For any finite group G the above functor Φ is homotopical
and the right half of a Quillen equivalence for the projective model structure on
the target. In particular, it descends to an equivalence between the ∞-categorical
localization at the G-global weak equivalences and the ∞-categorical localization at
the levelwise weak homotopy equivalences.

Proof. This is a special case of [Len20, Corollary 1.1.13]. �

Remark 3.3.6. We can describe the simplicial category Ogl
G combinatorially as

follows, see also [Len20, Remark 1.2.40]: n-simplices of maps(EM×ϕG,EM×ψG)
correspond bijectively to n-simplices [u0, . . . , un; g] ∈ (EM×ψ G)ϕ via evaluation
at [1; 1] ∈ EM ×ϕ G; note that the right hand side is the nerve of a groupoid

(as H acts freely on EM), so Ogl
G can be equivalently viewed a (2, 1)-category.

Under this correspondence, composition is given by [u0, . . . , un; g][u
′
0, . . . , u

′
n; g

′] =
[u′0u0, . . . , u

′
nun; g

′g] (note the flipped order of multiplication).

More generally, if X is any EM-G-simplicial set, then evaluation at [1; 1] induces a
natural isomorphism ε : Φ(X)(EM×ϕ G) = maps(EM×ϕ G,X)→ Xϕ. A direct
computation shows that under this isomorphism restriction along an (n + 1)-cell
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[u0, . . . , un; g] : EM×ϕ G→ EM×ψ G in Ogl
G corresponds to action by the same

element, i.e. the following diagram commutes:

Φ(X)(EM×ψ G) Φ(X)(EM×ϕ G)

Xψ Xϕ.

ε

Φ[u0,...,un;g]

ε

(u0,...,un;g).–

(4)

3.3.2. Comparisons of enriched presheaves. While one can extend the assignment

G 7→ Ogl
G to a strict 2-functor in Glo, and so assemble the localizations of the

categories Fun((Ogl
G)

op,SSet) into a global ∞-category, the maps Φ will not be
strictly natural with respect to this structure, but only pseudonatural. In order to
avoid talking about all the coherences required to make this precise, we will now

give a more ‘combinatorial’ version of the simplicial categories Ogl
G and the functors

Φ that will also become relevant in Section 5.

Construction 3.3.7. Let G be a finite group. We define a strict (2, 1)-category

Ogl
G as follows: an object of Ogl

G is a pair (H,ϕ) of a universal subgroup H ⊂ M
and a homomorphism ϕ : H → G. For any two such objects (H,ϕ), (K,ψ) the hom-
category Hom((H,ϕ), (K,ψ)) has objects the triples (u, g, σ) with u ∈ M, g ∈ G
and σ : H → K a homomorphism such that hu = uσ(h) for all h ∈ H and moreover
ϕ = cgψσ, where cg denotes conjugation by g. If (u′, g′, σ′) is another object of the
hom-category, then a morphism (u, g, σ)→ (u′, g′, σ′) is a k ∈ K such that σ′ = ckσ
and g′ψ(k) = g. Composition in Hom((H,ϕ), (K,ψ)) is induced by multiplication
in K; we omit the easy verification that this is a well-defined groupoid.

If (L, ζ) is another object and (u1, g1, σ1) : (H,ϕ) → (K,ψ), (u2, g2, σ2) : (K,ψ)→
(L, ζ) are composable maps, then we define their composition as (u1u2, g1g2, σ2σ1)
(note the flipped order of composition in the first two components!); this is indeed
a map (H,ϕ) → (L, ζ) as hu1u2 = u1σ1(h)u2 = u1u2σ2σ1(h) for all h ∈ H and
moreover ϕ = cg1ψσ1 = cg1g2ζσ2σ1.

Finally, if (u′1, g
′
1, σ

′
1) : (H,ϕ) → (K,ψ) and (u′2, g

′
2, σ

′
2) : (K,ψ) → (L, ζ) are fur-

ther morphisms and k1 : (u1, g1, σ1) → (u′1, g
′
1, σ

′
1), k2 : (u2, g2, σ2) → (u′2, g

′
2, σ

′
2)

are 2-cells, then the composite of k1 and k2 is k2σ2(k1); note that this is indeed
well-defined as σ′

2σ
′
1 = ck2σ2ck1σ1 = ck1σ2(k2)σ2σ1 while g1g2 = g′1ψ(k1)g

′
2ζ(k2) =

g′1g
′
2ζσ

′
2(k1)ζ(k2) = g′1g

′
2ζ(σ

′
2(k1)k2) = g′1g

′
2ζ(k2σ2(k1)) where the second equality

uses that (u′2, g
′
2, σ

′
2) is a morphism and the final equality uses that k2 is a 2-cell.

We omit the straight-forward verification that this is suitably associative and unital

with units the maps of the form (1, 1, id), making Ogl
G into a strict (2, 1)-category.

Construction 3.3.8. We define µ : Ogl
G → Ogl

G as follows: an object (H,ϕ) is sent
to EM×ϕG, a morphism (u, g, σ) : (H,ϕ)→ (K,ψ) is sent to the map EM×ϕG→
EM×ψ G represented by [u; g] while a 2-cell k : (u, g, σ) → (u′, g′, σ′) is sent to
[u′k, u; g].

Lemma 3.3.9. The above µ is well-defined (i.e. these are indeed morphisms and

2-cells in Ogl
G) and an equivalence of (2, 1)-categories.

Proof. First observe that [u; g] is indeed ϕ-fixed as [hu;ϕ(h)g] = [uσ(h); gψσ(h)] =

[u; g] by definition of the morphisms of Ogl
G; moreover, any 1-cell in the target is of
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this form by [Len20, Lemma 1.2.38]. On the other hand, Lemma 1.2.74 of op. cit.
shows that [u′k, u; g] is indeed a 2-cell [u; g] ⇒ [u′; g′] and that this assignment is
bijective. Thus, it only remains to show that µ is a strict 2-functor.

To prove that µ : Hom((H,ϕ), (K,ψ)) → (EM×ψ G)ϕ is a functor, it suffices to
prove compatibility with composition (as both sides are groupoids), for which we
note that for all k : (u, g, σ)→ (u′, g′, σ′) and k′ : (u′, g′, σ′)→ (u′′, g′′, σ′′)

µ(k′)µ(k) = [u′′k′, u′; g′][u′k, u; g] = [u′′k′k, u′k; g′ψ(k)︸ ︷︷ ︸
=g

][u′k, u; g] = [u′′k′k, u; g]

= µ(k′k).

Next, we have to show that µ is compatible with horizontal composition of 2-
cells, hence in particular with composition of 1-cells. For this we note that if
k : (u1, g1, σ1) ⇒ (u′1, g

′
1, σ

′
1) is a 2-cell between morphisms (H,ϕ) → (K,ψ) and

ℓ : (u2, g2, σ2) ⇒ (u′2, g
′
2, σ

′
2) is a 2-cell between morphisms (K,ψ) → (L, ζ), then

the horizontal composition µ(ℓ)⊙ µ(k) is given by

[u′2ℓ, u2, g2]⊙ [u′1k, u1; g1] = [u′1ku
′
2ℓ, u1u2; g1g2] = [u′1u

′
2σ

′
2(k)ℓ, u1u2; g1g2]

= [u′1u
′
2ℓσ2(k), u1u2; g1g2]

where the final equality uses that σ′
2(k)ℓ = ℓσ2(k) as ℓ is a 2-cell. On the other

hand, by definition ℓ ⊙ k = ℓσ2(k) : (u1u2, g1g2, σ2σ1) → (u′1u
′
2, g

′
1g

′
2, σ

′
2σ

′
1), so

µ(ℓ⊙ k) = µ(ℓ)⊙ µ(k) as desired.
Finally, µ(1, 1, id) = [1; 1] by construction, i.e. µ also preserves identity 1-cells. �

Construction 3.3.10. Let G be a finite group. We define Ψ: EM-G-SSet →
PSh(Ogl

G) := Fun((Ogl
G)

op,SSet) as follows: for any EM-G-simplicial set X , the

enriched functor Ψ(X) : (Ogl
G)

op → SSet is given on objects by Ψ(X)(H,ϕ) =
Xϕ ⊂ X ; if (K,ψ) is another object, then we send an n-simplex

(u0, g0, σ0)
k1=⇒ (u1, g1, σ1)

k2=⇒ · · · kn=⇒ (un, gn, σn) ∈ maps((H,ϕ), (K,ψ))n (5)

to the action of (unkn · · · k1, un−1kn−1 · · · k1, . . . , u1k1, u0; g0) onX , cf. Remark 3.3.6.
If f : X → Y is any map of EM-G-simplicial sets, then we define Ψ(f) via
Ψ(f)(H,ϕ) = fϕ.

Proposition 3.3.11. The assignment Ψ: EM-G-SSet → PSh(Ogl
G) is well-

defined (i.e. Ψ(X) is a simplicially enriched functor and Ψ(f) is an enriched natural
transformation) and constitutes a functor. Furthermore, it descends to an equiva-
lence on ∞-categorical localizations.

Proof. We will simultaneously prove that Ψ is well-defined and that it is isomorphic
to the composite

EM-G-SSet
Φ−→ PSh(Ogl

G)
µ∗
−→ PSh(Ogl

G);

the claim then follows from Proposition 3.3.5 together with Lemma 3.3.9.

To prove this, we first fix an EM-G-simplicial set X , and we will show that Ψ(X)
is a well-defined simplicial functor isomorphic to Φ(X) ◦ µ. To this end, we recall

that we have for every (H,ϕ) ∈ Ogl
G an isomorphism

Φ(X)(µ(H,ϕ)) = maps(EM×ϕ G,X)
ε−→ Xϕ = Ψ(X)(H,ϕ)
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given by evaluation at [1; 1]. It follows formally that there is a unique way to extend

the assignment (H,ϕ) 7→ Xϕ to a simplicially enriched functor (Ogl
G)

op → SSet
in such a way that the ε’s assemble into an enriched natural isomorphism from
Φ(X) ◦ µ, namely in terms of the composites

mapsOgl

(
(H,ϕ), (K,ψ)

) µ−→ mapsOgl(EM×ϕ G,EM×ψ G)
Φ−→ mapsSSet

(
mapsEM-G-SSet(EM×ψ G,X),

mapsEM-G-SSet(EM×ϕ G,X)
)

ε∗(ε
−1)∗−−−−−−→ mapsSSet(X

ψ, Xϕ)

and we only have to show that this recovers the above definition of Ψ. By commu-
tativity of (4) this then amounts to saying that

maps
(
(H,ϕ), (K,ψ)

) µ−→ maps(EM×ϕG,EM×ψG) ε−→ (EM×ψG)ϕ ⊂ EM×ψG
sends (5) to (unkn · · · k1, . . . , u1k1, u0; g0). As EM×ψG is the nerve of a groupoid,
it will be enough to show this after restricting to each edge 0 → m (0 ≤ m ≤
n), i.e. that µ(km · · · k0) = (umkm · · · k1, u0; g0). However, this is precisely the
definition.

Thus, we have altogether shown that Ψ(X) is indeed a well-defined simplicial func-
tor and that the maps ε assemble into an isomorphism Ψ(X) ∼= Φ(X) ◦ µ. We
can now show that Ψ is a well-defined functor: indeed, if f : X → Y is (EM×G)-
equivariant, then Ψ(f) is enriched natural as the enriched functor structure on both
sides is given by acting with simplices of EM×G. It is then clear that Ψ preserves
composition and identities as this can be checked after evaluating at each (H,ϕ).

Finally, we have to establish that the isomorphisms ε are natural in X . However,
we can again check this after evaluating at each (H,ϕ), where this is obvious. �

Construction 3.3.12. We extend the assignment G 7→ Ogl
G to a strict (2, 1)-

functor Ogl
• : Glo → Cat∆ into the 2-category of simplicial categories as follows:

if α : G → G′ is a homomorphism, then α! : O
gl
G → Ogl

G′ is given on objects by
α!(H,ϕ) = (H,αϕ), on 1-cells by α!(u, g, σ) = (u, α(g), σ), and on 2-cells by
the identity; we omit the easy verification that this is well-defined and strictly
functorial in α. Moreover, if g ∈ G′ defines a natural transformation α1 ⇒ α2

(i.e. α2 = cgα1), then we define the natural transformation g! : α1! ⇒ α2! on (H,ϕ)
as (1, g−1, idH) : (H,α1ϕ) → (H,α2ϕ). We again omit the easy verification that
this is well-defined and yields a strict 2-functor.

This 2-functor structure then induces a 2-functor structure on the assignment G 7→
(Ogl

G)
op; note that in this the 2-cells get inverted, i.e. g : α1 ⇒ α2 is now sent to the

natural transformation gop! given pointwise by (1, g, id).

Proposition 3.3.13. The maps Ψ are strictly 2-natural in Glo.

Proof. Let us first check 1-naturality, i.e. that for every α : G→ G′ the diagram

EM-G′-SSet EM-G′-SSet

PSh(Ogl
G′) PSh(Ogl

G)

α∗

Ψ Ψ

(α!)
∗
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of ordinary categories commutes.

The above diagram commutes on the level of objects: Let X be an EM-G-simplicial
set; we have to show that Ψ(α∗X) = Ψ(X) ◦ α!. On the level of objects, this just

amounts to the relation (α∗X)ϕ = Xα◦ϕ for all (H,ϕ : H → G) ∈ Ogl
G. To prove

commutativity on the level of morphism spaces, we let (K,ψ) be any other object
and we consider an n-simplex

(u•, g•, σ•) :=
(
(u0, g0, σ0)

k1==⇒ (u1, g1, σ1)
k2==⇒ · · · kn==⇒ (un, gn, σn)

)

of maps((H,ϕ), (K,ψ)). Then Ψ(α∗X)(u•, g•, σ•) is by definition given by acting
with (unkn · · · k1, . . . , u1k1, u0; g0) ∈ EMn ×G on α∗X , or equivalently by acting

with (unkn · · · k1, . . . , u1k1, u0;α(g0)) ∈ EMn×G′ on X . As α! : O
gl
G → Ogl

G′ sends
(u•, g•, σ•) to

(u0, α(g0), σ0)
k1==⇒ (u1, α(g1), σ1)

k2==⇒ · · · kn==⇒ (un, α(gn), σn)

by definition, we see that Ψ(X)(α!(u•, g•, σ•)) is given by acting with the same
element. Since in addition both Ψ(X)(α!(u•, g•, σ•)) and Ψ(α∗X)(u•, g•, σ•) are
(higher) maps between the same two objects, this completes the proof that they
agree, so that Ψ(α∗X) = Ψ(X) ◦ α! as desired.

The above diagram commutes on the level of morphisms: As we already know that
the diagram commutes on the level of objects, it is enough to check the claim after
evaluating at each (H,ϕ). However, in this case both paths through the diagram
send a morphism f : X → Y to the restriction Xαϕ → Y αϕ of f .

Finally, we can now very easily prove 2-naturality by the same argument: namely,
it only remains to show that for every 2-cell g : α1 ⇒ α2 in Glo, every EM-G-

simplicial setX , and every (H,ϕ) ∈ Ogl
G the maps Ψ(X)(gop! : (H,α2ϕ)→ (H,α1ϕ))

and Ψ(g.–: α∗
1X → α∗

2X)(H,ϕ) agree. However, plugging in the definitions, both
are simply given by acting with g on X . �

Construction 3.3.14. Let G be a finite group. We define a strict 2-functor

γ : Ogl
G → Glo/G into the 2-categorical slice as follows: an object (H,ϕ) is sent

to ϕ : H → G and a morphism (u, g, σ) : (H,ϕ)→ (K,ψ) is sent to the morphism

H K;

G

ϕ

σ

ψ
g−1
⇒ (6)

note that g−1 indeed defines such a 2-cell in Glo since ϕ = cgσψ by assumption,
whence σψ = cg−1ϕ. Finally, a 2-cell k : (u, g, σ) ⇒ (u, g, σ) is sent to the 2-cell
k : σ ⇒ σ′.

Lemma 3.3.15. For any finite G, γ defines an equivalence Ogl
G ≃ Glo/G of strict

(2, 1)-categories.

Proof. One easily checks by plugging in the definitions that γ is indeed a strict
2-functor. Essential surjectivity of γ follows from the fact that any finite group
is isomorphic to a universal subgroup (Lemma 3.1.4). Moreover, given a general
1-cell as depicted in (6), there exists by [Len20, Corollary 1.2.39] a u ∈ M with
hu = uσ(h) for all h ∈ H ; (u, g, σ) then clearly defines a 1-cell (H,ϕ) → (K,ψ) in
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Ogl
G, and this is a preimage of (6). This shows that γ is essentially surjective on

hom groupoids. Finally, γ is bijective on 2-cells by direct inspection. �

Lemma 3.3.16. The maps γ define a strictly 2-natural transformation Ogl
• ⇒

Glo/•.

Proof. Let us first show that γ is 1-natural, i.e. for every homomorphism α : G→ G′

the diagram

Ogl
G Glo/G

Ogl
G′ Glo/G′

γ

α! Glo/α

γ

of strict 2-functors commutes strictly. This just amounts to plugging in the defi-
nitions: both paths through the diagram send an object (H,ϕ) to αϕ : H → G′, a
1-cell as in (6) to

H K,

G′
αϕ

σ

αψ
α(g)−1
⇒

and a 2-cell σ ⇒ σ′ represented by k to a 2-cell represented by the same k.

For 2-functoriality it then only remains to show that for any 2-cell g : α ⇒ α′ of
maps G→ G′ in Glo the two pastings

Ogl
G Ogl

G′ Glo/G′

α!

α′
!

g!

⇒ γ
and Ogl

G Glo/G Glo/G′
γ

α!

α′
!

g!

⇒

agree pointwise. However, by direct inspection both are given on an object (H,ϕ)

of Ogl
G simply as the 1-cell

H H

G
αϕ

=

α′ϕ
g
⇒

which completes the proof of the lemma. �

3.3.3. Putting the pieces together. Now we are finally ready to deduce our compar-
ison result:

Proof of Theorem 3.3.2. As mentioned in the beginning of this subsection, we will
first construct an equivalence Sgl ≃ SpcGlo by hand:

Proposition 3.3.13 says that the maps Ψ define a 2-natural transformation be-

tween the global categories EM-•-SSet and PSh(Ogl
• ) : G 7→ PSh(Ogl

G). If we
equip EM-G-SSet with the G-global weak equivalences for varying G and each

PSh(Ogl
G) with the levelwise weak homotopy equivalences, this lifts to a map

of global relative categories, which in turn decends to an equivalence between
the global ∞-categories obtained by pointwise localization according to Proposi-
tion 3.3.11. Note that the localization of EM-•-SSet is the global∞-category Sgl
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by definition; it will now be useful to pick a very specific localization of PSh(Ogl
• )

for the purposes of this proof:

Namely, we pick a simplicially enriched fibrant replacement functor for the Kan-
Quillen model structure (for example via the enriched small object argument [Rie14,
Theorem 13.5.2] or simply by using the geometric realization-singular set adjunc-
tion), which provides us with an enriched functor r : SSet → Kan together with
enriched natural transformations id ⇒ ir and id ⇒ ri that are levelwise weak
homotopy equivalences, where i : Kan →֒ SSet is the inclusion. As an upshot,
if A is any simplicially enriched category, then r ◦ –: PSh(A) → PShKan(A) :=
Fun(Aop,Kan) is a homotopy equivalence with respect to the levelwise weak ho-
motopy equivalences, so it induces an equivalence of ∞-categorical localizations.
Specializing this to our situation, the maps r assemble into a map of global relative

categories from PSh(Ogl
• ) to PShKan(Ogl

• ). Finally, for any simplicial category A
the enriched-natural comparison map

N
(
PShKan(A)

)
= NFun(Aop,Kan)→ Fun(N∆(A

op),N∆(Kan)) = PSh(N∆A)

is a localization at the levelwise weak homotopy equivalences as a consequence
of [Lur09, Proposition 4.2.4.4], see also [Len20, Proposition A.1.18], where this
argument is spelled out in detail. Thus, we altogether get a map of global ∞-
categories

N
(
PSh(Ogl

• )
) r◦–−−→ N

(
PShKan(Ogl

• )
) canonical−−−−−−→ PSh(N∆(O

gl
• ))

that is pointwise a localization, whence induces an equivalence Sgl ≃ PSh(N∆O
gl
• )

of global ∞-categories.

Restricting along the strictly 2-natural equivalence γ : Ogl
• ⇒ Glo/• of 2-functors

Glo → Cat∆ (see Lemmas 3.3.15 and 3.3.16) yields an equivalence of global ∞-

categories PSh(N∆(Glo/•)) ≃ PSh(N∆O
gl
• ). By Proposition A.1 the left hand side

is then further equivalent to PSh(Glo/•) = SpcGlo. This completes the construction

of an equivalence SpcGlo ≃ Sgl of global ∞-categories.

As SpcGlo is presentable (Example 2.4.4), so is Sgl. Moreover, the universal prop-
erty of SpcGlo shows that the equivalence F : SpcGlo → Sgl constructed above is
characterized essentially uniquely by the image of the terminal object ∗ ∈ SpcGlo(1),

so it only remains to verify that F sends this to the terminal object of Sgl. How-
ever, this follows simply from the fact that F (1) : SpcGlo(1)→ Sgl is an equivalence
of ordinary ∞-categories. �

4. Parametrized semiadditivity

The goal of this section is to introduce the parametrized analogue of the familiar
notion of semiadditivity of an∞-category, following the ideas introduced by Nardin
[Nar16]. In the parametrized setting, the notion of semiadditivity comes in various
flavors, parametrized by suitable subcategories P ⊆ T : roughly speaking, a T -∞-
category C is P -semiadditive if it is pointwise semiadditive, admits left adjoints p!
and right adjoints p∗ for the morphisms p : A→ B in P satisfying base change, and
a canonical norm map Nmp : p! → p∗ between these two adjoints is an equivalence.
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4.1. Pointed T -∞-categories. As a first step towards defining parametrized
semiadditivity, we introduce the notion of pointedness for T -∞-categories. Recall
that a zero object of an ∞-category is an object which is both initial and terminal.
An ∞-category is called pointed if it admits a zero object. This has the following
parametrized analogue.

Definition 4.1.1. Let C be a T -∞-category and let c : 1 → C be a T -∞-functor.
We say that c is a T -zero object of C if c(B) ∈ C(B) is a zero object for every
B ∈ T . We say that C is pointed if it admits a T -zero object; equivalently, C(B)
is a pointed ∞-category for every B ∈ T and f∗ : C(B)→ C(A) preserves the zero
object for every f : A→ B in T .

Similarly, we say that c : 1 → C is a T -initial object (resp. a T -final object) if
c(B) ∈ C(B) is an initial object (resp. a final object) for all B ∈ T .
Denote by Cat∗T ⊆ CatT the (non-full) subcategory spanned by the T -∞-categories
admitting a T -final object and the T -functors that preserve the T -final object.
We let CatptT ⊆ Cat∗T denote the full subcategory spanned by the pointed T -∞-
categories.

Definition 4.1.2. For T -∞-categories C and D which admit a T -final object, we
let

Fun∗
T (C,D) ⊆ FunT (C,D)

be the full parametrized subcategory spanned atB ∈ T by the pointed T/B-functors,
i.e. those F : π∗

B C → π∗
B D which preserve the T/B-final object.

In the non-parametrized setting, an ∞-category is pointed if and only if it admits
an initial object ∅ and a terminal object 1, and the canonical map ∅ → 1 is an
equivalence. In other words: the limit and colimit of the empty diagram in C exist
and are canonically equivalent. For our discussion of parametrized semiadditivity,
we will need an enhancement of this statement to the parametrized setting which
identifies more generally the (parametrized) limit and colimit corresponding to a
disjoint summand inclusion.

Definition 4.1.3. A map f : A→ B in an ∞-category E is called a disjoint sum-
mand inclusion if there exists another morphism g : C → B in E such that the maps
f and g exhibit B as a coproduct of A and C in E .
Lemma 4.1.4. Let C be a T -∞-category and let f : A→ B be a disjoint summand
inclusion in PSh(T ).

(1) If C admits a T -initial object, then the restriction functor f∗ : C(B) → C(A)
admits a fully faithful left adjoint f! : C(A)→ C(B);

(2) If C admits a T -final object, then the restriction functor f∗ : C(B) → C(A)
admits a fully faithful right adjoint f∗ : C(A)→ C(B);

(3) If C admits both a T -initial object and a T -final object, then there is a unique
map

Nmf : f! =⇒ f∗
whose restriction f∗ Nmf : f

∗f! ⇒ f∗f∗ is the equivalence inverse to the com-
posite

f∗f∗
c∗f
==⇒
∼

id
u!
f

==⇒
∼

f∗f!;
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(4) If C is pointed, this map Nmf : f! ⇒ f∗ is an equivalence.

Proof. Let g : C → B denote the disjoint complement of f . As C : PSh(T )op →
Cat∞ sends colimits in PSh(T ) to limits of ∞-categories, the maps f and g induce
an equivalence

(f∗, g∗) : C(B) ∼−−→ C(A)× C(C),

and under this equivalence the restriction functor f∗ : C(B) → C(A) corresponds
to the first projection map C(A) × C(C) → C(A). If C admits a T -initial object,
then this projection has a fully faithful left adjoint given by X 7→ (X, ∅), where
∅ ∈ C(C) denotes the initial object. It follows that f∗ admits a fully faithful left
adjoint f!. Similarly if C admits a T -final object, the projection has a fully faithful
right adjoint given by X 7→ (X, 1), where 1 ∈ C(C) is a final object, and thus f∗

admits a right adjoint f∗. If C satisfies both, then inserting the unique map ∅ → 1
in the second variable gives rise to a natural transformation Nmf : f! ⇒ f∗, which
is uniquely determined by requiring that its restriction along f is the canonical
identification f∗f! ≃ f∗f∗ in (3). It is clear that Nmf is an equivalence whenever
C(C) is pointed. �

Before moving on, we record a useful characterization of the disjoint summand
inclusions in a presheaf category:

Lemma 4.1.5. Let f : X → Y be a map in PSh(T ). Then the following are
equivalent:

(1) The map f is a disjoint summand inclusion;
(2) For every map t : A → Y from a representable object A ∈ T , the base change

t∗f : A ×Y X → A of f is a disjoint summand inclusion (i.e. either t∗f is an
equivalence or A×Y X = ∅).

Proof. It is clear that (1) implies (2) as disjoint summand inclusions in PSh(T )
are closed under pullback. We thus assume that (2) is satisfied and prove that it
implies (1).

By the co-Yoneda Lemma, there are equivalences X ≃ colimA∈T/X
A and Y ≃

colimB∈T/Y
B. Under these equivalences, the map f corresponds to restriction of

indexing diagrams along the functor T/f : T/X → T/Y . It will therefore suffice to
show that this functor is a disjoint summand inclusion of ∞-categories, or equiv-
alently that it is fully faithful and any object of T/X admitting a map to or from
the image of T/f already belongs to the essential image.

For this, we will first show that f is a monomorphism. This will immediately
imply that PSh(T )/f is fully faithful, hence so is T/f . To this end, we observe that
the natural map τ :

∐
A∈T/X

A → colimA∈T/X
A ≃ X is an effective epimorphism

[ABFJ22, Example 2.3.6], so pullbacks along it detect monomorphisms by [Lur09,
Proposition 6.2.3.17]. However, by universality of colimits, τ∗f is simply given as
the coproduct of all the pullbacks of f along all the maps A→ X , and each of these
is in particular a monomorphism by assumption.

For the closure of the image, consider objects t : A→ X in T/X and u : B → Y in
T/Y . If there is a map α : u→ T/f(t) in T/Y , then ftα ∼ u, so tα is a preimage of
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u. Conversely, a map β : T/f(t)→ u amounts to a commutative square

A B

X Y

t

β

u

f

(7)

in PSh(T ). By assumption, the pullback B×Y X is either empty or the projection
to B is an equivalence. However, the first case is impossible as B ×Y X receives a
map from A induced by (7), so we see there exists a (pullback) square of the form

B B

X Y.

v
y

u

f

The map v is the desired preimage of u, finishing the proof of the lemma. �

Given a T -∞-category C admitting a T -final object, one may form the T -∞-category
C∗ of pointed objects of C. We will need several basic properties of this construction.

Construction 4.1.6. Let C be a T -∞-category which admits a T -final object. We
define the T -∞-category C∗ of pointed objects of C as the composite

T op C−→ Cat∗∞
(−)∗−−−→ Catpt∞,

where the second functor sends an ∞-category E with terminal object ∗ to the
slice E∗ := E∗/. This construction is functorial in C and assembles into a functor

(−)∗ : Cat∗T → CatptT .

Corollary 4.1.7. The functor (−)∗ : Cat∗T → CatptT is right adjoint to the fully

faithful inclusion CatptT →֒ Cat∗T .

Proof. This is immediate from the fact that the functor (−)∗ : Cat∗∞ → Catpt∞ is
right adjoint to the fully faithful inclusion Catpt∞ ⊆ Cat∗∞. �

Corollary 4.1.8. For C ∈ CatptT and D ∈ Cat∗T , composition with the adjunc-
tion counit D∗ → D induces an equivalence of T -∞-categories Fun∗T (C,D∗) ∼−−→
Fun∗T (C,D).

Proof. We will prove that the induced functor Fun∗
T (C,D∗) → Fun∗

T (C,D) on un-
derlying∞-categories is an equivalence. For every B ∈ T this thus gives an equiva-
lence Fun∗T/B

(π∗
B C, π∗

B D∗) → Fun∗T/B
(π∗
B C, π∗

B D) which proves the claim. By the

Yoneda lemma it suffices to prove that for any∞-category E the above map induces
an equivalence

HomCat∞(E ,Fun∗
T (C,D∗))→ HomCat∞(E ,Fun∗T (C,D)).

Observe that the cotensor DE of D by E again has fiberwise final objects, and that
there is a canonical equivalence (DE)∗ ≃ (D∗)E . The cotensoring adjunction gives
rise to an equivalence

HomCat∞(E ,Fun∗
T (C,D)) ≃ HomCat∗T (C,D

E)
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and similarly for D∗. It thus suffices to show that for every ∞-category E the map
(DE)∗ → DE induces an equivalence

HomCat∗T (C, (D
E)∗)→ HomCat∗T (C,D

E),

which is true by the adjunction of Corollary 4.1.7. �

It follows that the condition of being pointed is closed under passing to parametrized
functor categories.

Corollary 4.1.9. Consider T -∞-categories C and D admitting a T -final object. If
either C or D is pointed, the T -∞-category Fun∗T (C,D) is pointed as well.

Proof. The case where D is pointed is clear from Proposition 2.3.24. When C is
pointed, we have by Corollary 4.1.8 an equivalence Fun∗

T (C,D∗) ∼−−→ Fun∗
T (C,D),

which reduces to the previous case since D∗ is pointed. �

Lemma 4.1.10. Let U be a class of T -∞-groupoids and let D be a U-complete
T -∞-category admitting a T -final object. Then D∗ is also U-complete and the
forgetful functor D∗ → D preserves U-limits.

Proof. Let B ∈ T and let (f : A → B) ∈ U(B). Consider objects X ∈ D(B) and
Y ∈ D(A)∗, and assume we are given a map ϕ : f∗X → Y in D(A) which exhibits
X as a right adjoint object to Y under f∗ : D(B)→ D(A), in the sense that for all
Z ∈ C(B) the composite

HomC(B)(Z,X)
f∗
−→ HomC(A)(f

∗Z, f∗X)
ϕ◦−−−−→ HomC(A)(f

∗Z, Y )

is an equivalence. Taking Z = ∗ gives X a canonical basepoint which turns the
map f∗X → Y into a map in D(A)∗. One now observes that this map exhibits
X ∈ D(A)∗ as a right adjoint object to Y ∈ D(B)∗ under f∗ : D(B)∗ → D(A)∗.
This proves the claim. �

4.2. Orbital subcategories. In order to obtain a parametrized analogue of semi-
additivity, we first need a parametrized analogue of the notion of finite (co)products.
In the non-parametrized setting, an∞-category E admits finite (co)products if and
only if it admits (co)limits indexed by finite sets (regarded as discrete∞-categories).
To generalize this to the parametrized setting, we would thus need a parametrized
analogue of the notion of finite set.

In general, there might be various natural choices for such a generalization. A large
family of examples comes from certain subcategories P of T that we call orbital,
extending the terminology of [BDG+16]. To every orbital subcategory P , we assign
a class of T -∞-groupoids called the finite P -sets, and a T -∞-category C is said
to admit finite P -coproducts if it admits parametrized colimits indexed by finite
P -sets.

Definition 4.2.1. Let FT be the finite coproduct completion of T , defined as
the full subcategory of PSh(T ) spanned by the finite disjoint unions

⊔n
i=1 Ai of

representable presheaves Ai ∈ T . We refer to FT as the∞-category of finite T -sets.

For a wide subcategory P ⊆ T , we let FPT ⊆ FT denote the wide subcategory
spanned by all the morphisms which are a disjoint union of morphisms of the form
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(pi) :
⊔n
i=1Ai → B where each morphism pi : Ai → B is in P . We refer to FPT as

the ∞-category of finite P -sets.

Note that FPT is equivalent to the finite coproduct completion of the ∞-category P .

Definition 4.2.2. A wide subcategory P ⊆ T is called orbital if the base change
of a morphism in FPT along an arbitrary morphism in FT exists and is again in FPT .
Equivalently, for every pullback diagram

A′ A

B′ B

p′

α

p

β

in PSh(T ), with A,B,B′ ∈ T and p : A→ B in P , the morphism p′ : A′ → B′ can be
decomposed as a disjoint union (pi)

n
i=1 :

⊔n
i=1Ai → B′ for morphisms pi : Ai → B′

in P .

The ∞-category T is called orbital if it is orbital when regarded as a subcategory
of itself.

Remark 4.2.3. An ∞-category T is orbital in our sense if and only if it is orbital
in the sense of [BDG+16], [Sha21], [Nar16, Definition 4.1].

Example 4.2.4. Every ∞-category T has a minimal orbital subcategory given by
ιT , the core of T .

The following is the main example of an orbital subcategory in this article.

Example 4.2.5. We define Orb ⊂ Glo to be the subcategory spanned by all
objects and the injective group homomorphisms. We claim that Orb is an orbital
subcategory of Glo. Observe that the ∞-category of finite Glo-sets is equivalent
to the (2, 1)-category of finite groupoids, which admits all homotopy-pullbacks.
The subcategory of finite Orb-sets is the wide subcategory on the faithful maps
of groupoids, and thus the orbitality of Orb is equivalent to the observation that
pullbacks of faithful maps of groupoids are again faithful.

The following two examples are variations of Example 4.2.5.

Example 4.2.6. The orbit category OrbG of a finite group G is orbital. More

generally, for a Lie group G, let Orbf.i.G be the wide subcategory of the orbit ∞-
category OrbG spanned by the morphisms equivalent to projections G/K → G/H

for subgroupsK ⊆ H ⊆ G whereK has finite index in H . Then Orbf.i.G is an orbital
subcategory of OrbG. Indeed, the pullback of G/K → G/H along a morphism
G/H ′ → G/H is computed via a double coset formula, namely the finite disjoint
union

⊔
[g]∈H′\H/K G/(H ′ ∩ gK).

Example 4.2.7. Mixing Example 4.2.5 with Example 4.2.6, one can define an
∞-category GloLie whose objects are compact Lie groups G and whose morphism
space HomGlo(G,H) is given by the homotopy orbit space HomTopGrp(G,H)hH ,
where H acts on the space of continuous homomorphisms G→ H via conjugation.

See [GH07, Section 4.1] or [Rez14, Section 2.2]. Let Orbf.i.Lie ⊆ GloLie be the wide
subcategory whose morphisms are given by the injective homomorphisms G →֒ H

of finite index. Then Orbf.i.Lie is an orbital subcategory. The relevant pullbacks are
again computed by a double coset formula.
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Orbital subcategories are closed under various constructions:

Example 4.2.8. (1) (Slice) Let P ⊆ T be an orbital subcategory and let B ∈ T
be an object. Then the wide subcategory of T/B spanned by those morphisms
over B contained in P is again an orbital subcategory. We will often abuse
notation and denote this subcategory again by P .

(2) (Preimage) More generally, if f : S → T is a right fibration, then the preimage
Q := f−1(P ) ⊆ S of an orbital subcategory P ⊆ T is again orbital. Indeed,
note that FQ = f−1(FP ), and that the extension FQ → FP of f is still a right
fibration. The claim is then an instance of [HHLN22b, Proposition 2.6].

(3) (Intersection) The intersection
⋂
i∈I Pi of any non-empty collection of orbital

subcategories Pi ⊆ T is again orbital.

Example 4.2.9. Let G be a finite group. Combining part (2) from Example 4.2.8
with Example 4.2.6, we find that for a G-space X : OrbopG → Spc, the ∞-category∫
X of points of X (that is, the total category of the right fibration classified by X)

is orbital.

So far, all the given examples of orbital subcategories are equivariant in nature,
being a variation of the orbit category of a group; these are the examples we are
most interested in in this article. In the following example we mention some orbital
subcategories that appear in completely different contexts.

Example 4.2.10. Let T be an ∞-category, and assume P ⊆ T is a wide subcate-
gory such that base changes of morphisms in P exist in T and are again in P . Then
P is orbital.

In particular, many geometric examples give rise to orbital subcategories. For
example:

(1) If T = Diff is the ordinary category of smooth manifolds, the wide subcategory
on the local diffeomorphisms is orbital.

(2) If T = SmS is the ordinary category of smooth schemes over some base scheme
S, the wide subcategory on the étale morphisms is orbital.

For the remainder of this subsection, we will fix an orbital subcategory P ⊆ T .

Definition 4.2.11. We define the T -∞-category of finite P -sets FPT . Given B ∈ T ,
we let

FPT (B) ⊆ PSh(T )/B

be the full subcategory spanned by those morphisms p : A → B in PSh(B) which
can be decomposed as a coproduct (pi) :

⊔n
i=1 Ai → B such that each morphism

pi : Ai → B is in P . By orbitality of P , FPT forms a parametrized subcategory of
SpcT . When P = T , we simply write FT for FTT .

Since FPT forms a class of T -∞-groupoids (see Definition 2.3.12) it makes sense to
speak of parametrized colimits indexed by FPT .

Definition 4.2.12. Let P ⊆ T be an orbital subcategory of T . We say that a
T -∞-category C admits finite P -coproducts if it admits FPT -colimits, in the sense of
Definition 2.3.8. Dually, we say C admits finite P -products if it admits FPT -limits.
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Definition 4.2.13. Let C andD be two T -∞-categories which admit FPT -limits. We
define FunP -×(C,D) to be the full parametrized subcategory of Fun(C,D) spanned
in level B by the T/B-functors F : π∗

B C → π∗
B D which preserve P -products (i.e.

preserves π−1
B (P )-products, c.f. Example 4.2.8). Dually we define FunP -⊔(C,D).

When P = T , a T -∞-category C admits finite T -coproducts in the sense of Defi-
nition 4.2.12 if and only if it has finite T -coproducts in the sense of Shah [Sha21,
Definition 5.10].

The following result gives a more explicit characterization of the condition for a
T -∞-category to admit finite P -(co)products.

Proposition 4.2.14 (cf. [Sha21, Proposition 5.12], [Nar16, Proposition 2.11]). Let
P ⊆ T be an orbital subcategory and let C be a T -∞-category. Then C admits finite
P -coproducts if and only if the following two conditions hold:

(1) C admits fiberwise finite coproducts, see Definition 2.3.11;
(2) for every morphism p : A → B in P , the restriction functor p∗ : C(B) → C(A)

admits a left adjoint p! : C(A) → C(B) and for every pullback square as in
Lemma 2.3.14(2) with A,B,B′ ∈ T and f : A → B in P , the Beck-Chevalley
transformation p′! ◦ α∗ ⇒ β∗ ◦ p! is an equivalence.

Dually, C admits finite P -products if and only the dual conditions hold.

Proof. By definition, every morphism in FPT with target B ∈ T can be written as a
composite

n⊔

i=1

Bi

⊔n
i=1 pi−−−−−→

n⊔

i=1

B
∇−→ B (8)

for morphisms pi : Bi → B in P , where ∇ :
⊔n
i=1 B → B denotes the fold map in

PSh(T ). As the functor C : PSh(T )op → Cat∞ sends colimits in PSh(T ) to limits of
∞-categories, the condition of left FPT -adjointability splits up as left adjointability

for the maps ∇ :
⊔n
i=1 B

∇−→ B and left adjointability for the maps in P . Spelling
out the definitions, one observes that the former is equivalent to condition (1) while
the latter is equivalent to condition (2). �

A similar argument gives the following analogous result for preservation of finite
P -coproducts:

Proposition 4.2.15. Let P ⊆ T be an orbital subcategory and let C and D be T -∞-
categories that admits finite P -coproducts. Then a T -functor F : C → D preserves
finite P -coproducts if and only if it preserves fiberwise finite coproducts and for every
morphism p : A→ B in P , the Beck-Chevalley transformation p! ◦ FA ⇒ FB ◦ p! is
an equivalence.

The dual statement for preservation of finite P -products also holds. �

We end this subsection by showing that the T -∞-category FPT can be characterized
by a universal property: it is the free T -∞-category admitting finite P -coproducts.

Corollary 4.2.16. The T -∞-category FPT admits finite P -coproducts and the in-
clusion FPT →֒ SpcT preserves finite P -coproducts.
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Proof. By Example 2.3.20 it suffices to show that the subcategory FPT →֒ SpcT is
closed under finite P -coproducts. But this is clear from Proposition 4.2.14 since it
is closed under fiberwise coproducts and under composition with morphisms in P
by construction. �
Corollary 4.2.17. Let D be a T -∞-category admitting finite P -coproducts. Let
∗ : 1 → FPT denote the T -final object, given at B ∈ T by the identity idB ∈ FPT (B).
Then composition with ∗ : 1→ FPT induces an equivalence of T -∞-categories

FunP -⊔
T (FPT ,D)→ FunT (1,D) ≃ D .

Proof. It follows directly from Corollary 4.2.16 that the subcategory FPT ⊆ SpcT
is the smallest subcategory which contains the T -final object and is closed under

finite P -coproducts, meaning it is equivalent to PSh
FP
T

T (1) in the notation of [MW21,
Definition 6.1.6]. The claim is then an instance of [MW21, Theorem 6.1.10]. �

4.3. Atomic orbital subcategories and norm maps. Let P be an orbital sub-
category of T . In this subsection, we will define what it means for P to be an
atomic orbital subcategory of T , generalizing a definition of [Nar16]. The atomic-
ity condition on P will allow us to define norm maps Nmp : p! → p∗ in a pointed
T -∞-category C, making it possible to compare finite P -coproducts in C to finite
P -products in C. We may therefore think of the atomic orbital subcategories as
classifying the various potential ‘levels of semiadditivity’ that a T -∞-categorymight
have.

Definition 4.3.1. Suppose T is an ∞-category and let P ⊆ T be an orbital
subcategory. We say that P is atomic orbital if for every morphism p : A → B in
P the diagonal ∆: A→ A×B A in PSh(T ) is a disjoint summand inclusion in the
sense of Definition 4.1.3. An ∞-category T is called atomic orbital if it is atomic
orbital as a subcategory of itself.

For a subcategory P ⊂ T , being an atomic orbital subcategory is a very restrictive
condition: since every disjoint summand inclusion in PSh(T ) is in particular a
monomorphism, it implies that all the morphisms in P have to be 0-truncated.

The following lemma provides an alternative characterization of atomic subcate-
gories in terms of the triviality of certain retracts. The case P = T of this lemma
immediately implies that our definition of atomic orbital∞-categories is equivalent
to that of [Nar16, Definition 4.1].

Lemma 4.3.2. Let P ⊆ T be an orbital subcategory. Then P is atomic orbital
if and only if any morphism p : A → B in P which admits a section in T is an
equivalence.

Proof. Assume first that P is atomic orbital. Let p : A→ B be a morphism in P and
assume that p admits a section s : B → A in T . We will show that p is an equivalence
with inverse s. Since we are given an equivalence ps ≃ idB, it remains to show that
sp ≃ idA. Equivalently, we may show that the map (idA, sp) : A→ A×B A factors
through the diagonal ∆p : A→ A×B A. By assumption this diagonal is equivalent
to an inclusion A →֒ A ⊔ C for some presheaf C ∈ PSh(T ), and since A is a
representable presheaf it follows that the map (idA, sp) : A → A ×B A ≃ A ⊔ C
must either factor through ∆p : A →֒ A ⊔ C or through C →֒ A ⊔ C. Assume for
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contradiction that we are in the latter situation. Then the pullback of ∆p : A →
A ×B A and (idA, sp) : A → A ×B A is the empty presheaf. But this pullback is
also equivalent to B, by the following pullback diagram:

B A B

A A×B A A

A B.

s

s (idA,sp)

p

s

∆p pr2

pr1 p

p

Since B is not the empty presheaf, this leads to a contradiction, showing that
(idA, sp) : A→ A×B A factors through ∆p as desired.

Conversely, assume that any map in P which admits a section in T is an equivalence.
Let p : A→ B be a morphism in P . Since P is orbital, the projection map pr1 : A×B
A → A in PSh(T ) can be decomposed as a disjoint union (pi)

n
i=1 :

⊔n
i=1 Ai → A

of morphisms pi : Ai → B in P . Since A is representable, the diagonal ∆p : A →
A ×B A ≃

⊔n
i=1Ai has to factor through one of the inclusions Ai →֒ A ×B A, so

that the morphism pi : Ai → A admits a section A→ Ai in T . By the assumption
on P , this means that pi is an equivalence. It follows that the diagonal ∆p of p is
the inclusion of a disjoint summand A ≃ Ai →֒

⊔n
i=1 Ai, as desired. �

Example 4.3.3. Recall the subcategory Orb ⊂ Glo spanned by the injective ho-
momorphisms. Clearly, any injective homomorphism that admits a section is also
surjective, hence an isomorphism. Together with Example 4.2.5, we conclude that
Orb is an atomic orbital subcategory of Glo. By direct computation one sees that
the diagonal in PSh(Glo) of a non-injective group homomorphism is never a dis-
joint summand inclusion, and thus it follows that Orb is in fact the maximal atomic
orbital subcategory of Glo.

Remark 4.3.4. There is a classification of the atomic orbital subcategories of
Glo in terms of global transfer systems in the sense of Barrero [Bar23]. Recall from
op. cit. that a global transfer system (for the family of finite groups) is a partial order
6T on the collection of finite groups which refines the subgroup relation and which
is closed under preimages, meaning that for a group homomorphism α : G′ → G, if
H 6T G then α−1(H) 6 G′. We may assign to 6T a wide subcategory OrbT ⊆ Orb
which contains those injections i : H →֒ G for which i(H) 6T G. It is not difficult
to show that OrbT is an atomic orbital subcategory of Glo, and that conversely
every atomic orbital subcategory of Glo is of the form OrbT for some global transfer
system ≤T .
A convenient feature of atomic orbital subcategories is that they are left cancellable,
in the sense that for morphisms f : A → B and g : B → C in T , if both g and gf
are in P then also f is in P .

Lemma 4.3.5. Every atomic orbital subcategory P ⊆ T is left cancellable.

Proof. Let f : A→ B and g : B → C be morphisms in T , and assume that both g
and gf are in P . We will show that then also f is in P . This is a classical argument
[Gro60, Remarque 5.5.12]: we may factor f as a composite

A
(1,f)−−−→ A×C B

prB−−→ B
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in FT , and it will suffice to show that both of these morphisms are morphisms in FPT .
The projection prB : A×C B → B is the base change of gf : A→ C along B → C,
so it is in FPT by orbitality of P and the assumption on gf . In turn, the morphism
(1, f) : A→ A×C B is a base change of the diagonal map ∆g : B → B×C B, which
is by assumption a disjoint summand inclusion and thus in particular in FPT . This
finishes the proof. �

Corollary 4.3.6. Let P ⊆ T be an atomic orbital subcategory. Then for every B ∈
T , the inclusion P/B →֒ T/B is fully faithful. In particular, there is an equivalence

FPT (B) ≃ (FPT )/B . �

While atomicity a priori only requires the diagonals of maps in P be disjoint sum-
mand inclusions, the next proposition shows that this in fact holds for a more
general class of maps in PSh(T ). Recall from Remark 2.3.15 that, given a presheaf
B on T , we write FPT (B) ⊆ PSh(T )/B for the full subcategory containing those
morphisms p : A→ B of presheaves whose base change to any representable B′ ∈ T
lives in FPT .

Proposition 4.3.7. Let P ⊆ T atomic orbital, let Y ∈ PSh(T ) and let (p : X →
Y ) ∈ FPT (Y ). Then the diagonal ∆p : X → X ×Y X in PSh(T ) is a disjoint
summand inclusion.

Proof. By Lemma 4.1.5, it will suffice to show that the base change of ∆p : X →
X ×Y X along any map α = (α1, α2) : A → X ×Y X from a representable A ∈ T
is a disjoint summand inclusion. Observe that the map α factors as the following
composite:

A
(id,α2)−−−−→ A×Y X α1×id−−−−→ X ×Y X.

As base changes of disjoint summand inclusions are again disjoint summand inclu-
sions, it will thus suffice to show that the base change of ∆f along the map α1× id
is a disjoint summand inclusion. To this end, consider the following commutative
diagram:

A X

A×Y X X ×Y X X

A X Y.

(id,α1)

α1

∆f

pr1

α1×id

pr1

pr2

f

α1 f

It follows readily from the pasting law of pullback squares that each square is a
pullback square. Observe that the projection map pr1 : A ×Y X → A is the base
change of f along fα1, hence it lies in FPT by assumption. It follows that the map
(id, α1) is a section of a morphism in FPT , hence is a disjoint summand inclusion by
the same argument as in the proof of Lemma 4.3.2. This finishes the proof. �

For the remainder of this subsection, we will fix an atomic orbital subcategory
P ⊆ T . We are now ready to define the norm map Nmp : p! → p∗ for p as in
Proposition 4.3.7.
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Construction 4.3.8 (Norm map, cf. [Lur17, Construction 6.1.6.8], [NS18, Con-
struction I.1.7], [HL13, Construction 4.1.8]). Let C be a pointed T -∞-category, let
B ∈ PSh(T ) and let (p : A→ B) ∈ FPT (B). Consider the following pullback diagram

A×B A A

A B

pr1

pr2

p

p

(9)

in PSh(T ), and let ∆: A→ A×BA denote the diagonal of p. By Proposition 4.3.7,
∆ is a disjoint summand inclusion, so that Lemma 4.1.4 provides adjunctions ∆! ⊣
∆∗ ⊣ ∆∗ and an equivalence Nm∆ : ∆! ≃ ∆∗.

(1) Define a natural transformation α : pr∗1 ⇒ pr∗2 as the following composite:

pr∗2
u∗
∆==⇒ ∆∗∆

∗pr2
∗ ≃ ∆∗

Nm−1
∆≃ ∆! ≃ ∆!∆

∗ pr∗1
c!∆==⇒ pr∗1 .

(2) Assume that C admits finite P -coproducts, so that the pullback square (9)
gives a left base change equivalence p∗p! ≃ pr1! pr

∗
2. We define the adjoint

norm transformation Ñmp : p
∗p! ⇒ id of p in C as the composite

Ñmp : p
∗p!

l.b.c.≃ pr1! pr
∗
2

pr1!α====⇒ pr1! pr
∗
1

c!pr1===⇒ id .

(3) Assume that C admits finite P -products, so that the pullback square (9) gives
a right base change equivalence p∗p∗ ≃ pr2∗ pr

∗
1. We define the dual adjoint

norm transformation Nmp : id⇒ p∗p∗ of p in C as the composite

Nmp : id
u∗
pr2===⇒ pr2∗ pr

∗
2

pr2∗α====⇒ pr2∗ pr
∗
1

r.b.c.≃ p∗p∗.

(4) Assume that C admits both finite P -products and finite P -coproducts. We
define the norm transformation of p in C

Nmp : p! =⇒ p∗

as the map adjoint to the adjoint norm transformation Ñmp : p
∗p! ⇒ id.

We will sometimes write Ñm
C
p , Nm

C
p or NmC

p to emphasize the dependence on C.

Remark 4.3.9. Unwinding the definitions, the map Ñmp : p
∗p! ⇒ id may be given

more directly as the composite

p∗p!
l.b.c.≃ pr1! pr

∗
2

u∗
∆==⇒ pr1!∆∗∆

∗ pr∗2
Nm−1

∆≃ pr1!∆!∆
∗ pr∗2 ≃ idC(A) .

Similarly, the map Nmp : id⇒ p∗p∗ unwinds to the following composite:

idC(A) ≃ pr2∗∆∗∆
∗ pr∗1

Nm−1
∆≃ pr2∗∆!∆

∗ pr∗1
c!∆==⇒ pr2∗ pr

∗
1

r.b.c.≃ p∗p∗.

The description of the adjoint norm map Ñm given above is precisely the definition

of the map ν
(0)
p : p∗p! ⇒ id of [HL13, Construction 4.1.8], applied to the Beck-

Chevalley fibration
∫
C → PSh(T ) classified by the functor C : PSh(T )op → Cat∞.

In particular, the norm map Nmp : p! → p∗ defined above agrees with the norm
map Nmp of [HL13, Construction 4.1.12].
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Remark 4.3.10. Let (f : A → B) ∈ FPT (B) be a morphism in PSh(T ) which
happens to be a disjoint summand inclusion. Then the norm map Nmf : f! ⇒ f∗ of
Construction 4.3.8 agrees with the map Nmf : f! ⇒ f∗ constructed in Lemma 4.1.4.

The map α : pr∗2 ⇒ pr∗1 defined in Construction 4.3.8(1) may be thought of as some
kind of ‘diagonal matrix’: as the next lemma shows, it restricts to the identity when
restricted along the diagonal ∆: A →֒ A×B A, and restricts to the zero map on the
complement of the diagonal.

Lemma 4.3.11. Let C be a pointed T -∞-category and let (p : A → B) ∈ FPT (B).
Let j : C →֒ A ×B A denote the disjoint complement of the diagonal inclusion
∆: A →֒ A×B A. Then the following hold:

(1) The composite idC(A) ≃ ∆∗ pr∗2
∆∗α
===⇒ ∆∗ pr∗1 ≃ idC(A) is homotopic to the

identity transformation.
(2) The map j∗α : j∗ pr∗2 ⇒ j∗ pr∗1 is the zero transformation, in the sense that it

factors through the zero functor 0: C(A)→ C(C).

Proof. The proof of (1) follows from the following commutative diagram:

∆∗ pr∗2 ∆∗ pr∗2 id ∆∗ pr∗1 ∆∗ pr∗1

∆∗∆∗∆∗ pr∗2 ∆∗∆∗ ∆∗∆! ∆∗∆!∆
∗ pr∗2 .

Nm−1
∆

u∗
∆ c∗∆ u!

∆ c!∆

≃ ≃

≃≃

c∗∆ u!
∆

The triangles on the two sides commute by the triangle identity, the rhombi com-
mute by naturality and the triangle in the middle commutes by the defining property
of the norm map Nm∆ of Lemma 4.1.4.

For (2), note that by definition of α the map j∗α factors through the functor j∗∆∗.
Since coproducts are disjoint in PSh(T ), the fiber product C×A×BAA is the empty
presheaf. It then follows from base change that the functor j∗∆∗ factors through
the ∞-category C(∅) ≃ ∗, which forces it to be the zero functor. �

Remark 4.3.12. In the setting of Mackey 2-functors, Balmer and Dell’Ambrogio
[BD20, Theorem 3.3.4] have produced a similar transformation Θi : i! ⇒ i∗ for i a
faithful map of groupoids, i.e. a morphism in FOrb

Glo . It follows from Lemma 4.3.11
and [BD20, Proposition 3.2.1] that the transformation Nmi : i! ⇒ i∗ of Construc-
tion 4.3.8 specializes to the transformation Θi of Balmer and Dell’Ambrogio in the
case T = Glo and P = Orb. In particular, if C is a pointed global ∞-category
admitting finite Orb-(co)products, it follows from [BD20, Theorem 3.4.2] that the
norm maps Nmi are equivalences for every faithful map of groupoids i : H → G if
and only if there exist abstract equivalences i! ≃ i∗ for every such i.

4.4. Properties of norm maps. We will next establish a variety of results about
the calculus of norm maps.

To start with, we address the obvious asymmetry in the construction of the norm
map: we could just as well have considered the map p! ⇒ p∗ adjoint to the dual
adjoint norm map Nmp : id ⇒ p∗p∗. The following lemma shows that these two
maps agree.
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Lemma 4.4.1. Assume that C is a pointed T -∞-category which admits both finite
P -products and finite P -coproducts. For every (p : A → B) ∈ FPT (B), the maps

Ñmp : p
∗p! ⇒ id and Nmp : id⇒ p∗p∗ adjoin to the same map Nmp : p! ⇒ p∗.

Proof. We have to show that dual adjoint norm map Nmp is the total mate of the

adjoint norm map Ñmp. A mundane exercise in 2-category theory shows that the
total mate of the Beck-Chevalley equivalence p∗p! ≃ pr1! pr

∗
2 is the Beck-Chevalley

equivalence pr2∗ pr
∗
1 ≃ p∗p∗. Furthermore, it follows directly from the triangle

identity that the total mate of the composite

pr1! pr
∗
2

pr1!α====⇒ pr1! pr
∗
1

c!pr1===⇒ id

is given by the composite

id
u∗
pr2===⇒ pr2∗ pr

∗
2

pr2∗α====⇒ pr2∗ pr
∗
1 .

Since the total mate of a composite of transformations is given by composing in
opposite order the individual total mates of these transformations, this finishes the
proof. �

The norm map Nmp can be written in terms of the double Beck-Chevalley map
p!pr2∗ ⇒ p∗pr1! associated to the pullback square (9):

Lemma 4.4.2. Assume that C is a pointed T -∞-category which admits both finite
P -products and finite P -coproducts, and let (p : A→ B) ∈ FPT (B). Then the norm
map Nmp is homotopic to the composite

p! ≃ p!pr2∗∆∗ −→ p∗pr1!∆∗
Nm−1

∆−−−−→ p∗pr1!∆! ≃ p∗.

Proof. By adjunction, it suffices to show that the adjoint normmap Ñmp : p
∗p! → id

is given by the composite

p∗p! ≃ p∗p!pr2∗∆∗ −→ p∗p∗pr1!∆∗
Nm−1

∆−−−−→ p∗p∗pr1!∆! ≃ p∗p∗
c∗p−→ id .

This follows from the following commutative diagram:

p∗p! p∗p!pr2∗∆∗ p∗p∗pr1!∆∗ p∗p∗pr1!∆! p∗p∗

pr1! pr
∗
2 pr1! pr

∗
2 pr2∗∆∗ pr1!∆∗ pr1!∆! id

pr1! pr
∗
2 pr1!∆∗∆∗ pr∗2 pr1!∆!∆

∗ pr∗1 pr1! pr
∗
1

≃

l.b.c. l.b.c.

≃ c∗pr2

≃

Nm−1
∆

Nm−1
∆

c∗p c∗p c∗p

≃

≃

u∗
∆

≃ c!pr1
c!∆

pr1!α

(1)

(3)(2)

The unlabeled squares commute by naturality. Commutativity of (1) is by the
triangle identity, while commutativity of (2) and (3) follows from the equivalence
pr1 ◦∆ ≃ id ≃ pr2 ◦∆ and the fact that the (co)unit of a composite of adjunctions
is the composite of the individual (co)units. �

As was shown by Hopkins and Lurie [HL13], the norm maps behave well under
composition and base change of morphisms in FPT .



PARAMETRIZED STABILITY AND THE UNIV. PROPERTY OF GLOBAL SPECTRA 51

Proposition 4.4.3 ([HL13, Proposition 4.2.1]). Assume that C is a pointed T -∞-
category which admits finite P -coproducts. Consider a pullback square

A′ A

B′ B

p′

gA

p

gB

in PSh(T ) such that p ∈ FPT (B) and (hence) p′ ∈ FPT (B′). Then there is a commu-
tative diagram

p′∗p′!g
∗
A p′∗g∗Bp! g∗Ap

∗p!

g∗A g∗A.

Ñmp′

l.b.c.
∼

∼

Ñmp
�

Corollary 4.4.4 ([HL13, Remark 4.2.3]). In the situation of Proposition 4.4.3,
assume that C furthermore admits finite P -products. Then the composite

p′!g
∗
A

l.b.c.≃ g∗Bp!
g∗B Nmp−−−−−→ g∗Bp∗

r.b.c.≃ p′∗g
∗
A

is homotopic to the map Nmp′ g
∗
A. �

Proposition 4.4.5 ([HL13, Proposition 4.2.2]). Assume that C is a pointed T -∞-
category which admits finite P -coproducts. Let (p : A→ B) ∈ FPT (B) and (q : B →
C) ∈ FPT (C), so that also (qp : A → C) ∈ FPT (C). Then the adjoint norm map

Ñmqp is homotopic to the composite

(qp)∗(qp)! ≃ p∗q∗q!p!
Ñmq−−−→ p∗p!

Ñmp−−−→ id . �

Corollary 4.4.6 ([HL13, Remark 4.2.4]). In the situation of Proposition 4.4.5,
assume that C furthermore admits finite P -products. Then the composite transfor-
mation

(qp)! ≃ q!p!
Nmq−−−→ q∗p!

Nmp−−−→ q∗p∗ ≃ (qp)∗

is homotopic to the norm map Nmqp. �

The norm maps are also suitably functorial in the T -∞-category C: as we will now
show, any pointed T -functor G : C → D transforms norm maps in C into norm
maps in D.

Lemma 4.4.7. Let G : C → D be a pointed T -functor of pointed T -categories and
let (p : A→ B) ∈ FPT (B). Then the diagram

pr∗2G pr∗1G

Gpr∗2 Gpr∗1

αG

≃ ≃

Gα

of transformations between functors C(A)→ D(A×B A) commutes.
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Proof. Spelling out the definition of α, this is a direct consequence of the following
three commutative diagrams:

G ∆∗∆∗G

G∆∗∆∗ ∆∗G∆∗,

u∗
∆G

≃Gu∗
∆

BC∗

∆!G ∆∗G

G∆! G∆∗,

BC!

Nm∆G

GNm∆

BC∗

∆!∆
∗G G

∆!G∆
∗ G∆!∆

∗.

c!∆G

Gc!∆

BC!

≃

The left and right squares commute by definition of the Beck-Chevalley maps, using
the triangle identities. The fact that the middle square commutes follows directly
from pointedness of G and the construction of Nm∆ in Lemma 4.1.4. �

Lemma 4.4.8. Let G : C → D be a pointed T -functor between two pointed T -∞-
categories which admit finite P -coproducts. Then for every (p : A → B) ∈ FPT (B),
the diagram

p∗p!GA p∗GBp! GAp
∗p!

GA GA

≃BC!

GA Ñm
C
pÑm

D
p GA

commutes.

Proof. Consider the diagram

p∗p!GA p∗GBp! GAp
∗p!

pr1! pr
∗
2GA pr1!GA×BA pr∗2 GApr1! pr

∗
2

pr1! pr
∗
1GA pr1!GA×BA pr∗1 GApr1! pr

∗
1

GA GA.

≃BC!

l.b.c. l.b.c.

BC!≃

pr1!αGA GApr1!αpr1!GA×BAα

BC!≃

c!pr1GA GAc
!
pr1

GA Ñm
C
pÑm

D
p GA

We are interested in the outer square. The right middle square commute by nat-
urality. The left middle square commutes by Lemma 4.4.7. The bottom rectangle
commutes by definition of the Beck-Chevalley map, using the triangle identity. Fi-
nally, the upper rectangle commutes as the two composites are the Beck-Chevalley
transformations associated to the following two equivalent composite squares:

C(B) D(B) D(A)

C(A) D(A) D(A×B A)

GB

GA

p∗ p∗ pr∗1
pr∗2

p∗

and

C(B) C(A) D(A)

C(A) C(A×B A) D(A×B A).

p∗

pr∗2

p∗ pr∗1 pr∗1
GA×BA

GA

This finishes the proof. �

We end the subsection with the the following technical lemma, needed for the proof
of Proposition 4.5.8 below. We recommend the reader skip this lemma on first
reading.
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Lemma 4.4.9. Let C be a pointed T -∞-category which admits finite P -products.
Let (p : A → B) ∈ FPT (B), and assume that p admits a section s : B → A which is
a disjoint summand inclusion. Then the composite

s∗ ∼−−→ p∗s∗s
∗ p∗ Nm−1

s s∗−−−−−−−→ p∗s!s
∗ p∗c

!
s−−−→ p∗

is homotopic to the composite

s∗
s∗ Nmp−−−−−→ s∗p∗p∗ ≃ p∗.

Proof. Recall from Remark 4.3.9 that the map Nmp : id → p∗p∗ is given by the
following composite:

id ≃ pr2∗∆∗∆
∗ pr∗1

Nm−1
∆−−−−→ pr2∗∆!∆

∗ pr∗1
c!∆−−→ pr2∗ pr

∗
1

r.b.c.≃ p∗p∗.

We thus see that the composite s∗
s∗ Nmp−−−−−→ s∗p∗p∗ ≃ p∗ is given by the composite

along the left, bottom and right in the following large diagram:

s∗ p∗s∗s∗ p∗s!s∗ p∗

p∗s!s∗(1, sp)∗ pr∗1 p∗(1, sp)∗ pr∗1 p∗

s∗ p∗s∗s∗∆∗ pr∗1 p∗s!s∗∆∗ pr∗1

p∗(1, sp)∗∆∗∆∗ pr∗1 p∗(1, sp)∗∆!∆
∗ pr∗1 p∗(1, sp)∗ pr∗1 p∗

s∗ s∗(pr2)∗∆∗∆∗ pr∗1 s∗(pr2)∗∆!∆
∗ pr∗1 s∗(pr2)∗ pr

∗
1 s∗p∗p∗

Nm−1
∆ c!∆≃ r.b.c.

s∗ Nmp

≃

r.b.c.

r.b.c.

Nm−1
s

l.b.c.

Nm−1
∆

r.b.c. r.b.c.

≃

≃

c!∆

≃ Nm−1
s

≃

c!s

(1)

≃

≃
≃

≃
c!s

(2)

(3)

(3)

The composite along the top of this diagram is the other map appearing in the
statement of the lemma, so it will suffice to prove that the diagram commutes. All
unlabeled equivalences in this diagram come from identifications on the level of
maps in PSh(T ), e.g. we have p∗s∗ ≃ (ps)∗ ≃ id∗ ≃ id, etcetera. The maps labeled
l.b.c. and r.b.c. are the left/right base change equivalences associated with one of
the following three pullback squares in FPT :

B A B

A A×B A A

A B.

p

p

(1,sp)

pr1

pr2

p

s

∆

s

s

Except for the squares labelled (1), (2) and (3), all squares in the above diagram
commute by naturality. The commutativity of (1) is an instance of Corollary 4.4.4
applied to the previous pullback square exhibiting s as a base change of ∆ along
(1, sp) : A→ A×BA. The commutativity of (2) follows directly from the definition
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of the left base change equivalence s!s
∗ ∼−−→ (1, sp)∗∆!, using the triangle identity.

Finally, the two squares labeled (3) use that the composite of two right base change
equivalences is the right base change equivalence for the composite, which in both
cases is just equivalent to the identity. �

4.5. P -semiadditive T -∞-categories. In this section, we will introduce and dis-
cuss the notion of a P -semiadditive T -∞-category for a fixed atomic orbital sub-
category P ⊆ T .

Definition 4.5.1 (cf. [Nar16, Definition 5.3]). Let C be a pointed T -∞-category
which admits both finite P -products and finite P -coproducts. We say that C is P -
semiadditive if for every morphism p : A → B in FPT the norm map Nmp : p! ⇒ p∗
is an equivalence.

We let CatP -×
T ⊆ CatT denote the (non-full) subcategory spanned by the T -∞-

categories which admit finite P -products and the T -functors which preserve finite
P -products. We let CatP -⊕

T ⊆ CatP -×
T denote the full subcategory spanned by the

P -semiadditive T -∞-categories.

Example 4.5.2. The previous definition applied to the pair Orb ⊂ Glo gives
a notion of Orb-semiadditivity for global ∞-categories. We will refer to this as
equivariant semiadditivity.

It follows directly that also the norm maps for more general morphisms in FPT are
equivalences:

Corollary 4.5.3. Let C be a P -semiadditive T -∞-category, let B ∈ PSh(T ) and
let (p : A→ B) ∈ FPT (B). Then the norm map Nmp : p! ⇒ p∗ is an equivalence.

Proof. We may write the presheaf B as a colimit colimiBi of representables Bi ∈ T ,
which gives rise to an equivalence of ∞-categories C(B) ≃ limi C(Bi). It will thus
suffice to show that for every representable B′ ∈ T and any morphism g : B′ →
B of presheaves, the transformation g∗ Nmp : g

∗p! ⇒ g∗p∗ is an equivalence. By
Corollary 4.4.4, it will suffice to show that the transformation Nmp′ : p

′
! ⇒ p′∗ is an

equivalence, where p′ : A ×B B′ → B′ is the base change of p along g. Since this
base change is a morphism in FPT , this holds by assumption on C. �

We will next discuss various alternative characterizations of P -semiadditivity. We
start by observing that this condition is self-dual.

Lemma 4.5.4. Let C be a pointed T -∞-category. Then the following conditions
are equivalent:

(1) The T -∞-category C is P -semiadditive;
(2) The opposite T -∞-category Cop is P -semiadditive;
(3) The T -∞-category C admits finite P -coproducts and for every morphism p : A→

B in FPT the adjoint norm map Ñmp : p
∗p! ⇒ id is the counit of an adjunction

p∗ ⊣ p!;
(4) The T -∞-category C admits finite P -products and for every morphism p : A→

B in FPT the dual adjoint norm map Nmp : id⇒ p∗p∗ is the unit of an adjunc-
tion p∗ ⊣ p∗.
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Proof. Observe that the dual adjoint norm map Nmp : id⇒ p∗p∗ may be obtained

by applying the construction of the adjoint norm map Ñm: p∗p! ⇒ id to the T -
∞-category Cop. The equivalence between (1) and (2) is then immediate from
Lemma 4.4.1. The equivalence between (1) and (3) is clear since the norm map

Nmp : p! ⇒ p∗ is adjoint to Ñm: p∗p! ⇒ id. The equivalence between (2) and (4) is
obtained dually by replacing C with Cop. �

Every choice of an atomic orbital subcategory P ⊆ T gives a different notion of
parametrized semiadditivity for a T -∞-category C. The weakest form of parame-
trized semiadditivity is fiberwise semiadditivity:

Definition 4.5.5. A T -∞-category C is called fiberwise semiadditive if for every
B ∈ T the ∞-category C(B) is semiadditive and for every morphism f : A→ B in
T the restriction functor f∗ : C(B)→ C(A) preserves finite biproducts.

Lemma 4.5.6. Let C be a pointed T -∞-category which admits fiberwise finite prod-
ucts and coproducts. Then the following three conditions are equivalent:

(1) The T -∞-category C is fiberwise semiadditive;
(2) The norm map Nm∇ : ∇! → ∇∗ associated to the fold map ∇ :

⊔n
i=1B → B is

an equivalence for every n ≥ 0 and every B ∈ T ;
(3) The T -∞-category C is P -semiadditive for P = ι T , the core of T .

Proof. When P = ι T is the core of T , any map in FPT is equivalent to a fold
map ∇ :

⊔n
i=1B → B for some B ∈ T , and thus the equivalence between (2) and

(3) is clear. It remains to show that (1) and (2) are equivalent. The ∞-category
C(⊔n

i=1B) is equivalent to the n-fold product
∏n
i=1 C(B) of C(B). Given an object

X = (Xi) ∈
∏n
i=1 C(B), there are equivalences ∇!(X) ≃ ⊕n

i=1Xi and ∇∗(X) ≃∏n
i=1Xi. By Lemma 4.3.11, the map α(X) is a morphism in

∏n
i=1

∏n
j=1 C(B) which

we may visually display as



1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 :




X1 X2 . . . Xn

X1 X2 . . . Xn

...
...

. . .
...

X1 X2 . . . Xn


→




X1 X1 . . . X1

X2 X2 . . . X2

...
...

. . .
...

Xn Xn . . . Xn


 ,

where 1 denotes an identity map while 0 denotes the zero map. In particular, the
induced norm map Nmp :

⊕n
i=1Xi →

∏n
j=1Xj is induced by the family of maps

{Xi → Xj}i,j given by the identity when i = j and the zero-map when i 6= j.
This is precisely the norm map defining ordinary semiadditivity for ∞-categories,
finishing the proof. �

As the next result shows, the condition of P -semiadditivity for general P is a
combination of fiberwise semiadditivity and norm equivalences Nmp : p! ≃ p∗ for
morphisms p in P .

Corollary 4.5.7. Let C be a T -∞-category. Then C is P -semiadditive if and only
if it is fiberwise semiadditive and for every morphism p : A → B in P the norm
map Nmp : p! ⇒ p∗ is an equivalence.

Proof. As in the proof of Proposition 4.2.14, every morphism in FPT with repre-

sentable domain B ∈ T can be written as a composite
⊔n
i=1 Ai

⊔n
i=1 pi−−−−−→ ⊔n

i=1Ai
∇−→
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B for morphisms pi : Ai → B in P , where∇ denotes the fold map. The norm map of⊔n
i=1 pi :

⊔n
i=1Ai →

⊔n
i=1 B is equivalent to the product of the norm maps for each

individual pi : Ai → B. By Corollary 4.4.6, the norm map of a composite morphism
can be written as a composite of norm maps, and it follows that C is P -semiadditive
if and only if the norm maps of all the fold maps ∇ :

⊔n
i=1B → B and of all mor-

phisms p : A → B in P are equivalences. But by Lemma 4.5.6 the norm maps for
the fold maps are equivalences if and only if C is fiberwise semiadditive. �

We finish this subsection with a recognition criterion for P -semiadditivity along the
lines of [Lur17, Proposition 2.4.3.19].

Proposition 4.5.8. Let C be a pointed T -∞-category admitting finite P -products.
Assume that for every morphism p : A→ B in FPT , there is a natural transformation
µp : p∗p∗ ⇒ idC(B) of functors C(B)→ C(B) satisfying the following two conditions:

(a) for every X ∈ C(B), the composite

p∗X
Nmp p

∗X−−−−−−→ p∗p∗p
∗X

p∗µpX−−−−→ p∗X

is homotopic to the identity;
(b) for every Y ∈ C(A), the following diagram commutes

p∗p∗p∗Y p∗(pr2)∗ pr
∗
1 Y p∗(pr1)∗ pr

∗
1 Y

p∗Y.
µpp∗Y

≃
r.b.c.

≃

p∗µpr1
Y

Then the T -∞-category C is P -semiadditive.

Proof. To show that C is P -semiadditive, we may by Lemma 4.5.4 equivalently
show that for every map p : A → B in FPT and every object Y ∈ C(A), the dual

adjoint norm map Nmp Y : Y ⇒ p∗p∗Y exhibits p∗Y as a left adjoint object to Y
under the functor p∗ : C(B)→ C(A), i.e. that for every X ∈ C(B) the composite

HomC(B)(p∗Y,X)
p∗−→ HomC(A)(p

∗p∗Y, p
∗X)

−◦Nmp Y−−−−−−→ HomC(A)(Y, p
∗X)

is an equivalence. We claim that an inverse is given by

HomC(A)(Y, p
∗X)

p∗−→ HomC(B)(p∗Y, p∗p
∗X)

µpX◦−−−−−−→ HomC(B)(p∗Y,X).

By naturality of µp and Nmp, it suffices to prove that the following two composites
are homotopic to the identity for every fixed X :3

p∗X
Nmp p

∗X−−−−−−→ p∗p∗p
∗X

p∗µpX−−−−→ p∗X,

p∗Y
p∗ Nmp Y−−−−−−→ p∗p

∗p∗Y
µpp∗Y−−−−→ p∗Y.

The first composite is homotopic to the identity by condition (a), so we focus on
the second composite. Plugging in the description of Nmp given in Remark 4.3.9,

3While this suffices to show that Nmp is a unit of an adjunction, it does not show that µp is

the corresponding counit, as we do not provide homotopies that are functorial in X and Y .
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this composite expands to

p∗Y p∗pr2∗∆∗∆∗ pr∗1 Y p∗pr2∗∆!∆
∗ pr∗1 Y

p∗pr2∗ pr
∗
1 Y p∗p∗p∗Y p∗Y,

∼ Nm−1
∆

c!∆

r.b.c. µpp∗Y

∼

∼

which, using condition (b) and the equivalence p ◦ pr1 ≃ p ◦ pr2, is homotopic to
the composite

p∗Y ≃ p∗pr1∗∆∗∆
∗ pr∗1 Y

Nm−1
∆−−−−→ p∗pr1∗∆!∆

∗ pr∗1 Y
c!∆−−→ p∗pr1∗ pr

∗
1 Y

p∗µpr1
Y−−−−−→ p∗Y.

Applying Lemma 4.4.9 to the map pr1 : A×BA→ A with section ∆: A→ A×BA,
we see that this map is homotopic to the following composite:

p∗Y ≃ p∗∆∗ pr∗1 Y
p∗∆

∗ Nmpr1
pr∗1 Y−−−−−−−−−−−→ p∗∆

∗ pr∗1 pr1∗ pr
∗
1 Y

p∗∆
∗ pr∗1 µpr1

Y−−−−−−−−−−→ p∗∆
∗ pr∗1 Y ≃ p∗Y.

This map is homotopic to the identity by assumption (a) applied to the map
pr1 : A×B A→ A, finishing the proof. �

4.6. P -semiadditive T -functors. We continue to fix an atomic orbital subcat-
egory P ⊆ T . In this subsection we will define what it means for a T -functor
F : C → D to be P -semiadditive: roughly speaking, it means that F turns finite
P -coproducts in C into finite P -products in D. The main result of this subsec-
tion is Proposition 4.6.13, which states that the T -subcategory FunP -⊕

T (C,D) of
FunT (C,D) spanned by the P -semiadditive T -functors is P -semiadditive.

We start by constructing a ‘relative’ variant of the norm map.

Construction 4.6.1. Let F : C → D be a T -functor such that C is pointed and
admits finite P -coproducts and D admits finite P -products, let B ∈ PSh(T ) and
let (p : A→ B) ∈ FPT (B). We define the norm transformation of p relative to F

NmF
p : FB ◦ p! =⇒ p∗ ◦ FA

as the transformation adjoint to the composite p∗FBp! ≃ FAp
∗p!

FA Ñm
C
p

=====⇒ FA,

where the first equivalence uses that the parametrized functor F : C → D commutes
with the restriction functors.

Note that when D is equal to C and F is the identity on C, the transformation NmF
p

reduces to the norm transformation NmC
p : p! ⇒ p∗ of Construction 4.3.8.

Definition 4.6.2. Let F : C → D be a T -functor such that C is pointed and
admits finite P -coproducts and D admits finite P -products. We will say that F is
P -semiadditive if it satisfies the following condition:

(∗) For each morphism p : A→ B in FPT , the transformation NmF
p : FB◦p! ⇒ p∗◦FA

defined in Construction 4.6.1 is a natural equivalence.

By Example 4.2.8(1) we also obtain a notion of P -semiadditive T/B-functors for
all B ∈ T . Note that C is P -semiadditive if and only if the identity id: C → C is
P -semiadditive. Also note that condition (∗) specializes for A = ∅ to the condition
that the functor FB : C(B)→ D(B) sends the zero object of C(B) to the final object
of D(B).
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Just like in Corollary 4.5.3, one immediately deduces that the relative norm maps
are equivalnces for arbitrary morphisms in FPT :

Corollary 4.6.3. Let F : C → D as in Construction 4.6.1 and assume that F is
P -semiadditive. Then for every B ∈ PSh(T ) and every (p : A → B) ∈ FPT (B), the

transformation NmF
p : FB ◦ p! ⇒ p∗ ◦ FA is an equivalence. �

While not necessary for our work, we show for completeness that our norm map
generalizes the analogous construction in [Nar16].

Proposition 4.6.4. Let T be an atomic orbital ∞-category, let B ∈ T and let
p : A → B be a morphism in FT . Let F : C → D be a T -functor with C and D
satisfying the assumptions of Construction 4.6.1. Then the norm transformation
NmF

p : FB ◦ p! ⇒ p∗ ◦ FA of Construction 4.6.1 is homotopic to the transformation
defined in [Nar16, Construction 5.2].

Proof. We will first give an alternative description of the norm map in this special
case, and then argue why it agrees with the construction of Nardin. By definition
of FT , we may assume p : A→ B to be of the form p = (pi) :

⊔n
i=1 Ai → B, where

each Ai ∈ T is representable. Let ιi : Ai →֒
⊔n
i=1Ai = A denote the canonical

inclusion, so that pi = p ◦ ιi : Ai → B. The functor p∗ : D(A) → D(B) may be
decomposed as

D(A) = D(
n⊔

i=1

Ai)
(ι∗i )i−−−→
≃

n∏

i=1

D(Ai)
∏n

i=1 pi∗−−−−−−→
n∏

i=1

D(B)
∏
−→ D(B),

where the last map denotes the multiplication in D(B). For an object X =

(Xi) ∈ C(A) ≃
∏n
i=1 C(Ai) the norm map NmF

p (X) : FB(p!(X)) → p∗FA(X) ≃∏n
i=1 pi∗(FAi(Xi)) is the product of n maps FB(p!(X))→ pi∗(FAi(Xi)), where the

i-th one is obtained by adjunction from the composite

p∗iFB(p!(X)) ≃ FAip
∗
i p!X ≃ FAi ι

∗
i p

∗p!X
FAi

ι∗i Ñmp

=======⇒ FAi ι
∗
iX = FAiXi.

We will now expand the definition of the map ι∗i Ñmp : p
∗
i p!X → Xi. First notice

that the map Ñmp : p
∗p!X → X is given by the following composite:

p∗p!X
l.b.c.≃ pr1! pr

∗
2X

u∗
∆==⇒ pr1!∆∗∆

∗ pr∗2X
Nm−1

∆====⇒
≃

pr1!∆!∆
∗ pr∗2X ≃ X.

Applying left base change to the pullback diagram

Ai ×B A Ai ×B A A

Ai Ai B

ιi×BA

pr1 pr1

pr2

p

ιi pi

gives an equivalence p∗i p!X ≃ pr1! pr
∗
2X . Since T is atomic, the diagonal ∆pi : Ai →

Ai ×B Ai →֒
⊔n
i=1 Ai ×B Ai = Ai ×B A is a disjoint summand inclusion. Writing

g : C → Ai ×B A for the complement summand, we observe that C(Ai ×B A) =
C(Ai ⊔ C) ≃ C(Ai) × C(C) and that the object pr∗2X ∈ C(Ai ×B A) corresponds
to the pair (Xi, XC) for some XC ∈ C(C). Plugging in the map XC → ∗ to the
zero-object ∗ of C(C) thus gives a map pr1!(Xi, XC) → pr1!(Xi, ∗) ≃ Xi. Looking
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at the construction of Nm∆ in Lemma 4.1.4, one sees that the resulting composite

p∗i p!X → Xi is precisely ι
∗
i Ñmp.

One may now observe that this second description of the norm map is precisely the
construction of [Nar16], after making the following translations in notation:

B ↔ V, A↔ U, p↔ I,

n⊔

i=1

Ai ↔
⊔

W∈Orbit(U)

W,

p! ↔
⊔

I

, p∗i ↔ δW/V , ιi ↔ (W ⊆ U), ι∗i Ñmp ↔ (χ[W⊆U ])∗.

This finishes the proof. �

Next, we will show that the P -semiadditive T -functors from C to D form a parame-
trized subcategory of FunT (C,D). This will rely on the following general criterion
in the spirit of Lemma 2.3.17:

Lemma 4.6.5. Let f : PSh(S)→ PSh(T ) be a cocontinuous functor that preserves
pullbacks. Let P ⊂ S and Q ⊂ T be atomic orbital subcategories and assume that

for every p : A→ B in P we have (f(p) : f(A)→ f(B)) ∈ FQT (f(B)). Then:

(1) The functor f∗ : CatT → CatS sends (pointed) T -∞-categories with finite
Q-coproducts to (pointed) S-∞-categories with finite P -coproducts, and du-
ally for finite Q-products and finite P -products.

(2) If F : C → D is a T -functor such that C is pointed with finite Q-coproducts

and D has finite Q-products, then the relative norm map Nmf∗F
p for any

B ∈ PSh(T ), p ∈ FPS (p) agrees with the relative norm map NmF
f(p).

(3) The functor f∗ : CatT → CatS sends Q-semiadditive T -categories to P -
semiadditive S-categories and Q-semiadditive T -functors to P -semiadditive
S-functors.

Proof. It is clear that f∗ preserves pointedness. Moreover, as f preserves coprod-

ucts, it more generally maps FPS (B) into FQT (f(B)), so part (1) is an instance of
Lemma 2.3.17 and its dual. Part (2) follows similarly by direct inspection of the
construction of the norm maps, and (3) is an immediate consequence of (2). �

Definition 4.6.6. Let C and D be T -∞-categories such that C is pointed and ad-
mits finite P -coproducts and D admits finite P -products. We define FunP -⊕

T (C,D)
as the full subcategory FunT (C,D) spanned at level B ∈ T by the P -semiadditive
T/B-functors F : π∗

B C → π∗
B D for B ∈ T .

This does indeed form a T -subcategory by the previous lemma applied to the maps
T/f : T/A → T/B for all f : A→ B in T , cf. the proof of Lemma 2.3.23.

We think of a P -semiadditive T -functor as a functor which sends finite P -coproducts
to finite P -products. Hence we expect that this condition should be preserved when
precomposing (resp. postcomposing) with a T -functor which preserves finite P -
coproducts (resp. finite P -products). The following result shows that this is indeed
the case.

Proposition 4.6.7. Let F : C → D be a P -semiadditive T -functor, where C and
D are as in Definition 4.6.2, and let (p : A→ B) ∈ FPT (B).
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(1) Let C′ be another pointed T -category admitting finite P -coproducts and let
G : C′ → C be a pointed T -functor which preserves finite P -coproducts. Then
the norm map NmFG

p : FBGBp! ⇒ p∗FBGB of FG with respect to p is given by
the composite

C′(A) C(A) D(A)

C′(B) C(B) D(B),

FAGA

p! p! p∗

FBGB

BC−1
! NmF

p

where BC! : p!G(A) ∼−−→ G(B)p! denotes the Beck-Chevalley equivalence of G.
In particular the composite F ◦G : C′ → D is again P -semiadditive.

(2) Let D′ be another T -∞-category which admits finite P -products and let H : D →
D′ be a T -functor which preserves finite P -products. Then the norm map
NmHF

p : HBFBp! ⇒ p∗HBFB of HF at p is given by the composite

C(A) D(A) D′(A)

C(B) D(B) D′(B),

FA

p! p∗

FB

NmF
p

p∗

HA

HB

BC∗

where BC∗ : H(A)p∗ ∼−−→ p∗H(A) denotes the Beck-Chevalley equivalence of H.
In particular the composite H ◦ F : C → D is again P -semiadditive.

Proof. The description of NmFG
p follows from the commutative diagram

FBGBp! p∗p∗FBGBp! p∗FAp∗GBp! p∗FAGAp∗p!

FBp!GA p∗p∗FBp!GA p∗FAp∗p!GA p∗FAGA.

u∗
p ≃ ≃

p∗FAGA ÑmpBC−1
!

p∗FA ÑmpGA

BC−1
!BC−1

!

u∗
p ≃

NmF
p GA

The middle and left square commute by naturality, and the right square by Lemma
4.4.8. The description of NmHF

p follows from the commutative diagram

HBFBp! HBp∗p∗FBp! HBp∗FAp∗p! HBp∗FA

p∗p∗HBFBp! p∗HAp
∗FBp! p∗HAFAp

∗p! p∗HAFA,

u∗
p

HBu
∗
p

≃ ≃

BC∗ ≃

≃

BC∗ ≃
HBp∗FA Ñmp

p∗HAFA Ñmp

BC∗≃

HB NmF
p

where the middle and right square commute by naturality while the left-most square
commutes by definition of the Beck-Chevalley equivalence BC∗ and the triangle
identity. �

Corollary 4.6.8. Let C and D be T -∞-categories such that C is pointed and admits
finite P -coproducts, and D admits finite P -products. Then post-composition with
the forgetful functor D∗ → D induces an equivalence of T -∞-categories

FunP -⊕
T (C,D∗) ∼−−→ FunP -⊕

T (C,D).
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Proof. By Corollary 4.1.8 it remains to show that a pointed T -functor C → D∗
is P -semiadditive if and only if its composition with D∗ → D is P -semiadditive.
This follows from Proposition 4.6.7 since the T -functor D∗ → D is conservative and
preserves T -limits by Lemma 4.1.10. �

Corollary 4.6.9. Let C be a pointed T -∞-category which admits finite P -coproducts
and let D be a T -∞-category which admits finite P -products. Let B ∈ T and con-
sider a T/B-functor F : π∗

B C → D. Then π∗
B C is pointed with finite P -coproducts,

πB∗D has finite P -products, and F is P -semiadditive if and only if the correspond-

ing functor F̃ : C → πB∗D is P -semiadditive.

Proof. This follows from Lemma 4.6.5 and Proposition 4.6.7 by the same arguments
as in the proof of Proposition 2.3.28. �

Corollary 4.6.10. Let C be a pointed T -∞-category with finite coproducts, let
D be a T -∞-category with finite products, and let X ∈ PSh(T ) arbitrary. Then

(F : C → FunT (X,D)) ∈ FunT (C,D)(X) defines an object of FunP -⊕
T (C,D)(X) if

and only if it is P -semiadditive.

Proof. If X is representable, this is an instance of the previous proposition. In the
general case, we then simply observe analogously to the proof of Proposition 2.3.28
that the functors FunT (X,D) → FunT (A,D) for maps A → X with A ∈ T are
jointly conservative and preserve finite P -products, so that the claim follows from
Proposition 4.6.7. �

Lemma 4.6.11. Let C and D be T -∞-categories such that C is pointed and ad-
mits finite P -coproducts and D admits finite P -products. Let U be a class of
T -∞-categories, and assume that D admits U-limits. Then the T -∞-category
FunP -⊕

T (C,D) also admits U-limits and the inclusion FunP -⊕
T (C,D) →֒ FunT (C,D)

preserves U-limits.

Proof. First note that the T -∞-category FunT (C,D) admits U-limits by Propo-
sition 2.3.24. Let K ∈ U(B) be a T/B-∞-category in U, and let F : π∗

B C →
FunT (K,π

∗
B D) be a P -semiadditive T/A-functor. We need to show that the T/B-

functor limK F : π∗
B C → π∗

B D is again P -semiadditive. To simplify the notation,
we will assume that B is the final object of T by replacing T by T/B, and thus
we may identify π∗

B C and π∗
B D with C and D, respectively. Since parametrized

limits in FunT (C,D) are computed pointwise by Proposition 2.3.24, the functor
limK F : C → D is given by the composite

C F−→ FunT (K,D)
limK−−−→ D .

Note that the T -functor limK : FunT (K,D)→ D, being right adjoint to the diagonal
D → FunT (K,D), preserves all parametrized limits and thus in particular all finite
P -products. It then follows from Proposition 4.6.7 that limK F is P -semiadditive
as desired. �

Corollary 4.6.12. Let C and D be pointed T -∞-categories admitting finite P -
coproducts, and let E be a T -∞-category admitting finite P -products. Then the
composite equivalence

FunT (C,FunT (D, E)) ≃ FunT (C ×D, E) ≃ FunT (D,FunT (C, E))
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restricts to an equivalence

FunP -⊕
T (C,FunP -⊕

T (D, E)) ≃ FunP -⊕
T (D,FunP -⊕

T (C, E)).

Proof. It follows immediately from Lemma 4.6.11 and Proposition 2.3.24 that both
sides correspond to the full subcategory of FunT (C ×D, E) spanned by those T -
functors which are P -semiadditive in both variables. Here we say a T -functor
F : C ×D → E is P -semiadditive in both variables if for everyB ∈ T andX : B → C,
the T -functor

F (X,−) : D → FunT (B, E)
adjoint to the composite B ×D X×D−−−→ C×D F−→ E is P -semiadditive and similarly
for every Y : B → D the T -functor

F (−, Y ) : C → FunT (B, E)

adjoint to C ×B C ×Y−−−→ C×D F−→ E is P -semiadditive. �

We now come to the main result of this subsection: the P -semiadditivity of the
T -∞-category FunP -⊕

T (C,D).
Proposition 4.6.13 (cf. [Nar16, Proposition 5.8]). Let C and D be T -∞-categories
such that C is pointed and admits finite P -coproducts and D admits finite P -
products. Then the T -∞-category FunP -⊕

T (C,D) is P -semiadditive.

Proof. By Corollary 4.6.8, we may assume that D is pointed. It follows from Corol-
lary 4.1.9 that FunP -⊕

T (C,D) is pointed and from Lemma 4.6.11 that FunP -⊕
T (C,D)

admits finite P -products. These are computed pointwise, meaning that for p : A→
B in FPT the map

p∗ : Fun
P -⊕(C,FunT (A,D))→ FunP -⊕(C,FunT (B,D))

is given by post-composition with p∗ : FunT (A,D)→ FunT (B,D).
To show that FunP -⊕

T (C,D) is P -semiadditive, we will apply the recognition prin-
ciple from Proposition 4.5.8. For every morphism p : A → B in FPT and every
P -semiadditive T/B-functor G : π∗

B C → π∗
B D, we define a natural transformation

µpG : p∗p∗G → G. For notational simplicity, we will construct this in the case
where B = 1 is a terminal object of T ; the general case is obtained by replacing T
by T/B. In this case, µpG is defined as the following composite:

p∗p
∗G ≃ p∗GAp∗

(NmG
p )−1

−−−−−−→ Gp!p
∗ Gc!p−−→ G;

here we denote by GA : FunT (A, C) → FunT (A,D) the T -functor induced by G.
We need to check that conditions (a) and (b) of Proposition 4.5.8 are satisfied.
Condition (b) follows directly from the definitions, using Proposition 4.6.7(2) to
compute the norm map of p∗F in terms of the norm map of F and the right base
change equivalence p∗p∗ ≃ (pr2)∗ pr

∗
1. For condition (a), we need to show that for

every P -semiadditive T -functor G : C → D, the composite

p∗G
Nmp p

∗G−−−−−−→ p∗p∗p
∗G

p∗µpG−−−−→ p∗G

is homotopic to the identity in FunP -⊔
T/A

(π∗
A C, π∗

AD) ≃ FunP -⊕
T (C,FunT (A,D)). Ob-

serve that pointedness of D guarantees that the transformation Nmp p
∗G : p∗G →

p∗p∗p∗G is given by whiskering p∗G with the transformation NmD
p : id → p∗p∗.
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Spelling out the definitions, we are therefore interested in the composite along the
top right in the following diagram:

p∗G pr2∗∆∗∆∗ pr∗1 p
∗G pr2∗∆!∆

∗ pr∗1 p
∗G pr2∗ pr

∗
1 p

∗G p∗p∗p∗G

GAp∗ pr2∗∆∗∆∗ pr∗1G
Ap∗ pr2∗∆!∆

∗ pr∗1G
Ap∗ pr2∗ pr

∗
1G

A p∗p∗GAp∗

p∗Gp!p∗ p∗G

GAp∗ GApr2!∆!∆
∗ pr∗1 p

∗ GApr2! pr
∗
1 p

∗ GAp∗p!p∗ GAp∗

GAp∗ GA(pr2)!∆!∆
∗ pr∗2 p

∗ GApr2! pr
∗
2 p

∗ GAp∗

l.b.c.c!∆≃

≃

≃ c!∆ r.b.c.Nm−1
∆

Nmp p
∗G

≃
Nm−1

∆

≃ ≃ ≃ ≃ ≃

c!∆

r.b.c.

c!p

p∗µpG

≃
c!p

(NmG
p )−1

c!∆

≃

≃

≃
c!pr2

(1)

(2)

As the composite along the bottom left is the identity, it remains to show that
this diagram commutes. Except for (1) and (2), all squares commute either by
definition or by naturality, and the commutativity of square (2) follows from the
triangle identity. The commutativity of (1) follows from the following commutative
diagram:

GA pr2∗∆∗∆∗ pr∗1G
A pr2∗∆!∆

∗ pr∗1G
A pr2∗ pr

∗
1G

A p∗p∗GA

GA pr2∗∆∗GA∆∗ pr∗1 pr2∗∆!G
A∆∗ pr∗1 pr2∗ pr

∗
1G

A p∗p∗GA

pr2∗G
A×A∆!∆

∗ pr∗1 pr2∗G
A×A∆!∆

∗ pr∗1 pr2∗G
A×A pr∗1 p∗Gp!

GA GApr2!∆!∆
∗ pr∗1 GApr2! pr

∗
1 GAp∗p!.

l.b.c.c!∆

NmG
p

r.b.c.

NmF
pr1

≃

≃

NmGA×A

∆

≃

≃

(4)

NmGA

pr1

≃
c!∆ r.b.c.Nm−1

∆

≃
Nm∆

≃

c!∆

BC!(2)

(3)

(1)

The unlabeled squares commute by naturality. The fact that (1) commutes follows
from Corollary 4.4.6, while the commutativity of (4) follows from Corollary 4.4.4.
The commutativity of (2) and (3) easily follows from the definitions. This finishes
the proof. �

Proposition 4.6.14. Let C be a pointed T -∞-category which admits finite P -
coproducts, and suppose D is P -semiadditive. Then a T -functor F : C → D is
P -semiadditive if and only if it preserves finite P -coproducts. In particular we get
that FunP -⊕

T (C,D) and FunP -⊔
T (C,D) are the same subcategory of FunT (C,D).

Analogously, suppose C is a P -semiadditive T -∞-category, and suppose D admits
finite P -products. Then a T -functor G : C → D is P -semiadditive if and only if it
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preserves finite P -products. In particular FunP -⊕
T (C,D) and FunP -×

T (C,D) are the
same subcategory of FunT (C,D).

Proof. We start with the first case. Observe that in both cases F is pointed so that
Lemma 4.4.8 applies. Adjoining over p∗ to the right gives a commutative triangle

FBp!

p!FA p∗FA.

NmF
p

BC!

NmD
p FA

Since D is a P -semiadditive, the bottom map is an equivalence. It thus follows from
the two-out-of-three property that BC! : p!FA ⇒ FBp! is an equivalence if and only
if NmF

p : FBp! ⇒ p∗FA is, proving the result.

Next we consider the second case. Just as before the result follows from the com-
mutativity of the triangle

p∗FA

FBp! FBp∗,
FB NmC

p

BC∗
NmF

p

which in turn follows from the commutative diagram

p∗p∗FBp! p∗FAp∗p! p∗FA

FBp! FBp∗p∗p! FBp∗

u∗
p

Ñm
C
p

Ñm
C
p

BC∗BC∗

u∗
p

≃

The left square commutes by the triangle identity and the right by naturality. �

Corollary 4.6.15. Let C and D be P -semiadditive T -∞-categories. Then a T -
functor F : C → D preserves finite P -coproducts if and only if it preserves finite
P -products. �

There exists a characterization of P -semiadditivity which does not make reference
to the norm maps: it suffices for finite P -products to commute with finite P -
coproducts.

Corollary 4.6.16. Let C be a pointed T -∞-category which admits finite P -products
and finite P -coproducts. Then the following conditions are equivalent:

(1) The T -∞-category C is P -semiadditive
(2) For every morphism p : A→ B in FPT , the T/B-functor

p∗ : FunT/B
(A, π∗

B C)→ π∗
B C

preserves finite P -coproducts.

Proof. Suppose C is P -semiadditive. Then so are the T/B-∞-categories π∗
B C and

FunT/B
(A, π∗

B C). Given a morphism p : A → B, the T/B-functor p∗ is a right
adjoint of p∗ so preserves finite P -products. By Corollary 4.6.15, it follows that p∗
also preserves finite P -coproducts, proving that (1) implies (2).
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Conversely, applying (2) to the finite P -coproduct p! gives that the double Beck-
Chevalley map p!pr2∗ ⇒ p∗pr1! associated to the pullback square (9) is an equiva-
lence. It thus follows from Lemma 4.4.2 that the norm map Nmp is an equivalence,
showing that (2) implies (1). �

We finish this subsection by observing that passing to the T -∞-category of P -
semiadditive T -functors out of a small T -∞-category C preserves presentability.

Proposition 4.6.17. Let C be a small pointed T -∞-category which admits finite
P -coproducts. Let D be a presentable T -∞-category, so that D in particular admits
finite P -products by Remark 2.4.2. Then the T -∞-category FunP -⊕(C,D) is again
presentable and the inclusion

FunP -⊕(C,D) ⊂ Fun(C,D)

admits a left adjoint.

Proof. We will exhibit FunP -⊕
T (C,D) as the T -∞-category of S-local objects for a

parametrized family S of morphisms in FunT (C,D) (i.e. a set S(B) of morphisms
of FunT/B

(π∗
B C, π∗

B D) for every B ∈ T which are closed under restriction). Then
Example 2.4.6 implies both statements of the proposition. Since we may prove the
statement after pulling back to every slice of T , we may assume without loss of
generality that T has a final object. We will describe a set S′(1) of morphisms
in FunT (C,D) such that F is P -semiadditive if and only if F is S′-local; the set
S′(B) at any other object B ∈ T is given by the analogous procedure applied to
the slice T/B. We then define S(B) to be the union of the restriction of S′(A) along
every map A → B in T . Note that a functor F is S(A)-local if and only if f∗F
is S′(B)-local for every f : A → B in T . By Lemma 4.6.11 this is equivalent to F
being S′(A)-local.

By definition, a T -functor F : C → D is T -semiadditive if and only if it preserves
T -final objects and the norm map Nmp : FB ◦ p! ⇒ p∗ ◦ FA is an equivalence for
every p : A → B in FPT . By presentability of D(B), there exists a set {di} of
generating objects of D(B) for every B ∈ FT , which we may assume to be closed
under restriction along maps in FT . It follows that F is semiadditive if and only
if for every morphism p : A → B in FPT , every generator di ∈ D(B) and every
x ∈ C(A) the following two maps of spaces are equivalences:

(1) HomD(B)(di, FB(∗))→ HomD(B)(di, ∗) ≃ ∗;
(2) HomD(B)(di, FB(p!(x))→ HomD(B)(di, p∗(FA(x))) ≃ HomD(A)(p

∗(di), FA(x)).

Note that this is a set worth of conditions. We claim that these maps of spaces
are obtained by applying HomFunT (C,D)(−, F ) to certain maps S′(1) in FunT (C,D).
Since the maps are natural in the functor F , it suffices to prove that the source and
target of each map are corepresented. Note that the functor F 7→ ∗ is corep-
resented by the initial object of FunT (C,D). Therefore it will suffice to show
that functors in F of the form HomD(B)(y, FB(x)) are corepresented. First re-
call the standard fact that the assignment F 7→ HomD(B)(di, FB(x)) is corep-
resented by the functor y(x) ⊗ di : C(B) → D(B) in Fun(C(B),D(B)). Here
y(x) = HomC(B)(x,−) : C(B) → Spc denotes the Yoneda embedding, while the
functor − ⊗ di : Spc → D(B) denotes the standard tensoring over spaces in the
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cocomplete category D(B). To prove the claim, it thus remains to show that the
evaluation functor

evB : FunT (C,D)→ Fun(C(B),D(B))

admits a left adjoint. Note that by Proposition 2.3.24 it preserves colimits and
limits. Since both source and target are presentable the existence of the required
left adjoint follows immediately from the adjoint functor theorem [Lur09, Corollary
5.5.2.9]. �

4.7. Finite pointed P -sets. We will now introduce the T -∞-category FPT,∗ of
finite pointed P -sets for an orbital subcategory P ⊆ T and prove that it is the free
pointed T -∞-category admitting finite P -coproducts.

Definition 4.7.1. Let P ⊆ T be an orbital subcategory. We define the subcategory
FPT,∗ ⊆ SpcT,∗ of finite pointed P -sets as the inverse image of the subcategory

FPT ⊆ SpcT under the forgetful functor SpcT,∗ → SpcT : it contains those pointed

T -spaces (X, f, s) ∈ SpcT,∗(B) whose underlying T -space (f : X → B) is in FPT .
Note that FPT,∗ is equivalent to (FPT )∗, the pointed objects in the T -∞-category of
finite P -sets.

Notation 4.7.2. By Example 2.3.3, the forgetful functor SpcT,∗ → SpcT admits a
left adjoint (−)+ : SpcT → SpcT,∗. It is given at B ∈ T by the functor

(−)+ : PSh(T )/B → (PSh(T )/B)∗ : (X, f) 7→ (X+, f+, s),

where X+ := X ⊔ B, where f+ := (f, id) : X ⊔ B → B and where s : B →֒ X ⊔ B
is the canonical inclusion. We will often abuse notation and write X+ or (X, f)+
instead of (X+, f+, s).

Observe that the T -functor (−)+ : SpcT → SpcT,∗ of Notation 4.7.2 restricts to a T -

functor (−)+ : FPT → FPT,∗ which is left adjoint to the forgetful functor fgt : FPT,∗ →
FPT .

Lemma 4.7.3. Let P ⊆ T be an atomic orbital subcategory. Then the T -functor
(−)+ : FPT → FPT,∗ is essentially surjective: any finite pointed P -set (Y, p, s) ∈
FPT,∗(B) is equivalent to one of the form X+ for some (X, q) ∈ FPT (B).

Proof. By definition, we may write Y =
⊔n
i=1 Ai as a finite disjoint union such

that each map pi : Ai → B is in P . The section s : B → ⊔n
i=1 Ai must factor

as B → Ai →֒
⊔n
i=1Ai for some i. But this implies that the map B → Ai is a

section of pi : Ai → B, so by Lemma 4.3.2 it must be an equivalence, exhibiting
B as a disjoint summand of Y . Defining X as the disjoint union of the remaining
summands gives the desired equivalence Y ≃ X+ over B. �
Notation 4.7.4. When P ⊆ T is atomic orbital, we will assume all pointed P -set
over B ∈ T are given to us in the form X+ = X ⊔ B for (X, q) ∈ FPT (B). This
convention is justified by Lemma 4.7.3. We emphasize that the maps X+ → Y+
of finite pointed P -sets over B are not assumed to respect this decomposition, i.e.
they might not be induced by maps in FPT (B).

Lemma 4.7.5. The T -∞-category FPT,∗ from Definition 4.7.1 admits finite P -

coproducts and the inclusion FPT,∗ →֒ SpcT,∗ preserves finite P -coproducts. Further-
more, for any other T -∞-category D which admits finite P -coproducts, a T -functor
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F : FPT,∗ → D preserves finite P -coproducts if and only if the composite F ◦ (−)+
does.

Proof. By Example 2.3.21, it suffices to prove that FPT,∗ is closed under finite P -

coproducts in SpcT,∗. By Corollary 4.2.16, the T -category FPT admits finite P -

coproducts and these are preserved by the (left adjoint) T -functor (−)+ : FPT →
FPT,∗. Conversely it follows from Lemma 4.7.3 that every cocone in FPT,∗ indexed by

a finite P -set comes from FPT . The claim follows. �

Let S0 : 1→ FPT,∗ denote the T -functor given at B ∈ T by the object B+ ∈ FPT,∗(B).
The goal of the remainder of this subsection is to show that this map exhibits the
T -∞-category FPT,∗ as the free pointed T -∞-category admitting finite P -coproducts.

If E is an ∞-category admitting a final object ∗, we let E+ ⊆ E∗ denote the full
subcategory of pointed objects ∗ → Z for which there exists a pointed equivalence
Z ≃ X ⊔ ∗ for some X ∈ E . If E admits finite coproducts, then E+ also admits
finite coproducts and the functor (−)+ : E → E+ : X 7→ X+ := X ⊔ ∗ preserves
finite coproducts. Furthermore E+ is pointed. We will show that the functor
(−)+ : E → E+ is universal among coproduct preserving functors from E into a
pointed ∞-category.

Lemma 4.7.6. Let E and D be ∞-categories admitting finite coproducts. Assume
that E admits a final object and that D is pointed. Then precomposition with the
functor (−)+ : E → E+ induces an equivalence

Fun⊔,∗(E+,D) ∼−−→ Fun⊔(E ,D).

Proof. We claim an inverse is given by sending a finite-coproduct-preserving functor

F : E → D to the functor F̃ : E+ → D defined by the formula

F̃ (X+) := cofib(F (∗)→ F (X+)).

Observe that this colimit exists and is equivalent to F (X) by the following pushout
diagram:

∗ F (∗) ∗

F (X) F (X+) F (X).

Here the left square is a pushout since D is pointed and F preserves finite coprod-
ucts, and it thus follows from the pasting law of pushout diagrams that the right

square is a pushout as well. This proves that the composition F̃ ◦(−)+ is equivalent

to F . It is easily observed that F̃ is pointed and preserves finite coproducts.

Now assume we are given a pointed functor F̃ : E+ → D which preserves finite
coproducts. It remains to show that for every object Z ∈ E+ the canonical map

cofib(F̃ (∗+)→ F̃ (Z+))→ F̃ (Z)

is an equivalence. This follows from the fact that Z+ is a coproduct in E+ of Z and

∗+ and that F̃ preserves coproducts by assumption. �
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Let Cat⊔∞ ⊆ Cat∞ denote the (non-full) subcategory consisting of ∞-categories
which admit finite coproducts and functors which preserve finite coproducts. Let
Cat⊔,pt∞ ⊆ Cat⊔,∗∞ ⊆ Cat⊔∞ denote the full subcategories spanned by those ∞-
categories with finite coproducts which admit a zero object or admit a final object,
respectively.

Corollary 4.7.7. The inclusion Cat⊔,pt∞ →֒ Cat⊔,∗∞ admits a left adjoint

(−)+ : Cat⊔,∗∞ → Cat⊔,pt∞

which on objects sends E to E+.

Proof. We need to show that for any E ∈ Cat⊔,∗∞ and any D ∈ Cat⊔,pt∞ , the precom-
position with the map (−)+ : E → E+ induces an equivalence

HomCat⊔∞(E+,D) ∼−−→ HomCat⊔∞(E ,D).
This is immediate from Lemma 4.7.6. �
Corollary 4.7.8. Let D be a pointed T -∞-category D which admits finite P -
coproducts. Then composition with S0 : 1 → FPT,∗ induces an equivalence of T -
∞-categories

FunP -⊔,∗
T (FPT,∗,D)→ FunT (1,D) ≃ D .

Proof. Note that S0 is the composite 1
∗−→ FPT

(−)+−−−→ FPT,∗. By Corollary 4.2.17

it thus suffices to show that composition with the T -functor (−)+ : FPT → FPT,∗
induces an equivalence FunP -⊔,∗

T (FPT,∗,D) ∼−−→ FunP -⊔
T (FPT ,D). It in fact suffices to

show that it induces an equivalence between T -∞-categories of fiberwise coproduct
preserving functors. Namely by the last part of Lemma 4.7.5 this equivalence
will restrict to the subcategories of P -coproduct preserving functors on either side.
Replacing T by T/B for every B ∈ T , it suffices to prove this on underlying ∞-

categories. Note that the subcategory Cat⊔T ⊆ CatT is closed under cotensoring
by Cat∞ and that there is a canonical equivalence HomCat∞(E ,Fun⊔

T (C,D)) ≃
HomCat⊔T

(C,DE) for E ∈ Cat∞ and C,D ∈ Cat⊔T . By the Yoneda lemma it will

thus suffice to show that the functor (−)+ : FPT → FPT,∗ induces an equivalence

HomCat⊔
T
(FPT,∗,D) ∼−−→ HomCat⊔

T
(FPT ,D). This is immediate from Corollary 4.7.7.

�

4.8. P -commutative monoids. In this subsection we will introduce the notion
of a P -commutative monoid in a T -∞-category D admitting finite P -products.
Furthermore we will show that the T -∞-category CMonP (D) of P -commutative
monoids in D is the terminal P -semiadditive T -∞-category equipped with a finite
P -product preserving T -functor to D.
Definition 4.8.1 (P -commutative monoids, cf. [Nar16, Definition 5.9]). Let D be
a T -∞-category which admits finite P -products. A P -commutative monoid object
of D is a P -semiadditive T -functor M : FPT,∗ → D. We define the T -∞-category

CMonP (D) of P -commutative monoids in D as

CMonP (D) := FunP -⊕
T (FPT,∗,D).

We define the forgetful functor U : CMonP (D)→ D to be given by precomposition
with the T -functor S0 : 1→ FPT,∗.
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As a special case, we define the T -∞-category CMonPT of P -commutative monoids
as

CMonPT := CMonP (SpcT ).

Combining our previous results, we can immediately deduce the universal property
of P -commutative monoids. We spell this out in the following series of statements.

Proposition 4.8.2. For every T -∞-category D admitting finite P -products, the
T -∞-category CMonP (D) is P -semiadditive. Furthermore, the forgetful functor
CMonP (D)→ D preserves finite P -products.

Proof. The first statement is a special case of Proposition 4.6.13 for C = FPT,∗.
The second statement is a special case of Lemma 4.6.11 combined with Proposi-
tion 2.3.24. �
Proposition 4.8.3. Given a T -∞-category D admitting finite P -products,

U : CMonP (D)→ D
is an equivalence if and only if D is P -semiadditive.

Proof. As CMonP (D) is P -semiadditive by Proposition 4.8.2, one direction is im-
mediate. Conversely, if D is P -semiadditive, then Proposition 4.6.14 provides an
equivalence

CMonP (D) = FunP -⊕
T (FPT,∗,D) ≃ FunP -⊔

T (FPT,∗,D).
The result thus follows from Corollary 4.7.8. �
Corollary 4.8.4 (cf. [Nar16, Corollary 5.11.1]). Let C and D be T -∞-categories
such that C is pointed and admits finite P -coproducts and D admits finite P -
products. Then postcomposition with the forgetful functor U : CMonP (D) → D
induces an equivalence

FunP -⊔
T (C,CMonP (D))→ FunP -⊕

T (C,D).

Proof. By Proposition 4.6.14, the left-hand side is equal to the T -∞-category of
P -semiadditive T -functors C → CMonP (D). By Corollary 4.6.12 this is in turn

equivalent to CMonP (FunP -⊕
T (C,D)). The claim thus follows from Proposition 4.8.2

and Proposition 4.8.3. �
Corollary 4.8.5. The inclusion CatP -⊕

T →֒ CatP -×
T of the T -∞-category of P -

semiadditive T -∞-categories and P -semiadditive T -functors into the T -∞-category
of T -∞-categories admitting finite P -products and the finite P -product preserving
T -functors admits a right adjoint given by

CMonP (−) : CatP -×
T → CatP -⊕

T . �

We are also interested in a presentable version of Corollary 4.8.5.

Lemma 4.8.6. Let C be presentable. Then U : CMonP (C)→ C admits a left adjoint
P.

Proof. The functor evS0 : FunT (FPT,∗, C)→ C admits a left adjoint by [MW21, Theo-

rem 6.3.5 and Corollary 6.3.7]. The claim follows as also the inclusion CMonP (C) →֒
FunT (FPT,∗, C) admits a left adjoint by Proposition 4.6.17. �
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Definition 4.8.7. We define PrR,P -⊕
T to be the full subcategory of PrRT spanned

by those presentable T -∞-categories which are moreover P -semiadditive. Similarly

we define PrL,P -⊕
T .

Proposition 4.8.8. The functor CMonP restricts to a functor

CMonP : PrRT → PrR,P -⊕
T

right adjoint to the inclusion.

Proof. Let C be a presentable T -∞-category. Note that by Proposition 4.6.17,
CMonP (C) is again presentable. Furthermore suppose G : C → D is a right adjoint
between presentable T -∞-categories, and denote its left adjoint by F . Note that
G preserves finite P -products, and so induces a functor CMonP (G) : CMonP (C)→
CMonP (D). Because G preserves local objects, the composite

CMonP (D) FunT (FPT,∗,D) FunT (FPT,∗, C) CMonP (C)F LP -⊕(−)

is left adjoint to CMonP (R), where LP -⊕ refers to the left adjoint of the inclusion
CMonP ⊂ FunT (FPT,∗, C) constructed in Proposition 4.6.17.

Finally, the unit U is a right adjoint by Lemma 4.8.6 while the counit is even an
equivalence by Proposition 4.8.3. �

Corollary 4.8.9. There exists an adjunction

CMonP (−) : PrLT ⇄ PrL,P -⊕
T : incl.

Furthermore the unit P : C → CMonP (C) is left adjoint to the forgetful functor U.

Proof. Consider the adjunction constructed in Proposition 4.8.8 and apply the
equivalence PrLT ≃ (PrRT )

op. �

For ease of reference we record the strongest results obtained above in one omnibus
theorem:

Theorem 4.8.10. Let C be a T -∞-category with finite P -products. The functor
U : CMonP (C)→ C exhibits CMonP (C) as the P -semiadditive envelope of C, i.e. for
every P -semiadditive T -∞-category D postcomposition with U induces an equiva-
lence

FunP -×(D,U) : FunP -⊕(D,CMonP (C))→ FunP -×(D, C).
Suppose now that D is moreover presentable. Then the left adjoint P of U ex-
hibits CMonP (C) as the presentable P -semiadditive completion of C, i.e. for any
presentable P -semiadditive T -∞-category D precomposition with P yields an equiv-
alence

FunL(P,D) : FunL(CMonP (C),D)→ FunL(C,D). �

Combining the result above with the universal property of SpcT already shows
that we have for any presentable P -semiadditive T -∞-category D an equivalence
FunLT (CMonPT ,D) ≃ D of T -∞-categories. As our final result in this subsection we
will generalize this to the case where D is merely assumed to be T -cocomplete:
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Theorem 4.8.11. Let D be a locally small T -cocomplete P -semiadditive T -∞-
category. Then evaluation at P(∗) defines an equivalence

FunLT (CMonPT ,D)
≃−−→ D. (10)

Proof. Appealing to the universal property of SpcT and passing to adjoints, we see
that (10) agrees up to equivalence with the map

FunRT (D,U) : FunR
T (D,CMonPT )→ FunR

T (D, SpcT )
between parametrized categories of right adjoint functors. In particular it is fully
faithful by the first half of Theorem 4.8.10, so it only remains to prove essential
surjectivity.

Replacing D by FunT (A,D) for A ∈ T , it will be enough to construct for every
X ∈ Γ(D) a T -left adjoint F : CMonP → D with F (P(∗)) ≃ X .

For this, we use the universal property of FPT,∗ (Lemma 4.7.8) to obtain a P -

coproduct preserving functor ϕ : FPT,∗ → Dop sending S0 to X , which we may

then extend to a left adjoint Φ: FunT (FPT,∗, SpcT ) → D via Proposition 2.4.9. To
complete the proof it suffices now to prove that Φ factors through the Bousfield
localization LP -⊕ : FunT (FPT,∗, SpcT ) → CMonP , or equivalently that its right ad-

joint takes values in CMonP . However, by Remark 2.4.10 the value of this right
adjoint on Y ∈ D(A) is given by the composite

π∗
AFPT,∗

π∗
Aϕ−−−→ π∗

ADop maps(–,Y )−−−−−−−→ SpcT/A
≃ π∗

ASpcT

and the first functor sends π∗
AP -coproducts to π

∗
AP -products by construction of ϕ

and semiadditivity of D while the second one even preserves all π∗
AT -limits that

exist in π∗
ADop [MW21, Corollary 4.4.9]. �

For use in future work, we record the following result elaborating on the construction
of the inverse to (10):

Proposition 4.8.12. Write j : (FPT,∗)op → CMonPT for the unique finite P -product

preserving functor sending S0 to P(∗). Then the restriction j∗ : FunT (CMonPT ,D)→
FunT ((FPT,∗)op,D) admits a left adjoint j!, and j

∗ and j! restrict to mutually inverse

equivalences FunL
T (CMonPT ,D) ≃ FunP -×

T ((FPT,∗)op,D).

Proof. Let us write ̄ for the composition of the Yoneda embedding y : (FPT,∗)op →
FunT (FPT,∗, SpcT ) with the localization LP -⊕. We will first prove the proposition
with ̄ in lieu of j, and then conclude in the end that in fact j ≃ ̄.
[MW21, Theorem 7.1.1] shows that for any T -cocomplete (P -semiadditive) D the
restriction y∗ : FunT (FunT (FPT,∗, SpcT ),D) → FunT ((FPT,∗)op,D) has a left adjoint

y! inducing an equivalence FunT ((FPT,∗)op,D) ≃ FunL
T (FunT (FPT,∗, SpcT ),D), while

Theorem 6.3.5 and Corollary 6.3.7 of op. cit. show that ̄∗ admits a left adjoint ̄!.

We claim that ̄! and ̄
∗ restrict to functors FunP -×

T ((FPT,∗)op,D)⇄FunLT (CMonPT ,D),
which are then automatically adjoint to each other again. As the right adjoint ̄∗ in
this adjunction is then moreover an equivalence by the previous theorem together
with Corollary 4.7.8, they will then be mututally inverse equivalences.

To prove the claim, note that we have seen in the proof of the previous theorem
that y! : Fun

P -×
T ((FPT,∗)op, SpcT )→ FunL

T (FunT (FPT,∗, SpcT ),D) factors through the
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fully faithful functor (LP -⊕)∗ : FunL
T (CMonPT ,D)→ FunL

T (FunT (FPT,∗, SpcT ),D). If
we write f for the resulting functor FunP -×

T ((FPT,∗)op, SpcT ) → FunLT (CMonPT ,D),
then for any A ∈ T , X ∈ FunP -×

T ((FPT,∗)op,D)(A), and Y ∈ FunT (CMonPT ,D)(A)
maps(f(X), Y ) ≃ maps((LP -⊕)∗f(X), (LP -⊕)∗Y ) ≃ maps(y!X, (L

P -⊕)∗Y )

≃ maps(X, y∗(LP -⊕)∗Y ) = maps(X, ̄∗Y ) ≃ maps(̄!X,Y )

by full faithfulness, the definition of f , and adjunction, respectively. It follows from
the ordinary Yoneda Lemma that f(X) ≃ ̄!(X), and in particular the latter lives

in FunL
T (CMonPT ,D)(A), i.e. ̄! maps FunP -×

T ((FPT,∗)op,D) into FunLT (CMonPT ,D).
Conversely, any T -cocontinuous CMonPT → D has to arise via the construction of the
previous theorem, i.e. f is essentially surjective. But ̄∗f = y∗(LP -⊕)∗f ≃ y∗y! ≃ id,
so ̄∗ restricts to

̄∗ : FunL
T (CMonPT ,D)→ FunP -×

T ((FPT,∗)op,D). (11)

It only remains to show that ̄ agrees with j as constructed in the statement of
the proposition. As ̄(S0) ≃ P(∗), we only need to show that ̄ preserves finite P -
products. But this follows at once by taking D = CMonPT and chasing the identity
through (11). �

We can now slightly strengthen the second half of Theorem 4.8.10 in the case of
SpcT :

Corollary 4.8.13. Let S be a T -∞-category equivalent to SpcT and let D be any
locally small P -semiadditive T -cocomplete T -∞-category. Then precomposition with
the T -functor P : S → CMonP (S) induces an equivalence

FunL
T (CMonP (S),D) ≃−−→ FunLT (S,D). �

Remark 4.8.14. We will prove in forthcoming work that Corollary 4.8.13 in fact
holds for any presentable T -∞-category S.

4.9. Commutative monoids in ET . Let E be an ∞-category. Recall that a T -

functor F : FPT,∗ → ET corresponds to a functor F̃ :
∫
FPT,∗ → E of ∞-categories,

see Lemma 2.2.13. We will now give a characterization of those functors F̃ whose
associated T -functor F is a P -semiadditive monoid in ET . We start with an explicit

description of the adjoint norm map Ñmp : p
∗p! ⇒ id associated to FPT,∗.

Lemma 4.9.1. Let P ⊆ T be an atomic orbital subcategory. Consider a map
p : A → B in FPT and let f : X → A and g : Y → A be a morphisms in PSh(T ).
Then the map 1×p 1: X ×A Y → X ×B Y is a disjoint summand inclusion.

Proof. Using Proposition 4.3.7, this follows directly from the observation that the
map X ×A Y → X ×B Y is a base change of the disjoint summand inclusion
∆: A→ A×B A along the map f ×B g : X ×B Y → A×B A. �

Construction 4.9.2. Consider a morphism p : A→ B in FPT . For any finite P -set
(X, q) ∈ FPT (A), the unit map (1, q) : X → X ×B A = p∗p!X is a disjoint summand
inclusion by Lemma 4.9.1, and thus we may choose an identification

X ×B A ≃ X ⊔ JX
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for some finite P -set JX ∈ FPT (A). In particular we obtain a map p∗p!(X+)→ X+

in FPT (A) defined as the following composite:

p∗p!(X+) ≃ (X ×B A)+ ≃ (X ⊔ JX)+ → X+,

where the last map projects away the disjoint component JX to the disjoint base-
point.

Lemma 4.9.3. The map p∗p!(X+) → X+ constructed in Construction 4.9.2 is

homotopic to the adjoint norm map Ñmp : p
∗p!(X+)→ X+ associated to the T -∞-

category FPT,∗.

Proof. Choose a map JA →֒ A×B A exhibiting JA as a complement of the disjoint
summand inclusion ∆: A →֒ A×B A. The resulting equivalence A×B A ≃ A ⊔ JA
induces an equivalence FPT,∗(A×BA) ≃ FPT,∗(A⊔JA) ≃ FPT,∗(A)×FPT,∗(JA). Pulling
back the decomposition A×BA ≃ A⊔JA along the map X×BA→ A×BA gives a
decomposition X×B A ≃ X ⊔JX , and it follows that the object pr∗2(X+) ≃ (X ×B
A)+ ∈ FPT,∗(A×B A) corresponds to the pair (X+, JX+) ∈ FPT,∗(A)× FPT,∗(JA). By
Lemma 4.3.11, the transformation α : pr∗2 ⇒ pr∗1 corresponds to a transformation
of functors into FPT,∗(A) × FPT,∗(JA) which on the first component is the identity
and on the second component is the zero-map which projects everything onto the
disjoint basepoint. The description from Construction 4.9.2 follows. �

Notation 4.9.4. We will abuse notation and denote objects of the unstraightening∫
FPT,∗ by pairs (A,X+), where A ∈ T and (X, q : X → A) ∈ FPT (A) is a finite P -set.

We will specify q explicitly whenever confusion might arise.

Construction 4.9.5 (Parametrized Segal map). Consider a map p : A→ B in P ,
a map C → B in T and a finite pointed P -set X+ → A in FPT,∗(A). Since p is in
P , the pullback A ×B C of p along C → B may be written as a disjoint union of
maps pi : Ci → C in P :

⊔n
i=1 Ci A

C B.

(pi)
n
i=1

p

We will we construct for each i ∈ {1, . . . , n} a parametrized Segal map

ρi : (C, (X ×B C)+)→ (Ci, (X ×A Ci)+)
in

∫
FPT,∗. To give such a map, we need to provide a map Ci → C in T , which we

simply take to be the map pi : Ci → C, and a map p∗i (X ×B C)+ ≃ (X ×B Ci)+ →
(X×ACi)+ in FPT,∗(Ci). Recall from Lemma 4.9.1 that the mapX×ACi → X×BCi
is a disjoint summand inclusion, so that we may choose an equivalence

(X ×B Ci) ≃ (X ×A Ci) ⊔ Ji,
where Ji → Ci is some finite P -set. The required map (X×B Ci)+ ≃ (X×ACi)+∨
Ji+ → (X ×A Ci)+ is now given by projecting away the second summand.

Proposition 4.9.6. Let E be an ∞-category and consider a T -functor F : FPT,∗ →
ET . Denote by F̃ :

∫
FPT,∗ → E the functor associated to F under the equivalence

of Lemma 2.2.13. Then F is a P -semiadditive monoid in ET if and only if F is
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fiberwise semiadditive and for every map p : A→ B in P , every map f : C → B in
T and every finite pointed P -set X+ ∈ FPT,∗(A), the map

(F̃ (ρi))
n
i=1 : F̃ (C, (X ×B C)+)→

n∏

i=1

F̃ (Ci, (X ×A Ci)+)

induced by the parametrized Segal maps is an equivalence.

Proof. By Corollary 4.5.7, the T -functor F is P -semiadditive if and only if it
is fiberwise semiadditive and for all maps p : A → B in P the transformation
NmF

p : FB ◦ p! ⇒ p∗ ◦ FA of functors FPT,∗(A)→ ET (B) = Fun(T op
/B, E) is an equiv-

alence. Since we may check this pointwise, it suffices to show that for every finite
P -set X+ ∈ FPT,∗(A) and every object f : C → B of T/B, the induced map

FB(p!(A,X+))(C, f)→ (p∗(FA(A,X+))(C, f)

is an equivalence. By definition, this map is given by the composite

FB((B,X+))(C, f) p∗p∗(FB((B,X+)))(C, f)

FA(p
∗p!(A,X+))(p

∗(C, f)) FA(A,X+)(p
∗(C, f)).

∼

u∗
p

Ñmp

To make this composite explicit it will be useful to consider the objects of ET (B)
as functors from (FT /B)op to E by limit extending. Similarly it will be useful to
consider F as a natural transformation of functors from FT to Cat∞ by again limit
extending. If we make both of these extensions we may again apply Lemma 2.2.13
to conclude that F is induced by a functor F̄ :

∫
FT

FPT,∗ → E . Namely we recall

from Remark 2.2.16 that given a T -set X and a pointed P -set Y → X over X ,
FX(X,Y+)(f : Z → X) = F̄ (f∗(X,Y+)) = F̄ (Z, (Y ×X Z)+). Using this identifica-
tion we find that the composite above is equivalent to

F̄ (C,X ×B C) F̄ (C ×B A,X ×B (C ×B A)) F̄ (C ×B A,X ×A (C ×B A)),
F̄ (ϕp) F̄ (Ñmp)

where ϕp is a cocartesian edge expressing X ×B (C ×B A) as a pullback of X ×B C
along up : C ×B A → C. Now recall that F̄ was defined to be the limit extension
of F , and so given a decomposition C ×B A ≃

∐
Ci, we find that

F̄ (C ×B A,X ×A (C ×B A)) ∼−−→
∏

F̄ (Ci, X ×A Ci).
To conclude we would like to show that projecting the composite above to any
factor agrees with the map constructed in Construction 4.9.5. For this observe that
by definition applying F̄ to a cocartesian edge over ι : Cj →֒ C ×B A gives the
projection

prj :
∏

i

F̄ (Ci, X ×A Ci)→ F̄ (Cj , X ×A Cj)

Therefore we can compute the top-right way around the following commutative
diagram

F̄ (C,X ×B C) F̄ (C ×B A,X ×B (C ×B A)) F̄ (C ×B A,X ×A (C ×B A))

F̄ (Cj , X ×B Cj) F̄ (Cj , X ×A Cj)

F̄ (ϕp) F̄ (Ñmp)

F̄ (ϕι)

F̄ (ι∗(Ñmp))

F̄ (ϕι)
F̄ (ϕpj

)



PARAMETRIZED STABILITY AND THE UNIV. PROPERTY OF GLOBAL SPECTRA 75

by instead going along the bottom. Once again ϕι is our notation for a cocartesian
edge over ι. Because cocartesian edges compose we see that ϕpj is a cocartesian
edge witnessing X×B Cj as the pullback of X×B C along the map Cj → C. Using

the description of Ñmp given in Lemma 4.9.3 we find that ι∗(Ñmp)) is equivalent
to the map X ×B Ci → X ×A Ci given in Construction 4.9.5. Finally note that

by definition F̄ agrees with F̃ on the full subcategory over T ⊂ FT . Therefore the
proposition follows. �

We now show that the P -semiadditivity of a functor F̃ :
∫
FPT,∗ → E in fact follows

from substantially less than the previous proposition suggests.

Observation 4.9.7. Let X+ ∈ FPT,∗(A) be a finite pointed P -set, and let p : A→ B
be a map in P . Furthermore let C → B be the identity of B. Considering the
parametrized Segal maps associated to this data, we note that A ×B B = A, so
there is just one. We call this map ρp,X . If X = A+, we simply write ρp.

Proposition 4.9.8. Let E be an ∞-category and consider a T -functor F : FPT,∗ →
ET which corresponds to a functor F̃ :

∫
FPT,∗ → E of ∞-categories. Then F is a

P -semiadditive monoid in ET if and only if F is fiberwise semiadditive and for
every map p : A→ B in P , the map

F̃ (ρp) : F̃ (B,A+)→ F̃ (A,A+)

is an equivalence.

Proof. First we observe that F is a P -semiadditive monoid in ET if and only if F is
fiberwise semiadditive and for every map p : A → B in P and every finite pointed
P -set X+ ∈ FPT,∗(A), the map

F̃ (ρp,X) : F̃ (B,X+)→ F̃ (A,X+)

is an equivalence. For this it suffices to observe that the following triangle commutes

F̃ (C, (X ×B C)+)
∏n
i=1 F̃ (Ci, (X ×A Ci)+)

∏n
i=1 F̃ (C, (X ×A Ci)+).

(F̃ (ρi))
n
i=1

(F̃ (ρpi,X×ACi
))ni=1

Next suppose that X =
∐
Ci. We note that by fiberwise semi-additivity of F ,

F̃ (ρp,X) is equal to a product of the F̃ (ρp,Ci), and therefore we can further reduce
to the case where X = C is in T . Write q : C → A for the map in P expressing C
as a finite P -set over A. Finally we claim that the following diagram

(B,C+) (A,C+)

(C,C+)

ρpq

ρp,C

ρp

commutes in
∫
FPT,∗. This can readily be checked from the definitions. Therefore

after applying F̃ , the 2-out-of-3 property implies that it suffices to assume that
F̃ (ρp) is an equivalence for all p ∈ P . �
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Remark 4.9.9. While Proposition 4.9.8 gives an explicit description of the un-
derlying ∞-category of CMonP (ET ), a similar analysis in fact describes the whole
T -∞-category CMonP (ET ). At an object B′ ∈ T , it consists of those T -functors
F : FPT,∗ ×B′ → ET whose curried map F ′ : FPT,∗ → Fun(B′, ET ) is P -semiadditive,
see Corollary 4.6.9. On the other hand, the T -functor F corresponds to a func-
tor F̃ :

∫
(FPT,∗ × B′) → E by Lemma 2.2.13. Carrying out the same analysis as

in the proofs of Proposition 4.9.6 and Proposition 4.9.8 shows that F corresponds
to a P -semiadditive functor F ′ : FPT,∗ → FunT (B

′, ET ) if and only if the following
conditions are satisfied:

• The T -functor F ′ is fiberwise semiadditive; put differently, for any f : B →
B′ the restriction of F̃ to the (non-full) subcategory FPT,∗(B) × {f} ⊂
FPT,∗(B)×B′(B) ⊂

∫ (
FPT,∗ ×B′) is semiadditive in the usual sense.

• For every map p : A→ B in P and every map f : B → B′ in T , the map

F̃ (ρp, p) : F̃ (B,A+, f)→ F̃ (A,A+, p ◦ f)
is an equivalence.

5. The universal property of special global Γ-spaces

In this section we want to identify the global ∞-category of Orb-commutative
monoids in global spaces with the various models of globally and G-globally coher-
ently commutative monoids studied in [Sch18, Chapter 2] and [Len20, Chapter 2].
In particular, after evaluating at the trivial group, this will yield an equivalence be-
tween the underlying ordinary ∞-category of Orb-commutative monoids in global
spaces with Schwede’s ultra-commutative monoids with respect to finite groups.

For this, the model based on so-called (special) G-global Γ-spaces will be the most
convenient; we recall the relevant theory in 5.1 below and show how G-global Γ-
spaces assemble into a global ∞-category ΓSgl. In 5.2 we will then identify ΓSgl

with a certain parametrized functor category, from which we will deduce the de-
sired comparison between special G-global Γ-spaces and CMonOrb(SpcGlo) in 5.3.
This will then immediately imply various universal properties of global Γ-spaces,
including Theorem B from the introduction.

5.1. A reminder on G-global Γ-spaces. Segal [Seg74] introduced (special) Γ-
spaces as a model of commutative monoids in the ∞-category of spaces, and an
equivariant generalization of his theory was later established by Shimakawa [Shi89].
We will be concerned with the following G-global refinement [Len20, Section 2.2]
of this story:

Definition 5.1.1. We write Γ for the category of finite pointed sets and pointed
maps. For any n ≥ 0 we let n+ := {0, . . . , n} with basepoint 0.

We moreover write Γ-EM-G-SSet for the category of functors Γ→ EM-G-SSet.
A map f : X → Y in Γ-EM-G-SSet (i.e. a natural transformation) is called a
G-global level weak equivalence if f(S+) : X(S+) → Y (S+) is a (G × ΣS)-global
weak equivalence (with respect to the ΣS-action induced by the tautological action
on S) for every finite set S.

Similarly, we write Γ-G-I-SSet for the category of functors X : Γ → G-I-SSet,
and we define G-global level weak equivalences in Γ-G-I-SSet analogously.
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We will refer to objects of either of these categories as G-global Γ-spaces. Beware
that [Len20] reserves this name for functors X for which X(0+) is a terminal object,
while for us the above definition will be more useful. However, we will later only
be interested in so-called special G-global Γ-spaces, for which this technicality will
turn out to be irrelevant, see Proposition 5.1.7 below.

5.1.1. Model categorical properties. Just like in the unstable case we have the fol-
lowing Elmendorf type theorem expressing the homotopy theory of special G-global
Γ-spaces in terms of enriched presheaves:

Proposition 5.1.2. The G-global level weak equivalences are part of a simplicial
combinatorial model structure on Γ-EM-G-SSet.

Moreover, if we write OG-gl
Γ ⊂ Γ-EM-G-SSet for the full subcategory spanned by

the objects ΓH,S,ϕ := (Γ(S+, –) × EM× Gϕ)/H (where H is a finite group, S a
finite H-set, ϕ : H → G a homomorphism, and Gϕ denotes G with H acting from
the right via ϕ), then the enriched Yoneda embedding induces a functor

ΦΓ : Γ-EM-G-SSet→ PSh(OG-gl
Γ )

which is the right half of a Quillen equivalence when we equip the right hand side
with the projective model structure.

Proof. For any finite group H , any finite H-set S, and any homomorphism ϕ : H →
G, the functor X 7→ X(S+)

ϕ preserves filtered colimits, pushouts along injections,
and it is corepresented by ΓH,S,ϕ (via evaluation at [id, 1, 1]). Thus, the objects of

OG-gl
Γ form a set of orbits in the sense of [DK84, 2.1], and the above statements are

instances of Theorems 2.2 and 3.1 of op. cit. �

Remark 5.1.3. We can make the morphism spaces in OG-gl
Γ explicit, analogously

to Remark 3.3.6: as observed in the above proof, we have for any (H,S, ϕ) as above
and any G-global Γ-space X an isomorphism

ε : maps(ΓH,S,ϕ, X)→ X(S+)
ϕ

given by evaluation at [id, 1, 1]. Specializing this to X = ΓK,T,ψ, we see that OG-gl
Γ

is a (2, 1)-category (the quotient ΓK,T,ψ = (Γ(T+, –)×EM×Gψ)/K being the nerve
of a groupoid asK acts freely on EM) and that n-simplices of maps(ΓH,S,ϕ,ΓK,T,ψ)
correspond to ϕ-fixed classes [f ;u0, . . . , un; g] where f : T+ → S+, u0, . . . , un ∈ M,
and g ∈ G.
Moreover, a direct computation shows that under the above identification compo-
sition is given by

[f ′;u′0, . . . , u
′
n; g

′][f ;u0, . . . , un; g] = [ff ′;u0u
′
0, . . . , unu

′
n; gg

′]

and that the following diagram commutes for any X ∈ Γ-EM-G-SSet:

Φ(X)(ΓK,T,ψ) Φ(X)(ΓH,S,ϕ)

X(T+)
ψ X(S+)

ϕ.

ε

Φ(X)[f ;u0,...,un;g]

ε

X(f)◦
(
[u0,...,un;g]·–

)
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5.1.2. The global ∞-category of global Γ-spaces. Letting G vary, the categories
Γ-EM-G-SSet together with the G-global weak equivalences assemble into a
global relative category with functoriality given by restrictions (apply Lemma 3.1.9
with α replaced by α × ΣS). Localizing, we then get a global ∞-category ΓSgl.

Analogously, we obtain a global ∞-category ΓSgl
I whose value at a finite group G

is the localization of Γ-G-I-SSet at the G-global weak equivalences, with functo-
riality given via restrictions.

Proposition 5.1.4. The evaluation functor evω induces an equivalence ΓSgl
I ≃

ΓSgl.

Proof. Precisely the same argument as in [Len20, Theorem 2.2.33] shows that the
functor evω : Γ-G-I-SSet → Γ-EM-G-SSet admits a homotopy inverse for any
G (given by applying the homotopy inverse of I-SSet→ EM-SSet levelwise). �

For every G-global Γ-space X , evaluating at 1+ (with trivial action) yields an un-
derlying G-global space X(1+), and this obviously yields a global functor U : ΓSgl →
Sgl. For later use we record:

Lemma 5.1.5. The global functor U admits a left adjoint, which is pointwise in-
duced by Γ(1+, –)× –.

Proof. By the Yoneda Lemma we have an adjunction

Γ(1+, –)× –: EM-SSet ⇄ Γ-EM-SSet : ev1+ ,

and for every finite group G pulling through the G-actions yields an adjunction
EM-G-SSet ⇄ Γ-EM-G-SSet of 1-categories such that both functors are ho-
motopical. In particular, U admits a pointwise adjoint of the above form.

For the Beck-Chevalley condition it suffices now to observe that since all functors
are homotopical, the Beck-Chevalley comparison map of∞-categorical localizations
can be modelled by the 1-categorical Beck-Chevalley map, and the latter is even
the identity by construction. �

5.1.3. Specialness. Just like in the non-equivariant case, in the theory of global
coherent commutativity one typically isn’t interested in all G-global Γ-spaces, but
only those satisfying a certain ‘specialness’ condition (although the fact that there
are non-special G-global Γ-spaces is what will make this model so convenient for
our comparison):

Definition 5.1.6 (cf. [Len20, Definition 2.2.50]). A G-global Γ-space X : Γ →
EM-G-SSet is called special if for every finite set S the Segal map

ρ : X(S+)→
∏

s∈S
X(1+)

induced by the characteristic maps χs : S+ → 1+ of the elements s ∈ S is a (G×ΣS)-
global weak equivalence.

We write ΓSgl, spc ⊂ ΓSgl for the full global subcategory spanned in degree G by

the special G-global Γ-spaces, and ΓSgl, spc
∗ ⊂ ΓSgl for those special Γ-spaces X for

which X(0+) is terminal in the 1-categorical sense (and not just G-globally weakly
equivalent to a terminal object).
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Analogously, we define specialness for elements of Γ-G-I-SSet, yielding nested full

global subcategories ΓSgl, spc
I,∗ ⊂ ΓSgl, spc

I ⊂ ΓSgl
I .

Proposition 5.1.7. All maps in the commutative diagram

ΓSgl, spc
I,∗ ΓSgl, spc

I

ΓSgl, spc
∗ ΓSgl, spc

evω evω

of global ∞-categories are equivalences.

Proof. For the left hand vertical arrow this is part of [Len20, Corollary 2.2.53]. We
will now show that the lower horizontal inclusion is an equivalence; the argument
for the top inclusion is then similar, and with this established the proposition will
follow by 2-out-of-3.

To prove the claim, we now fix a finite group G and observe that the inclusion
Γ-EM-G-SSet∗ →֒ Γ-EM-G-SSet of those G-global Γ-spaces X with X(0+) =
∗ admits a left adjoint given by quotienting out X(0+), i.e. forming the pushout

constX(0+) X

∗ X/X(0+)
p

where the top map is induced by the unique pointed maps 0+ → S+ for varying
S. It will therefore be enough that the right hand vertical map is a G-global
level weak equivalence if X is special. But indeed, in this case constX(0+) →
∗ is a G-global level weak equivalence (as X(0+) is G-globally and hence also
(G × ΣT )-globally weakly contractible for any T by the special case S = ∅ of the
Segal condition), while for any Γ-space the top map is an injective cofibration as
X(0+) → X(S+) admits a retraction via functoriality. The claim then follows as
pushouts along injective cofibrations preserve G-global level weak equivalences by
[Len20, Lemma 1.1.14] applied levelwise. �

5.2. Global Γ-spaces as parametrized functors. In this section we will prove
the key computational ingredient to the universal property of special global Γ-
spaces in form of the following description of the global ∞-category ΓSgl of all
global Γ-spaces:

Theorem 5.2.1. There exists an equivalence of global ∞-categories

Ξ: ΓSgl ≃ FunGlo(FOrb
Glo,∗, Spc)

together with a natural equivalence filling

ΓSgl FunGlo(FOrb
Glo,∗, Spc)

Sgl SpcGlo

Ξ

U ev(id1)+

≃

where the unlabelled arrow on the bottom is ‘the’ essentially unique equivalence (see
Theorem 3.3.2).
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5.2.1. A model of finite Orb-sets. The proof of the theorem will occupy this whole
subsection. As the first step, we will recognize FOrb

Glo and FOrb
Glo,∗ as some familiar

global 1-categories:

Construction 5.2.2. For any finite group G, we write FG for the category of
finite G-sets. The assignment G 7→ FG becomes a strict 2-functor in Gloop via
restrictions, and we denote the resulting global category by F•.

We moreover write F+
• for the corresponding global category of pointed finite G-

sets.

Lemma 5.2.3. There is an essentially unique equivalence of global ∞-categories
FOrb
Glo ≃ NF•. Up to isomorphism, this sends (H →֒ G) ∈ FOrb

Glo (G) to G/H ∈ FG
for all finite groups H ⊂ G.

Proof. By Corollary 4.2.17 there is an essentially unique global functor FOrb
Glo → NF•

that preserves Orb-coproducts and the terminal object. It remains to construct any
such equivalence and prove that it admits the above description.

By construction the left hand side is a subcategory of SpcGlo. On the other hand,

we have a fully faithful functor of global ∞-categories ι : NF• → Sgl that is given
by sending a finite G-set X to X considered as a discrete simplicial set with trivial
EM-action. It then suffices to show that the unique equivalence F : SpcGlo → Sgl

restricts accordingly and admits the above description.

For this we first observe that indeed F (i : H →֒ G) ≃ G/H for every H ⊂ G:
namely, i can be identified with i!p

∗(∗) where p : H → 1 is the unique homomor-
phism, and since F is an equivalence it follows that F (i) ≃ i!p

∗F (∗) = i!p
∗(∗),

which can in turn be identified with G/H by Lemma 3.1.9.

As a consequence of Corollary 4.2.16, each FOrb
Glo (G) is closed under (ordinary) finite

coproducts, so F preserves them (as a functor to Sgl). Together with the above
computation, it immediately follows that F restricts to an essentially surjective
functor FOrb

Glo → ess im ι as claimed. �

Corollary 5.2.4. There is an essentially unique equivalence θ : FOrb
Glo,∗ ≃ NF+

• . Up

to isomorphism, this sends (H →֒ G)+ to G/H+ for all finite groups H ⊂ G.

Proof. The existence of such an equivalence is immediate from the previous lemma.
For the uniqueness part, it suffices by Corollary 4.7.8 that any autoequivalence of
F+

1 preserves 1+ up to isomorphism, which is immediate from the observation that
this is the only non-zero object without non-trivial automorphisms. �

5.2.2. Grothendieck constructions. Thanks to Remark 2.2.14, understanding the
global functor category FunGlo(FOrb

Glo,∗, Spc) is equivalent to understanding the un-

straightenings
∫
FOrb
Glo,∗×G of the diagram FOrb

Glo,∗×G : Gloop → Cat∞ naturally in

G ∈ Glo. However as an upshot of the previous subsection, the functors FOrb
Glo,∗×G

are modelled by strict 2-functors of strict (2, 1)-categories, which will allow us to
give a reasonably explicit description in terms of the classical Grothendieck con-
struction:

Construction 5.2.5. Let C be a strict (2, 1)-category. We recall (see [Buc14,
Construction 2.2.1] or [HNP19, Definition 6.1]) the Grothendieck construction

∫∫∫∫∫∫∫∫∫∫∫∫∫
F

for a strict 2-functor F : C→ Cat(2,1) into the (2, 1)-category of (2, 1)-categories:
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(1) The objects of
∫∫∫∫∫∫∫∫∫∫∫∫∫
F are given by pairs (c,X) with c ∈ C and X ∈ F (c)

(2) A morphism from (c,X) to (d, Y ) is given by a pair of a map f : c → d and a
map g : F (f)(X)→ Y in F (d); if (f ′, g′) : (d, Y )→ (e, Z) is another morphism,
then their composite is

(f ′, g′)(f, g) =
(
f ′f, F (f ′f)(X) = F (f ′)F (f)(X)

F (f ′)(g)−−−−−→ F (f ′)(Y )
g′−→ Z).

(3) A 2-cell (f1, g1) ⇒ (f2, g2) between maps (c,X) → (d, Y ) is given by a 2-cell
σ : f1 ⇒ f2 in C together with a 2-cell

F (f1)(X)

Y .

F (f2)(X)

F (σ)

g1

τ

g2

in F (d). If (ρ, ζ) : (f2, g2) ⇒ (f3, g3) is another 2-cell, then the composite
(ρ, ζ) ◦ (σ, τ) is given by the composition in C and the pasting

F (f1)(X)

F (f2)(X) Y

F (f3)(X)

F (σ)

g1

F (ρ)

g2

τ

g3

ζ

in F (d). Moreover, if (σ′, τ ′) : (f ′
1, g

′
1) ⇒ (f ′

2, g
′
2) is a 2-cell between maps

(d, Y ) → (e, Z), then the horizontal composite (σ′, τ ′) ⊙ (σ, τ) is given by the
horizontal composite σ′ ⊙ σ and the pasting

F (f ′
1f1)(X)

F (f ′
1f2)(X) F (f ′

1)(Y )

F (f ′
2f2)(X) F (f ′

2)(Y ) Z

F (f ′
1)F (σ)(X)

F (f ′
1)(g1)

F (f ′
1)(g2)

F (f ′
1)(τ)

F (σ′)(F (f2)(X)) F (σ′)(Y )

g′1

F (f ′
2)(g2) g′2

τ ′

where the square commutes as F (σ′) is a natural transformation F (f ′
1) ⇒

F (f ′
2).

This comes with a natural strict 2-functor π :
∫∫∫∫∫∫∫∫∫∫∫∫∫
F → C given by projecting onto

the first coordinate. By [HNP19, Proposition 2.15] the homotopy coherent nerve
of this functor is a cocartesian fibration representing N∆ ◦F . Put differently, there
is a natural equivalence

∫
(N∆ ◦F ) ≃ N∆(

∫∫∫∫∫∫∫∫∫∫∫∫∫
F ) over N∆(C) from the usual marked

unstraightening to the homotopy coherent nerve of the 2-categorical Grothendieck
construction which preserves cocartesian edges.
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We can also describe the behaviour of this equivalence on fibers as follows: for any
c ∈ C the composition

N∆F (c) →֒ N∆(
∫∫∫∫∫∫∫∫∫∫∫∫∫
F ) ≃

∫
(N∆ ◦ F )

of the natural embedding with the above equivalence agrees with the usual identifi-
cation of N∆F (c) with the fiber of the unstraightening

∫
(N∆◦F ) over c, see [HNP19,

proof of Proposition 6.25]. In particular, for the cocartesian fibration N∆(
∫∫∫∫∫∫∫∫∫∫∫∫∫
F ) the

notation (c,X) (with X ∈ F (c)) for vertices is compatible with Notation 4.9.4. As
the above equivalence moreover preserves cocartesian edges, we also immediately
deduce the analogous statement for 1-simplices.

Construction 5.2.6. For every finite group G, we define a strict (2, 1)-category∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G as follows: Sending a finite group H to the product of the strict (2, 1)-

categoryF+
H of finite pointedH-sets and the groupoidGlo(H,G) :=HomGlo(H,G)

of group homomorphisms H → G and conjugations defines a strict 2-functor

F+
• ×Glo(−, G) : Gloop → Cat(2,1).

Composing this functor with the equivalence of strict (2, 1)-categories γ : Ogl ∼−−→
Glo from Construction 3.3.14, we obtain a strict 2-functor

Fgl,+
G :=

(
F+

• ×Glo(−, G)
)
◦ γ : (Ogl)op → Cat(2,1).

As before, we let
∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G denote the 2-categorical Grothendieck construction of

Fgl,+
G . The assignment G 7→

∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G then becomes a strict 2-functor

∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
• : Glo→

Cat(2,1) via (post)composition in Glo.

As promised we can now prove:

Proposition 5.2.7. There exists an equivalence

ΘG : N∆

(∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G

)
= N∆

( ∫∫∫∫∫∫∫∫∫∫∫∫∫
(F+

• ×Glo(–, G)) ◦ γ
) ≃−−→

∫
FOrb
Glo,∗ ×G

of ∞-categories natural in G ∈ Glo with the following properties:

(1) For all H ∈ Ogl and ϕ : H → G in Glo, the following diagram commutes
up to equivalence:

N∆(F+
H × {ϕ}) FOrb

Glo,∗ × {ϕ}

N∆(F+
H ×Glo(H,G)) FOrb

Glo ×G(H)

N∆(
∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G )

∫
FOrb
Glo,∗ ×G

θH

ΘG

(12)

where θ is the equivalence from Corollary 5.2.4 and the bottom vertical
arrows are the chosen identifications of the fibers over H.

In particular, ΘG restricts to an equivalence between the non-full sub-

category N∆

(∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G

)
ϕ
⊂ N∆

(∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G

)
with objects of the form (H ;X,ϕ)

(for X ∈ F+
H) and morphisms only those that are the identities in H and

ϕ (i.e. the image of F+
H × {ϕ} under the chosen identification) and the

analogous full subcategory on the right.
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(2) For all maps (α, u) : K → H in Ogl and f : α∗X → Y in F+
K , the map

ΘG(α, u; f, idϕα) agrees up to equivalence with (α; θK(f), idϕα).

Proof. Specializing the above discussion we have a natural equivalence

N∆

(∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G

)
≃

∫
N∆ ◦ Fgl,+

G =
∫
N∆ ◦ (F+

• ×Glo(–, G)) ◦ γ
between the 2-categorical and∞-categorical Grothendieck construction sending the
map (α, u; f, idϕα) on the left to the map of the same name on the right and such
that for every H ∈ Ogl the induced map on fibers respects the identifications with
F+
H ×Glo(H,G).

On the other hand, as γ : Ogl → Glo is an equivalence, the right hand side is in turn
naturally equivalent to the unstraightening

∫
N∆ ◦ (F+

• ×Glo(–, G)) over Gloop by
an equivalence sending (α, u; f, idϕα) to (α; f, idϕα) up to equivalence; again, under
our chosen identifications this is just the identity on fibers.

Finally, by construction of the ∞-categorical Yoneda embedding we have an equiv-
alence υ : N∆(Glo(L,G)) ≃ Glo(L,G) = G(L) natural in both variables sending
ψ : L→ G to ψ, which together with the global equivalence θ from Corollary 5.2.4
induces an equivalence

∫
N∆(F+

• ×Glo(–, G)) ≃
∫
FOrb
Glo,∗ ×G sending (α; f, idϕα)

to (α; θK(f), idϕα) and that is given under the chosen identifications of the fibers
overH by θH×υ. The commutativity of (12) follows immediately, which completes
the proof of the proposition. �

5.2.3. Global Γ-spaces as enriched functors. Thanks to the above proposition, we
can replace the somewhat mysterious ∞-categorical unstraightenings

∫
FOrb
Glo,∗ ×G

by the homotopy coherent nerves of the much more explicit (2, 1)-categories
∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G .

These are suitably combinatorial to in turn admit a comparison to the OG-gl
Γ ’s:

Construction 5.2.8. Let G be a finite group. We define δ : (
∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G )op → OG-gl

Γ

as follows:

(1) An object (H ;S+, ϕ) consisting of a universal subgroupH ⊂M, a finite pointed
H-set S+ and a homomorphism ϕ : H → G is sent to (Γ(S+, –)×EM×Gϕ)/H .

(2) A morphism (u ∈ M, σ : H → K; f : σ∗T+ → S+; g ∈ G) is sent to the map
induced by Γ(f, –)× (– · (u, g)), i.e. the map corresponding to [f ;u; g] under the
identification from Remark 5.1.3.

(3) A 2-cell k : (u, σ; f, g) ⇒ (u′, σ′; f ′, g′) (for k ∈ K ⊂ M) is sent to the 2-cell
corresponding to [f ;u′k, u; g].

Proposition 5.2.9. The assignment δ is well-defined (i.e. the above indeed repre-

sent morphisms and 2-cells in OG-gl
Γ ) and is an equivalence of (2, 1)-categories.

Proof. We break this up into several steps.

It is well-defined on morphisms and a full 1-functor: If (u, σ; f ; g) is a morphism
(H,S+, ϕ) → (K,T+, ψ) in the opposite of the Grothendieck construction, then
hu = uσ(h) for all h ∈ H as (u, σ) is a morphism H → K in Ogl; moreover,
cgψσ = ϕ as g is a morphism ϕ→ ψσ in Glo(K,G), while (h ·–)◦ f = f ◦ (σ(h) ·–)
for all h ∈ H as f is a map of (pointed) H-sets. Thus,

(h, ϕ(h))·[f ;u; g] = [(h·–)◦f ;hu;ϕ(h)g] = [f ◦(σ(h)·–);uσ(h); gψ(σ(h))] = [f ;u; g],
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i.e. [f ;u; g] is indeed ϕ-fixed. Note that we can also deduce this statement from (the
easy direction of) [Len20, Lemma 1.2.38]: namely, if we consider Γ(S+, T+) × Gψ
as a (G ×H)×K-biset, where G acts on G from the left, H acts on S+ from the
left, and K acts from the right via its given action on T+ and its action on G via
ψ, then swapping the factors defines an isomorphism

(Γ(T+, S+)× EM×Gψ)/K
)ϕ ∼=

(
EM×K (Γ(T+, S+)×G)

)(idH ,ϕ)

where the right hand side is the usual balanced product; loc. cit. then says that
[u; f ; g] defines a vertex of the right hand side if and only if there exists a homo-
morphism σ : H → K (necessarily unique) such that hu = uσ(h) for all h ∈ H and
moreover (h, ϕ(h)) · (f, g) = (f, g) · σ(h), i.e. f is equivariant as a map σ∗T+ → S+

and ϕ = cgψσ. From the ‘only if’ part we then immediately deduce that the above
is surjective on morphisms: a preimage of [u; f ; g] is given by (u, σ; f ; g).

The equality δ(1, 1; idS+ , 1) = [1; idS+ ; 1] shows that δ preserves identities. To see
that it is also compatible with composition of 1-morphisms (whence a 1-functor),
we let (u′, σ′; f ′, g′) be a map (K;T+;ψ)→ (L;U+; ζ) in the opposite category (so
that σ′ : K → L is a homomorphism and f ′ : (σ′)∗U+ → T+ an equivariant map).
Then indeed

δ
(
(u′, σ′; f ′, g′)(u, σ; f, g)

) (∗)
= δ(uu′, σ′σ; ff ′; gg′)

= [ff ′;uu′; gg′] = δ(u′; f ′; g′)δ(u; f ; g)

where the somewhat surprising formula (∗) for the composition in the Grothendieck
construction comes from the fact that σ∗ does not change underlying maps of sets
nor the group elements representing maps in Glo(–, G).

It is well-defined on 2-cells and a locally fully faithful 2-functor: First, let us show
that δ defines fully faithful functors

maps
(
(H ;S+, ϕ), (K;T+, ψ)

)
→ maps

(
ΓH,S,ϕ,ΓK,T,ψ

)
(13)

for all objects (H ;S+, ϕ) and (K;T+, ψ). For this it will be enough to prove this
after postcomposing with the isomorphism ε to (ΓK,T ;ψ)

ϕ.

If now (u1, σ1; f1; g1) and (u2, σ2; f2; g2) are morphisms (H ;S+;ϕ) ⇒ (K;T+;ψ),
then [Len20, Lemma 1.2.74] shows that we have a bijection between morphisms
[f1;u1; g1] → [f2;u2; g2] in ΓϕK,T,ψ and elements k ∈ K such that f1 = f2(k · –),
g1 = g2ψ(k), and σ2 = ckσ1, which is explicitly given by k 7→ [f1;u2k, u1; g1]. The
last condition precisely says that k is a 2-cell (u1, σ1) ⇒ (u2, σ2) in Ogl, while the

remaining two conditions say that (f2; g2) ◦ Fgl,+
G (k) = (f1; g1), which is precisely

the compatibility condition for 2-cells in the Grothendieck construction. Thus, (13)
is well-defined and bijective on morphisms. To see that it is indeed a functor, we
observe that δ(1) = id by design, and that for any further 2-cell k′ : (u2, σ2; f2; g2)⇒
(u3, σ3; f3; g3) we have

δ(k′) ◦ δ(k) = [f2;u3k
′, u2; g2] ◦ [f1;u2k;u1; g1]

(∗)
= [f1;u3k

′k, u2k; g1] ◦ [f1;u2k;u; g1]
= [f1;u3k

′k, u1; g1] = δ(k′k) = δ(k′ ◦ k),
where the equality (∗) uses [f2;u3k′, u2; g2] = [f2(k ·–), u3k′k, u2k; g2ψ(k)] together
with the above relations.
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To complete the current step, it now only remains to show that δ is compatible with
horizontal composition of 2-cells, i.e. if (u′1, σ

′
1; f

′
1; g

′
1), (u

′
2, σ

′
2; f

′
2; g

′
2) : (K;T+;ψ) ⇒

(L;U+; ζ) are parallel morphisms and ℓ : (u′1, σ
′
1; f

′
1; g

′
1) ⇒ (u′2, σ

′
2; f

′
2; g

′
2), then

δ(ℓ ⊙ k) = δ(ℓ) ⊙ δ(k). Plugging in the definitions, the left hand side is given
by δ(ℓσ2(k)) = [f1f

′
1;u2u

′
2ℓσ2(k), u1u

′
1; g1g

′
1] while the right hand side evaluates to

[f ′
1;u

′
2ℓ, u

′
1; g

′
1]⊙ [f1;u2k, u1; g1] = [f1f

′
1;u2ku

′
2ℓ;u1u

′
1; g1g

′
1]. But ku

′
2 = u′2σ

′
2(k) as

(u′2, σ
′
2) is a morphism, while σ′

2(k)ℓ = ℓσ2(k) as ℓ is a 2-cell, whence u2ku
′
2ℓ =

u2u
′
2ℓσ2(k) as desired.

The 2-functor δ is an equivalence: We have shown above that δ is a 2-functor,
surjective on 1-cells, and bijective on 2-cells. As it is clearly surjective on objects,
the claim follows immediately. �

Together with the Elmendorf Theorem for G-global Γ-spaces, we can now describe
the global relative category of global Γ-spaces in terms of suitable simplicially en-
riched functor categories. The structure of the argument is very similar to the
arguments following Construction 3.3.10.

Construction 5.2.10. We define

ΨΓ : Γ-EM-G-SSet→ Fun(
∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G ,SSet)

as follows:

(1) If X is any G-global Γ-space, then ΨΓ(X)(H ;S+;ϕ) = X(S+)
ϕ. If (K;T+;ψ)

is another object, then an n-simplex

(u0, σ0; f0; g0)
k1==⇒ (u1, σ1; f1; g1)

k2==⇒ · · · kn==⇒ (un, σn; fn; gn) (14)

of maps((K;T+;ψ), (H ;S+;ϕ)) is sent to the composition
(
(unkn · · · k1, . . . , u1k1, u0; g0) · –

)
◦X(f0).

(2) If f : X → Y is any map of G-global Γ-spaces, then

ΨΓ(f)(H ;S+;ϕ) = f(S+)
ϕ : X(S+)

ϕ → Y (S+)
ϕ.

Proposition 5.2.11. The assignment ΨΓ is well-defined and it descends to an
equivalence when we localize the source at the G-global level weak equivalences and
the target at the levelwise weak homotopy equivalences.

Proof. One argues precisely as in the proof of Proposition 3.3.11 that ΨΓ is well-
defined and isomorphic (via corepresentability) to the composite

Γ-EM-G-SSet
ΦΓ−−→ Fun((OG-gl

Γ )op,SSet)
δ∗−→ Fun(

∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G ,SSet).

The claim now follows from Proposition 5.1.2 together with Proposition 5.2.9. �

Proposition 5.2.12. The maps ΨΓ are strictly 2-natural in Glo (where the right
hand side is a 2-functor in G as before).

Proof. We again break this up into two steps:

The ΨΓ’s are 1-natural: Let α : G → G′ be a group homomorphism. We will first
show that we have for every G-global Γ-space X an equality of enriched functors
ΨΓ(α

∗X) = ΨΓ(X) ◦
( ∫∫∫∫∫∫∫∫∫∫∫∫∫

(F+
• ×Glo(–, α)) ◦ γ

)
. To prove this, we first observe that

this holds on objects as X(S+)
αϕ = (α∗X)(S+)

ϕ for all universal H ⊂M, ϕ : H →
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G. Given now an n-simplex (14) of maps((H ;S+;ϕ), (K;T+;ψ)), it is straight-
forward to check that both ΨΓ(α

∗X) and ΨΓ(X) ◦ (
∫∫∫∫∫∫∫∫∫∫∫∫∫
(F+

• ×Glo(–, α)) ◦ γ) send
this to the restriction of the composite

(
(unkn · · · k1, . . . , u1k1, u0;α(g)) · –

)
◦X(f).

With this established, naturality on morphisms can be checked levelwise, i.e. after
evaluating at each (H ;S+;ϕ). However, for any map f both Ψ(α∗f)(H ;S+;ϕ) and
Ψ(f)(

∫∫∫∫∫∫∫∫∫∫∫∫∫
(F+

• ×Glo(–, α)) ◦ γ)(H ;S+;ϕ) are simply given by a restriction of f(S+).

The ΨΓ’s are 2-natural : It only remains to show that for each α, β : G → G′ and
g′ : α⇒ β the two pastings

Γ-EM-G′-SSet Γ-EM-G-SSet Fun(
∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G ,SSet)

α∗

(α′)∗

ΨΓ
g′

⇒

and

Γ-EM-G′-SSet Fun(
∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G′ ,SSet) Fun

(∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G ,SSet

)ΨΓ

α∗

(α′)∗

g′

⇒

agree. However, as we have already established 1-naturality, this can be again

checked pointwise in Γ-EM-G′-SSet and levelwise in
∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G , where both are

simply given by restriction of the action of g′. �

5.2.4. The comparison. Putting everything together we now get:

Proof of Theorem 5.2.1. Arguing precisely as in the proof of Theorem 3.3.2, we
deduce from Propositions 5.2.11 and 5.2.12 that we have an equivalence of global
∞-categories

ΓSgl ≃ Fun(N∆

∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
• , Spc)

given on objects in degree G by sending a G-global Γ-space X to N∆(P ◦ΨΓ(X))
where P is our favourite simplically enriched Kan fibrant replacement functor.

On the other hand, Proposition 5.2.7 provides an equivalence between the right
hand side and Fun(

∫
FOrb
Glo × (–), Spc). The desired equivalence now follows as

Remark 2.2.14 also gives a natural equivalence

FunGlo(FOrb
Glo,∗, SpcGlo) ≃ Fun(

∫
(FOrb

Glo,∗ × (–)), Spc). (15)

It remains to construct an equivalence filling the diagram on the left in

ΓSgl FunGlo(FOrb
Glo,∗, SpcGlo)

Sgl SpcGlo

U

Ξ

evid+

≃

ΓSgl FunGlo(FOrb
Glo,∗, SpcGlo)

Sgl SpcGlo

Ξ

≃

Γ(1+,–)×– left Kan ext.

for which it is enough by passing to vertical left adjoints (as the horizontal maps
are equivalences) to construct an equivalence filling the diagram on the right. By
the universal property of SpcGlo it is in turn enough for this to chase through
the terminal object. Now the forgetful functor EM-SSet → SSet sending an
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EM-simplicial set to its underlying non-equivariant homotopy type is obviously
homotopical right Quillen with left adjoint given by EM× –; passing to associated
∞-categories, we obtain an adjunction Sgl(1) ⇄ Spc and as EM ≃ ∗ by [Len20,
Example 1.2.35], we see that the left adjoint preserves the terminal objects. On the
other hand, as 1 is a terminal object of Glo, the evaluation functor ev1 : SpcGlo(1)→
Spc similarly admits a left adjoint given by const : Spc → SpcGlo(1), which again
preserves the terminal object. In particular, we see by another application of the
universal property of SpcGlo that the equivalence Sgl ≃ SpcGlo is compatible with
these adjunctions.

We are therefore reduced to constructing a natural equivalence filling the diagram
on the left in

ΓSgl(1) FunGlo(FOrb
Glo,∗, SpcGlo)

Spc Spc

Ξ

Γ(1+,–)×EM×–

ΓSgl(1) FunGlo(FOrb
Glo,∗, SpcGlo)

Spc Spc,

Ξ

forget◦U ev1◦evid+

for which it is then by the same argument as before enough to construct a natu-
ral equivalence filling the diagram on the right. By Remark 2.2.15, the compos-
ite of the right hand vertical map with the equivalence (15) from the construc-
tion of Ξ is given by evaluating at (1; 1, 1). However, by the description of Θ1

from Proposition 5.2.7, Θ1(1; 1, 1) = (1; 1, 1), so it follows by construction of Ξ
that the upper path through this diagram is induced by the homotopical functor
P ◦ ΨΓ(–)(1; 1, 1): Γ-EM-SSet → Kan. However, by definition ΨΓ(–)(1; 1, 1) is
precisely the functor sending a global Γ-space X to X(1+) considered as a non-
equivariant space, so the claim follows. �

5.3. Proof of Theorem B. Building on the above we will now prove a compar-
ison between special G-global Γ-spaces and CMonOrb

Glo (SpcGlo). Recall from Exam-
ple 4.5.2 the notion of equivariant semiadditivity.

Theorem 5.3.1. There exists an essentially unique pair of an equivariantly semiad-
ditive functor Ξ: ΓSgl, spc → CMonOrb(SpcGlo) together with a natural equivalence
filling

ΓSgl, spc CMonOrb(SpcGlo)

Sgl SpcGlo.

U

Ξ

U=evid+

≃

(16)

Moreover, Ξ is an equivalence.

As the notation suggest, we will in fact show that the equivalence Ξ from The-
orem 5.2.1 restricts accordingly and is still an equivalence. For this let us first
translate our definition of specialness into something that is more akin to the char-
acterization of equivariant semiadditivity given in Subsection 4.9:

Proposition 5.3.2. A G-global Γ-space X is special if and only if the following
conditions are satisfied for every universal subgroup H ⊂ M and every homomor-
phism ϕ : H → G:

(1) For all finite H-sets S, T the collapse maps S+ ← S+∨T+ → T+ induce a weak
homotopy equivalence X(S+ ∨ T+)ϕ → X(S+)

ϕ ×X(T+)
ϕ.



88 BASTIAAN CNOSSEN, TOBIAS LENZ, AND SIL LINSKENS

(2) For all K ⊂ H the composite map

X(H/K+)
ϕ →֒ X(H/K+)

ϕ|K X(χ)ϕ|K
−−−−−−→ X(1+)ϕ|K ,

is a weak homotopy equivalence, where χ : H/K+ → 1+ is the characteristic
map of [1] = K ∈ H/K.

Proof. Let us first assume that X is special. Then we have a commutative diagram

X(S+ ∨ T+) X(S+)×X(T+)

∏
S⊔T X(1+)

∏
S X(1+)×∏

T X(1+)

ρ ρ×ρ

∼=

where the top horizontal map is again induced by the collapse maps. By assumption,
the left hand vertical map is a (G × ΣS⊔T )-global weak equivalence, hence also a
(G×H)-global weak equivalence with respect to the H-action on S ⊔ T . Similarly,
one shows that the right hand vertical map is a (G×H)-global weak equivalence,
and hence so is the top horizontal map by 2-out-of-3. Taking fixed points with
respect to (ϕ, id) : H → G×H then establishes Condition (1).

In order to verify Condition (2), we first note that we have for any H-space Y

an isomorphism
(∏

H/K Y
)H ∼= Y K via projection to the factor indexed by [1].

Applying this to Y = (ϕ, idH)∗X(1+) we then get a commutative diagram

(∏
H/K X(1+)

)ϕ

X(H/K+)
ϕ

X(1+)ϕ|K

∼= pr[1]

ρ

X(χ)

(17)

in which the top map is a weak homotopy equivalence by specialness. The claim
follows by 2-out-of-3.

Conversely, assume X is a G-global Γ-space satisfying Conditions (1) and (2). We
want to show that for every finite set S the Segal map X(S+) →

∏
S X(1+) is

a (G × ΣS)-global weak equivalence, i.e. for every universal subgroup H ⊂ M,
every H-action on S (i.e. homomorphism ρ : H → ΣS), and every homomorphism

ϕ : H → G it induces a weak homotopy equivalence X(S+)
ϕ →

(∏
S X(1+)

)ϕ
.

Using Condition (1) one readily reduces to the case that S is transitive, i.e. S =
H/K for some K ⊂ H ; however, in this case the claim again follows by applying
2-out-of-3 to the commutative diagram (17). �

In order to relate this to our characterization of equivariant semiadditive functors
into SpcGlo we note:

Lemma 5.3.3. Let p : K →֒ H be an inclusion of finite groups (hence a map
in Orb). Then the essentially unique equivalence θ : FOrb

Glo,∗ ≃ NF+
• (see Corol-

lary 5.2.4) sends the map ρp : p
∗p!(id+)→ id+ in FOrb

Glo,∗(K) from Observation 4.9.7

up to isomorphism to the map χ : H/K+ → 1+ in F+
K from Proposition 5.3.2.
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Proof. By construction, ρp is characterized by the properties that ρpη = id and
ρp,Lj = 0 for some (hence any) complement j : C → p∗p!(ι) of η. Now the inclusion
1+ → H/K+ of the coset [1] qualifies as a unit 1+ → p∗p!1+, and with respect to this
choice of η the map χ : H/K+ → 1+ obviously admits the analogous description.

If we now assume for ease of notation that θ(id1)+ = 1+ (instead of them just
being isomorphic), then the calculus of mates provides us with an isomorphism
α : H/K+

∼= θ(p∗p!(id+)) in F+
K fitting into a commutative diagram

1+ θ(id+)

H/K+ θ(p∗p! id+),

η θ(η)

∼=
α

(18)

and we claim that χ is actually equal to θ(ρp)α. Indeed,

χη = id1+ = θ(idid+
) = θ(ρpη) = θ(ρp)θ(η) = θ(ρp)αη,

where the last equation uses the commutativity of (18). On the other hand, if
j : C → p∗p! id+ is a complement of η, then θ(j) is a complement of θ(η) (as
θ preserves coproducts), so α−1θ(j) is a complement of η : 1+ → H/K+ in F+

K

by commutativity of (18) again. But then χ(α−1θ(j)) = 0 = θ(0) = θ(ρpj) =
θ(ρp,L)α(α

−1θ(j)), which finishes the proof. �

Proof of Theorem 5.3.1. By the universal property of CMonOrb(SpcGlo) it will suf-
fice to construct such an equivalence, for which we will show that the equivalence Ξ
from Theorem 5.2.1 restricts accordingly, i.e. that a G-global Γ-space X is special
if and only if Ξ(X) : π∗

GFOrb
Glo,∗ → π∗

GSpcGlo is π∗
GOrb-semiadditive.

For this, let us write Ξ̂(X) for the functor
∫
FOrb
Glo,∗ × G → Spc corresponding to

Ξ(X). Plugging in the construction of Ξ, this is simply given by the restriction
of N∆(P ◦ ΨΓ(X)) : N∆(

∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+) → N∆(Kan) = Spc (where P is a fixed fibrant

replacement again) along the inverse of the equivalence ΘG :
∫
FOrb
Glo,∗ ≃ N∆

∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+

from Proposition 5.2.7. On the other hand, Remark 4.9.9 shows that Ξ(X) is

semiadditive if and only if Ξ̂(X) is fiberwise semiadditive and sends the Segal maps
(defined there) to equivalences.

Fiberwise semiadditivity. We will first show that X satisfies Condition (1) of Propo-

sition 5.3.2 if and only if Ξ̂(X) is fiberwise semiadditive. Namely, Ξ̂(X) is fiberwise
semiadditive if and only if its restriction to the non-full subcategories spanned by
the objects (H ;X,ϕ) and the maps of the form (id; f, id) for each universal H ⊂M
and ϕ : H → G is semiadditive (as the universal subgroups of M account for all
objects of Glo up to isomorphism). As ΘG identifies this with the corresponding full

subcategory N∆(
∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G )ϕ ⊂ N∆(

∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G ) via an equivalence by Proposition 5.2.7,

we conclude that Ξ̂(X) is fiberwise semiadditive if and only if Θ∗
GΞ̂(X) is semiad-

ditive when restricted to each N∆(
∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
G )ϕ. But by the explicit construction of

ΨΓ, we immediately see that the latter condition for Θ∗
GΞ̂(X) ≃ N∆(P ◦ΨΓ(X)) is

equivalent for every fixed ϕ to X(–)ϕ sending coproducts of finite pointed H-sets
to products, which is precisely what we wanted to prove.

Segal maps. To complete the proof, it will now suffice to show that X satisfies

Condition (2) of Proposition 5.3.2 if and only if Ξ̂(X) sends the parametrized Segal
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maps ρ : (H ; ι+, ϕ) → (K; id+, ϕι) (where ι : K →֒ H is an inclusion of universal
subgroups and ϕ : H → G is a homomorphism) in

∫
FOrb
Glo,∗ × G to equivalences.

However, by the description of ΘG given in Proposition 5.2.7 together with the
computation in Lemma 5.3.3, we conclude that Θ−1

G (ρ) is given up to equivalence
by (ι, 1;χ, idϕι) : (H ;H/K+, ϕ) → (K; 1+, ϕι), and by the explicit construction of
ΨΓ we see that P ◦ΨΓ sends this up to weak equivalence to the map X(H/K+)

ϕ →
X(1+)ϕ|K from Proposition 5.3.2 as desired. �

We can now leverage the above comparison in order to deduce a universal property
of ΓSgl, spc.

Theorem 5.3.4. The functor U : ΓSgl, spc → Sgl exhibits ΓSgl, spc as the equivari-
antly semiadditive envelope of Sgl, i.e. for every equivariantly semiadditive global
∞-category C we have an equivalence

FunP -×
Glo (C,U) : FunP -⊕

Glo (C,ΓSgl, spc)
≃−−→ FunP -×

Glo (C,Sgl).

Moreover, U admits a left adjoint P which exhibits ΓSgl, spc as the equivariantly
semiadditive completion in the following sense: for every globally cocomplete equiv-
ariantly semiadditive global ∞-category D we have an equivalence

FunL
Glo(P,D) : FunLGlo(ΓS

gl, spc,D) ≃−−→ FunL
Glo(S

gl,D).

Proof. The existence of the left adjoint follows formally from Theorem 5.3.1 and
the fact that U : CMonOrb

Glo → SpcGlo admits a left adjoint (see Corollary 4.8.9).

Now the free-forgetful adjunction Sgl ⇄ CMonOrb
Glo (S

gl) has both of the above
universal properties by Theorem 4.8.10 and Corollary 4.8.13), so it suffices to show
that the equivalence Ξ from Theorem 5.3.1 is compatible with the free-forgetful
adjunctions in the sense that there are natural equivalences filling

ΓSgl, spc CMonOrb(SpcGlo)

Sgl SpcGlo.

U

Ξ

U=evid+

≃

and

ΓSgl, spc CMonOrb(SpcGlo)

Sgl SpcGlo.

P

Ξ

P

≃

However, as Ξ is an equivalence it suffices to prove the first statement, which is
simply the defining property of Ξ. �

Together with Theorem 4.8.11 we moreover get Theorem B from the introduction:

Theorem 5.3.5. Let D be a globally cocomplete and equivariantly semiadditive
global ∞-category. Then evaluation at P(∗) provides an equivalence

FunL
Glo(ΓS

gl, spc,D) ∼−−→ D.

Put differently, ΓSgl, spc is the free globally cocomplete (or presentable) equivariantly
semiadditive global ∞-category on one generator (namely, the free global special Γ-
space P(∗)). �

Using Propositions 5.1.4 and 5.1.7 we can deduce several variants of the above
theorems. Let us make two of them explicit:
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Corollary 5.3.6. There exist equivalences

ΓSgl
I ≃ FunGlo(FOrb

Glo,∗, SpcGlo) and ΓSgl, spc
I,∗ ≃ CMonOrb

Glo

fitting into a commutative diagram

ΓSgl, spc
I,∗ ΓSgl

I Sgl
I

CMonOrb
Glo FunGlo(FOrb

Glo,∗, SpcGlo) SpcGlo

≃ ≃

ev1+

≃

ev(id1)+

where the equivalence on the right is the unique one (see Corollary 3.3.3). �

Corollary 5.3.7. The forgetful functor U : ΓSgl, spc
I,∗ → Sgl

I exhibits ΓSgl, spc
I,∗ as

the universal equivariantly semiadditive envelope of Sgl
I . Moreover, it admits a

left adjoint P, exhibiting ΓSgl, spc
I,∗ as the equivariantly semiadditive completion of

Sgl
I . �

Remark 5.3.8. [Len20] also discusses various other models of ‘G-globally coher-
ently commutative monoids,’ for example G-ultra-commutative monoids (Defini-
tion 2.1.25 of op. cit.) or G-parsummable simplicial sets (Definition 2.1.10). Simi-
larly, [Len22, Definition 3.9] introduces a notion of global E∞-operads, and for any
global E∞-operad O, considering O-algebras in EM-G-SSet (with respect to the
trivial G-action on O) yields a concept of G-global E∞-algebras.

All of these models are related via suitable zig-zags of Quillen equivalences by
[Len20, Chapter 2] and [Len22, Section 4], and while these can be somewhat com-
plicated (especially on the operadic side of things), in each case they are by design
strictly compatible with restrictions along group homomorphisms and moreover at
least one of the adjoints is homotopical, so that they lift to equivalences of asso-
ciated global ∞-categories in the same way as before. As moreover each of them
is readily seen to be compatible with the respective forgetful functors, we obtain
universal properties in the above spirit for each of these models.

Conversely, while each of these comparisons comes from a concrete (and sometimes
ad-hoc) model categorical construction, this tells us that a posteriori, once we have
passed to parametrized∞-categories, these comparisons are actually canonical and
completely characterized by lying over the forgetful functors.

6. Parametrized stability

In this section, we will introduce the notion of a P -stable T -∞-category: a T -∞-
category which is both P -semiadditive and fiberwise stable.

6.1. Fiberwise stable T -∞-categories.

Definition 6.1.1. We say a T -∞-category C is fiberwise stable if the following
conditions are satisfied:

(1) For every object B ∈ T , the ∞-category C(B) is stable;
(2) For every morphism β : B′ → B, the restriction functor β∗ : C(B) → C(B′) is

exact.
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Equivalently, C is fiberwise stable if the functor C : T op → Cat∞ factors through the
(non-full) subcategory Catst∞ ⊆ Cat∞ of stable∞-categories and exact functors. We
let CatstT denote the∞-category Fun(T op,Catst∞) of fiberwise stable T -∞-categories.

Definition 6.1.2. Denote by Catlex∞ ⊆ Cat∞ the (non-full) subcategory spanned
by the ∞-categories admitting finite limits and the finite-limit-preserving functors
between them. We let CatlexT denote the functor ∞-category Fun(T op,Catlex∞ ) of
T -∞-categories C admitting fiberwise finite limits (cf. Definition 2.3.11) and T -
functors preserving fiberwise finite limits.

Definition 6.1.3. Let C and D be two T -∞-categories with finite limits. We write
FunlexT (C,D) for the full subcategory of FunT (C,D) spanned on level B ∈ T by
those functors F : π∗

B C → π∗
B D which preserve fiberwise finite limits.

When C and D are both fiberwise stable, we will write FunexT (C,D) for Funlex
T (C,D).

Construction 6.1.4 (Fiberwise stabilization). Let C ∈ CatlexT be a T -∞-category
which has fiberwise finite limits. We define the T -∞-category Spfib(C), called the
fiberwise stabilization of C, as the composite

T op C−→ Catlex∞
Sp−→ Catst∞ .

This construction assembles into a functor Spfib : CatlexT → CatstT .

Example 6.1.5. The T -∞-category SpT of naive T -spectra is the fiberwise stabi-
lization of the T -∞-category SpcT of T -spaces.

More generally, if E is an∞-category admitting finite limits, then the fiberwise sta-
bilization of the T -∞-category ET of T -objects in E is the T -∞-category Sp(E)T of
T -objects in the stabilization Sp(E). Indeed, this follows easily from the equivalence
Sp(Fun(−, E)) ≃ Fun(−, Sp(E)) from [Lur17, Remark 1.4.2.9].

Remark 6.1.6. As a right adjoint, the stabilization functor Sp: Catlex∞ → Catst∞
preserves limits, which in both the source and target are computed in Cat∞. It
follows that the limit extension of Spfib(C) to the presheaf category PSh(T ) is given
by postcomposing the limit extension of C to PSh(T ) with the functor Sp.

Remark 6.1.7. We will use that the functor Sp: Catlex∞ → Catst∞ is in fact func-
torial in natural transformations of finite limit preserving functors, i.e. that Sp
refines to a 2-functor between homotopy 2-categories. Given that taking functor
categories forms such a functor, this immediately follows from the definition of
Sp(C) as a full subcategory of Fun(Spcfin∗ , C), see [Lur17, Definition 1.4.2.8]. (Using
the same argument, one can in fact show that Sp is an (∞, 2)-functor.)
It follows in particular that stabilization preserves adjunctions between left exact
functors.

Proposition 6.1.8. The functor Spfib : CatlexT → CatstT is right adjoint to the fully

faithful inclusion CatstT ⊆ CatlexT .

Proof. Since Fun(T op,−) : Cat∞ → Cat∞ preserves adjunctions, this is immediate

from the fact that the stabilization functor Sp: Catlex∞ → Catst∞ is right adjoint to

the fully faithful inclusion Catst∞ ⊆ Catlex∞ by [Lur17, Corollary 1.4.2.23]. �
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Lemma 6.1.9. Consider C ∈ CatstT and D ∈ CatlexT . Composition with the adjunc-
tion counit Ω∞ : Spfib(D)→ D induces an equivalence of T -∞-categories

FunexT (C, Spfib(D)) ∼−−→ Funlex
T (C,D).

Proof. It immediately follows from Proposition 6.1.8 that the map

ιFunT (C,Ω∞) : ιFunexT (C, Spfib(D))→ ιFunlexT (C,D)
is an equivalence. We will now show that this already holds before passing to cores.
Replacing T by T/B for varying B ∈ T then yields the proof of the proposition.
For this it will be enough to show that for every small ∞-category K the induced
map ι

(
FunexT (C, Spfib(D))K)→ ι

(
Funlex

T (C,D)K) is an equivalence. But this agrees

up to equivalence with the map induced by (Ω∞)K : Spfib(D)K → DK ; the claim

follows as this is again the stabilization of DK . �

The fiberwise stabilization of a T -∞-category C inherits certain parametrized limits
from C. Since this is clear for limits along constant T -∞-categories, we focus on
limits along T -∞-groupoids.

Lemma 6.1.10. Let U be a class of T -∞-groupoids, and let C be a U-complete
T -∞-category which admits fiberwise finite limits. Then Spfib(C) is U-complete and
the T -functor Spfib(C)→ C preserves U-limits.

Proof. We will use the characterization of Lemma 2.3.14. Given a morphism
p : A→ B in U, applying the functor Sp: Catlex∞ → Catst∞ to the adjunction

p∗ : C(B) ⇄ C(A) :p∗
shows that the functor Sp(p∗) : Sp(C(B))→ Sp(C(A)) admits a right adjoint given
by Sp(p∗) : Sp(C(A))→ Sp(C(B)). Furthermore, for a pullback square

A′ A

B′ B

p′

α

p

β

in PSh(T ) with p : A→ B in U and β : B′ → B in T , the resulting Beck-Chevalley
transformation Sp(p∗) ◦ Sp(β∗) ⇒ Sp(α∗) ◦ Sp(p′∗) is given by applying Sp to the
Beck-Chevalley transformation p∗ ◦β∗ ⇒ α∗ ◦ p′∗, and thus is again an equivalence.
This shows that Spfib(C) is again U-complete. It is immediate from this construc-
tion that the T -functor Spfib(C)→ C preserves U-limits, finishing the proof. �

Fiberwise stabilization preserves parametrized presentability.

Definition 6.1.11. We define PrR,st
T to be the full subcategory of PrRT spanned by

those presentable T -∞-categories which are also fiberwise stable. The subcategory

PrL,stT ⊆ PrLT is defined similarly.

Proposition 6.1.12. The functor Spfib : CatlexT → CatstT restricts to a functor

Spfib : PrRT → PrR,st
T

which is right adjoint to the inclusion PrR,st
T →֒ PrRT .
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Proof. We first show that the fiberwise stabilization of a presentable T -∞-category
C is again presentable. By [Lur17, Proposition 1.4.4.4, Example 4.8.1.23], Spfib(C)
is given by the composite

T op C−→ PrL
−⊗Sp−−−−→ PrL,

proving that Spfib(C) is again fiberwise presentable. Since the functor−⊗Sp: PrL →
PrL preserves adjunctions, one deduces the existence of left adjoints f! for all mor-
phisms f : A → B in PSh(T ) satisfying the Beck-Chevalley conditions, similar
to the proof of Lemma 6.1.10. This shows that Spfib(C) is again a presentable
T -∞-category. One can similarly show that if L ⊣ R is an adjunction between pre-
sentable T -∞-categories, then L⊗Sp ⊣ Spfib(R) is again an adjunction. This shows

that Spfib restricts to a functor PrRT → PrR,st
T . It is right adjoint to the inclusion

PrR,st
T →֒ PrRT by Proposition 6.1.8. �

Applying the equivalence (PrRT )
op ≃ PrLT , we obtain:

Corollary 6.1.13. The construction C 7→ Spfib(C) defines a functor

Spfib : PrLT → PrL,stT

which is left adjoint to the inclusion functor incl : PrL,stT →֒ PrLT . �

6.2. P -stable T -∞-categories.

Definition 6.2.1. We say a T -∞-category C has finite P -limits if it has fiberwise
finite limits and finite P -products. We define CatP -lex

T to be the (non-full) subcate-
gory of CatT spanned by the T -∞ categories which admit finite P -limits and those
functors which preserve finite P -limits.

Let C and D be two T -∞-categories with finite P -limits, we define FunP -lex
T (C,D)

to be the full subcategory of FunT (C,D) spanned on level B by those functors
F : π∗

B C → π∗
B D which preserve finite P -limits. This is a T -subcategory by the

dual of Lemma 2.3.17.

Definition 6.2.2 (cf. [Nar16, Definition 7.1]). A T -∞-category C is P -stable if it

is fiberwise stable and P -semiadditive. We define CatP -st
T to be the full subcategory

of CatP -lex
T spanned by the P -stable T -∞-categories.

When C and D are both P -stable T -∞-categories, we will write FunP -ex
T (C,D) for

FunP -lex
T (C,D).

Example 6.2.3. Applied to the pair Orb ⊂ Glo we obtain a notion of Orb-stability
for global ∞-categories. We will refer to this as equivariant stability.

Lemma 6.2.4. Let C be a T -∞-category. If C admits finite P -limits, then so does
CMonP (C).

Proof. This is a special case of Lemma 4.6.11. �

Definition 6.2.5 ([Nar16, Definition 7.3]). Let C be a T -∞-category which admits
finite P -limits. Then the P -stabilization of C is the T -∞-category SpP (C) defined
as

SpP (C) := Spfib(CMonP (C)),
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the fiberwise stabilization of the T -∞-category of P -commutative monoids in C. As
a special case, we define the T -∞-category SpPT of P -genuine T -spectra as

SpPT := SpP (SpcT ),

the P -stabilization of the T -∞-category of T -spaces.

The next lemma shows that the P -stabilization of a T -∞-category with finite P -
limits is indeed P -stable.

Lemma 6.2.6. Let C be a P -semiadditive T -∞-category with finite P -limits. Then
Spfib(C) is again P -semiadditive, and thus in particular P -stable.

Proof. The T -∞-category Spfib(C) is fiberwise pointed and admits finite P -products
by Lemma 6.1.10. By Lemma 4.5.4, it will suffice to show that for every morphism
p : A → B in FPT the dual adjoint norm map Nmp : id → Sp(p∗) Sp(p∗) exhibits
Sp(p∗) as a right adjoint of Sp(p∗). Since the adjunction data for Spfib(C) is in-

herited from C by fiberwise stabilizing, the dual adjoint norm map for Spfib(C) is

obtained by applying the stabilization functor to the map Nm
C
p : id → p∗p∗. As

stabilization preserves adjunctions, the claim thus follows from P -semiadditivity of
C. �

Corollary 6.2.7. The functor SpP : CatP -lex
T → CatP -st

T is right adjoint to the

inclusion CatP -st
T →֒ CatP -lex

T .

Proof. Lemma 6.2.6 shows that the adjunction of Proposition 6.1.8 restricts to an
adjunction

incl : CatP−st
T → Catlex,P -⊕

T :Spfib(−).
Composing this with the adjunction of Corollary 4.8.5 gives the statement. �

From the adjunction of ∞-categories from Corollary 6.2.7, we may immediately
deduce an equivalence at the level of T -∞-categories of functors.

Definition 6.2.8. We define the T -functor Ω∞ : SpP (C) → C to be the counit of
the adjunction from Corollary 6.2.7. Explicitly it is given by the composite

Spfib(CMonP (C)) Ω∞
−−→ CMonP (C) U−→ C,

where the first functor is the infinite loop space functor and the second functor is
given by evaluation at S0 : 1→ FPT,∗.

Proposition 6.2.9. Let D be a T -∞-category with finite P -limits. For every P -
stable T -∞-category C, composition with Ω∞ : SpP (C) → C induces an equivalence
of T -∞-categories

FunT (C,Ω∞) : FunP -ex
T (C, SpP (D))→ FunP -lex

T (C,D).

Proof. This follows by combining Corollary 4.8.4 and Lemma 6.1.9. �

Lemma 6.2.10. Let U be a family of T -∞-groupoids, and let C be a U-complete
T -∞-category which admits finite P -limits. Then also SpP (C) is U-complete and
the T -functor Ω∞ : SpP (C)→ C preserves U-limits.

Proof. This follows immediately from Lemma 6.1.10 and Lemma 4.6.11. �
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As before, P -stabilization restricts to an adjunction on presentable T -∞-categories.

Lemma 6.2.11. The construction C 7→ SpP (C) defines a functor

SpP : PrLT → PrL,P -st
T

which is left adjoint to the inclusion PrL,P -st
T →֒ PrLT .

Proof. Combine Corollary 6.1.13 and Corollary 4.8.9. �
Definition 6.2.12. We write Σ∞

+ : C → SpP (C) for the left adjoint of the forgetful
functor Ω∞ : SpP (C)→ C. It is the unit of the adjunction in Lemma 6.2.11.

We record the results of this section in the following theorem for easy reference:

Theorem 6.2.13. Let C be a T -∞-category with finite P -limits. The functor
Ω∞ : SpP (C) → C exhibits SpP (C) as the P -stable envelope of C, i.e. for every
P -stable T -∞-category D postcomposition with Ω∞ induces an equivalence

FunP -lex(D,Ω∞) : FunP -ex(D, SpP (C))→ FunP -lex(D, C).
Suppose now that C is moreover presentable. Then the left adjoint Σ∞

+ of Ω∞

exhibits SpP (C) as the presentable P -stable completion of C, i.e. for any presentable
P -stable T -∞-category D precomposition with Σ∞

+ yields an equivalence

FunL(Σ∞
+ ,D) : FunL(SpP (C),D)→ FunL(C,D). �

As a simple consequence, we get that the T -∞-category SpPT of P -genuine T -spectra
is the free presentable P -stable T -∞-category on a single generator. As in the P -
semiadditive setting of Section 4.9, we can strengthen this to the T -cocomplete
setting:

Theorem 6.2.14. Let D be a locally small T -cocomplete P -stable T -∞-category.
Then evaluating at Σ∞

+ (∗) yields an equivalence

FunL
T (Sp

P
T ,D)

≃−−→ D.

For the proof we will first consider the following non-parametrized version strength-
ening of [Lur17, Corollary 1.4.4.5]:

Lemma 6.2.15. Let C be a presentable ∞-category and let D be cocomplete and
stable. Then we have equivalences

FunL(Σ∞
+ ,D) : FunL(Sp(C),D) ≃−−→ FunL(C,D)

FunR(D,Ω∞) : FunR(D, Sp(C)) ≃−−→ FunR(D, C)
of categories of left adjoint and categories of right adjoint functors, respectively.

Proof. It suffices to prove the second statement. Since full faithfulness follows from
the usual universal property of spectrification [Lur17, Corollary 1.4.2.23], it only
remains to prove essential surjectivity, i.e. for every right adjoint G : D → C we can
find a right adjoint G∞ : D → Sp(C) such that Ω∞G∞ ≃ G.
For this we first observe that G lifts to a functor G∗ : D ≃ D∗ → C∗ as D is pointed
and G preserves terminal objects; moreover, this is again a right adjoint functor
by the dual of [Lur09, Proposition 5.2.5.1]. Replacing C by C∗ if necessary, we may
therefore assume without loss of generality that C is pointed.
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We now define Gi := GΣi : D → C for all i ≥ 0. Then we have equivalences

ΩGi+1 = ΩGΣi+1 ≃ GΩΣi+1 ≃ GΣi = Gi,

and so we get

G∞ : D → Sp(C) = lim
(
· · · Ω−→ C Ω−→ C

)

with Ω∞G∞ ≃ G0 = G by passing to limits. However, each Gi for i <∞ is a right
adjoint (as G is and since Σi is even an equivalence by stability), whence so is the
limit map G∞ by [HY17, Theorem B]. �

Corollary 6.2.16. In the above situation, let G : D → Sp(C) be an exact functor.
Then G admits a left adjoint if and only if Ω∞ ◦G does. �

Proposition 6.2.17. Let C be a presentable T -∞-category and let D be a T -
cocomplete fiberwise stable T -∞-category. Then we have equivalences

FunL
T (Σ

∞
+ ,D) : FunL

T (Sp
fib(C),D) ≃−−→ FunL

T (C,D)
FunR

T (D,Ω∞) : FunR
T (D, Spfib(C)) ≃−−→ FunR

T (D, C).

Proof. Arguing as before, it suffices to show that any right adjoint g : D → C lifts
to a right adjoint G : D → Spfib(C). However, by Lemma 6.1.9 there exists a
fiberwise left exact functor G lifting g, and by the previous corollary this admits a
pointwise left adjoint F ; it only remains to show that for every t : A→ B in T the
Beck-Chevalley map Ft∗ ⇒ t∗F is an equivalence.

However, for the diagram

D(A) Spfib(C)(A) C(A)

D(B) Spfib(C)(B) C(B)

G Ω∞

t∗

G

t∗

Ω∞

t∗

both the mate of the total square as well as the mate of the right hand square are
equivalences as g and Ω∞ are parametrized right adjoints. By the compatiblity
of mates with pasting we conclude that Ft∗ ⇒ t∗F becomes an equivalence after
precomposition with Σ∞

+ : C(B)→ Spfib(C)(B). Therefore the claim follows by the
first half of Lemma 6.2.15. �

Proof of Theorem 6.2.14. By the same reduction as in the semiadditive case (The-
orem 4.8.11), we only have to construct for each given X ∈ Γ(D) a left adjoint
functor F : SpPT → D with F (Σ∞

+ (1)) ≃ X .

To this end, we simply observe that Theorem 4.8.11 provides us with a left adjoint
f : CMonPT → D with f(P(1)) ≃ X , and by the previous proposition f factors as

CMonPT
Σ∞
−−→ Spfib(CMonPT ) = SpPT

F−→ D
for some left adjoint F , which is then the desired functor. �

Corollary 6.2.18. Let S be a T -∞-category equivalent to SpcT and let D be a
locally small T -cocomplete P -stable T -∞-category. Then we have an equivalence

FunLT (Σ
∞
+ ,D) : FunLT (SpP (S),D)

≃−−→ FunLT (S,D). �



98 BASTIAAN CNOSSEN, TOBIAS LENZ, AND SIL LINSKENS

7. The universal property of global spectra

In this section, we will prove the main result of this article: an interpretation of
the global ∞-category of global spectra, defined via certain localizations of sym-
metric G-spectra generalizing [Sch18, Hau19], in terms of the abstract stabilization
procedure we have described in the previous section.

7.1. Stable G-global homotopy theory. We start by recalling the ∞-category
of G-global spectra for a finite group G, and then show how these assemble for
varying G into a global ∞-category Spgl.

Definition 7.1.1. We write Spectra for the category of symmetric spectra in the
sense of [HSS00, Definition 1.2.2]. We will as usual evaluate symmetric spectra
more generally at all finite sets (and not only at the standard sets {1, . . . , n} for
n ≥ 0), see e.g. [Hau17, 2.4].

We write G-Spectra for the category of G-objects in Spectra and call its objects
(symmetric) G-spectra.

For a finite groupG, we refer the reader to [Hau17, Definition 2.35] for the definition
of G-stable equivalences of symmetric G-spectra, to which we will refer as G-weak
equivalences below.

Definition 7.1.2. Let G be a finite group and let f : X → Y be a map of symmetric
G-spectra. We call f a G-global weak equivalence if ϕ∗f is an H-weak equivalence
for every group homomorphism ϕ : H → G (not necessarily injective).

Theorem 7.1.3 (See [Len20, Proposition 3.1.20 and Theorem 3.1.41]). There is a
unique (combinatorial) model structure on G-Spectra with

• weak equivalences the G-global weak equivalences and
• acyclic fibrations those maps f such that f(A)ϕ is an acyclic Kan fibration
for all finite sets A, all H ⊂ ΣA, and all ϕ : H → G.

We call this the projective G-global model structure. �
Remark 7.1.4. For G = 1 the above was first studied by Hausmann [Hau19], who
also exhibited it as a Bousfield localization of Schwede’s global orthogonal spectra
[Sch18, 4.1] at certain ‘Fin-global weak equivalences,’ see [Hau19, Theorem 5.3].

Lemma 7.1.5 (See [Len20, Lemma 3.1.49]). Let α : G→ H be a homomorphism.
Then the adjunction

α! : G-SpectraG-gl proj ⇄ H-SpectraH-gl proj :α
∗

is a Quillen adjunction with homotopical right adjoint. �

There are also injective analogues of the above model structures that will become
useful below:

Theorem 7.1.6 (See [Len20, Corollary 3.1.46]). There is a unique (combinatorial)
model structure on G-Spectra with

• weak equivalences the G-global weak equivalences and
• cofibrations the injective cofibrations (i.e. levelwise injections).

We call this the injective G-global model structure. �
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7.1.1. Relation to unstable G-global homotopy theory. Passing to pointwise local-

izations as before, we get a global∞-category Spgl such that Spgl(G) = SpglG is the
∞-category of G-global spectra, with functoriality given via restriction. Let us now
relate this to the unstable models from 3.1.

Construction 7.1.7. Let X be an I-space (or, more generally, an I-space). Then
we define its unbased suspension spectrum Σ•

+X , cf. [SS12, discussion before Propo-
sition 3.19], via

(Σ•
+X)(A) := SA ∧X(A)+ = ΣA+X(A)

with the diagonal ΣA-action and with structure maps given by

SA ∧ (Σ•
+X)(B) = SA ∧

(
SB ∧X(B)+

) ∼= SA∐B ∧X(B)+

SA∐B∧X(incl)−−−−−−−−−→ SA∐B ∧X(A ∐B)+ = (Σ•
+X)(A ∐B)

where the unlabelled isomorphism is the canonical one.

This has a right adjoint Ω• (e.g. by the Special Adjoint Functor Theorem); for any
finite group G, we get an induced adjunction G-I-SSet ⇄ G-Spectra by pulling
through the G-actions, which we again denote by Σ•

+ ⊣ Ω•.

Warning 7.1.8. Beware that [Len20] uses different (more elaborate) notation for
the right adjoint, reserving the above for the right adjoint of Σ•

+ : G-I-SSet →
G-Spectra. However, as the latter adjoint will play no role here, we have decided
to use the above, simpler notation.

Lemma 7.1.9 (See [Len20, Proposition 3.2.2, Corollary 3.2.6, and Remark 3.2.7]).
The above functor Σ•

+ preserves G-global weak equivalences and it is part of a
Quillen adjunction

Σ•
+ : G-I-SSetG-gl ⇄ G-SpectraG-gl proj :Ω

•. �

In particular, we get a global functor Σ•
+ : Sgl → Spgl, and this admits a pointwise

adjoint RΩ• as Quillen adjunctions induce adjunctions of∞-categories. In fact we
have:

Proposition 7.1.10. The global functor Σ•
+ : Sgl → Spgl admits a parametrized

right adjoint, given pointwise by the right derived functors RΩ•.

We will denote this right adjoint simply by RΩ• again.

Proof. As we already know that these form pointwise right adjoints, it only re-
mains to verify the Beck-Chevalley condition, i.e. that for every α : H → G the
canonical mate α∗RΩ• ⇒ RΩ•α∗ is an equivalence. This can be checked on the
level of homotopy categories, for which we pick a fibrant replacement functor for
the projective H-global model structure on H-Spectra, i.e. an endofunctor P tak-
ing values in projectively fibrant objects together with a natural transformation
ι : id ⇒ P that is levelwise an H-global weak equivalence. As Σ•

+ and α∗ are ho-
motopical (Lemma 7.1.9 and Lemma 7.1.5, respectively) and Ω• is right Quillen
(Lemma 7.1.9 again), the mate is then represented for any fibrant G-spectrum X
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by the lower composite α∗Ω•X → Ω•Pα∗X in the diagram

α∗Ω•X Ω•Σ•
+α

∗Ω•X Ω•α∗Σ•
+Ω

•X Ω•α∗X

Ω•PΣ•
+α

∗Ω•X Ω•Pα∗Σ•
+Ω

•X Ω•Pα∗X

η

ι

ε

ι ι

ε

in which the two squares commute simply by naturality. However, the top composite
is simply the identity (as the adjunction was defined by pulling through the actions);
on the other hand, ι : α∗X → Pα∗X is an H-global weak equivalence of fibrant
objects (α∗ being right Quillen), hence Ω•ι : Ω•α∗X → Ω•Pα∗X is an H-global
weak equivalence by Ken Brown’s Lemma (Ω• being right Quillen). The claim now
follows by 2-out-of-3. �

7.1.2. A t-structure. The model structures from Theorems 7.1.3 and 7.1.6 are stable
[Len20, Proposition 3.1.48], and so SpglG is a stable ∞-category. We will close this
discussion by establishing a t-structure on it which generalizes Schwede’s t-structure
on the global stable homotopy category from [Sch18, Theorem 4.4.9]. For this we
first introduce:

Construction 7.1.11. LetH be a finite group, let ϕ : H → G be a homomorphism,
and let k ∈ Z. If X is any G-global spectrum, then the k-th ϕ-equivariant homotopy
group πϕk (X) is the usual equivariant homotopy group πHk (ϕ∗X), i.e. the hom set

[ΣkS, ϕ∗X ] in theH-equivariant stable homotopy category, with the group structure
coming from semiadditivity.

Equivalently (but more intrinsically), we can also describe πϕk (X) as the hom set

[Σ•+k
+ I(H, –)×ϕG,X ] in the homotopy category of SpglG, see [Len20, Corollary 3.3.4].

Theorem 7.1.12. The stable∞-category SpglG is compactly generated by the objects
Σ•

+I(H, –)×ϕG for homomorphisms ϕ : H → G from finite groups to G. Moreover,
it admits a right complete t-structure with

(1) connective part (SpglG)≥0 those G-global spectra that are G-globally connective,
i.e. πϕkX = 0 for all k < 0,

(2) coconnective part (SpglG)≤0 those G-global spectra that are G-globally coconnec-
tive, i.e. ϕϕkX = 0 for all k > 0.

Here we recall [Lur17, p. 44] that a t-structure on a stable ∞-category C is called
right complete if the truncations exhibit C as the inverse limit

· · · τ≥−2−−−→ C≥−2
τ≥−1−−−→ C≥−1

τ≥0−−→ C≥0.

By [Lur17, Proposition 1.2.1.19] this is equivalent to demanding that
⋂
n C≤−n

consist only of zero objects.

Proof. We first observe that theG-global spectra Σ•
+I(H, –)×ϕG for finite groupsH

(up to isomorphism) and homomorphisms ϕ : H → G form a set of compact gener-
ators. Indeed, the ϕ-equivariant homotopy groups for varying ϕ detect zero objects
as the H-equivariant homotopy groups for everyH do [Hau17, Proposition 4.9-(iii)],
and they moreover commute with coproducts as the classical equivariant homotopy

groups do (by the same argument) and since ϕ∗ : SpglG → SpH is a left adjoint by
[Len20, Corollary 3.3.4].
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With this established, [Lur17, Proposition 1.4.4.11] yields a t-structure on SpglG with

connective part (SpglG)≥0 the smallest subcategory closed under small colimits and
extensions containing all the Σ•

+I(H, –) ×ϕ G. We claim that this has the desired
properties.

To see this, we let Y be a G-global spectrum. Then the non-negative homotopy
groups of Y vanish if and only if maps(Σ•

+I(H, –)×ϕ G, Y ) ≃ 0 for all ϕ : H → G.
On the other hand, the class of objects X for which maps(X,Y ) ≃ 0 is closed under

colimits and extensions, so it has to contain all of (SpglG)≥0 in this case, i.e. (SpglG)≤−1

consists precisely of those objects with trivial non-negative homotopy groups. As
suspension shifts (H-equivariant, hence G-global) homotopy groups, this proves the
characterization of the coconnective objects.

On the other hand, the connective G-global spectra contain all the Σ•
+I(H, –) ×ϕ

G’s and they are closed under small coproducts (see above) as well as cofibers

and extensions (by the long exact sequence), i.e. every object in (SpglG)≥0 is G-
globally connective. Conversely, if X is G-globally connective, then there is a

cofiber sequence X≥0 → X → X≤−1 with X≥0 ∈ (SpglG)≥0 and X≤−1 ∈ (SpglG)≤−1

by what it means to be a t-structure. But then X≥0 is G-globally connective by
the above, whence so is the cofiber X≤−1. But on the other hand X≤−1 has trivial

non-negative homotopy groups, so X≤−1 ≃ 0 and hence X ≃ X≥0 ∈ (SpglG)≥0 as
claimed.

This finishes the construction of the desired t-structure. Right completeness is

immediate as any object in
⋂
n≥0(Sp

gl
G)≤−n has trivial homotopy groups. �

7.2. From global Γ-spaces to global spectra. Segal’s classical Delooping Theo-
rem [Seg74] relates (very special) Γ-spaces to connective spectra. We will now recall
a G-global refinement of this from [Len20] and interpret it in the parametrized con-
text.

Construction 7.2.1. We define a functor E⊗ : Γ-I-SSet∗ → Spectra from the
1-category of global Γ-spaces X satisfying X(0+) = ∗ to symmetric spectra via the
SSet∗-enriched coend

E⊗X :=

∫ T+∈Γ

S×T ⊗X(T+)

with the evident functoriality in X ; here ⊗ denotes the pointwise smash product
of a spectrum with a pointed I-simplicial set, see [Len20, Construction 3.2.9].

For any finite group G, pulling through the G-actions yields a functor

E⊗ : Γ-G-I-SSet∗ → G-Spectra

that we again denote by E⊗.
Proposition 7.2.2. For any finite G, there is a model structure on Γ-G-I-SSet∗
in which a map f is a weak equivalence or fibration if and only if f(S+) is a weak
equivalence or fibration in the model structure on (G×ΣS)-I-SSet from Theo-
rem 3.1.12 for every finite set S; in particular, its weak equivalences are precisely
the G-global level weak equivalences.

Moreover, the above functor E⊗ is homotopical and part of a Quillen adjunction

E⊗ : Γ-G-I-SSet∗ ⇄ G-SpectraG-gl inj :Φ
⊗.
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Proof. The existence of the model structure is part of [Len20, Theorem 2.2.31],
while the remaining statements appear as Corollaries 3.4.20 and 3.4.24 of op. cit. �
Remark 7.2.3. While the precise form of the above right adjoint will not be
relevant below, we record that there is a natural isomorphism (Φ⊗X)(1+) ∼= Ω•X ,
see [Len20, Construction 3.2.17]. Restricting to injectively fibrant objects, we in
particular immediately obtain an equivalence URΦ⊗ ≃ RΩ• of derived functors for
any fixed G.

Passing to localizations, E⊗ induces a global functor ΓSgl
I,∗ → Spgl.

Lemma 7.2.4. The global functor E⊗ : ΓSgl
I,∗ → Spgl admits a parametrized right

adjoint which is pointwise given by the RΦ⊗.

We will denote this parametrized right adjoint simply by RΦ⊗ again.

Proof. It only remains to prove that for every α : H → G the mate transformation
α∗RΦ⊗ ⇒ RΦ⊗α∗ at the level of homotopy categories is an equivalence. By the
same computation as in Proposition 7.1.10 this reduces to showing that for any
injectively fibrant G-global spectrum X and some (hence any) injectively fibrant
replacement ι : α∗X → Y of G-global spectra the induced map Φ⊗ι : Φ⊗α∗X →
Φ⊗Y = RΦ⊗α∗X is an H-global level weak equivalence. This is precisely the
content of [Len20, claim in proof of Proposition 3.4.30]. �
Definition 7.2.5. A special G-global Γ-space X ∈ Γ-G-I-SSet∗ is called very
special if for every finite group H , every homomorphism ϕ : H → G, and some
(hence any) completeH-set universe UH the induced monoid structure on πϕ0 (X) :=
π0

(
(ϕ∗X)(1+)(UH)

)
coming from the zig-zag

X(1+)×X(1+)
ρ←−
∼
X(2+)

X(µ)−−−→ X(1+),

where µ is defined by µ(1) = µ(2) = 1, is a group structure. We write ΓSgl, vspc
I,∗ ⊂

ΓSgl
I,∗ for the full global subcategory of very special objects.

Remark 7.2.6. The above condition is equivalent to ϕ∗X(UH) being very special
as an H-equivariant Γ-space in the sense of [Ost16, Definition 4.5] for every H and
ϕ as above, see [Len20, discussion after Definition 3.4.12].

We can now rephrase the G-global delooping theorem [Len20, Theorem 3.4.21] in
our setting as follows:

Theorem 7.2.7. The parametrized adjunction E⊗ ⊣ RΦ⊗ restricts to an equiva-

lence ΓSgl, vspc
I,∗ ≃ Spgl≥0. �

Finally, we want to reinterpret this in terms of equivariant stabilizations, in the
sense of Example 6.2.3

Theorem 7.2.8. The global∞-category Spgl is equivariantly stable and the functor

RΦ⊗ : Spgl → ΓSgl, spc
I,∗ (19)

is the universal equivariant stabilization.

For the proof of the theorem we will need two lemmas:
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Lemma 7.2.9. The adjunction incl : (SpglG)≥0 ⇄ SpglG :τ≥0 is the universal stabi-
lization in the world of presentable ∞-categories.

Proof. By Theorem 7.1.12, (SpglG)≥0 is the connective part of a right complete t-
structure. As mentioned without proof in the introduction of [Lur18, Appendix
C], this formally implies the statement of the lemma. Let us give the argument
in this generality for completeness: given a right complete t-structure on a stable
∞-category C we consider the diagram

· · · C≥0 C≥0 C≥0

· · · C≥−2 C≥−1 C≥0

Ω

Ω2≃

Ω Ω
≃

Ω≃ id≃

τ≥−2 τ≥−1 τ≥0

where the little squares are filled by the total mates of the identity transforma-
tions Σn ◦ incl = Σn−1 ◦ Σ. Passing to row-wise homotopy limits we then get a
commutative diagram

Sp(C≥0) = limn C≥0

C≥0

limn C≥−n

Ω∞=pr0

limn Ωn

pr0

in which the vertical map on the left is an equivalence as a homotopy limit of
equivalences. On the other hand, by right completeness the lower map agrees up to
equivalence with τ≥0 : C→ C≥0; the claim follows immediately as Ω∞ : Sp(C≥0)→
C≥0 is the universal stabilization by [Lur17, Remark 1.4.2.25]. �

Lemma 7.2.10. Let T be an∞-category and let U : D → C be a T -functor such that
D is fiberwise stable, C has fiberwise finite limits, and each U(A) : D(A)→ C(A) is
a stabilization in the non-parametrized sense. Then U is a fiberwise stabilization.

Put differently, if we already know fiberwise stability of the source, then fiberwise
stabilizations can be checked pointwise without regards to any homotopies or higher
structure.

Proof. In the naturality square

Spfib(D) Spfib(C)

D C
Ω∞

Spfib(U)

Ω∞

U

the left hand vertical arrow is an equivalence as D is fiberwise stable, and so is the
top horizontal map as

(
Spfib(U)

)
(A) = Sp

(
U(A)

)
and each U(A) was assumed to

be a stabilization. Finally, the right hand vertical map is a fiberwise stabilization
by construction, so the claim follows immediately. �
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Proof of Theorem 7.2.8. As each SpglG is stable and all restriction maps between
them are exact (being right adjoints), it will suffice by the previous lemma that

RΦ⊗ : SpglG → ΓSgl, spc
I,∗ (G)

is a stabilization in the non-parametrized sense for every fixed G, for which it
suffices by stability of the source that this induces an equivalence after applying
spectrification. By Lemma 7.2.9, it suffices to show this for the restriction to

(SpglG)≥0, for which it is then in turn enough by Theorem 7.2.7 that the inclusion

incl : ΓSgl, vspc
I,∗ (G) →֒ ΓSgl, spc

I,∗ (G) of very special G-global Γ-spaces induces an
equivalence after spectrification.

For this we observe that the loop space functor Ω: ΓSgl, spc
I,∗ (G)→ ΓSgl, spc

I,∗ (G) fac-

tors through ΓSgl, vspc
I,∗ (G) as for any special G-global Γ-space X the commutative

monoid structure on πϕ0 (ΩX) coming from the Γ-space structure agrees with the
group structure coming from Ω by the Eckmann-Hilton argument. It is then clear

that for the induced functor Sp(Ω): Sp(ΓSgl, spc
I,∗ (G))→ Sp(ΓSgl, vspc

I,∗ (G)) the com-

posites Sp(incl) Sp(Ω) and Sp(Ω) Sp(incl) are given by the respective loop functors,
so they are equivalences by stability. The claim follows by 2-out-of-6. �

7.3. Proof of Theorem C. Using the above we now easily get:

Theorem 7.3.1. The functor RΩ• : Spgl → Sgl exhibits Spgl as the equivariantly
stable envelope of Sgl, i.e. for every equivariantly stable global ∞-category C post-
composition with RΩ• induces an equivalence

FunOrb-lex
Glo (C,RΩ•) : FunOrb-ex

Glo (C,Spgl)→ FunOrb-lex
Glo (C,Sgl).

Moreover, the left adjoint Σ•
+ exhibits Spgl as the equivariantly stable completion

in the following sense: for any globally cocomplete equivariantly stable global ∞-
category D precomposition with Σ•

+ yields an equivalence

FunLGlo(Σ
•
+,D) : FunL

Glo(Sp
gl,D)→ FunLGlo(S

gl,D).

Proof. By Theorem 6.2.13 and Corollary 6.2.18, respectively, together with Corol-
lary 5.3.7 it will suffice to show that the diagrams

Spgl Sgl

ΓSgl, spc
I,∗

RΩ•

RΦ⊗ U
and

Spgl Sgl

ΓSgl, spc
I,∗

Σ•
+

E⊗ P

of global functors commute up to equivalence.

By uniqueness of adjoints, it suffices to prove this for the second diagram, for which

it is enough by the universal property of global spaces to chase through ∗ ∈ Sgl
1 ;

in particular, it suffices to show that this commutes after evaluation at the trivial
group. But by uniqueness of adjoints again, it is then enough to prove this for the
diagram on the left instead, where this is immediate from Remark 7.2.3. �

Together with Theorem 3.3.2 we then immediately get Theorem C from the intro-
duction:
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Theorem 7.3.2. Let D be any globally cocomplete equivariantly stable global ∞-

category. Then evaluation at the global sphere spectrum S ∼= Σ•
+(∗) ∈ Spgl1 defines

an equivalence

FunLGlo(Sp
gl,D) ≃−−→ D.

Put differently, Spgl is the free globally cocomplete (or presentable) Orb-stable global
∞-category on one generator (namely, the global sphere spectrum S). �

Comparing universal properties we can also reformulate this as follows:

Corollary 7.3.3. The essentially unique left adjoint functor SpOrb
Glo → Spgl sending

Σ∞
+ (∗) to S is an equivalence. �

Appendix A. Slices of (2, 1)-categories

In this short appendix we will prove that for a strict (2, 1)-category the∞-categorical
and 2-categorical slices agree. More precisely:

Proposition A.1. Let C be a strict (2, 1)-category. Then the cocartesian fibration

ev1 : N∆(C)∆
1 → N∆(C) classifies the homotopy coherent nerve of the composition

C
C/•−−→ Cat(2,1)

N∆−−→ Cat∞.

Proof. We begin by making the 2-categorical Grothendieck construction π : Gr → C
(Construction 5.2.5) of the functor C/• : C→ Cat(2,1) explicit, which, upon passing
to homotopy coherent nerves, will then yield a concrete model of the unstraighten-
ing:

(1) An object of Gr is a morphism f : X → Y in C.
(2) A morphism f → g is a diagram

X1 X2

Y1 Y2

x

f g

y

θ (20)

(the pair (x, θ) being a morphism from the pushforward C/y(f) to g in C/Y2
).

Composition of morphisms is given by composition of 1-cells and pasting of
2-cells in C.

(3) A 2-cell between two such morphisms (x, θ, y), (x′, θ′, y′) is a pair of a 2-cell
σ : x⇒ x′ and a 2-cell τ : y ⇒ y′ such that the pastings

X1 X2

Y1 Y2

f

x′

x

σ

g

y

θ
and

X1 X2

Y1 Y2

f

x′

g

y′

y

θ′

τ

agree. Horizontal and vertical composition of 2-cells is given by horizontal and
vertical composition, respectively, in C.
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The projection π : Gr → C sends an object f : X → Y to Y , a morphism (20) to y,
and a 2-cell (σ, τ) to τ .

The homotopy coherent nerve N∆(Gr) is then a strictly 3-coskeletal simplicial set,
hence it suffices to describe the 2-truncation and to characterize which diagrams
∂∆3 → N∆(G) extend over ∆3. Unravelling the definitions, we get:

(1) A vertex of N∆(G) is a morphism f : X → Y in C.
(2) An edge f → g in N∆(G) is a diagram (20).
(3) A 2-simplex with boundary

X0 X1

Y0 Y1

f0

x01

f1
θ01

y01

X1 X2

Y1 Y2

f1

x12

f2
θ12

y12

X0 X2

Y0 Y2

f0

x02

f2
θ02

y02

amounts to the data of a natural transformation σ : x02 ⇒ x12x01 and a natural
transformation τ : y02 ⇒ y12y01 such that the two pastings

X0 X1 X2

Y0 Y1 Y2

f0

x01

f1
θ01

x12

f2
θ12

y02

y01

τ

y12

and

X1

X0 X2

Y0 Y2

x12x01

f0

x02

σ

f2
θ02

y02

agree.
(4) A diagram ∂∆3 → N∆(Gr) corresponding to

X1

X0 X2

x12x01

x02

σ012

X1

X0 X3

x13x01

x03

σ013

X2

X0 X3

x23x02

x03

σ023

X2

X1 X3

x23x12

x13

σ123

Y1

Y0 Y2

y12y01

y02

τ012

Y1

Y0 Y3

y13y01

y03

τ013

Y2

Y0 Y3

y23y02

y03

τ023

Y2

Y1 Y3

y23y12

y13

τ123

(21)

extends to ∆3 if and only if the pastings

X0 X1

X3 X2

x02

x01

x03 x12

σ012

σ023

x23

and

X0 X1

X3 X2

x01

x03 x12x13

x23

σ123

σ013

agree, and likewise for the τ ’s. Put differently, ∂∆3 → N∆(Gr) extends over
∆3 if and only if the two maps ∂∆3 → N∆(C) defined by (21) extend over ∆3.
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The degeneracy map N∆(Gr)0 → N∆(Gr)1 is given by sending f : X → Y to the
square

X X

Y Y

id

f f

id

id

and similarly the degeneracies N∆(Gr)1 → N∆(Gr)2 are given by inserting identity
arrows and identity 2-cells.

The map N∆(π) : N∆(Gr)→ N∆(C) is the evident forgetful map. It then remains

to construct an equivalence N∆(Gr) ≃ N∆(C)∆
1

of cocartesian fibrations over
N∆(Gr).

For this we observe that N∆(C)∆
1

is again strictly 3-coskeletal (as N∆(C) is), and
that unravelling definitions it can be described as follows:

(1) A vertex of N∆(C)∆
1

is a morphism f : X → Y in C.
(2) An edge f → g in N∆(C)∆

1

is a diagram

X1 X2

Y1 Y2.

f

x

g

θ

θ′

y

(22)

(3) A 2-simplex in N∆(C)∆
1

with boundary

X0 X1

Y0 Y1

f0

x01

f1
θ01

y01

X1 X2

Y1 Y2

f1

x12

f2
θ12

y12

X0 X2

Y0 Y2

f0

x02

f2
θ02

y02

(where we have pasted the two natural isomorphisms and omitted the middle
arrow) amounts to the data of a natural transformation σ : x02 ⇒ x12x01 and
a transformation τ : y02 ⇒ y12y01 satisfying the same conditions as for N∆(G).

(4) A diagram ∂∆3 → N∆(C)∆
1

corresponding to (21) extends to ∆3 if and only if
it satisfies the same pasting condition as for N∆(G), i.e. if and only if the two
maps ∂∆3 → N∆(C) defined by the above extend to ∆3.

In each case, the degeneracy maps are again given by inserting identity arrows and
2-cells.

It is then straight-forward to check that we have a unique map Φ: N∆(C)∆
1 →

N∆(Gr) that is the identity on vertices, sends an edge (22) to the edge given by

pasting of θ and (θ′)−1, and that sends a 2-simplex of N∆(C)∆
1

corresponding to
σ : x02 ⇒ x12x01, τ : y02 ⇒ y12y01 to the 2-simplex of N∆(Gr) corresponding to
the same transformations. This is clearly a map over N∆(C) and so by [Lur09,
Proposition 3.1.3.5] it only remains to show that it induces equivalences on fibers.

It is bijective on objects by definition, so it only remains to prove that for all
f : X1 → Y , g : X2 → Y the induced map

HomL
(N∆(C)∆1)Y

(f, g)→ HomL
N∆(Gr)Y (f, g) (23)
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is a weak homotopy equivalence. However, both sides are nerves of groupoids, so
it is enough to show that it is surjective on vertices and that for any two vertices
α, β on the left hand side it induces a bijection between edges α → β and edges
between their images.

For the first statement, it suffices to observe that by definition (23) is given on
vertices by the effect of Φ on edges f → g; thus, given any edge (x, idY , σ) of
N∆(G)Y , a preimage is given by

X1 X2

Y Y .

f f

x

g

σ

id

id

Similarly, the effect of (23) on edges is induced by the effect of Φ on 2-cells, so it
follows immediately from the above description that it induces bijections between
edges α→ β and edges between their images. �

Remark A.2. Let I be a (say, strict) (2, 1)-category; as announced in [Dus01], the
∞-categorical functor category N∆(C)N∆(I) can be identified with the homotopy

coherent nerve of the strict (2, 1)-category Funpseudo(I, C) of normal (i.e. strictly
unital) pseudofunctors I→ C, pseudonatural transformations, and modifications.
If one is willing to take this for granted, the proof of the proposition can be sig-
nificantly shortened, as the above Grothendieck construction Gr is canonically iso-
morphic to Funpseudo([1], C).

However, the authors are unaware of any place in the literature where such a com-
parison is actually proven: in particular, the announced sequel to [Dus01] appar-
ently never appeared. On the level of objects (i.e. that maps N∆(I) → N∆(C)
correspond to normal pseudofunctors I→ C) a detailed proof is given as [Lur23,
Tag 00AU]. The statement that at least every pseudonatural transformation of func-
tors I → C gives rise to a transformation of maps N∆(I) → N∆(C) appears as
[BFB05, Proposition 4.4], but its proof is left as an exercise.
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parametrized higher category theory, arXiv:1608.03657 (2016).

[BFB05] Manuel Bullejos, Emilio Faro, and Vicente Blanco, A full and faithful nerve for 2-
categories, Appl. Categ. Struct. 13 (2005), no. 3, 223–233.

[Boh14] Anna Marie Bohmann, Global orthogonal spectra, Homology, Homotopy Appl. 16
(2014), no. 1, 313–332.



PARAMETRIZED STABILITY AND THE UNIV. PROPERTY OF GLOBAL SPECTRA 109

[Buc14] Mitchell Buckley, Fibred 2-categories and bicategories, J. Pure Appl. Algebra 218
(2014), no. 6, 1034–1074.

[Car84] Gunnar Carlsson, Equivariant stable homotopy and Segal’s Burnside ring conjecture,
Ann. Math. (2) 120 (1984), 189–224.

[Car91] , Equivariant stable homotopy and Sullivan’s conjecture, Invent. Math. 103
(1991), no. 1, 497–525.

[DK84] W. G. Dwyer and D. M. Kan, Singular functors and realization functors, Indag.
Math. 46 (1984), 147–153.

[Dus01] John W. Duskin, Simplicial matrices and the nerves of weak n-categories I: Nerves
of bicategories, Theory Appl. Categ. 9 (2001), 198–308.

[Elm83] Anthony D. Elmendorf, Systems of fixed point sets, Trans. Am. Math. Soc. 277
(1983), 275–284.
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PARTIAL PARAMETRIZED PRESENTABILITY AND

THE UNIVERSAL PROPERTY OF EQUIVARIANT SPECTRA

BASTIAAN CNOSSEN, TOBIAS LENZ, AND SIL LINSKENS

Abstract. We introduce a notion of partial presentability in parametrized
higher category theory and investigate its interaction with the concepts of
parametrized semiadditivity and stability from [CLL23]. In particular, we
construct the free partially presentable T -categories in the unstable, semiaddi-
tive, and stable contexts and explain how to exhibit them as full subcategories
of their fully presentable analogues.

Specializing our results to the setting of (global) equivariant homotopy the-

ory, we obtain a notion of equivariant presentability for the global categories of
[CLL23], and we show that the global category of genuine equivariant spectra
is the free global category that is both equivariantly presentable and equiv-
ariantly stable. As a consequence, we deduce the analogous result about the
G-category of genuine G-spectra for any finite group G, previously formulated
by [Nar17].
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1. Introduction

The term equivariant mathematics was coined by Balmer and dell’Ambrogio [BD20]
to refer in a unified way to the study of objects with group actions across a wide
range of mathematical disciplines, for example in representation theory or equi-
variant homotopy theory. Given a group homomorphism α : H → G, any G-
action on an object X can naturally be restricted to an H-action, and accord-
ingly most notions of ‘equivariant objects’ give rise to global categories : collections

1
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of (∞-)categories1 C(G) for every finite group G equipped with suitably coherent
restriction functors α∗ : C(G) → C(H), or more precisely categories parametrized
over the 2-category Glo of finite connected groupoids.

Many fundamental concepts of (higher) category theory have analogues in the world
of global categories, leading for instance to notions of presentability, equivariant
semiadditivity, and equivariant stability. These properties were introduced and
studied by the present authors in the previous article [CLL23], where we in partic-
ular showed that the universal presentable, presentable equivariantly semiadditive,
and presentable equivariantly stable global categories all admit explicit models in
terms of global homotopy theory in the sense of [Sch18, Hau19, Len20].

The presentability condition on a global category C used in these results is quite
strong: in particular, it demands the existence of left adjoints to all restriction
functors α∗ : C(G) → C(H). This is in fact too strong for certain applications:
several interesting examples, like the global category sending G to the category of
genuine G-spectra, only admit such adjoints for injective homomorphisms.

In this article, we will therefore introduce and study a weaker notion of presentabil-
ity for global categories called equivariant presentability, which emphasizes the role
of the subgroup inclusions among all group homomorphisms and allows one to
capture these additional examples. As our main results, we will show that the
universal examples of equivariantly presentable global categories in the unstable,
semiadditive, and stable contexts are given by equivariant homotopy theory:

Theorem A (Universal property of equivariant spaces, Theorem 5.3). The global
category S which associates to a finite group G the category SG of G-spaces is the
free equivariantly presentable global category on one generator: for every equiv-
ariantly presentable global category D, evaluation at the 1-point space ∗ ∈ S(1)
induces an equivalence of global categories

Funeq-ccGlo (S,D) ∼−−→ D
where the left hand side denotes a certain global category of ‘equivariantly cocon-
tinuous’ functors.

Theorem B (Universal property of equivariant special Γ-spaces, Theorem 7.17).
The global category ΓSspc

∗ which associates to each finite group G the category
of special Γ-G-spaces in the sense of Shimakawa [Shi89] is the free equivariantly
presentable equivariantly semiadditive global category on one generator: for every
equivariantly presentable equivariantly semiadditive global category D evaluation
at the free commutative monoid P(∗) provides an equivalence of global categories

Funeq-cc
Glo (ΓSspc

∗ ,D) ∼−−→ D.
Theorem C (Universal property of genuine equivariant spectra, Theorem 9.4).
The global category Sp which associates to a finite group G the category SpG of
genuine G-spectra is the free equivariantly presentable equivariantly stable global
category on one generator: for any other such D evaluation at the sphere spectrum
S defines an equivalence

Funeq-ccGlo (Sp,D) ∼−−→ D.

1We work in the context of higher category theory throughout, and so we will refer to ∞-
categories simply as ‘categories.’
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In this sense, the original, stronger notion of presentability from [CLL23] can be
viewed as a characteristic feature of global homotopy theory, distinguishing it from
classical equivariant homotopy theory, and we will accordingly use the term global
presentability for it below.

Partial presentability in parametrized higher category theory. The above
notions of equivariant presentability, semiadditivity, and stability are in fact in-
stances of more general notions defined in the setting of parametrized higher cate-
gory theory as introduced in [BDG+16]. Such parametrized notions usually come
in various degrees of ‘parametrized refinement’: in particular, [CLL23] studied var-
ious levels of semiadditivity and stability that can exist in a parametrized category,
encoded in the choice of a so-called atomic orbital subcategory of the parametrizing
category T . Equivariant stability and semiadditivity of global categories correspond
to the case of the wide subcategory Orb ⊂ Glo of faithful functors.

To study the analogous situation for presentability of parametrized categories, we
introduce clefts S ⊂ T in the present article and associate to each of them a notion
of presentability, interpolating between näıve, or ‘fiberwise,’ presentability and the
full parametrized presentability considered e.g. in [MW22, Hil22, CLL23]. The
aforementioned atomic orbital subcategories are examples of clefts, and equivariant
presentability of global categories is again recovered from the case Orb ⊂ Glo.

Definition (Definition 4.3, Lemma 4.9). A T -category C : T op → Cat is said to be
S-presentable if the following conditions are satisfied:

(1) C is fiberwise presentable, i.e. it factors through the non-full subcategory

PrL ⊂ Cat of presentable categories and colimit-preserving functors.
(2) For every morphism f : A → B in S, the restriction f∗ : C(B) → C(A)

admits a left adjoint f! : C(A) → C(B), and these left adjoints satisfy base
change for pullbacks along arbitrary maps in T (see Lemma 4.9 for a precise
definition).

As one of our key technical results (Theorem 3.9), we moreover show how clefts
give rise to fractured ∞-topoi in the sense of [Lur18, Definition 20.1.2.1], which
allows us to investigate the behavior of partial presentability under changing the
parametrizing category along a cleft. Using this ‘change of parameter’ yoga, we then
establish analogues of the results from [MW21, CLL23] in the partial parametrized
world by constructing the free unstable, semiadditive, and stable examples of S-
presentable T -categories, and relating them both to the corresponding universal
S-presentable S-categories as well as T -presentable T -categories:2

Theorem D (Theorem 8.11). Let S ⊂ T be a cleft, and let P ⊂ T be an atomic
orbital subcategory such that P ⊂ S. Then there exists an S-presentable P -stable
T -category SpPS⊲T with the following universal property: for any S-presentable P -
stable T -category D, evaluation at a certain object S induces an equivalence

FunS-ccT (SpPS⊲T ,D) ∼−−→ D.
Moreover, the underlying S-category of SpPS⊲T agrees with the free S-presentable
P -stable S-category SpPS .

2For brevity we only state the stable cases of these theorems here, and we refer the reader to
Lemma 3.17 and Corollary 4.27 resp. Theorems 6.18 and 6.19 for the unstable and semiadditive
versions.
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Theorem E (Theorem 8.12). Let P ⊂ S ⊂ T be as above and consider the unique
S-cocontinuous T -functor

ι! : Sp
P
S⊲T → SpPT

sending S to S. Then ι! is fully faithful, and its underlying S-functor sits in a
sequence of S-adjoints ι! ⊣ ι∗ ⊣ ι∗.

This then allows us to deduce Theorems A, B, and C from their global analogues
established in [CLL23]: building on the model categorical results of [Len20], we show
that the global categories S of equivariant spaces, ΓSspc

∗ of equivariant special Γ-
spaces, and Sp of equivariant spectra likewise embed into their global counterparts,
and furthermore that the images of these embeddings match up with those on the
parametrized side.

Outlook. While Theorem E above (together with its unstable and semiadditive
versions) explains how to obtain the S-presentable universal examples as full sub-
categories of their T -presentable analogues, it is sometimes also possible to go the
other way round, and to actually reconstruct the universal fully presentable cate-
gories from the partially presentable ones: namely, as the third author will show
in [Lin23], under somewhat more restrictive conditions on the pair S ⊂ T the
forgetful functor from T -presentable to S-presentable T -categories admits a left
adjoint, which can be explicitly computed in terms of certain partially lax limits.
Furthermore this left adjoint preserves the subcategories of P -stable T -categories
for P ⊂ S. Specializing to the inclusion Orb ⊂ Glo again, the main results of the
present paper as well as its prequel [CLL23] then yield a description of G-global
spectra as a partially lax limit of H-equivariant spectra over all homomorphisms
H → G, generalizing the result for G = 1 proven in [LNP22].

Organization. We begin by recalling the necessary background on parametrized
higher category theory in Section 2. We then introduce the notion of a cleft in
Section 3 and explain its connection to fractured ∞-topoi. We moreover show that
any atomic orbital subcategory and any right class of a factorization system give
rise to a cleft, in particular establishing our key example Orb ⊂ Glo.

Section 4 explains how a cleft S of T yields a well-behaved theory of partial pre-
sentability for T -categories, and how general (co)limits behave under changing the
parametrizing category along a cleft. This allows us to reinterpret and extend work
of Martini and Wolf [MW21] on freely adding S-colimits, in particular identifying
the free S-presentable T -category with a full subcategory of the free T -presentable
T -category. In Section 5 we use this to describe the free equivariantly presentable
global category as the underlying global category of a diagram of model categories
of equivariant spaces, proving Theorem A.

In Section 6 we recall the notion of P -semiadditivity from [CLL23] for atomic or-
bital subcategories P ⊂ T . Given a cleft S with P ⊂ S, we then construct the free
S-presentable P -semiadditive T -category as an extension of the corresponding S-
category, and we once again exhibit it as a full subcategory of the free T -presentable
P -semiadditive T -category. Combining this with results from [CLL23], we then
prove Theorem B describing the free equivariantly presentable equivariantly semi-
additive global category in terms of equivariant Γ-spaces in Section 7.
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The final two sections are then devoted to the stable case: In Section 8 we con-
struct the free S-presentable P -stable T -category, and relate it to the corresponding
presentable S- and T -categories, proving Theorems D and E. From this we then
deduce Theorem C in Section 9, giving an explicit model of the free equivariantly
presentable equivariantly stable global category via equivariant stable homotopy
theory.

Conventions. We work in the context of higher category theory throughout, and
refer to ∞-categories as ‘categories.’ We fix a chain of Grothendieck universes
U ∈ V ∈ W, and we will use the terms ‘small category,’ ‘(large) category,’ and ‘very
large category’ to refer to U-small, V-small, and W-small categories, respectively.
A ‘locally small category’ will mean a V-small category such that all its mapping
spaces have U-small homotopy groups.

Acknowledgements. B.C. and S.L. are associate members of the Hausdorff Cen-
ter for Mathematics at the University of Bonn. B.C. is supported by the Max
Planck Institute for Mathematics in Bonn. S.L. is supported by the DFG Schw-
erpunktprogramm 1786 “Homotopy Theory and Algebraic Geometry” (project ID
SCHW 860/1-1).

2. Preliminaries on parametrized higher categories

We begin by recalling the necessary background on parametrized higher category
theory, as developed in [BDG+16, Nar16, Sha21] and, from the perspective of cat-
egories internal to ∞-topoi, in [Mar21, MW21, MW22]. Throughout this section,
let us fix a small category T .

Definition 2.1. A T -category is a functor C : T op → Cat into the (very large)
category of categories. If C and D are T -categories, then a T -functor F : C → D is
a natural transformation from C to D. The category CatT of T -categories is defined
as the functor category CatT := Fun(T op,Cat).

Example 2.2. Define Glo as the (2, 1)-category of finite groups, group homo-
morphisms, and conjugations, i.e. a 2-morphism h : f ⇒ f ′ in Glo between group
homomorphisms f, f ′ : G→ H is an element h ∈ H such that f ′(g) = hf(g)h−1 for
all g ∈ G. In particular, Glo comes with a fully faithful functor B : Glo →֒ Grpd
into the (2, 1)-category of groupoids which sends a finite group G to the correspond-
ing 1-object groupoid BG. We will use the term global category for a Glo-category,
global functor for a Glo-functor, etc.

Example 2.3. For a finite group G, let T = OrbG be the orbit category of G,
the full subcategory of the 1-category of G-sets spanned by the transitive G-sets.
Following [BDG+16], we will refer to OrbG-categories as G-categories.

Let us mention some common examples of T -categories:

Example 2.4. Every presheaf X on T gives rise to a T -category X : T op → Cat
by postcomposing with the inclusion Spc →֒ Cat of spaces into categories. In
particular, every object A ∈ T yields a T -category A via the Yoneda embedding.

Example 2.5. Every category E gives rise to a T -category of T -objects ET , given
by ET (B) = Fun((T/B)

op, E) where the functoriality of T/B is given by straightening

the cocartesian target fibration T [1] → T .
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Example 2.6. Any category E gives rise a constant T -category constE : A 7→ E .
The construction E 7→ constE is left adjoint to the underlying category functor
Γ: CatT → Cat which sends C to Γ(C) := limB∈T op C(B).

Convention 2.7 (cf. [CLL23, Convention 2.1.15]). Any T -category C : T op → Cat
admits a unique extension to a limit-preserving functor PSh(T )op → Cat, which we
will abusively denote by C again. By convention, all limits and colimits of objects
in T are taken in the presheaf category PSh(T ).

Example 2.8. Viewing C as a functor PSh(T )op → Cat as above, its value at the
terminal presheaf 1 is given by the underlying category Γ(C) of C, in the sense of
Example 2.6.

Example 2.9. The category CatT is cartesian closed, i.e. given T -categories C and
D, there is a T -category FunT (C,D) of T -functors, characterized by the property
that there is a natural equivalence

Hom(E ×C,D) ≃ Hom(E ,FunT (C,D))

for every third T -category E . We let

FunT (C,D) := Γ(FunT (C,D))

denote the underlying category of FunT (C,D). By adjunction, its objects can be
identified with T -functors C ≃ C × const[0] → D, while its morphisms are natural
transformations of T -functors, i.e. functors C × const[1] → D.

To describe these functor categories more explicitly, we will use:

Lemma 2.10 (Categorical Yoneda lemma, [CLL23, Corollary 2.2.8]). For every
presheaf B ∈ PSh(T ) and every T -category C, there is an equivalence of categories

FunT (B, C) ∼−−→ C(B),

natural in both variables, determined by the fact that for B ∈ T it is given by
evaluation at the identity idB ∈ HomT (B,B) = B(B). �

Combining this with the (internal) adjunction equivalence for FunT we immediately
get:

Corollary 2.11 (cf. [CLL23, Corollary 2.2.9]). Let C,D ∈ CatT and X ∈ PSh(T ).
There are natural equivalences

FunT (C,D)(X) ≃ FunT (C ×X,D) ≃ FunT
(
C,FunT (X,D)

)
. �

In particular, we can (and will) identify objects of FunT (C,D)(X) with T -functors
C ×X → D or equivalently C → FunT (X,D).

Example 2.12. As PSh(T ) has pullbacks, the target map PSh(T )[1] → PSh(T ) is
a cartesian fibration, so we can straighten it to a functor

SpcT := PSh(T )/• : PSh(T )op → Cat.

Explicitly, this sends X ∈ PSh(T ) to the slice PSh(T )/X and a map f : Y → X
to the pullback functor f∗ : PSh(T )/Y → PSh(T )/X . By [Lur09, Theorem 6.1.3.9
and Proposition 6.1.3.10], this functor preserves limits, so it defines a T -category
via our convention.
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As the notation suggests, this can be identified with the T -category of T -objects
(Example 2.5) in Spc: [CLL23, Remark 2.1.16] constructs an equivalence between
the two which is given in degree A ∈ T by the colimit extension PSh(T/A) →
PSh(T )/A of the slice of the Yoneda embedding T → PSh(T ) over A.

2.1. Adjunctions. In CatT there is a natural notion of (internal) adjunctions : a
T -functor F : C → D is left adjoint to G : D → C if there are natural transformations
η : id ⇒ GF and ε : FG⇒ id satisfying the triangle identities up to homotopy. We
will frequently rely on the following ‘pointwise criterion’ for adjoints:

Proposition 2.13 (see [MW21, Proposition 3.2.8 and Corollary 3.2.10]). A functor
F : C → D of T -categories admits a right adjoint if and only if the following hold:

(1) For every A ∈ T the functor FA : C(A) → D(A) admits a right adjoint GA.
(2) For every f : A → B in T the Beck–Chevalley transformation f∗ ◦ GB ⇒

GA ◦ f∗ given by the composite

f∗GB
η
==⇒ GAFAf

∗GB
∼
==⇒ GAf

∗FBGB
ε
==⇒ GAf

∗

is an equivalence.

Moreover, in this case the following hold:

(1 ′) For every X ∈ PSh(T ) the functor FX : C(X) → D(X) (cf. Convention 2.7)
admits a right adjoint GX .

(2 ′) For every f : X → Y in PSh(T ) the Beck–Chevalley map GXf
∗ ⇒ f∗GY

is an equivalence.

Finally, the right adjoint G is given in degree X ∈ PSh(T ) by GX as above and the
unit and counit are given pointwise by the unit and counit of FX ⊣ GX . �

2.2. Limits and colimits. Next, we come to parametrized notions of limits and
colimits. While this can be developed ‘internally’ using the notions of parametrized
adjunctions and parametrized functor categories, we will instead take a purely
‘pointwise’ perspective in the spirit of the previous proposition in this paper.

Remark 2.14. Below we will for simplicity restrict ourselves to the case of colimits;
the theory of limits is then formally dual.

Definition 2.15. A T -category C is called fiberwise cocomplete if C(A) is co-
complete for every A ∈ T and the restriction f∗ : C(B) → C(A) is cocontinuous
for every f : A → B. A T -functor F : C → D is called fiberwise cocontinuous if
FA : C(A) → D(A) is cocontinuous for every A ∈ T .

Note that in the above situation C(X) is more generally cocomplete for any X ∈
PSh(T ), and for any f : X → Y in PSh(T ) the restriction f∗ : C(Y ) → C(X) is
cocontinuous, see [Lur09, Corollary 5.1.2.3 and Lemma 5.4.5.5].

Definition 2.16. Let U ⊂ SpcT be any T -subcategory. We say that a T -category
C admits U-colimits if the following conditions are satisfied:

(1) For every D ∈ PSh(T ) and every (f : C → D) ∈ U(D) the restriction
f∗ : C(D) → C(C) admits a left adjoint f!.
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(2) For any pullback

A B

C D

g

u
y

t

f

in PSh(T ) such that f ∈ U(D) (and hence g ∈ U(B) as U is a T -
subcategory), the Beck–Chevalley transformation g!u

∗ ⇒ t∗f! is an equiv-
alence.

If D is another U-cocomplete T -category, then a T -functor F : C → D is called
U-cocontinuous if for every (f : C → D) ∈ U(D) the Beck–Chevalley map f!FC ⇒
FDf! is an equivalence.

Remark 2.17. In the definition of a U-cocomplete T -category, it suffices that the
above conditions are satisfied whenever B and D are representable, see [CLL23,
Remark 2.3.15], and likewise for U-cocontinuity.

Definition 2.18. A T -category C is called T -cocomplete if it is fiberwise cocomplete
(Definition 2.15) and SpcT -cocomplete (Definition 2.16).

Similarly, a T -functor F : C → D between T -cocomplete T -categories is called T -
cocontinuous if it is fiberwise cocontinuous and SpcT -cocontinuous.

Example 2.19. The T -category SpcT is T -cocomplete, see [MW21, Example 5.2.11].

Example 2.20. If D is U-cocomplete for some U ⊂ SpcT , and C is any T -category,
then FunT (C,D) is again U-cocomplete, see [CLL23, Corollary 2.3.25].

Example 2.21. Any left adjoint F : C → D of T -cocomplete T -categories is T -
cocontinuous: indeed, it is clearly fiberwise cocontinuous, and the Beck–Chevalley
map from Definition 2.16 is simply the total mate of the Beck–Chevalley map
from Proposition 2.13. Conversely, a functor of T -cocomplete categories is a T -left
adjoint if and only if it is T -cocontinuous and admits a pointwise right adjoint.

Definition 2.22. Let U ⊂ SpcT be any T -subcategory. For any U-cocomplete T -
categories C,D and any X ∈ PSh(T ) we write FunU-cc

T (C,D)(X) ⊂ FunT (C,D)(X)
for the full subcategory spanned by those functors F : C → FunT (X,D) that are
U-cocontinuous.

Similarly, we define FunT -cc
T (C,D)(X) whenever C and D are T -cocomplete.

By [MW21, Remark 4.2.1 and Proposition 4.3.1] the above define T -subcategories
of FunT (C,D).

Remark 2.23. The articles [MW21] and [CLL23] use an a priori different definition
of FunU-cc

T and FunT -cc
T , see [CLL23, Proposition 2.3.26 and Remark 2.3.27] for the

equivalence to the above.

With this terminology at hand, we can now formulate the universal property of
T -spaces:

Theorem 2.24 ([MW21, Theorem 7.1.1]). For any T -cocomplete D, evaluation at
the terminal object defines an equivalence of T -categories

FunT -cc
T (SpcT ,D) ∼−−→ D . �



THE UNIVERSAL PROPERTY OF EQUIVARIANT SPECTRA 9

2.3. Presentability. Finally, we come to the notion of presentability for T -cate-
gories from [MW22]:

Definition 2.25. A T -category C : T op → Cat is called fiberwise presentable if it
factors through the non-full subcategory PrL ⊂ Cat of presentable categories and
left adjoint functors.

In this case the limit extension again factors through PrL, i.e. for any X ∈ PSh(T )
the category C(X) is presentable, and for any map f : X → Y of presheaves the
restriction f∗ : C(Y ) → C(X) is a left adjoint, see [Lur09, Proposition 5.5.3.13].

Definition 2.26. A T -category is called T -presentable if it is fiberwise presentable
and T -cocomplete.

Remark 2.27. Any T -presentable category is also T -complete, see [MW22, Corol-
lary 6.2.5].

Example 2.28. The T -category SpcT of T -spaces is T -presentable: clearly each
PSh(T )/X is presentable, each f∗ : PSh(T )/Y → PSh(T )/X is a left adjoint by local
cartesian closedness, and finally SpcT is T -cocomplete by Example 2.19.

Example 2.29. If C is small and D is T -presentable, then FunT (C,D) is again
T -presentable, see [MW22, Corollary 6.2.6].

Remark 2.30. Let C be T -presentable and D be locally small and T -cocomplete.
Combining Example 2.21 with the usual non-parametrized Special Adjoint Functor
Theorem [Lur09, Corollary 5.5.2.9(1)], we see that a T -functor C → D is a left
adjoint if and only if it is T -cocontinuous.

3. Cleft categories

Let T be a small category and let S ⊂ T be a (wide) subcategory. Associated to the
inclusion ι : S →֒ T we have a natural restriction functor ι∗ : CatT → CatS , which
admits both a left adjoint ι! as well as a right adjoint ι∗, given by left and right Kan
extension, respectively. One of the central questions of the present paper is under
which conditions the adjunction ι∗ ⊣ ι∗ interacts nicely with parametrized concepts,
and in particular with the notions of parametrized colimits for T -categories and S-
categories discussed above.

To address this question, we make use of a more ‘geometric’ description of the
adjunction ι∗ ⊣ ι∗. By identifying T -categories with limit-preserving functors
on PSh(T )op as in Convention 2.7, we see that precomposition with any colimit-
preserving functor f : PSh(S) → PSh(T ) determines a functor f∗ : CatT → CatS .
Applying this to the left Kan extension functor f = ι! : PSh(S) → PSh(T ) recovers
ι∗ : CatT → CatS , and consequently the right adjoint ι∗ : CatS → CatT of ι∗ is
obtained by precomposition with ι∗ : PSh(T ) → PSh(S), with the unit and counit
of the adjunction ι∗ : CatT ⇄ CatS : ι∗ given by plugging in the unit and counit
of the adjunction ι! : PSh(S) ⇄ PSh(T ) : ι∗.

The above description suggests that we can understand the category theoretic be-
havior of the adjunction ι∗ : CatT ⇄ CatS : ι∗ in terms of the geometric, or topos-
theoretic, behavior of the adjunction ι! : PSh(S) ⇄ PSh(T ) : ι∗. As a concrete
example, consider the question of whether ι∗ : CatT → CatS preserves cocom-
pleteness. If C ∈ CatT is T -cocomplete, it is easy to see that the S-category
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ι∗ C is fiberwise cocomplete and that its restriction functors admit pointwise left
adjoints, without any restrictions on ι. However, the Beck–Chevalley condition
for these adjoints does not always hold: it translates to the requirement that
ι! : PSh(S) → PSh(T ) preserves pullbacks. Similarly, one can translate coconti-
nuity of the unit C → ι∗ι∗ C into a pullback condition on the counit of ι! ⊣ ι∗.
Upon closer inspection, it turns out that all the required conditions we will need
for a well-behaved theory can be nicely summed up in Lurie’s notion of a fractured
∞-topos [Lur18, Definition 20.1.2.1]:

Definition 3.1. Let X be an ∞-topos. A functor j! : Y → X is called a fracture
subcategory if the following conditions are satisfied:

(F0) The functor j! is a monomorphism of categories, i.e. it is faithful and the
induced functor on groupoid cores is even fully faithful.

(F1) The functor j! : Y → X preserves pullbacks.
(F2) The functor j! : Y → X admits a right adjoint j∗ : X → Y which is conser-

vative and preserves colimits.
(F3) For every morphism f : X → Y in Y, the naturality square

j!j
∗j!X j!j

∗j!Y

j!X j!Y

j!j
∗j!f

εj! εj!

j!f

of the counit transformation ε : j!j
∗ → id is a pullback square in X .

An ∞-topos X equipped with a fracture subcategory Y is called a fractured ∞-
topos.

However, these axioms are quite strong, making them somewhat hard to check
directly. Accordingly, before coming to the parametrized applications of fractured
∞-topoi sketched above, we devote the present section to their construction from
simpler, less geometric data. Namely, as in the introductory example we will be
interested in the special case of functors PSh(S) → PSh(T ) arising as left Kan
extension along the inclusion S →֒ T of a wide subcategory. It turns out that in
this can case we can give a more explicit characterization in terms of the indexing
categories S and T :

Definition 3.2. Let T be a small category. A wide subcategory S ⊂ T is called a
cleft of T if the following conditions are satisfied:

(C1) The subcategory S contains all equivalences of T and is left-cancellable,
i.e. whenever f and g are composable maps in T with g ∈ S and gf ∈ S,
then f ∈ S.

(C2) For any map f : A → B in S and any map g : B′ → B in T there exists a
map f ′ : X ′ → B′ in PSh(S) and a pullback square

ι!X
′ ι!B

′

ι!A ι!B

ι!f
′

g

ι!f
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in PSh(T ), where ι! : PSh(S) → PSh(T ) denotes left Kan extension along
the inclusion ι : S →֒ T .

(C3) If α : A→ B, β : B → A are maps in T such that βα = idA and αβ is a map
in S, then also α belongs to S (whence so does β by left cancellability).

We call a small category T equipped with a cleft S ⊂ T a cleft category.

Remark 3.3. As Axiom (C3) might look somewhat exotic, we record several more
familiar properties that imply this axiom:

(C3′) Any idempotent e : B → B in S is the identity.
(C3′′) The morphisms of S are closed under retracts in the arrow category of T .
(C3′′′) The morphisms of S satisfy the restricted 2-out-of-6 property: given com-

posable f, g, h in T such that hg and gf belong to S, so does f .

Indeed, to see that (C3′) implies (C3), note that the map αβ : B → B is an idem-
potent in S and thus the identity. It follows that α and β are (mutually inverse)
equivalences, hence belong to S by (C1). In case of (C3′′), it suffices to observe
that the diagram

A B A

B B B

α

α

β

αβ α

expresses α as a retract of αβ. Finally, applying (C3′′′) to the chain α, β, α also
implies (C3).

Remark 3.4. Axiom (C2) is a relaxation of the following more familiar condition:

(C2′) Pullbacks of maps in S along maps in T exist in T and belong to S.

Wide subcategories S ⊂ T satisfying axioms (C1), (C2′) and (C3′′) are called admis-
sibility structures in [Lur18, Definition 20.2.1.1]. In particular, every admissibility
structure on T is also a cleft in the above sense.

Let us mention some examples of cleft categories:

Example 3.5 (Trivial clefts). Every category T admits two extremal clefts: letting
S consist of all maps in T constitutes the maximal cleft on T , while letting S consist
of only the equivalences of T constitutes the minimal cleft on T .

Example 3.6 (Factorization systems). Let (E,M) be a factorization system on
T . We will prove in Proposition 3.33 below that the right class M is a cleft.

Example 3.7 (Atomic orbital subcategories). Let P ⊂ T be an atomic orbital sub-
category in the sense of [CLL23, Definition 4.3.1]. We will prove in Proposition 3.36
below that P ⊂ T is a cleft category.

Example 3.8. Recall the global indexing category Glo from Example 2.2. We
define a wide subcategory Orb ⊂ Glo spanned by the injective homomorphisms.
Then Orb ⊂ Glo is a cleft category: this follows either from Example 3.7 together
with [CLL23, Example 4.3.3] or from Example 3.6 with [LNP22, Proposition 6.14].
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3.1. Clefts vs. fractures. As promised, we will prove as the main result of this
section:

Theorem 3.9. For a wide subcategory S ⊂ T , the following are equivalent:

(1) The subcategory S is a cleft (Definition 3.2).
(2) The left Kan extension functor ι! : PSh(S) → PSh(T ) along the inclusion

ι : S →֒ T is a fracture subcategory (Definition 3.1).

Remark 3.10. In the special case where S ⊂ T defines an admissibility structure
on T , cf. Remark 3.4, the implication (1) ⇒ (2) was already proved by Lurie in
[Lur18, Theorem 20.2.4.1]. In the examples we care about, and in particular for
the inclusion Orb ⊂ Glo, the stronger Axiom (C2′) of an admissibility structure is
not satisfied: the required pullbacks do not exist before passing to presheaves. The
above strengthening of Lurie’s result will therefore be crucial for our purposes.

The proof of Theorem 3.9 will occupy this whole subsection; it is somewhat involved
and may be skipped on a first reading.

For the remainder of this subsection, we fix a cleft category ι : S →֒ T . We start
with some elementary consequences of the axioms.

Lemma 3.11. The functor (ι!)/A : PSh(S)/A → PSh(T )/A is fully faithful for any
object A ∈ S.

Proof. As recalled in Example 2.12, (ι!)/A may be identified with the functor
(ι/A)! : PSh(S/A) → PSh(T/A) given by left Kan extension along ι/A : S/A → T/A.
By Axiom (C1), S is left cancellable, so that ι/A is fully faithful. Thus, also the
Kan extension (ι/A)! is fully faithful, whence so is (ι!)/A. �

Lemma 3.12. For every g : A → B in T , the pullback functor g∗ : PSh(T )/B →
PSh(T )/A sends the essential image of (ι!)/B to the essential image of (ι!)/A.

Proof. The functor g∗ : PSh(T )/B → PSh(T )/A preserves colimits as PSh(T ) is an
∞-topos. Since the essential image of the fully faithful left adjoint (ι!)/A is closed
under colimits, it will be enough to show that g∗ maps any element of the form
ι!f : ι!X → ι!B for f : X → B a map in S into the essential image of (ι!)/A. This is
precisely Axiom (C2), finishing the proof. �

Construction 3.13. The functor ι∗ : PSh(T ) → PSh(S) preserves pullbacks, so it
induces a map

PSh(T )[1] → PSh(S)[1] ×PSh(S) PSh(T ) (1)

of cartesian fibrations over PSh(T ).

We now define the S-functor ι∗ : ι∗SpcT → SpcS as the composite

ι∗SpcT = PSh(T )/ι!(•) −→ PSh(S)/ι∗ι!(•)
η∗−−→ PSh(S)/• = SpcS ,

where the first map is obtained from the straightening of (1) by restricting along
ι! : PSh(S) → PSh(T ), while the second map is obtained by pullback along the unit
transformation η : id ⇒ ι∗ι!.

Lemma 3.14. The left Kan extension functor ι! : PSh(S) → PSh(T ) preserves
pullbacks.
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Proof. For any X ∈ PSh(S), the above functor ι∗ : PSh(T )/ι!X → PSh(S)/X ad-
mits a left adjoint given by (ι!)/X . The lemma then precisely amounts to saying that
the Beck–Chevalley map (ι!)/Xg

∗ ⇒ g∗(ι!)/Y is an equivalence for any g : X → Y
in PSh(S). By Propositions 2.13 it suffices to check this in the case that X and Y
are representable, i.e. g is a map in S. Since the functors (ι!)/X and (ι!)/Y are fully
faithful in this case by Lemma 3.11, the Beck–Chevalley condition is equivalent
to the condition that g∗ preserves their essential images, which is an instance of
Lemma 3.12. �

Construction 3.15. As a consequence of the previous lemma, ι! induces a map
PSh(S)[1] → PSh(T )[1] ×PSh(T ) PSh(S) of cartesian fibrations, which we straighten
to an S-functor ι! : SpcS → ι∗SpcT . For any presheaf X in PSh(S), this is given by
(ι!)/X : PSh(S)/X → PSh(T )/ι!X .

Lemma 3.16. The S-functor ι! is left adjoint to the S-functor ι∗ from Construc-
tion 3.13.

Proof. We have already seen in the proof of Lemma 3.14 that ι∗ admits a left
adjoint L which agrees pointwise with ι!. In the same way, one shows that ι! is
indeed a left adjoint (with adjoint agreeing pointwise with ι∗). But then L ≃ ι!
because left adjoint functors out of SpcS are characterized by their value on the
terminal presheaf by Theorem 2.24, so ι! is left adjoint to ι

∗ as claimed. �

Lemma 3.17. The fully faithful S-functor ι! : SpcS →֒ ι∗SpcT extends uniquely to
a T -functor ι! : SpcS⊲T →֒ SpcT (which is again fully faithful).

Proof. The statement is equivalent to the claim that the essential image of the
inclusion ι! : SpcS →֒ ι∗SpcT is in fact a T -subcategory of SpcT , which is precisely
the content of Lemma 3.12. �

As an upshot, Axiom (C2) holds without any representability assumptions on A,
B, or B′.

Lemma 3.18. For any presheaf X ∈ PSh(S), the unit map ηX : X → ι∗ι!X is a
monomorphism. Put differently, the functor ι! : PSh(S) → PSh(T ) is faithful.

Proof. This works in exactly the same way as for admissibility structures [Lur18,
Proposition 20.2.4.5-(a)]: By Kan’s pointwise formula, the presheaf ι∗ι!X is given
in degree A ∈ S by colimB∈(A/ι)op X(B) with A/ι := A/T ×T S, and the unit map
η : X(A) → (ι∗ι!X)(A) corresponds under this identification with the structure
map of the term idA ∈ A/ι. Since this term is contained in the full subcategory
A/S ⊂ A/ι of maps in S, we may factor η as

X(A) → colimB∈(A/S)op X(B) → colimB∈(A/ι)op X(B).

The first map is an equivalence (the object idA ∈ A/S being terminal), and thus it
remains to show that the second map is a monomorphism. For this, we claim that
the category A/ι is a disjoint union of the full subcategory A/S and its complement
(consisting of maps not in S), i.e. any object t : A→ B in A/ι mapping to or from
an object in A/S must itself be in A/S. Indeed, let s : A→ B′ be any map in S: if
there is a map s → t in A/ι, then t belongs to S as the latter is a subcategory; on
the other hand, if there is a map t→ s, then t belongs to S by left cancellability.
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It follows that colimB∈(A/ι)op X(B) splits as a disjoint union colimB∈(A/S)op X(B)∐
Y , finishing the proof. �
Lemma 3.19. Let f : X → Y be a map in PSh(S). Then the naturality square

X Y

ι∗ι!X ι∗ι!Y

f

η η

ι∗ι!f

of the unit transformation η : id ⇒ ι∗ι! is a pullback square.

Proof. Again, this is analogous to the proof for admissibility structures [Lur18,
Proposition 20.2.4.5-(b)]. The proof of the previous lemma shows that after evalu-
ating at A ∈ T the naturality square is equivalent to a square of the form

X(A) Y (A)

X(A)∐X ′ Y (A) ∐ Y ′,

f(A)

f(A)∐f ′

which is evidently a pullback. �

Our next goal is to prove the following sharpening of Lemma 3.18:

Proposition 3.20. The functor ι! : PSh(S) → PSh(T ) is fully faithful on groupoid
cores, and thus a monomorphism of categories.

The proof of this proposition is surprisingly subtle and will require some further
preparations.

Definition 3.21. Let X,Y ∈ PSh(S). We call f : ι!X → ι!Y in PSh(T ) admissible
if it lies in the image of the inclusion ι! : HomPSh(S)(X,Y ) →֒ HomPSh(T )(ι!X, ι!Y ).

Beware that a priori this depends on the equivalence classes of X and Y in PSh(S),
not only on the equivalence classes of their left Kan extensions in PSh(T ), and only
once we have proven Proposition 3.20 will we know that this independent of the
choices of preimages.

Lemma 3.22. Let X,Y ∈ PSh(S) and let f : ι!X → ι!Y be a map in PSh(T ).

(1) The map f is admissible if and only if its adjunct f̃ : X → ι∗ι!Y factors
through the monomorphism η : Y → ι∗ι!Y .

(2) Let (gi)i∈I :
∐
i∈I Xi ։ X be an effective epimorphism in PSh(S). Then f

is admissible if and only if the composite f ◦ ι!(gi) : ι!Xi → ι!Y is admissible
for every i ∈ I.

(3) Let (hi)i∈I :
∐
i∈I Yi ։ Y be an effective epimorphism in PSh(S). Then f

is admissible if and only if for every i ∈ I there exists a pullback diagram
in PSh(T ) of the form

ι!Xi ι!X

ι!Yi ι!Y

ι!h
′
i

fi f

ι!hi
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such that fi is admissible.

Proof. Part (1) is immediately clear from the definitions. Using (1), we see that

part (2) is equivalent to the statement that the adjunct map f̃ : X → ι∗ι!Y factors

through the unit η : X → ι∗ι!Y if and only if each of the composites f̃ ◦ gi : Xi →
ι∗ι!Y do, which is immediate. For part (3), the ‘only if’-direction follows directly
from Lemma 3.14. For the ‘if’-direction, observe that the map (h′i)i∈I :

∐
i∈I Xi →

X from part (3) is an effective epimorphism in PSh(S): by Lemma 3.19 it is a
pullback of the effective epimorphism ι∗ι!(hj)j∈J : ι∗ι!

∐
j∈J Yj → ι∗ι!Y . The claim

thus follows from part (2), as for every i ∈ I the composite f ◦ ι!(h′i) = ι!hi ◦ fi is
admissible by assumption. �

Lemma 3.23. Let X,Y, Z ∈ PSh(S) and let f : ι!X → ι!Y and g : ι!Y → ι!Z be
maps in PSh(T ) such that g and gf are admissible. Then also f is admissible.

Proof. By the previous lemma, we have to show that the composite ι∗(f)η : X →
ι∗ι!Y factors through η : Y → ι∗ι!Y . However, by Lemma 3.19 and admissibility
of g the latter is pulled back from the unit η : Z → ι∗ι!Z along ι∗(g). It therefore
suffices to show that ι∗(g)ι∗(f)η factors accordingly. However, this is immediate
from admissibility of gf . �

We are now ready for the proof of Proposition 3.20:

Proof of Proposition 3.20. In light of the faithfulness of ι! : PSh(S) → PSh(T ) from
Lemma 3.18, it remains to show that ι! is full on cores. Note that it suffices to prove
that for presheaves X,Y ∈ PSh(S) any equivalence f : ι!X

∼−−→ ι!Y is admissible.
We will prove this in two steps:

Step 1 : We will first treat the special case where X = A ∈ S is a representable
presheaf. Consider the image fA(idA) ∈ (ι!Y )(A) of the identity idA ∈ ι!(A)(A)
under f . Because of the equivalence (ι!Y )(A) ≃ colimB∈(A/ι)op Y (B), we may
represent f(idA) by a class [α, y] for some morphism α : A → B in T and some
object y ∈ Y (B). By Lemma 3.22, we have to prove that this class [α, y] lies in the
image of the monomorphism

ηA : Y (A) ≃ colimB∈(A/S)op Y (B) →֒ colimB∈(A/ι)op Y (B) = (ι∗ι!Y )(A)

induced by the disjoint summand inclusionA/S →֒ A/ι (see the proof of Lemma 3.18).
In other words, we have to show that α is a morphism in S.

Since the map fB : HomT (B,A) = (ι!A)(B) ∼−−→ (ι!Y )(B) is an equivalence, there
exists a map β : B → A in T satisfying fB(β) = [idB, y]. We thus have fA(βα) =
α∗fB(β) = [α, y] = fA(id), and since also fA is an equivalence we deduce that βα =
id. On the other hand, we have [idB, y] = fB(β) = β∗fA(idA) = β∗[α, y] = [αβ, y],
and since A/S →֒ A/ι is a disjoint summand inclusion we see that αβ belongs to
S. It follows from Axiom (C3) that also α belongs to S, finishing Step 1.

Step 2: We will now deduce the statement for an arbitrary presheaf X ∈ PSh(S).
Pick an effective epimorphism (hj)j∈J :

∐
j∈J Yj ։ Y in PSh(S) for representable
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Yj , and choose for each j ∈ J a pullback

ι!Pj ι!X

ι!Yj ι!Y

ι!h
′
j

y
fj f

ι!hj

in PSh(T ) using Axiom (C2). As f is an equivalence, so is each fj . As Yj is

representable, it follows from Step 1 that f−1
j : ι!Yj

∼−−→ ι!Pj is admissible, and thus
by Lemma 3.23 also fj is admissible. It thus follows from Lemma 3.22 that also f
is admissible, completing the proof of the proposition. �

Remark 3.24. Axiom (C3) is necessary for the previous proposition: every wide
subcategory ι : S →֒ T for which the left Kan extension functor ι! : PSh(S) →
PSh(T ) is a monomorphism of categories automatically satisfies (C3). To see this,
consider morphisms α, β as in Axiom (C3), and define X ∈ PSh(S) to be the colimit
of the diagram

A
αβ−−→ A

αβ−−→ · · · .
Since ι! preserves colimits, it follows that ι!X is the colimit of the analogous diagram
in PSh(T ). But since α and β are maps in T , the maps α : A → B exhibit B as
another colimit of this diagram, and thus we get an equivalence ι!X ≃ ι!B in PSh(T )
compatible with the colimit structure maps. Assuming that ι! is a monomorphism,
it follows that X ≃ B is a representable presheaf on S, and thus the map α : A→ B
in T agrees up to equivalence in T with the structure maps A→ X , which belong
to S by construction. As S contains all equivalences, this shows that also α belongs
to S, finishing the argument.

Note moreover that (C3) is not implied by the remaining two axioms as the following
example shows:

Example 3.25. Let R be a commutative ring. We let T = Perf(R) be the stable
category of perfect R-chain complexes, and we let S consist of those f : X → Y
such that [X ] = [Y ] ∈ K0(R), or equivalently (by the defining relations of K0) such
that the fiber of f vanishes in K0.

The first description makes it clear that S is a subcategory, contains all equiva-
lences, and even satisfies 2-out-of-3, proving (C1). On the other hand, the second
description shows that S is closed under pullbacks, proving (C2′). However, (C3)
does not hold: 0 → R → 0 is the identity and R→ 0 → R belongs to S as [R] = [R],
but neither 0 → R nor R → 0 are contained in S as [R] 6= 0 in K0(R).

Definition 3.26. Following Lurie’s notation and terminology for fractured ∞-
topoi, we let PSh(T )corp ⊂ PSh(T ) denote the (non-full) essential image of the left
Kan extension functor ι! : PSh(S) → PSh(T ). A presheaf on T is called corporeal
if it is an object of PSh(T )corp, and a morphism between two corporeal presheaves
on T is called admissible if it is a morphism in PSh(T )corp.

Note that for two X,Y ∈ PSh(S) a map f : ι!X → ι!Y is admissible in the sense of
Definition 3.26 if and only if it is admissible in the sense of Definition 3.21 above.

Lemma 3.27. Let X,Y, Z ∈ PSh(T ) be corporeal presheaves.
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(1) Let f : X → Z be an admissible morphism, and let g : Y → Z be arbitrary.
Then the base change g∗(f) : g∗(X) → Y of f along g is again an admissible
morphism of corporeal presheaves.

(2) Let f : X ։ Y be an effective epimorphism, and let g : Y → Z be arbitrary.
Assume that f and gf are admissible. Then also g is admissible.

(3) Let f : X → Y , g : Y → Z be maps such that g and gf are admissible. Then
f is admissible.

Proof. The first statement is a consequence of Lemma 3.17, while the second
statement follows from Lemma 3.22. Finally, the third statement follows from
Lemma 3.23. �

We now come to the final missing ingredient of the proof of Theorem 3.9:

Proposition 3.28. Let f : X → Y be a map in PSh(T )corp. Then the naturality
square

ι!ι
∗X ι!ι

∗Y

X Y

ε

ι!ι
∗f

ε

f

is a pullback in PSh(T ).

For the proof we will use:

Lemma 3.29. Let Y ∈ PSh(T ) be an arbitrary presheaf. Then the composite

PSh(S)/ι∗Y
ι!−→ PSh(T )/ι!ι∗Y

PSh(T )/ε−−−−−−→ PSh(T )/Y (2)

induces an equivalence onto the non-full subcategory (PSh(T )/Y )
corp whose objects

are those X → Y where X is corporeal (but there is no condition on the map to Y )
and whose morphisms are the admissible maps in PSh(T ).

Proof. It is clear that (2) factors through (PSh(T )Y )
corp, so it only remains to show

that the induced functor is essentially surjective and fully faithful. For this we ob-
serve that since ι! and ι

∗ are adjoint, the map Hom(X, ι∗Y ) → Hom(ι!X,Y ), g 7→ ε◦
ι!(g) is an equivalence for any X ∈ PSh(S). This immediately implies essential sur-
jectivity, while for full faithfulness we observe that for objects X,X ′ ∈ PSh(S)/ι∗Y
the induced map on mapping spaces fits in the following diagram of fiber sequences:

HomPSh(S)/ι∗Y
(X,X ′) HomPSh(S)(X,X

′) HomPSh(S)(X, ι
∗Y )

HomPSh(T )/Y
(ι!X, ι!X

′) HomPSh(T )(ι!X, ι!X
′) HomPSh(T )(ι!X,Y ).

ι! ≃

We now simply note that the middle map is a monomorphism by Lemma 3.18, with
image the admissible maps. �

Proposition 3.30. The T -functor ι∗ : PSh(T )/• → PSh(S)/ι∗(•) admits an S-left
adjoint (that is, the underlying S-functor admits a parametrized left adjoint) given
pointwise by the composites (2).
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Proof. It is clear that the composites (2) yield a pointwise left adjoint, so it only
remains to check the Beck–Chevalley condition. By the previous lemma, this
amounts to saying that the adjunction PSh(T )/f : PSh(T )/ι!X ⇄ PSh(T )/ι!Y :f∗

restricts to an adjunction (PSh(T )/ι!X)corp ⇄ (PSh(T )/ι!Y )
corp for any admissible

f : ι!X → ι!Y , i.e.

(1) The right adjoint f∗ restricts to (PSh(T )/ι!Y )
corp → (PSh(T )/ι!X)corp.

(2) For each Z ∈ (PSh(T )/ι!Y )
corp the counit PSh(T )/ff

∗Z → Z is admissible.
(3) For eachW ∈ (PSh(T )/ι!X)corp the unitW → f∗ PSh(T )/fW is admissible.

For this, let g : Z → Z ′ be a map in (PSh(T )/ι!Y )
corp and consider the coherent

cube

f∗Z ′ Z ′

f∗Z Z

ι!X ι!Y

ι!X ι!Y

y
ε

f∗g

y
ε

g

f

f

Lemma 3.27-(1) then shows that the objects f∗Z and f∗Z ′ are corporeal and that
the maps ε : f∗Z → Z and ε : f∗Z ′ → Z ′ are admissible, proving the second claim
and one half of the first claim. Together with Lemma 3.27-(3) we then conclude
that f∗g is again admissible, proving the remaining half of of the first claim.

Finally, if W ∈ (PSh(T )/ι!X)corp, then as a morphism in PSh(T ) the unit η : W →
f∗ PSh(T )/fY is right inverse to the counit ε. Thus, η is admissible by another
application of Lemma 3.27-(3). �

Proof of Proposition 3.28. We may assume without loss of generality that f is of
the form ι!f

′ for some f ′ : X ′ → Y ′ in PSh(S). In this case, the previous proposition
shows that the Beck–Chevalley transformation

PSh(S)/ι∗Y PSh(S)/ι∗X

PSh(T )/Y PSh(T )/X

PSh(T )/ε◦ι!

(ι∗f)∗

PSh(T )/ε◦ι!

f∗

is an equivalence. Chasing through the identity of ι∗Y precisely yields the claim. �

We are now ready to prove Theorem 3.9.

Proof of Theorem 3.9. If ι : S →֒ T is a cleft category, then ι! : PSh(S) → PSh(T )
is a fracture subcategory:

(F0) The functor ι! is a monomorphism by Proposition 3.20.
(F1) The functor ι! preserves pullbacks by Lemma 3.14.
(F2) The right adjoint ι∗ of ι! is clearly cocontinuous, and it is conservative as

S contains all objects of T .
(F3) The pullback condition for the counit was verified in Proposition 3.28.
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Conversely, assume that ι! : PSh(S) → PSh(T ) is a fracture subcategory. Then
(ι!)/X : PSh(S)/X → PSh(T )/ι!X is fully faithful for any X by [Lur18, Proposi-
tion 20.1.3.1]; specializing to X = A ∈ S, we see that left Kan extension along
ι/A : S/A →֒ T/A is fully faithful, whence so is ι/A itself by the Yoneda Lemma.
Letting A vary, this precisely amounts to saying that S is left cancellable, proving
(C1).

For (C2), consider a map f : X → Y in PSh(S) and a map g : ι!Y
′ → ι!Y in PSh(T ).

Write g̃ : Y ′ → ι∗ι!Y for the adjunct of g, and define X ′ via the following pullback
square in PSh(S):

X ′ ι∗ι!X

Y ′ ι∗ι!Y.

f ′
y

ι∗ι!f

g̃

In the diagram

ι!(X
′) ι!ι

∗ι!(X) ι!(X)

ι!(Y
′) ι!ι

∗ι!(Y ) ι!(Y ),

ι!(f
′) ι!ι

∗ι!f

ε

ι!(f)

ι!(g̃) ε

the left-hand square is a pullback as ι! preserves pullbacks by (F1), while the right-
hand square is a pullback square by (F3). Thus, the total square expresses ι!(f

′)
as a pullback of ι!(f) along g, showing (C2).

Finally, Axiom (C3) holds because ι! is a monomorphism, see Remark 3.24. �

3.2. Examples. We close this section by establishing our two key examples of cleft
categories. We begin with Example 3.6, for which we recall:

Definition 3.31. A factorization system on an category T consists of two wide
subcategories E,M ⊂ T satisfying the following conditions:

(1) Both E and M contain all equivalences.
(2) Every morphism in E is left orthogonal to every morphism in M in the

following sense: for every pair of morphisms e : A→ B in E andm : X → Y
in M and every solid square

A X

B Y,

e m

there is a contractible space of dotted lifts making both triangles commute,
i.e. the square

HomT (A,X) HomT (A, Y )

HomT (B,X) HomT (B, Y )

−◦e

m◦−

−◦e

m◦−

is a pullback square in the category of spaces;
(3) Every morphism f ∈ T admits a factorization f = me, with e in E and m

in M .
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Remark 3.32. The above definition follows [ABFJ22, Definition 3.1.6]. By Lemma
3.1.9 of op. cit., the class E in a factorization system is exactly the class of mor-
phisms in T which are left orthogonal to all morphisms in M , and vice-versa. In
particular, this implies that both E and M are closed under retracts, so that the
above is equivalent to [Lur09, Definition 5.2.8.8] (where this condition is assumed
a priori).

Proposition 3.33. Let (E,M) be a factorization system on T . Then the right
class M is a cleft of T .

If T has pullbacks, this proposition appears (with a rather different proof) as [Lur18,
Proposition 20.2.2.1].

Proof. By assumption M ⊂ T is a wide subcategory containing all equivalences,
and it is left cancellable by [Lur09, Proposition 5.2.8.6-(3)], proving (C1). Moreover,
Axiom (C3′′) was noted in the previous remark.

It remains to verify (C2), i.e. that for every f : A → B in T the pullback functor
f∗ : PSh(T )/B → PSh(T )/A maps the image ofM/B into PSh(M)/A. We will prove
this more generally for PSh(M)/B . For this we observe that the diagram

PSh(M/A) PSh(M)/A

PSh(T/A) PSh(T )/A

∼

(ι/A)! (ι!)/A

∼

(3)

with the horizontal equivalences as in Example 2.12 commutes up to equivalence
since both paths are cocontinuous and agree on the Yoneda image. Arguing in the
same way for B, it then suffices to show: if X ∈ PSh(T/B) is left Kan extended from
PSh(M/B), then its restriction to PSh(T/A) is left Kan extended from PSh(M/A).

To this end, let f : X → A be any map in T , and fix a factorization

X Y

A

e

f m

with e in E and m in M . Viewing this as a map in T/A, [Lur09, Remark 5.2.8.3]
shows that for every other other t ∈ T/A the map e∗ : Hom(m, t) → Hom(f, t) is an
equivalence. It follows that ι/A : S/A →֒ T/A admits a left adjoint λA : T/A → S/A
sending f tom with unit f → m given by the above triangle. In particular, all units
live in the subcategory TE/A := E ×T TA; conversely, an easy 2-out-of-3 argument

shows that λA inverts all maps in TE/A. By abstract nonsense about Bousfield

localizations, it follows that λA is a localization at TE/A, so that X ∈ PSh(T/A) is

left Kan extended if and only if it inverts TE/A. Arguing in the same way for B, the

proposition follows as T/f obviously restricts to TE/A → TE/B. �

Next, we recall atomic orbital subcategories from [CLL23, Definition 4.3.1]:

Definition 3.34. A wide subcategory P ⊂ T containing all equivalences is called
atomic orbital if the following conditions are satisfied:
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(1) For every p : C → D in P and t : B → D in T there exists a pullback

∐n
i=1 Ai B

C D

(pi)i=1,...,n

y
t

p

in PSh(T ) such that each pi : Ai → B belongs to P .
(2) For every p : A→ B in P the diagonal A→ A×B A is a disjoint summand

inclusion in PSh(T ), i.e. it is equivalent to an inclusion of the form A →֒
A ⊔ C for some C ∈ PSh(T ).

Remark 3.35. By [CLL23, Lemma 4.3.2] we can equivalently replace (2) by the
following axiom:

(2′) Every map in P that admits a section in T is an equivalence.

Atomic orbital subcategories were introduced in [CLL23] to encode different degrees
of ‘parametrized semiadditivity,’ and we will revisit them from this perspective in
Section 6. For now we are interested in them as examples of clefts:

Proposition 3.36. Any atomic orbital subcategory P ⊂ T is a cleft.

For the proof we will use:

Lemma 3.37. Let P be atomic orbital (say, as a subcategory of itself) and consider
an object A ∈ P . Then any endomorphism in P/A is invertible.

Proof. Let B ∈ P/A and fix a decomposition B×AB =
∐n
i=1Xi into representables.

We introduce the following terminology:

(A) Given any map g : C → B ×A B from a representable, it factors through a
unique Xi, and we call i =: idx(g) the index of g.

(B) An index i ∈ {1, . . . , n} is called good if the projection pr2 : B ×A B → B
to the second factor restricts to an equivalence Xi → B.

Now let f be an endomorphism of B, inducing a map (1, f) : B → B ×A B. We
claim that idx(1, f) is good, which will then imply the lemma as (1, f) induces an
equivalence onto Xidx(1,f), being a section to the map pr1 : Xidx(1,f) → B in P .

To prove the claim, we make the following basic observations:

(1) Given any endomorphism g of B, the index idx(g, 1) is good (arguing as
above using that pr2(g, 1) = 1).

(2) Given any map α : X → Y of representables and a map β : Y → B ×A B,
we have idx(βα) = idx(β).

(3) If α, β : X ⇒ B ×A B are maps from a representable with idx(α) = idx(β)
and γ is any endomorphism of B ×A B, then idx(γα) = idx(γβ).

By (2), we have

idx(1, f) = idx(fk, fk+1)

for any k ≥ 0. Now by the pigeonhole principle we find ℓ > k ≥ 0 with idx(fk, 1) =
idx(f ℓ, 1) and hence also

idx(fk, fk+1) = idx(f ℓ, fk+1)
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by (3) applied to 1×A fk+1. However, by construction ℓ ≥ k + 1, whence

idx(f ℓ, fk+1) = idx(f ℓ−k−1, 1)

by another application of (2). Altogether we therefore get

idx(1, f) = idx(fk, fk+1) = idx(f ℓ, fk+1) = idx(f ℓ−k−1, 1)

and the right hand side is good by (1), finishing the proof. �

Proof of Proposition 3.36. Axiom (C1) follows from [CLL23, Lemma 4.3.5], while
(C2) is immediate from Definition 3.34-(1). To prove (C3′), we note that any
idempotent e : A→ A defines an endomorphism of itself considered as an object of
P/A. By the previous lemma, we conclude that e is invertible, hence homotopic to
the identity. �

4. Partial presentability

Given a small category T , there is a natural notion of T -presentability for a T -
category, recalled in Definition 2.26. This is quite a strong condition on C: it
in particular requires that the restriction functors f∗ : C(B) → C(A) admit left
adjoints for all morphisms f : A → B, which is unfortunately not satisfied in sev-
eral naturally occurring examples, see for example Warning 9.8 about the global
category of equivariant spectra.

The goal of this section is to introduce and study relaxations of the notion of
presentability for a T -category C. While we still demand that C be fiberwise pre-
sentable, we will weaken the cocompleteness assumption: more precisely, for any
cleft S ⊂ T , we will introduce notions of S-cocompleteness and S-presentability,
see Subsection 4.1. In Subsection 4.2 we discuss the relation between S-presentable
T -categories and S-presentable S-categories. We end this section in Subsection 4.3
with a discussion of the S-cocompletion of a small T -category and the relation to
the S-cocompletion of its underlying S-category.

4.1. S-(co)limits and S-presentability. We fix a cleft category S ⊂ T and we
write ι : S →֒ T for the inclusion. In this subsection we study what it means for a
T -category C to be S-(co)complete or S-presentable.

Definition 4.1. We define the T -subcategory US ⊂ SpcT as the essential image
of the fully faithful T -functor ι! : SpcS⊲T →֒ SpcT from Lemma 3.17: for an object
A ∈ T , the subcategory US(A) ⊂ SpcT (A) = PSh(T )/A is the full subcategory
spanned by the admissible maps.

Definition 4.2 (S-(co)completeness). A T -category C is called S-cocomplete if it
is fiberwise cocomplete and admits all US-colimits in the sense of Definition 2.16.
Dually, C is called S-complete if it is fiberwise complete and admits all US-limits.

Definition 4.3 (S-presentability). A T -category C is called S-presentable if it is
S-cocomplete and fiberwise presentable (Definition 2.25).

Warning 4.4. As recalled in Remark 2.27 any T -presentable T -category is also
T -complete. In contrast, there are interesting examples of T -categories that are
S-presentable in the above sense, but not S-complete, see Warnings 9.6 and 9.8.
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We will now provide a description of S-(co)completeness in terms of pointwise
conditions. For this we first introduce:

Definition 4.5. A morphism f : X → Y in PSh(T ) is called admissible if it defines
an object in U(Y ) ⊂ SpcT , i.e. for every A ∈ T and t : A→ Y in PSh(T ) the pulled
back map t∗(f) : t∗(X) → A is an admissible map of corporeal objects in the sense
of Definition 3.26.

Remark 4.6. Note that for a corporeal object Y this recovers the previous defini-
tion by Lemma 3.27.

By the pasting law, the admissible maps are closed under composition, and it is
clear that every equivalence is admissible; in particular, the admissible maps define
a wide subcategory PSh(T )ad ⊂ PSh(T ). By another application of the pasting
law, this is closed under pulling back along arbitrary maps in PSh(T ).

Lemma 4.7. Let C be a fiberwise cocomplete T -category. Then the following are
equivalent:

(1) For every m : A→ B in S, the map m∗ : C(B) → C(A) admits a left adjoint
m!.

(2) For every B′ ∈ T and any admissible n : A′ → B′ the functor n∗ admits a
left adjoint n!.

Proof. It is immediate that (2) implies (1). Conversely, let B′ ∈ T and consider an
object n : A′ → B′ in US(B

′). Decomposing a preimage in PSh(S)/B into repre-
sentables, we get an equivalence (ki)i∈I : colimi∈I A′

i ≃ A′ for a functor A′
• : I → T

such that for every i ∈ I the composite ni = nki : A
′
i → A′ → B′ lies in S. Then

n∗ agrees up to equivalence with the functor C(B′) → limi∈I C(A′
i) induced by the

n∗
i . Now each of these n∗

i admits a left adjoint by assumption and moreover C(B)
is cocomplete; thus, also n∗ admits a left adjoint by [HY17, Theorem Bop]. �

Remark 4.8. For later use, we make the construction of the left adjoint given in
loc. cit. semi-explicit, keeping the notation from the previous proof:

(1) For X ∈ C(A′), n!X is the colimit of a suitable Iop-diagram with i 7→
ni!k

∗
i (X).

(2) The counit n!n
∗X = colimi∈Iop n!k

∗
i n

∗X = colimi∈Iop ni!n∗
iX → X is in-

duced by a cocone given at i ∈ Iop by the counit of ni! ⊣ n∗
i .

(3) The unit Y → n∗n!Y is given after restricting along ki by the composite
k∗i Y → n∗

ini!k
∗
i Y → n∗

i colimj∈J nj!k∗jY of the unit and the structure map
of the colimit.

Using this we can now prove:

Lemma 4.9. Let C be a T -category. Then C is S-cocomplete if and only if the
following conditions are satisfied:

(1) The T -category C is fiberwise cocomplete,
(2) For every morphism m : A → B in S, the restriction m∗ : C(B) → C(A)

admits a left adjoint m!,
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(3) For every pullback square

A B

A′ B′

m

t
y

u

n

in PSh(T ) where n belongs to S and u is a map in T , the Beck–Chevalley
map m!t

∗ → u∗n! is an equivalence (note that m! exists by Lemma 4.7).

The dual characterization for S-completeness also holds.

Proof. By definition, S-cocompleteness implies all of the above conditions. Con-
versely, if these three conditions are satisfied, it only remains by the previous lemma
together with Remark 2.17 to show that the Beck–Chevalley condition (3) actually
holds without representability assumption on A′.

For this we fix a decomposition (ki)i∈I : colimi∈I A′
i ≃ A′ in PSh(T ) into repre-

sentables as before. We now pull back each individual ni = nki along u to an mi,
and then appeal to universality of colimits to obtain a pullback

colimi∈I(A′
i ×B′ B) B

colimi∈I A′
i B′.

y
t=colim ti

m=(mi)

u

(ni)

It then follows from cocontinuity of u∗ and the above description of unit and counit,
that the Beck–Chevalley map m!t

∗X → u∗n!X is given for any X ∈ C(colimi∈I Ai)
as a colimit (over Iop) of the Beck–Chevalley maps

mi!t
∗
i k

∗
iX → u∗ni!k

∗
iX,

each of which is an equivalence by assumption. �

Warning 4.10. Even for a fiberwise cocomplete T -category, being S-cocomplete is
not just a property of the underlying S-category: the former includes more Beck–
Chevalley conditions.

Lemma 4.11. Let F : C → D be a T -functor of S-cocomplete T -categories. Then
the following are equivalent:

(1) The T -functor F preserves fiberwise colimits and US-colimits.
(2) The T -functor F preserves fiberwise colimits and for every map m in S the

Beck–Chevalley map m!F → Fm! is an equivalence.
(3) The S-functor ι∗F is S-cocontinuous.

The dual statement for S-complete categories also holds.

Proof. The equivalence between (1) and (2) follows just as in Lemma 4.9. Since
the conditions in (2) only depend on the underlying S-functor ι∗F , the equivalence
between (2) and (3) is clear. �

Definition 4.12. An S-functor F satisfying the above equivalent conditions is
called S-cocontinuous. We write CatS-ccT ⊂ CatT for the very large category of
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S-cocomplete T -categories and S-cocontinuous functors, and PrST ⊂ CatS-ccT for the
full subcategory spanned by the S-presentable T -categories.

Lemma 4.13. Let C,D ∈ CatT such that D is S-cocomplete. Then FunT (C,D) is
again S-cocomplete. Moreover, for any F : C → C′ the restriction FunT (C′,D) →
FunT (C,D) is S-cocontinuous.

Proof. This is a special case of [CLL23, Corollary 2.3.25]. �

Definition 4.14. We write FunS-ccT (C,D) ⊂ FunT (C,D) for the full subfunctor
spanned in degree X ∈ PSh(T ) by the S-cocontinuous functors C → FunT (X,D).

Lemma 4.15. FunS-ccT (C,D) defines a T -subcategory of FunT (C,D).

Proof. If X → Y is any map in PSh(T ), then Lemma 4.13 shows that composing
with the restriction FunT (Y ,D) → FunT (X,D) preserves S-cocontinuous functors.
To see that this subfunctor is limit preserving, it suffices to observe that the func-
tors FunT (Y ,D) → FunT (A,D) for all A → Y with A representable are jointly
conservative and hence detect S-cocontinuity, cf. the proof of [CLL23, Proposi-
tion 2.3.28]. �

4.2. Colimits in Kan extensions. Recall that for any functor α : S → T the
restriction α∗ : CatT → CatS admits a right adjoint α∗, which can be computed
via restriction along α∗ : PSh(T ) → PSh(S). We will now study the interplay of
these adjoints with parametrized colimits and limits in the case that α = ι is a cleft
category.

Convention 4.16. For the rest of this subsection let us fix a cleft category ι : S →֒
T and a T -subcategory V(T ) ⊂ US ⊂ SpcT . We will write V(S) for the S-

subcategory defined as the preimage of ι∗V(T ) along the inclusion SpcS →֒ ι∗SpcT .

Lemma 4.17. Let A ∈ T . Then ι∗ : PSh(T )/A → PSh(S)/ι∗A restricts to a map

V(T )(A) → V(S)(ι∗A).

Proof. Let (u : X → A) ∈ V(T )(A) arbitrary. By assumption on V(T ), u is admis-
sible, so we have a pullback

ι!ι
∗X X

ι!ι
∗A A

ι!ι
∗u

y
ε

u

ε

(4)

in PSh(T ) by Proposition 3.28; in particular ι!ι
∗u ∈ V(T )(ι!ι

∗A) as V(T ) is a T -
subcategory of SpcT . But then ι

∗u ∈ V(S)(ι∗A) as desired. �

From now on we will confuse V(S) and V(T ) and simply write V for both of them.

Theorem 4.18. The adjunction ι∗ : CatT ⇄ CatS : ι∗ restricts to an adjunction
CatV-cc

T ⇄ CatV-cc
S between the categories of V-cocomplete T - and S-categories,

respectively, and V-cocontinuous functors.

For the proof of the theorem we will use:
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Lemma 4.19 (See [CLL23, Lemma 2.3.17]). Let f : PSh(S) → PSh(T ) be a left
adjoint functor that preserves pullbacks, let V′ ⊂ SpcS, and let V ⊂ SpcT such that
for every A ∈ S and every v ∈ V(A) also f(v) ∈ V′(f(A)). Then f∗ : CatT →
CatS restricts to CatV-cc

T → CatV
′-cc

S . �

Proof of Theorem 4.18. The functor ι! : PSh(S) → PSh(T ) preserves pullbacks by
Lemma 3.14, so the previous lemma shows that ι∗ : CatT → CatS preserves V-
cocomplete categories and V-cocontinuous functors. In the same way, we deduce
from Lemma 4.17 that ι∗ restricts accordingly.

Now let C be a V-cocomplete T -category. Then the unit C → ι∗ι∗C is given by
restriction along the counit ε : ι!ι

∗ ⇒ id of the adjunction ι! : PSh(S) ⇄ PSh(T ) : ι∗.
Thus, if A ∈ T and (u : X → A) ∈ V(A) are arbitrary, then the Beck–Chevalley
map u!η → ηu! is given by the Beck–Chevalley map (ι!ι

∗u)!ε∗ → η∗u! associated to
the pullback (4) and hence is an equivalence by V-cocompleteness of C.
Similarly, if D is a V-cocomplete S-category, then the counit ε : ι∗ι∗D → D is
given by restricting along the unit of PSh(S) ⇄ PSh(T ), and the Beck–Chevalley
transformation u!ε → εu! for (u : X → Y ) ∈ V(Y ) is simply the Beck–Chevalley
transformation for the pullback

X ι∗ι!X

Y ι∗ι!Y

η

u
y

ι∗ι!u

η

in PSh(S) from Lemma 3.19, hence an equivalence as claimed. �

Corollary 4.20. The adjunction ι∗ : CatT ⇄ CatS : ι∗ restricts to adjunctions
CatS-ccT ⇄ CatS-ccS and PrST ⇄ PrSS.

Proof. Clearly, ι∗ and ι∗ preserve fiberwise cocompleteness and cocontinuity; more-
over, the unit C → ι∗ι∗C and counit ι∗ι∗D → D are simply given by restricting along
suitable maps in PSh(T ) or PSh(S) respectively, hence fiberwise cocontinuous.

The first claim now follows from the special case V = US of the previous theorem.
For the second one it then only remains to observe that ι∗ and ι∗ preserve fiberwise
presentability by the same reasoning as for fiberwise cocompleteness. �

We close this discussion by giving an ‘internal’ version of the above adjunction, for
which we introduce:

Construction 4.21. For any C,D ∈ CatT we get a natural map ι∗: ι∗FunT (C,D)→
FunS(ι

∗C, ι∗D) as the composite

ι∗FunT (C,D)
η−−→ FunS(ι

∗C, ι∗C × ι∗FunT (C,D))

∼−−→ FunS(ι
∗C, ι∗(C × FunT (C,D)))

ι∗ε−−→ FunT (ι
∗C, ι∗D),
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where the unlabelled equivalence is the canonical one. Put differently, for any fixed
C, this is the mate of the canonical natural equivalence filling the square

CatT CatT

CatS CatS .

ι∗

C×–

ι∗

ι∗ C ×–

(5)

Explicitly, this sends an object in degree A ∈ T corresponding to F : ι(A)×C → D
to the composite

A× ι∗ C η−→ ι∗ι(A) × ι∗ C ≃ ι∗(ι(A) × C) ι∗F−−→ ι∗D,

where η now refers to the adjunction ι! ⊣ ι∗.
Passing to mates once more, we also obtain an equivalence Φ: FunT (C, ι∗D) ≃
ι∗FunS(ι

∗C,D) natural in C ∈ CatT and D ∈ CatS , given for any A ∈ T by sending
a functor F : C → FunT (A, ι∗D) to the composite

ι∗C ι∗F−−→ ι∗FunT (A, ι∗D)
ι∗−→ FunT (ι

∗A, ι∗ι∗D)
ε◦−−−→ Fun(ι∗A,D).

The composition of the two rightmost arrows agrees with ε ◦ ι∗Φ by the triangle
identity, i.e. Φ(F ) is the adjunct of the composite

C F−−→ FunT (A, ι∗D)
Φ−−→∼ ι∗FunS(ι

∗A,D).

The equivalence Φ can accordingly be viewed as an ‘internal’ version of the adjunc-
tion equivalence for ι∗ : CatT ⇄ CatS : ι∗.

Corollary 4.22. Let C be an S-cocomplete T -category and D an S-cocomplete
S-category. Then the previous construction restricts to an equivalence

FunS-ccT (C, ι∗ D) ∼−−→ ι∗Fun
S-cc
S (ι∗ C,D).

Proof. It only remains to show that F : C → FunT (X, ι∗ D) is S-cocontinuous if
and only if Φ(F ) is so. However, by the above explicit description of Φ(F ), this is
precisely the statement of Corollary 4.20. �

Remark 4.23. One can deduce from the previous corollary that the functor
ι∗ : CatS-ccT → CatS-ccS from Corollary 4.20 is symmetric monoidal with respect
to the symmetric monoidal structures defined in [MW22, Section 8.2], applied to

US . It follows in particular that the subcategory PrST ⊂ CatS-ccT is closed under ten-
sor products, being the preimage along ι∗ of the symmetric monoidal subcategory
PrLS ⊂ CatS-ccS . Since we will not make use of these symmetric monoidal structures
in this paper, we will leave the details to the interested reader.

4.3. S-cocompletion. As an application of the above theory we can now reinter-
pret and extend work of Martini and Wolf on parametrized cocompletions:

Theorem 4.24. Let I be any small T -category. Then the unique S-cocontinuous
S-functor ι! : PShS(ι

∗I) = FunS(ι
∗Iop, SpcS) → ι∗FunT (I, SpcT ) = ι∗PShT (I)

compatible with the Yoneda embeddings is fully faithful. Moreover, its essential
image is actually a T -subcategory, and this is the T -subcategory generated under
S-colimits by the Yoneda image.
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Proof. Write C for the full T -subcategory of PShT (I) generated under S-colimits
by the Yoneda image. Then [MW21, Theorem 7.1.11] (for U the union of US and
the constant T -categories) shows that restriction along the Yoneda embedding y
defines an equivalence

HomCatS-cc
T

(C,D) ∼−−→ HomCatT (I,D)

for any S-cocomplete D. Specializing to D = ι∗E for E ∈ CatS-ccS and appealing to
Corollary 4.20 we see that restricting along ι∗(y) defines an equivalence

HomCatS-cc
S

(ι∗C, E) ∼−−→ HomCatS (ι
∗I, E).

However, the Yoneda embedding ι∗I → PShS(ι
∗I) has the same property by

[MW21, Theorem 7.1.1], so comparing corepresented functors shows that ι! defines
an equivalence PShS(ι

∗I) ≃ C. �
Construction 4.25. We let ι! : PShS⊲T (I) → PShT (I) denote the unique extension
of ι! : PShS(ι

∗I) → ι∗PShT (I) to a T -functor obtained from Theorem 4.24. Note
that for I = 1 the terminal presheaf, this recovers the functor ι! : SpcS⊲T → SpcT
from Lemma 3.17.

By full faithfulness of ι!, there is then a unique lift of the S-parametrized Yoneda
embedding ι∗I → PShS(I) to a T -functor y : I → PShS⊲T (I) together with an
equivalence between ι!y and the T -parametrized Yoneda embedding I → PShT (I).

Corollary 4.26. In the above situation, PShS⊲T (I) is S-presentable. For any S-
cocomplete T -category D, restriction along y defines an equivalence

FunS-ccT (PShS⊲T (I),D) ∼−−→ FunT (I,D).

Proof. For S-presentability, we observe that PShS⊲T (I) is S-cocomplete as it is
equivalent to a subcategory of SpcT closed under S-colimits, and that for any
A ∈ T , PShS⊲T (I)(A) = PSh(S)/A is clearly presentable.

The universal property is an instance of [MW21, Theorem 7.1.11] as before. �
Corollary 4.27. The T -category SpcS⊲T is S-presentable. For any S-cocomplete
T -category D, evaluation at the terminal object defines an equivalence

FunS-ccT (SpcS⊲T ,D) ∼−−→ D. �

In the situation of the previous corollary we actually have further right adjoints:

Proposition 4.28. (1) The S-functor ι∗ : ι∗SpcT → SpcS right adjoint to ι!
admits an S-right adjoint ι∗.

(2) The adjunct ι̃∗ : SpcT → ι∗SpcS of ι∗ admits a T -right adjoint ι̃∗.

Proof. We will prove the second statement. Corollary 4.20 then implies that ι∗ is
S-cocontinuous, so that the first statement is an instance of the Special Adjoint
Functor Theorem.

Recalling the definition (Construction 3.13), ι∗ is given by the composite

PSh(T )/ι!(•)
ι∗−−→ PSh(S)/ι∗ι!(•)

η∗−→ PSh(S)/•,

i.e. it is adjunct to (ι∗)/• : PSh(T )/• → PSh(S)/ι∗(•). The latter obviously preserves
T -colimits and has a pointwise right adjoint given by the composites

PSh(S)/ι∗(•)
ι∗−→ PSh(T )/ι∗ι∗(•)

η∗−→ PSh(T )/•. �
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Remark 4.29. We close this discussion by giving a different interpretation of
the functor ι∗ : ι∗SpcT → SpcS . For this we recall once more the equivalences
SpcT ≃ PSh(T/•), SpcS ≃ PSh(S/•) from Example 2.12; we claim that under these
equivalences our functor ι∗ is given by the restriction f : ι∗ PSh(T/•) → PSh(S/•)
along the S-natural transformation ι∗T/• → S/•.

While this can be carefully proven by hand, we will instead resort to a sequence of
cheap tricks that avoids ever talking about coherences. Namely, by the universal
property of S-spaces it suffices to show that f admits a left adjoint and that this
preserves terminal objects. Indeed, f admits a pointwise left adjoint given by
the left Kan extension functors (ι/A)! : PSh(S/A) → PSh(T/A), and each of these
preserves terminal objects (as they are simply represented by the respective identity
maps). It remains to show that for every f : A → B in S the Beck–Chevalley
transformation (ι/A)!f

∗ ⇒ f∗(ι/B)! is an equivalence. By full faithfulness of (ι/A)!
and (ι/B)!, this is equivalent to demanding that f∗ preserves the essential images,
for which it is turn enough to show that there is some equivalence (ι/A)!f

∗ ≃
f∗(ι/B)!. This however follows simply from the equivalences (3) and the fact that
ι∗ has a left adjoint.

Note that this argument more generally shows that ι∗ corresponds under any pair
of equivalences to the above restriction functor ι∗ PSh(T/•) → PSh(S/•).

5. The universal property of equivariant spaces

Building on the above, we will establish a universal property of equivariant unstable
homotopy theory in this section. We begin by introducing the object of study:

Construction 5.1. Write SSet for the 1-category of simplicial sets. We define a
strict 2-functor •-SSet : Gloop → Cat1 into the (2, 1)-category of 1-categories as
the composite

Gloop
B−֒−→ Grpdop

Fun(–,SSet)−−−−−−−−→ Cat1 .

This lifts to a functor into the (2, 1)-category RelCat of relative categories, homo-
topical functors, and natural isomorphisms by equippingG-SSet := Fun(BG,SSet)
with the G-equivariant weak equivalences, i.e. the class of those maps f such that
fH is a weak equivalence for every subgroup H ⊂ G, or equivalently such that the
geometric realization |f | is a G-equivariant homotopy equivalence.

Postcomposing with the localization functor RelCat → Cat, we obtain a global
category S : Gloop → Cat. We call S the global category of equivariant spaces.

Note that S(G) =: SG is the usual category of G-spaces, and for any α : G → G′

the structure map α∗ : SG′ → SG is the usual restriction functor.

Notation 5.2. Recall from Example 3.8 that Orb ⊂ Glo is an example of a cleft
category, giving rise to notions of Orb-cocompleteness and Orb-presentability. To
emphasize the connections to equivariant homotopy theory obtained in this article
we will refer to these as equivariant cocompleteness and equivariant presentability.

Similarly an Orb-cocontinuous functor F : C → D between equivariantly cocom-
plete global categories will be called equivariantly cocontinuous, and we will write
Funeq-ccGlo (C,D) for the global category FunOrb -cc

Glo (C,D) of equivariantly cocontinuous
functor.
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We can now state the main result of this section:

Theorem 5.3. The global category S is equivariantly presentable. Moreover, it
is the free equivariantly cocomplete global category in the following sense: for any
equivariantly cocomplete global category D, evaluating at the 1-point space provides
an equivalence

Funeq-cc
Glo (S,D) ∼−−→ D.

Remark 5.4. While we will not prove this here, we remark that S is in fact even
globally presentable: this is a rather straightforward model categorical computation
using that the left adjoints α! : H-SSet → G-SSet of the restrictions are again
homotopical and that the Beck–Chevalley conditions hold on the pointset level by
smooth and proper base change.

However, this ‘extra presentability’ should be considered as an anomaly for two
reasons: firstly, it is something rather specific to Orb ⊂ Glo, and does not hold for
general cleft categories S ⊂ T ; secondly, it breaks down as soon as we pass to the
semiadditive and stable world, cf. Warning 9.8.

In view of Corollary 4.27, the second half of the theorem can be reformulated as
follows:

Theorem 5.5. The essentially unique equivariantly cocontinuous global functor
SpcOrb ⊲Glo → S preserving the terminal object is an equivalence.

In fact, our proof of these two theorems below will proceed the other way round
by first establishing an equivalence SpcOrb ⊲Glo ≃ S and then deducing all the
remaining statements from this.

5.1. G-global spaces. To do so, we begin by recalling the global category of global
spaces :

Construction 5.6. We write I for the category of finite sets and injections and I
for the simplicial category obtained by applying the right adjoint E : Set → SSet
of the evaluation functor ev0 : SSet → Set to all hom sets. We write I-SSet
for the category of enriched functors I → SSet, and for any G we denote the
category of G-objects in I-SSet by G-I-SSet. Analogously to Construction 5.1
these assemble into a functor •-I-SSet : Gloop → Cat1.

We can evaluate a G-I-simplicial set X at any (not necessarily finite) set A via

X(A) := colim
B⊂A finite

X(B),

and this acquires an action of the symmetric group ΣA via permuting the factors.
In particular, if A is a G-set, then we can equip X(A) with the diagonal G-action,
yielding a functor evA : G-I-SSet → G-SSet.

We now call a map f : X → Y of G-I-simplicial sets a G-equivariant weak equiva-
lence if f(U) is a G-equivariant weak equivalence in G-SSet for some, hence any
complete G-set universe U (i.e. a countable G-set into which any other countable
G-set embeds equivariantly). Finally, we call f a G-global weak equivalence if ϕ∗f
is an H-equivariant weak equivalence of H-I-simplicial sets for any homomorphism
ϕ : H → G from a finite group to G.
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Clearly, for any α : G → G′ the restriction functor α∗ : G′-I-SSet → G-I-SSet,
sends G′-global weak equivalences to G-global weak equivalences, lifting •-I-SSet
to Gloop → RelCat. Localizing, we then again get a global category, which we
denote by Sgl.

We write Sgl
G := Sgl(G) and call it the category of G-global spaces. Note that

[CLL23] uses the notation ‘Sgl
I ’ for the above global category and reserves Sgl for

a different, but equivalent, model based on actions of a certain ‘universal finite
group.’ In the present paper, however, we will only be interested in the above
approach.

Remark 5.7. The G-global weak equivalences are part of several model structures
on G-I-SSet, see [Len20, Section 1.4]. We will not need them explicitly in this
section, but they will make an indirect appearance in Section 7.

Our interest in Sgl comes from the following ‘global’ version of Theorem 5.5:

Theorem 5.8 (See [CLL23, Theorem 3.3.1 and Corollary 3.2.5]). The global cate-
gory Sgl is globally presentable. The unique globally cocontinuous functor SpcGlo →
Sgl preserving the terminal object is an equivalence. �

On the other hand we can relate the global categories of global and equivariant
spaces as follows:

Lemma 5.9. There exists a global functor const: S → Sgl with the following
properties:

(1) const is fully faithful and sends the terminal object of S to the terminal
object of Sgl,

(2) it admits an Orb-right adjoint R ev : Sgl|Orb → S|Orb.

Once the above two theorems have been established, we will see that this adjunction
is actually uniquely described by the requirement that the left adjoint preserve the
terminal object.

Proof. The functor const : G-SSet → G-I-SSet is homotopical and strictly natu-
ral in G, so it induces a global functor const : S → Sgl. By [Len20, Corollary 1.4.56]
this functor is fully faithful, and it admits a pointwise right adjoint (given by the
right derived functor of ev∅ : G-I-SSet → G-SSet).

To complete the proof, it only remains to establish the Beck–Chevalley condition
for the pointwise right adjoint, or equivalently that for any injective α : G→ G′ the
mate transform α! ◦const ⇒ const◦α! is an equivalence of functors SG → Sgl

G′ . But
indeed, this holds on the pointset level by direct inspection, so the claim follows
as α! : G-I-SSet → G′-I-SSet is homotopical by [Len20, Lemma 1.4.42] while
α! : G-SSet → G′-SSet is so by (a well-known special case of) Proposition 1.1.18
of op. cit. �

Proof of Theorems 5.3 and 5.5. Lemma 5.9 provides a fully faithful global functor
const: S → Sgl. Now the right hand side is globally cocomplete, hence in particular
equivariantly cocomplete. Moreover, the essential image of the functor const is
closed under all equivariant colimits as it is an Orb-left adjoint. Thus, also S is
equivariantly cocomplete.
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Appealing to Corollary 4.27, we therefore see that there is an essentially unique
equivariantly cocontinuous functor F : SpcOrb ⊲Glo → S preserving the terminal
object, and we claim that this is an equivalence. For this, we consider the diagram

SpcOrb ⊲Glo S

SpcGlo Sgl

ι!

F

const

∼

of global functors where the lower equivalence is as in Theorem 5.8; both paths
through this diagram are equivariantly cocontinuous and preserve the terminal
object, so this commutes by the universal property of SpcOrb ⊲Glo. Moreover, the
vertical arrows are fully faithful by Theorem 4.24 and Lemma 5.9, respectively. It
follows that also F is fully faithful.

To see that each FG : SpcOrb(G) → SG is essentially surjective, we observe that
FG is a fully faithful left adjoint, so that its essential image is closed under all
colimits. On the other hand, by Elmendorf’s Theorem [Elm83] (or simply looking
at the standard generating cofibrations), SG is generated under colimits by the
G/H ’s for subgroups H ⊂ G, so it is enough that each G/H is contained in the
essential image. However, G/H = i!(∗), where i : H →֒ G denotes the inclusion, so
FG(i!(∗)) ≃ i!FH(∗) ≃ i!(∗) ≃ G/H by the defining properties of F .

Finally, the universal property of S follows from combining the above with Corol-
lary 4.27. �

5.2. The universal property of G-spaces. Fix a finite group G. Using the
previous theorem, we can now give a model categorical description of the universal
G-presentable G-category (Example 2.3).

Lemma 5.10. The assignment Orb/G → OrbG sending an object ϕ : H → G to
G/im(ϕ) and a morphism

H K

G
ϕ ψ

g
⇒ (6)

to the map G/im(ϕ) → G/im(ψ) given by right multiplication with g, is well-defined
and an equivalence of categories.

Proof. One easily checks that this is well-defined and an essentially surjective func-
tor. To see that it is fully faithful, we may for ease of notation restrict to the
essentially wide subcategory of OrbG spanned by the honest inclusions H →֒ G.
We now observe that the map H → K in a morphism (6) is necessarily given by
h 7→ ghg−1; conversely, g ∈ G defines a map (H →֒ G) → (K →֒ G) if and only if
ghg−1 ∈ K for every h ∈ H , i.e. [g] ∈ (G/K)H . On the other hand, 2-cells g ⇒ g′

are in bijection with elements k ∈ K such that gk=g′. Altogether, we see that
Hom(H →֒ G,K →֒ G) is discrete and equivalent to (G/K)H by sending (6) to the
class of g.

The claim then follows by observing that also Hom(G/H,G/K) ∼= (G/K)H via
evaluation at the coset of the identity. �
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Construction 5.11. We write υG for the composite OrbG ≃ Orb/G
πG−−→ Orb →֒

Glo. Restricting along υG then yields a functor υ∗G : CatGlo → CatOrbG
sending a

global category to its ‘underlying G-category.’

Theorem 5.12. (1) The G-category υ∗GS is G-presentable, and the unique left
adjoint SpcOrbG

→ υ∗GS preserving the terminal object is an equivalence.
(2) For any G-cocomplete D, evaluation at the terminal object defines an equiv-

alence FunG-cc
OrbG

(υ∗GS,D) ≃ D.

More informally, υ∗GS is given by sending G/H to the category SH of H-spaces,
G/H ։ G/K to the restriction SK → SH for any K ⊃ H , and – · g : G/H → G/H
for an element g of the normalizer NGH to the conjugation c∗g : SH → SH .

Proof. It suffices to construct an equivalence υ∗GS ≃ SpcOrbG
; the theorem will

then follow from the universal property of the right hand side (Theorem 2.24).

But by Theorem 5.5 we have an equivalence of global categories S ≃ SpcOrb ⊲Glo,
and hence in particular an equivalence S|Orb ≃ SpcOrb of Orb-categories. To finish
the proof it suffices now to observe that for any small T and any A ∈ T , there is
an equivalence π∗

ASpcT ≃ SpcT/A
by [MW21, Lemma 7.1.9]. �

Remark 5.13. Evaluating at H ⊂ G, the above in particular shows SH ≃
PSh(OrbG)/(G/H) ≃ PSh(OrbH). In this sense, the theorems above can be viewed
as a ‘coherent’ version of the classical Elmendorf Theorem [Elm83], additionally
taking into account the restriction functors as well as all higher structure between
them.

6. The semiadditive story

We continue to fix a cleft category ι : S →֒ T . In this section we will give a descrip-
tion of the universal S-presentable T -category that is in addition semiadditive in a
suitable sense.

6.1. P -semiadditivity and P -commutative monoids. We begin with a recol-
lection of the relevant material from [CLL23]. Throughout, we fix an atomic orbital
subcategory P ⊂ T in the sense of Definition 3.34.

Construction 6.1. We write FT ⊂ PSh(T ) for the finite coproduct completion of
T and FPT for the finite coproduct completion of P , viewed as a subcategory of FT .
We define a T -subcategory FPT ⊂ SpcT by letting FPT (B) be the full subcategory
of PSh(T )/B spanned by objects of the form (pi) :

∐n
i=1 Ai → B such that each

morphism pi : Ai → B is in P ; put differently, this is the slice (FPT )/B. Note that

by atomic orbitality of P , FPT indeed forms a T -subcategory of SpcT .

Definition 6.2. We say a T -category has finite P -products or finite P -coproducts
if it has FPT -limits or FPT -colimits, respectively, in the sense of Definition 2.16.

Definition 6.3. A T -category C is called pointed if it factors through the non-full
subcategory Cat∗ ⊂ Cat of categories with zero objects and functors preserving the
zero object.
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Construction 6.4. Let C be a pointed T -category which has finite P -coproducts,
and let D be a T -category with finite P -products. For any functor F : C → D and
any p : A→ B in FPT , [CLL23, Construction 4.6.1] defines a relative norm map

NmF
p : FB ◦ p! =⇒ p∗ ◦ FA.

If C also has finite P -products, we write Nmp : p! ⇒ p∗ for the relative norm map
of idC , and simply call it the norm map.

Definition 6.5. A T -category C is called P -semiadditive if it is pointed, has finite
P -products and P -coproducts, and they agree in the sense that for every p in FPT
the norm map Nmp : p! ⇒ p∗ is an equivalence.

Example 6.6. When P ⊂ T equals Orb ⊂ Glo, the previous definition specializes
to the notion of equivariant semiadditivity from [CLL23].

Example 6.7. When P ⊂ T equals OrbG ⊂ OrbG, the notion of semiadditivity ob-
tained agrees with G-semiadditivity as defined in [Nar16], see [CLL23, Proposition
4.6.4].

Definition 6.8. Let F : C → D be a functor of T -categories, such that C is pointed
and has finite P -coproducts, while D has finite P -products. Then F is called P -
semiadditive if it sends P -coproducts to P -products in the sense that the relative
norm map NmF

p : Fp! ⇒ p∗F is an equivalence for every p in FPT .

Definition 6.9. We write CatP -⊕
T ⊂ CatT for the non-full subcategory of P -

semiadditive categories and P -semiadditive T -functors.

By [CLL23, Proposition 4.6.14], the morphisms of CatP -⊕
T are equivalently the FPT -

cocontinuous or FPT -continuous T -functors.

Remark 6.10. Similarly to Warning 4.10, having finite P -(co)products is not just
a property of the underlying P -category. On the other hand, if a T -category either
has finite P -coproducts or finite P -products, then it is P -semiadditive if and only
if its underlying P -category is so [CLL23, Lemma 4.5.2 and Lemma 4.6.4].

Definition 6.11. In the above situation, we write FunP -⊕
T (C,D) for the param-

etrized subcategory spanned in degree X ∈ PSh(T ) by the P -semiadditive functors
C → FunT (X,D).

Note that the above is indeed a T -subcategory by [CLL23, Corollary 4.6.10].

Definition 6.12. We define FPT,∗, the T -category of finite pointed P -sets, to be

the essential image of FPT under the functor (−)+ : SpcT → SpcT,∗ which adds a
disjoint basepoint.

Definition 6.13. Given a T -category C with P -products we define CMonP (C), the
T -category of P -commutative monoids in C, as FunP -⊕

T (FPT,∗, C). If C = SpcT , we

write CMonPT := CMonP (SpcT ).

This construction enjoys several universal properties. To express them we introduce:

Construction 6.14. Let C have finite P -products. Evaluation at the global section
S0 := (id)+ ∈ FPT,∗(1) ⊂ (PSh(T )/1)∗ gives a forgetful functor

U : CMonP (C) → C .
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Construction 6.15. Assume C is presentable. Then CMonP (C) →֒ FunT (FPT,∗, C)
admits a left adjoint LP -⊕ by [CLL23, Proposition 4.6.15]. In particular, the functor
U from the previous construction has a left adjoint given by composing the left Kan
extension functor (S0)! : C → FunT (FPT,∗, C) [MW21, Corollary 6.3.7] with LP -⊕.

Theorem 6.16 (See [CLL23, Theorem 4.8.10]). Let C be a T -category with finite P -
products. The functor U : CMonP (C) → C exhibits CMonP (C) as the P -semiadditive
envelope of C in the following sense: for every P -semiadditive T -category T post-
composition with U induces an equivalence

FunP -×(T ,U) : FunP -⊕(T ,CMonP (C)) ∼−−→ FunP -×(T , C).
Suppose now that C is moreover presentable. Then the left adjoint P of U ex-
hibits CMonP (C) as the presentable P -semiadditive completion of C in the follow-
ing sense: for any presentable P -semiadditive T -category T precomposition with P
yields an equivalence

FunT -cc(P, T ) : FunT -cc(CMonP (C), T ) ∼−−→ FunT -cc(C, T ). �

Theorem 6.17 (See [CLL23, Theorem 4.8.11]). The T -category CMonPT is P -
semiadditive and T -presentable. Moreover, it has the following universal prop-
erty: for any locally small T -cocomplete P -semiadditive D, evaluation at P(∗) ≃
LP -⊕y(S0) induces an equivalence

FunT -cc(CMonPT ,D) ∼−−→ D.

6.2. The free P -semiadditive S-presentable T -category. Let now P ⊂ S be
atomic orbital as a subcategory of T . As the main results of this section, we will
prove the following ‘partially presentable’ versions of the previous theorem:

Theorem 6.18. There is a unique S-cocontinuous functor ι! : CMonPS → ι∗CMonPT
sending P(∗) to P(∗). Moreover, ι! is fully faithful, and it sits in a sequence of S-
adjoints ι! ⊣ ι∗ ⊣ ι∗.
Theorem 6.19. The S-functor ι! uniquely extends to a T -functor CMonPS⊲T →
CMonPT . Moreover, CMonPS⊲T is S-presentable, P -semiadditive, and it has the
following universal property: for any S-cocomplete P -semiadditive T -category D
evaluation at a certain global section P(∗) defines an equivalence

FunS-ccT (CMonPS⊲T ,D) ∼−−→ D.
Remark 6.20. Note that in contrast to Theorem 6.17 there is no local smallness
condition on D here anymore; in particular, for S = T this improves upon our
result in [CLL23].

The proof of these two theorems will occupy the rest of this section.

6.2.1. Construction of the universal example. As our first step, we will construct
some P -semiadditive S-cocomplete T -category C with the correct universal prop-
erty; more precisely, we want to show:

Proposition 6.21. Write C ⊂ CMonPT for the full subcategory generated under
S-colimits by P(∗). Then C is a P -semiadditive S-cocomplete T -category, and for
any other such D evaluating at P(∗) yields an equivalence FunT -cc

T (C,D) ≃ D.
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The basic idea will be to deduce the universal property of C from the one for CMonPT .
However, we only understand maps from the latter to T -cocomplete categories, so
we will have to embed a general P -semiadditive S-cocomplete T -category into a
T -cocomplete one first. However, in this process some size issues pop up; to avoid
any ambiguities, we will therefore for once refer back to our chosen Grothendieck
universes explcitly:

Lemma 6.22. Let D be an S-cocomplete P -semiadditive V-small T -category. Then
there exists a W-small, locally V-small P -semiadditive T -category D′ having all V-
small T -colimits together with a fully faithful functor j : D → D′ preserving all
U-small S-colimits.

Proof. Write SPCT for the W-small and locally V-small T -category of V-small
spaces. Then the Yoneda embedding Dop → FunT (D, SPCT ) actually lands in the

full subcategory E := FunP -×
T (D, SPCT ) by [MW21, Corollary 4.4.8]. Now E is

closed under all V-small T -limits and the Yoneda embedding preserves all U-small
S-limits by Proposition 4.4.7 of op. cit. Thus, the Yoneda embedding Dop → E is
a fully faithful functor into a category with all V-small T -limits preserving U-small
S-limits. Moreover, as D is P -semiadditive, so is E by [CLL23, Proposition 4.6.13],
and hence so is Eop by Lemma 4.5.4 of op. cit. The dual D → Eop of the Yoneda
embedding therefore has the required properties. �

As the lemma requires us to pass a larger universe, it is not clear a priori whether
CMonPT still has the correct universal property (we will see a posteriori that, as
a matter of fact, it does). For locally small D, one might try to avoid this issue

by considering FunP -×
T (D, SpcT ) instead or even by just closing up the Yoneda

image under U-small T -limits in there, but even in this case it is not clear whether
the result is still locally small—and said local smallness was crucial in the proof
of Theorem 6.16 given in [CLL23], which relied on the Special Adjoint Functor
Theorem. Accordingly, we will have to consider a W-version CMONPT of CMonPT .
The crucial technical lemma to relate these two to each other will be the following:

Lemma 6.23. The functor FunT (FPT,∗, SPCT ) → CMONPT := FunP -⊕
T (FPT,∗, SPCT )

left adjoint to the inclusion preserves FunT (FPT,∗, SpcT ).

Accordingly, it restricts to a left adjoint FunT (FPT,∗, SpcT ) → CMonPT of the inclu-
sion, and there is no harm in denoting both the localization functor in ordinary
T -categories and in large T -categories by the same symbol LP -⊕.

Proof. Let A ∈ T be arbitrary. [CLL23, Remark 2.2.14] provides for any W-small
category E a natural equivalence

FunT (FPT,∗, ET )(A) ≃ Fun(
∫
FPT,∗ ×A, E) (7)

where
∫
denotes the usual Grothendieck construction over T op and (–)T denotes the

T -category of T -objects (Example 2.5). On the other hand, [CLL23, Remark 4.9.9]
characterizes the essential image of CMonP (ET )(A) under this—it consists precisely

of the functors F † :
∫
FPT,∗ ×A→ E satisfying the following:

(1) For every f : B → A in T the restriction of F † to the non-full subcategory
FPT,∗(B) ≃ FPT,∗(B)× {f} ⊂

∫
FPT,∗ ×A is semiadditive in the usual sense.
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(2) For every p : B → B′ in P and f : B′ → A in T a certain natural Segal
map F †(B′, B+, f) → F †(B,B+, pf) is an equivalence; here we as usual
denote objects in the Grothendieck construction by triples (C ∈ T op, X ∈
FPT,∗(C), g ∈ Hom(C,A)).

Specializing to E = SPC and writing y for the (non-parametrized) Yoneda embed-
ding of

∫
FPT,∗ × A, we see that F is P -semiadditive if and only if F † is local with

respect to the set U † made up of suitable maps

(1) ∅ → y(B, ∗, f) for every map f : B → A in T (so that the restriction to
each FPT,∗(B)× {f} is pointed)

(2) y(B,X+, f) ∐ y(B, Y+, f) → y(B,X+ ∨ Y+, f) for all f : B → A in T and
X+, Y+ ∈ FPT,∗(B) (so that each restriction sends coproducts to products)

(3) y(B,B+, pf) → y(B′, B+, f) for every p : A→ B in P and f : B′ → B in T
(ensuring that the Segal maps are equivalences).

Transporting U † along the equivalence (7), we then get a set U such that F
is P -semiadditive if and only if it is U -local. By direct inspection, each map
in U † actually lives in Fun(

∫
FPT,∗ × A, Spc) (as opposed to functors into SPC).

By naturality of (7) we can therefore also take the set U to consist of maps in
FunT (FPT,∗, SpcT )(A). We now write U1 for the strongly saturated class gener-

ated by U in FunT (FPT,∗, SpcT )(A) (with respect to U-small colimits) and U2 for

the strongly saturated class generated in FunT (FPT,∗, SPCT )(A) (with respect to

V-small colimits). Clearly, U1 ⊂ U2.

By [Lur09, Proposition 5.4.5.15], there exists for any F ∈ FunT (FPT,∗, SpcT )(A) a

map η : F → F ′ into a U -local F ′ such that η ∈ U1. But then also η ∈ U2, so it
qualifies as the adjunction unit in the larger category by the same result, and in
particular the image of F under the localization functor to CMONPT (A) is equivalent
to F ′ ∈ FunT (FPT,∗, SpcT )(A) as desired. �

Proof of Proposition 6.21. By the previous lemma, CMonPT ⊂ CMONPT contains
P(∗). We claim that it is closed under U-small T -colimits: indeed, fiberwise colimits
in CMONPT are formed by first computing them in FunT (FPT,∗, SPCT ) and then

reflecting via LP -⊕, so CMonPT is closed under U-small fiberwise colimits by the

lemma, and similarly the functor f! : CMONPT (A) → CMONPT (B) factors for any
map f : A→ B in T as

CMONPT (A) →֒ FunT (FPT,∗, SPCT )(A)
f!−→ FunT (FPT,∗, SPCT )(B)

LP -⊕
−−−→ CMONPT (B).

In particular, C ⊂ CMonPT is also closed under all U-small S-colimits in CMONPT ,
and thus under finite P -coproducts. As CMONPT is P -semiadditive, C is then also
closed under finite P -products and moreover P -semiadditive itself. By [CLL23,
Corollary 4.7.8op] there is then a unique functor j : (FPT,∗)op → C that preserves

finite P -products and sends S0 to P(∗). We moreover write k for the inclusion
C →֒ CMONPT ; then k preserves U-small S-colimits, and hence in particular finite
P -(co)products.

If now D′ is a W-small and locally V-small P -semiadditive T -category which ad-
mits all V-small T -colimits, then [MW21, Theorem 6.3.5 and Corollary 6.3.7] show
that the left Kan extension functors j! : FunT ((FPT,∗)op,D′) → FunT (C,D′) and
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k! : FunT (C,D′) → FunT (CMONPT ,D′) exist and that the latter is fully faith-
ful, while [CLL23, Proposition 4.8.12] shows that k!j! restricts to an equivalence

FunP -×
T (FPT,∗,D′) ≃ FunT -CC

T (CMONPT ,D′), where the right hand side denotes func-
tors preserving all V-small T -colimits.

We claim that j! restricts to an equivalence FunP -×
T ((FPT,∗)op,D′) ≃ FunS-ccT (C,D′),

for which it is enough by 2-out-of-3 that for any A ∈ T and any finite P -product
preserving f : (FPT,∗)op → FunT (A,D′) the Kan extension j!f preserves U-small
S-colimits, and that conversely any S-cocontinuous functor arises this way.

For the first statement, it is enough to observe that k!j!f : CMONPT → FunT (A,D′)
is in particular S-cocontinuous, whence so is k∗k!j!f ≃ j!f as k is S-cocontinuous.
Conversely, if F : C → FunT (A,D′) is S-cocontinuous, then its restriction to (FPT,∗)op
preserves finite P -products. Consider now the subcategory of C of all objects for
which the counit ε : j!j

∗F → F is an equivalence. Then this is closed under U-small
S-colimits as both sides are S-cocontinuous, and it moreover contains P(∗) as the
unit j∗F → j∗j!j∗F is an equivalence by full faithfulness of j!. The claim then
follows as C is generated by P(∗) under U-small S-colimits by construction.

Let now D be a P -semiadditive S-cocomplete T -category, and use Lemma 6.22 to
obtain an S-cocontinuous embedding into a large D′ as above. Then the Kan exten-
sion j! : Fun

P -×
T ((FPT,∗)op,D′) → FunT -CC

T (C,D′) restricts to FunP -×
T ((FPT,∗)op,D) →

FunT (C,D) as D ⊂ D′ is closed under U-small S-colimits and C is generated under

them by P(∗). In particular, j∗ : FunS-ccT (C,D) → FunP -×
T ((FPT,∗)op,D) is an equiv-

alence. The proposition follows as the right hand side is further equivalent to D
via evaluation at S0 by [CLL23, Corollary 4.7.8op]. �
Remark 6.24. Running the same argument in an even larger universe X, the above
proof (without the penultimate paragraph) shows that FunT -cc

T (CMonPT ,D) ≃ D via
evaluation at P(∗) for any W-small P -semiadditive T -category D with U-small S-
colimits.

As an upshot, we can now stop thinking about universes.

6.2.2. Relation to CMonPS . Next, we want to understand the underlying S-category
of the universal P -semiadditive S-cocomplete T -category C constructed above. As
in the unstable situation this will be some formal Yoneda yoga.

Proposition 6.25. The adjunction ι∗ : CatT ⇄ CatS : ι∗ restricts to give adjunc-

tions CatP -⊕
T ⇄ CatP -⊕

S , CatP -⊕,S-cc
T ⇄ CatP -⊕,S-cc

S , and PrS,P -⊕
T ⇄ PrS,P -⊕

S .

Proof. If will suffice to prove the first statement; the second one will then follow
from Corollary 4.20.

By Lemma 3.14, ι! : PSh(S) → PSh(T ) preserves pullbacks, while its right adjoint
restricts to FPT → ι∗FPS by Lemma 4.17 forV = FPT . [CLL23, Lemma 4.6.5] therefore
shows that both ι∗ and ι∗ restrict accordingly. Moreover, Theorem 4.18 shows that
the unit and counit are P -cocontinuous and in particular P -semiadditive. �

In fact, the above argument also shows slightly more generally:

Proposition 6.26. Let C be a pointed T -category with finite P -coproducts and
let D be an S-category with finite P -products. Then a T -functor C → ι∗D is P -
semiadditive if and only if its adjunct ι∗C → D is so. �
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Arguing as in Corollary 4.22 we immediately deduce:

Corollary 6.27. Let C be a pointed T -category with finite P -coproducts and let D
be an S-category with finite P -products. Then the equivalence Φ: FunT (C, ι∗ D) ∼−−→
ι∗FunS(ι

∗ C,D) from Construction 4.21 restricts to an equivalence

FunP -⊕
T (C, ι∗ D) ∼−−→ ι∗Fun

P -⊕
S (ι∗ C,D). �

On the other hand, we now easily get the following result subsuming Theorem 6.19
and one half of 6.18:

Theorem 6.28. (1) There is a unique S-cocontinuous functor ι! : CMonPS →
ι∗CMonPT sending P(∗) to P(∗).

(2) ι! is fully faithful and extends uniquely to a T -functor CMonPS⊲T → CMonPT .
(3) CMonPS⊲T is S-presentable and P -semiadditive.
(4) Let P(∗) ∈ Γ(CMonPS⊲T ) denote the preimage of the object of Γ(CMonPT ) of

the same name. Then CMonPS⊲T has the following universal property: for
any P -semiadditive S-cocomplete T -category D evaluation at P(∗) defines
an equivalence FunT (CMonPS⊲T ,D) ≃ D.

Proof. Let C ⊂ CMonPT again be generated under S-colimits by P(∗). Arguing as in
the proof of Theorem 4.24, Proposition 6.25 together with Proposition 6.21 shows
that there is a unique S-cocontinuous functor CMonPS → ι∗C preserving P(∗), and
that this is an equivalence. Thus, ι! : CMonPS → ι∗CMonPT extends uniquely to a
fully faithful T -functor CMonPS⊲T → CMonPT , and this induces an equivalence onto
C. The universal property then follows by another application of Proposition 6.21.

It only remains to show that the category C (and hence also CMonPS⊲T ) is S-
presentable. But indeed, C is S-cocomplete as CMonPT is so, and C(A) ≃ CMonPS (A)
is presentable for any A ∈ T . �

6.3. An additional adjoint. Our goal in this subsection will be to understand
the right adjoint ι∗ of the above S-functor ι! : CMonPS → ι∗CMonPT better, and to
use this to show that it in turn admits another right adjoint ι∗, finishing the proof
of Theorem 6.18. We begin with the following observation:

Lemma 6.29. The diagram

ι∗CMonPT CMonPS

ι∗SpcT SpcS.

ι∗U

ι∗

U

ι∗

commutes up to natural equivalence.

Note that ι∗ is P -semiadditive as it is right adjoint; by the universal property of
CMonPS from Theorem 6.16 the above then actually characterizes ι∗ completely.

Proof. All functors in the diagram

SpcS ι∗SpcT

CMonPS ι∗CMonPT

ι!

P ι∗P

ι!

(8)
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are left adjoints, and both paths through this diagram send the terminal object
to the same object by the defining property of the horizontal maps. Thus, the
universal property of SpcS shows that (8) commutes up to equivalence. The claim
follows by passing to total mates. �

This suggests a natural strategy to get a more explicit description of ι∗ and to prove
that it has a right adjoint: construct some left adjoint ι∗CMonPT → CMonPS and
then show that it is compatible with the forgetful functors. Indeed, this is precisely
what we will do now, using the restriction functor from Construction 4.21:

Proposition 6.30. The composite

ι∗FunT (FPT,∗, SpcT )
ι∗−−→ FunS(FPS,∗, ι∗SpcT )

Fun
S
(FP

S,∗,ι
∗)−−−−−−−−−→ FunS(FPS,∗, SpcS) (9)

restricts to the functor ι∗CMonPT → CMonPS right adjoint to ι!. Moreover, (9)
admits a right adjoint ι∗ : FunS(FPS,∗, SpcS) → ι∗FunT (FPT,∗, SpcT ), which again

restricts to CMonPS → ι∗CMonPT .

Proof. For (9) to restrict as claimed, it will be enough to show that its adjunct
FunT (FPT,∗, SpcT ) → ι∗FunS(FPS,∗, SpcS) restricts to CMonPT → ι∗CMonPS . How-
ever, unravelling the definitions, the adjunct is precisely given by

FunT (FPT,∗, SpcT )
Fun

T
(FP

T,∗,ι̃
∗)

−−−−−−−−−→ FunT (FPT,∗, ι∗SpcS)
Φ−−→∼ ι∗FunS(FPS,∗, SpcS), (10)

where ι̃∗ is the adjunct of ι∗, as in Proposition 4.28. The first functor restricts to
semiadditive functors as ι̃∗ is S-continuous by Corollary 4.20op, and so does the
second functor by Corollary 6.27.

Proposition 4.28 then shows that (10) has a right adjoint ι̃∗ given by the composite

ι∗FunS(FPS,∗, SpcS)
Φ−1

−−−→∼ FunT (FPT,∗, ι∗SpcS)
Fun

T
(FP

T,∗,ι̃∗)−−−−−−−−−→ FunT (FPT,∗, SpcT )

which restricts to ι∗CMonPS → CMonPT by the same argument as before.

We can now show that (9) has a right adjoint ι∗: namely, as it is adjunct to (10),
it factors as

ι∗FunT (FPT,∗, SpcT )
ι∗(10)−−−−→ ι∗ι∗FunS(FPS,∗, SpcS)

ε−−→ FunS(FPS,∗, SpcS),

and the first map has a right adjoint given by ι∗(ι̃∗) as ι∗ obviously preserves
adjunctions, while the second one has a right adjoint as it S-cocontinuous by (the
proof of) Corollary 4.20.

Next, let us show that ι∗ restricts to CMonPS → ι∗CMonPT . By the above, ι∗(ι̃∗) re-
stricts to ι∗ι∗CMonPS → ι∗CMonPT , so it only remains to show that the right adjoint
of the counit ε : ι∗ι∗ → id at FunS(FPS,∗, SpcS) restricts to CMonPS → ι∗ι∗CMonPS .

But ε is simply given by restricting along the unit of ι! : PSh(S) ⇄ PSh(T ) : ι∗, so
the claim follows as CMonPS ⊂ FunS(FPS,∗, SpcS) is closed under all S-limits.
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It now only remains to show that the restriction of (9) to ι∗CMonPT → CMonPS in-
deed agrees with the functor ι∗ considered before. For this we consider the diagram

ι∗FunT (FPT,∗, SpcT ) FunS(FPS,∗, ι∗SpcT ) FunS(FPS,∗, SpcS)

ι∗SpcT ι∗SpcT SpcS

ι∗

ι∗evS0

FunS(FP
S,∗,ι

∗)

evS0 evS0

ι∗

with top row (9). The right hand square commutes by naturality, as does the left
hand square by a straightforward mate argument. Thus, the restricted functor
ι∗CMonPT → CMonPS lies over ι∗ : ι∗SpcT → SpcS . But it is also P -semiadditive (it
is even an S-left adjoint by the above), so the claim follows from Lemma 6.29 and
the universal property of CMonPS . �

Proof of Theorem 6.18. Combine Theorem 6.28 with the previous proposition. �

7. The universal property of equivariant special Γ-spaces

In this section we will identify the universal equivariantly semiadditive equiv-
ariantly presentable global category in terms of Shimakawa’s special Γ-G-spaces
[Shi89, Shi91].

7.1. Model categories of equivariant Γ-spaces. We begin by introducing the
main players, which will require a bit more model categorical sophistication than
the unstable case.

Definition 7.1. We write Γ for the category of finite pointed sets and based maps.
For any n ≥ 0 we let n+ := {0, . . . , n} with basepoint 0.

Definition 7.2. Let G be a finite group. A Γ-G-space is a functor Γ → G-SSet
that sends the singleton set 0+ to the 1-point space. We write Γ-G-SSet∗ for the
category of Γ-G-spaces.

By [MMO17, Lemma 1.17] we can equivalently think of a Γ-G-space as an Set∗-
enriched functor Γ → G-SSet∗ into the category of pointed G-spaces, with the
equivalence given by forgetting the basepoints and the enrichment.

7.1.1. Level model structures. Next, we will equip Γ-G-SSet∗ with a suitable level
model structure. To put this into context, we recall the standard equivariant model
structures on G-SSet:

Proposition 7.3. Let G be a finite group and let F be a family of subgroups of G,
i.e. a non-empty collection of subgroups that is closed under taking subconjugates.
Then G-SSet carries a model structure with

(1) weak equivalences the F -weak equivalences, i.e. those maps f such that fH

is a weak homotopy equivalence for every H ∈ F ;
(2) fibrations the F -fibrations, i.e. those maps f such that fH is a Kan fibration

for every H ∈ F ;
(3) cofibrations the F -cofibrations: those maps f that are levelwise injective

and such that the isotropy of any simplex outside the image of f belongs to
F .
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We call this the F-model structure. It is combinatorial, simplicial, and proper.

Proof. See e.g. [Len20, Proposition 1.1.2] and [Ste16, Proposition 2.16]. �
Example 7.4. In the special case that F = Aℓℓ consists of all subgroups, we call
this the G-equivariant model structure; its weak equivalences are the G-equivariant
weak equivalences considered before.

Proposition 7.5. The category Γ-G-SSet∗ admits a unique model structure with

(1) weak equivalences those maps f : X → Y such that f(S+) : X(S+) → Y (S+)
is a G-weak equivalence for any finite G-set S; here we equip both sides with
the diagonal G-action induced from the actions on X, Y , and S;

(2) fibrations those f such that f(S+) is a G-fibration for any finite G-set S.

We call this the G-equivariant level model structure and its weak equivalences the
G-equivariant level weak equivalences. It is simplicial, proper, and combinatorial
with generating cofibrations the maps

Γ(S+, –) ∧G/H+ ∧ (∂∆n →֒ ∆n)+

for all n ≥ 0, all H ⊂ G, and all finite G-sets S, while its generating acyclic
cofibrations are similarly given by the maps Γ(S+, –) ∧G/H+ ∧ (Λnk →֒ ∆n)+.

Remark 7.6. By [Ost16, Remark 4.11], we could equivalently ask for f(S+) to
be an H-weak equivalence or H-fibration for any H ⊂ G and any finite H-set S.
Put differently, if GG,ΣS denotes the family of graph subgroups of G × ΣS (i.e. the
subgroups of the form ΓH,ϕ := {(h, ϕ(h)) : h ∈ H} for H ⊂ G and ϕ : H → ΣS ,
or equivalently those subgroups intersecting 1 × ΣS trivially), then a map f is a
weak equivalence or fibration in the above model structure if and only if f(S+) is
a GG,ΣS -weak equivalence or fibration, respectively, for any finite set S.

Proof of Proposition 7.5. The model structure appears without proof as [Ost16,
Theorem 4.7]; see [Len20, Proposition 2.2.36] for a complete argument. �
Lemma 7.7. Let α : G→ G′ be a homomorphism of finite groups. Then the restric-
tion α∗ : Γ-G′-SSet∗ → Γ-G-SSet∗ is left Quillen for the level model structures.

Proof. It suffices that the right adjoint α∗ preserves (acyclic) fibrations. As the
latter are defined levelwise, this amounts to saying that

(α× ΣS)
∗ : (G′ ×ΣS)-SSetGG′,ΣS

⇄ (G×ΣS)-SSetGG,ΣS
: (α× ΣS)∗

is a Quillen adjunction for every finite set S. But clearly (α × ΣS)
∗ preserves

cofibrations and sends generating acyclic cofibrations to weak equivalences. �
Remark 7.8. If α : G → G′ is injective, then α∗ : Γ-G′-SSet∗ → Γ-G-SSet is
easily seen to preserve weak equivalences and fibrations; in particular, it is also
right Quillen.

Beware that the previous remark does not hold for non-injective α, see e.g. [Len20,
Example 2.2.15], and accordingly the composition

Γ-•-SSet∗ : Gloop →֒ Grpdop
Fun(–,Γ-SSet∗)−−−−−−−−−−→ Cat1

does not lift to RelCat via the above weak equivalences. However, by Ken Brown’s
Lemma we can fix this by restricting to the subcategories of cofibrant objects:
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Definition 7.9. We write Γ-•-SSetcof∗ for the resulting functor Gloop → RelCat
and ΓS∗ for the global category obtained by pointwise localization.

We can (and will) equivalently think of ΓS∗ as sending a finite group G to the
localization of Γ-G-SSet∗ and a homomorphism α to the left derived functor Lα∗.

Lemma 7.10. Let G be a finite group. Then we have a Quillen adjunction

Γ(1+, –) ∧ (–)+ : G-SSet ⇄ Γ-G-SSet∗ : ev1+

in which both adjoints are homotopical.

Proof. It is clear that both adjoints are homotopical, and that the right adjoint
moreover preserves fibrations, so that it is in particular right Quillen. �

Thus, Γ(1+, –)∧(–)+ induces a natural transformation •-SSet → Γ-•-SSetcof∗ , and
hence a global functor S → ΓS∗, which we denote by P. It is not hard to check
that P admits a global right adjoint (induced by ev1+); as we will not need this
below, we leave the details to the interested reader.

7.1.2. Specialness. In order to study equivariant commutative monoids, we have to
Bousfield localize the above level model structures. For this we recall:

Definition 7.11. A Γ-G-space is called special if for every finite G-set S the Segal
map X(S+) → X(1+)×S induced by the characteristic maps χs : S+ → 1+ for
varying s ∈ S, is a G-weak equivalence.

Similarly to the different characterizations of the G-equivariant level weak equiva-
lences, specialness is equivalent to asking more generally for the Segal maps to be
H-equivariant weak equivalences for all H ⊂ G and all finite H-sets S, or for them
to be GG,ΣS -weak equivalences for every finite set S, see [Len20, Lemma 2.2.10].

Proposition 7.12 (See [Len20, Proposition 2.2.60]). The G-equivariant level model
structure on Γ-G-SSet∗ admits a Bousfield localization with fibrant objects precisely
the level fibrant special Γ-G-spaces. We call this the G-equivariant model structure
and its weak equivalences the G-equivariant weak equivalences. It is combinatorial,
simplicial, and left proper. �
Remark 7.13. The above model structure is obtained from the level model struc-
ture by localizing with respect to the maps S+∧Γ(1+, –)∧G/H+ → Γ(S+, –)∧G/H+

induced by the map S+ → Γ(S+, 1
+) sending s ∈ S to its characteristic map

χS : S+ → 1+ for all finite G-sets S. In particular, all of these maps are G-
equivariant weak equivalences.

Lemma 7.14. Let α : G→ G′ be a homomorphism. Then

α∗ : Γ-G′-SSet∗ ⇄ Γ-G-SSet∗

is left Quillen with respect to the above model structures. If α is injective, then α∗

is also right Quillen.

Proof. For the first statement, it will suffice by [Lur09, Corollary A.3.7.2] that α∗

preserves cofibrations and α∗ preserves fibrant objects. The first statement is clear
from Lemma 7.7, while for the second statement it is enough by adjunction to
show that Lα∗ sends the maps from the previous remark to weak equivalences.
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As these are maps between cofibrant objects, it is enough to prove the same for
α∗. However, decomposing α∗(G′/H) into G-orbits expresses α∗(S+ ∧ Γ(1+, –) ∧
G′/H+ → Γ(S+, –)∧G′/H+) as a coproduct of weak equivalences between cofibrant
objects, so the claim follows.

The second statement follows similarly from Remark 7.8 as α∗ clearly preserves
specialness for injective α. �

In particular, we get a functor Γ-•-SSetcof, spc∗ : Gloop → RelCat that sends G

to Γ-G-SSetcof∗ with the above weak equivalences. The identity of underlying

categories Γ-•-SSetcof∗ → Γ-•-SSetcof, spc∗ then induces a localization L : ΓS∗ →
ΓSspc

∗ . We will write P : S → ΓSspc
∗ for L ◦ P; note that this is again induced by

the homotopical left Quillen functors Γ(1+, –) ∧ (–)+.

Warning 7.15. The functors Lα∗ do not preserve specialness for non-injective α,
i.e. the pointwise right adjoints of L do not assemble into a global right adjoint.
This is hard to see directly (as we know so few cofibrant objects in the above model
structure, making it hard to compute Lα∗), so we use a trick and a bit of equivariant
infinite loop space theory instead:

Let Γ(1+, –) → S be an acyclic cofibration to a special Γ-space. In particular, S is
cofibrant, so if Lα∗ preserved specialness, then S with the trivial G-action would
be a special Γ-G-space for any finite G. On the other hand, as restrictions are left
Quillen by the above, it would be equivalent to Γ(1+, –) with trivial G-action. We
show that already for G = Z/2 this is impossible: no special Γ-Z/2-space equivalent
to Γ(1+, –) can have trivial action.

For this we use that the delooping of Γ(1+, –) (and hence of any Γ-Z/2-space
equivalent to it) is the equivariant sphere spectrum. Now the zeroth stable ho-
motopy groups of the latter are given by the Burnside ring, and hence in particular
π1
0(S) ∼= Z 6∼= Z2 ∼= πZ/2

0 (S). However, for a special Γ-Z/2-space the homotopy
groups of its delooping are simply given as the group completions of the original
homotopy monoids. In the case of a trivialG-action, the restriction homomorphisms
between these homotopy monoids are clearly isomorphisms, and in particular their
group completions are isomorphic, yielding the desired contradiction.

Note that the same argument shows that also the underived functors α∗ do not pre-
serve specialness, although there are much more concrete counterexamples available
in this case.

We can now finally state the main results of this section.

Theorem 7.16. The global category ΓSspc
∗ is equivariantly presentable and equiv-

ariantly semiadditive. Moreover, the unique equivariantly cocontinuous global func-
tor CMonOrb

Orb ⊲Glo → ΓSspc
∗ sending P(∗) to P(∗) is an equivalence.

Theorem 7.17. The global category ΓSspc
∗ is the free equivariantly cocomplete

equivariantly semiadditive global category on one generator in the following sense:
for every other such D evaluation at P(∗) provides an equivalence

Funeq-cc
Glo (ΓSspc

∗ ,D) ∼−−→ D.

7.2. G-global vs. G-equivariant Γ-spaces. In order to prove the above theo-
rems, we will again reduce to our identification of the universal globally cocomplete
equivariantly semiadditive category from [CLL23].
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7.2.1. Model categories of G-global Γ-spaces. We begin by introducing the relevant
model categories.

Definition 7.18. A G-global Γ-space is a functor X : Γ → G-I-SSet such that
X(0+) = ∗.

Proposition 7.19 (See [Len20, Theorem 2.2.31]). The category Γ-G-I-SSet∗ of
G-global Γ-spaces carries a unique model structure with

(1) weak equivalences those maps f such that f(S+) is a (G×ΣS)-global weak
equivalence for every finite set S

(2) acyclic fibrations those maps f such that f(S+)(A) is a GΣA,G×ΣS -acyclic
fibration for all finite sets S and A.

We call this the G-global level model structure and its weak equivalences the G-
global level weak equivalences. It is combinatorial, simplicial, and proper. More-
over, pushouts along injective cofibrations (i.e. levelwise injections) are homotopy
pushouts in this model structure; in particular, they preserve weak equivalences. �

For any α : G → G′ the functor α∗ : Γ-G′-I-SSet∗ → Γ-G-I-SSet∗ preserves

weak equivalences, so the above yields a global category ΓSgl
∗ by the usual pro-

cedure. Note that [CLL23] uses the notation ‘ΓSgl
I,∗’ instead; however, the above

is equivalent to the category denoted by the same symbols in op. cit. by [Len20,
Theorem 2.2.33].

Construction 7.20. For any G, we have a homotopical adjunction

Γ(1+, –) ∧ (–)+ : G-I-SSet ⇄ Γ-G-I-SSet∗ : ev1+ .

As both adjoints are moreover strictly compatible with restriction, we obtain an

induced adjunction P : Sgl ⇄ ΓSgl
∗ :U. We will refer to U as the forgetful functor.

Remark 7.21. We can also consider the category Γ-G-I-SSet of all functors Γ →
G-I-SSet and equip this with the analogue of the G-global level weak equivalence.
For varying G, these again assemble into a global category, which we denote by
ΓSgl.

The inclusion Γ-G-I-SSet∗ →֒ Γ-G-I-SSet admits a left adjoint Λ given by
taking the cofibers of the maps X(0+) → X(S+) induced by the unique maps
i : 0+ → S+ in Γ. As each X(i) is an injective cofibration (as i admits a retraction),
this is actually a homotopy cofiber and Λ is homotopical. It follows easily that the

map ΓSgl
∗ → ΓSgl induced by the inclusions is fully faithful with essential image

given in degree G by those X with X(0+) ≃ ∗ in Sgl
G .

Definition 7.22. A G-global Γ-spaceX is called special if the Segal mapX(S+) →
X(1+)×S is a (G× ΣS)-global weak equivalence for every finite set S.

Note that unlike their equivariant counterparts, these are stable under arbitrary

restrictions, so they form a global subcategory ΓSgl, spc
∗ .

Theorem 7.23 (See [CLL23, Corollary 5.3.6]). There exists an equivalence of global
categories Ξ: ΓSgl ≃ FunGlo(FOrb

Glo,∗, SpcGlo) compatible with the forgetful functors

and restricting to an equivalence ΓSgl, spc
∗ ≃ CMonOrb

Glo . �
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Corollary 7.24. The inclusions ΓSgl, spc
∗ →֒ ΓSgl

∗ and ΓSgl, spc
∗ →֒ ΓSgl admit

global left adjoints.

Proof. The second statement follows from the previous theorem as CMonOrb
Glo →֒

FunGlo(FOrb
Glo,∗, SpcGlo) admits a left adjoint. The first one then follows from this

together with Remark 7.21. �

Remark 7.25. One can also prove the corollary via purely model categorical ar-
guments: by [Len20, Proposition 2.2.61], the G-global level model structure admits
a Bousfield localization with fibrant objects the level fibrant special G-global Γ-
spaces. In particular, we get a pointwise left adjoint, and the Beck–Chevalley

condition then translates to demanding that each α∗ : ΓSgl
∗ (G′) → ΓSgl

∗ (G) pre-
serve the weak equivalences of these Bousfield localizations, or equivalently that
the restriction functors

α∗ : Γ-G′-I-SSet∗ → Γ-G-I-SSet∗ (11)

be homotopical for the localized model structures. While this is doable by careful
inspection, it is actually more work than in the equivariant case (as the maps we
localize at are more complicated), and hence deliberately avoided in [Len20], which
is why we went via the above route instead.

Note however that conversely the above corollary now shows that the functor

α∗ : ΓSgl
∗ (G′) → ΓSgl

∗ (G) and hence also (11) is homotopical for any α, yielding
an ∞-categorical proof of a model categorical statement.

Composing the above with the adjunction from Construction 7.20, we get an ad-

junction Sgl ⇄ ΓSgl, spc
∗ that we again denote by P ⊣ U. The (inverse) equivalence

CMonOrb
Glo ≃ ΓSgl

∗ from Theorem 7.23 can then be described (by some easy mate
yoga) as the unique left adjoint that sends P(∗) to P(∗).

7.2.2. The comparison. Finally, let us relate G-global and G-equivariant Γ-spaces
to each other:

Proposition 7.26. There is a global functor L const : ΓSspc
∗ → ΓSgl, spc

∗ with the
following properties:

(1) It is fully faithful and sends P(∗) to P(∗).
(2) It admits an Orb-right adjoint.

Once again, after the universal property of ΓS∗ is established, we will see a poste-
riori that the above adjunction is actually unique.

For the proof of the proposition we will need another model structure:

Lemma 7.27 (See [Len20, Corollary 2.2.40 and proof of Proposition 2.2.42]). The
category Γ-G-I-SSet∗ admits a model structure with

(1) weak equivalences the G-global level weak equivalences
(2) cofibrations the injective cofibrations.

We call this the injective G-global level model structure. It is combinatorial, sim-
plicial, and proper. Moreover, if α : G → G′ is an injective homomorphism, then
α∗ : (Γ-G′-I-SSet∗)injective → (Γ-G-I-SSet∗)injective is right Quillen. �
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Proof of Proposition 7.26. For every G, we have a Quillen adjunction

const : Γ-G-SSet∗ ⇄ (Γ-G-I-SSet∗)injective : ev∅, (12)

see [Len20, Proposition 2.2.25]. By Ken Brown’s Lemma, we in particular see that
const sends G-equivariant weak equivalences between cofibrant objects to G-global

level weak equivalences, so we get an induced global functor L const : ΓS∗ → ΓSgl
∗ ,

which we can postcompose with the localization to ΓSgl, spc
∗ . Note that this sends

Γ(1+, –) to P(∗) by direct inspection.

We now claim that this descends to ΓSspc
∗ , which amounts to saying that the left

adjoint in (12) sends G-equivariant weak equivalences of cofibrant objects to G-
global weak equivalences, for which it is in turn enough that the right derived
functor Rev∅ preserve specialness. However, by loc. cit. this right adjoint is
equivalent to evU for our favourite completeG-set universe U , and it is clear that the
latter has the required property (also see Lemma 2.2.51 of op. cit.). Altogether, we

therefore get a functor L const: ΓSspc
∗ → ΓSgl, spc

∗ sending P(∗) to P(∗); moreover,
this is fully faithful as the right adjoint R of the right adjoint Rev∅ is fully faithful
by Theorem 2.2.59 of op. cit.

It only remains to show that the pointwise right adjoints Rev∅ assemble into an
Orb-right adjoint, i.e. that for any injective homomorphism α : G → G′ the Beck–
Chevalley transformation Lα∗ ◦Rev∅ ⇒ Rev∅ ◦ α∗ is an equivalence.

However, the pointset level Beck–Chevalley map α∗ ◦ ev∅ ⇒ ev∅ ◦ α∗ is clearly an
isomorphism, and all functors in question are right Quillen by the above together
with Lemmas 7.14 and 7.27, so this already models the derived Beck–Chevalley
map when restricted to injectively fibrant objects. �

7.3. Proof of Theorems 7.16 and 7.17. Finally, we turn to the universal prop-
erty of ΓSspc

∗ .

Lemma 7.28. The category ΓSspc
∗ (G) is generated under (non-parametrized) co-

limits by the G-equivariant Γ-spaces Γ(1+, –) ∧G/H+ for H ⊂ G.

Proof. Inspecting the generating cofibrations from Proposition 7.5 we see that
ΓS∗(G) is generated under colimits by the Γ(S+, –) ∧ G/H+ for finite G-sets S
and subgroups H ⊂ G. Thus, these objects also generate ΓSspc

∗ (G). However, in
the latter Γ(S+, –) ∧ G/H+ ≃ S+ ∧ Γ(1+, –) ∧ G/H+ by Remark 7.13. The claim
follows by decomposing the G-set G/H × S into its orbits. �

Note that ΓSspc
∗ (G) ∋ Γ(1+, –)∧G/H+ ≃ i!p

∗Γ(1+, –) where i : H →֒ G denotes the
inclusion and p : H → 1 the unique map. Thus, once we know that ΓSspc

∗ is equiv-
ariantly cocomplete, the lemma will tell us that it is generated under equivariant
colimits by P(∗) = Γ(1+, –) ∈ ΓSspc

∗ (1).

Proof of Theorems 7.16 and 7.17. The fully faithful functor L const from Propo-

sition 7.26 identifies ΓSspc
∗ with a full subcategory of ΓSgl, spc

∗ , and the latter is
globally presentable by Theorem 7.23. However, the essential image of L const is
closed under all equivariant colimits as L const has an Orb-right adjoint, so ΓSspc

∗
is equivariantly cocomplete.

In particular, there is a unique equivariantly cocontinuous functor CMonOrb
Orb ⊲Glo →

ΓSspc
∗ sending P(∗) to P(∗). We claim that this is an equivalence, for which it will
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be enough to construct some equivalence preserving P(∗). To this end, we will show
that the composite

CMonOrb
Orb ⊲Glo

ι!−→ CMonOrb
Glo

Ξ−−→ ΓSgl, spc
∗ (13)

of the fully faithful functor from Theorem 6.18 and the equivalence from Theo-
rem 7.23 (which sends P(∗) to P(∗) by construction) restricts to an equivalence
CMonOrb

Orb ⊲Glo ≃ ess im(L const) =: E . On the one hand, the source of (13) is
generated under equivariant colimits by P(∗), so that (13) factors through E as
both functors are in particular Orb-left adjoints. On the other hand, Lemma 7.28
shows that ΓSspc

∗ and hence also E is generated by P(∗), so this restriction is also
essentially surjective, hence an equivalence.

Finally, the universal property of ΓSspc
∗ follows immediately from this equivalence

and the universal property of CMonOrb
Orb ⊲Glo established in Theorem 6.19. �

7.4. The universal property of special Γ-G-spaces. We close this section by
similarly establishing a universal property of special Γ-G-spaces for a fixed finite
group G:

Theorem 7.29. Recall the functor υG : OrbG → Glo from Construction 5.11.

(1) The G-category υ∗GΓS
spc
∗ (sending G/H to the category of special Γ-H-

spaces) is G-presentable and G-semiadditive in the sense of Example 6.7.
Moreover, the unique left adjoint CMonOrbG

→ υ∗GΓS
spc
∗ preserving P(∗) is

an equivalence.
(2) For any G-cocomplete G-semiadditive D, evaluation at P(∗) induces an

equivalence FunG-cc
OrbG

(υ∗GΓS
spc
∗ ,D) ≃ D.

For the proof we will need:

Proposition 7.30. Let P ⊂ T be atomic orbital, let A ∈ T , and write πA : T/A → T

for the forgetful functor. Then π∗
ACMonPT is T/A-cocomplete and TP/A-semiadditive,

and the unique left adjoint CMon
TP
/A

T/A
→ π∗

ACMonPT preserving P(∗) is an equiva-

lence.

Proof. By [CLL23, Proposition 2.3.26 and Corollary 4.6.9] π∗
A ⊣ πA∗ restricts to an

adjunction

CatP -⊕,T -cc
T ⇄ Cat

TP
/A-⊕,T/A-cc

T/A
,

so the claim follows as before by comparing corepresented functors. �

Proof of Theorem 7.29. As in the unstable case (Theorem 5.12), it will be enough
to construct an equivalence CMonOrbG

≃ υ∗GΓS
spc
∗ preserving P(∗), for which it in

turn suffices to combine the previous proposition with Theorem 7.16. �

8. The stable story

As in the previous sections, we fix a cleft category ι : S →֒ T . The goal of this
section is to establish the stable analogues of the results from Section 6. We begin
with the fiberwise (or näıve) version of stability:
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Definition 8.1. A T -category C is called fiberwise stable if factors through the
non-full subcategory Catst ⊂ Cat of stable categories and exact functors.

Construction 8.2. Recall [Lur17, Proposition 1.4.4.4, Example 4.8.1.23] that the

inclusion PrL, st →֒ PrL of presentable stable categories and left adjoints into all
presentable categories admits a left adjoint, given by tensoring with the category
Sp of spectra.

If now C is a fiberwise presentable T -category, then we write Sp⊗C for the composite

T op C−−→ PrL
Sp⊗–−−−→ PrL, st ⊂ Cat

and call it the left fiberwise stabilization of C. It comes with a functor Σ∞ : C →
Sp⊗ C induced by the unit of the adjunction PrL ⇄ PrL, st.

Remark 8.3. There is another way to fiberwise stabilize suitable T -categories,
which we will refer to as right fiberwise stabilization below: if C factors through the
non-full subcategory Catlex of pointed categories with finite limits and left exact
functors, then we can define Spfib(C) by composing with the right adjoint to the

inclusion Catst →֒ Catlex of stable categories. This is the perspective taken in
[CLL23, Subsection 6.1].

For the T -categories which we would like to stabilize, such as CMonPS⊲T , it is not
clear whether the restriction functors preserve finite limits (as a consequence of
the example in Warning 9.8 below, they cannot preserve general limits). Therefore
Spfib(C) is not well-defined, and we cannot sensibly ask for Sp ⊗ C to agree with

Spfib(C).
However, on the category PrL, lex of pointed presentable categories and left exact
left adjoints, the two stabilization constructions agree [Lur17, Example 4.8.1.23].
Thus, whenever we are given some subcategory T ′ ⊂ T such that C |T ′ is pointed
and restrictions in C along maps in T ′ are left exact, then (Sp ⊗ C)|T ′ agrees
with Spfib(C|T ′). This will allow us below to still apply the results from [CLL23,
Section 6] to the present situation.

Lemma 8.4. Let C be a fiberwise presentable T -category. Then Sp ⊗ C is fiber-
wise presentable and fiberwise stable. Moreover, for every fiberwise cocomplete and
fiberwise stable D, restriction along Σ∞ defines an equivalence

Funfib-ccT (Sp⊗ C,D) → Funfib-cc
T (C,D) (14)

of T -categories of fiberwise cocontinuous functors.

Proof. It is clear that Sp⊗C is fiberwise presentable and fiberwise stable. Replacing
D by FunT (T ,D) for small T ∈ CatT , it will suffice for the universal property to
show that the induced map

HomCatfib-ccT
(Sp⊗ C,D) → HomCatfib-ccT

(C,D)

of mapping spaces in the category Catfib-ccT := Fun(T op,Catcc) of fiberwise cocom-
plete T -categories and fiberwise colimit-preserving functors is an equivalence.

Writing both sides as the ends of the mapping spaces in Catcc, it then suffices
to consider the case T = 1, i.e. that for any cocomplete stable D restriction along
C → Sp⊗C defines an equivalence Homcc(Sp⊗C,D) ≃ Homcc(C,D). Using that the
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tensor product of presentable categories agrees with the tensor product of cocom-
plete categories [Lur17, Proposition 4.8.1.15], the tensor-hom adjunction reduces
to the case C = Spc, i.e. we want to show that evaluation at the sphere defines an
equivalence Homcc(Sp,D) ≃ ιD. This however follows at once by exhibiting Sp
as the Ind-completion of the Spanier–Whitehead category [Lur18, Remark C.1.1.6]
and noting that right exact functors out of the latter classify objects by [Lur18,
Proposition C.1.1.7] together with [Lur17, Proposition 1.4.2.21]. �

Lemma 8.5. Assume C is S-presentable. Then Sp ⊗ C is again S-presentable,
hence in particular S-cocomplete. Moreover, if also D is S-cocomplete, then (14)
restricts to an equivalence

FunS-ccT (Sp⊗ C,D) ∼−−→ FunS-ccT (C,D).

Proof. From the previous lemma we see that Sp ⊗ C is fiberwise presentable. If
s : A→ B is in S, then the adjunction s! : C(A) ⇄ C(B) :s∗ is an internal adjunction

in PrL (as s∗ is itself a left adjoint by fiberwise presentability), so we get an induced
adjunction Sp ⊗ s! ⊣ Sp ⊗ s∗ by 2-functoriality of the tensor product. Moreover,
the Beck–Chevalley conditions for Sp⊗ C follow immediately from the ones for C.
Finally, for the universal property it suffices by the previous lemma and replacing
D by DA to show that Σ∞ preserves S-colimits and that for any S-cocontinuous
F : C → D also the lift F̃ : Sp⊗ C → D is S-cocontinuous.

For the first statement, we observe that Σ∞ is clearly fiberwise cocontinuous, and
that for any admissible f : X → Y in PSh(T ) the Beck–Chevalley maps are equiv-
alences by the explicit description of the adjoints f! : (Sp ⊗ C)(X) → (Sp ⊗ C)(Y )
given above.

For the second statement, we first observe that F̃ is fiberwise cocontinuous by
definition. Given now any admissible f : X → Y , the mate of the total square in

C(Y ) C(X)

Sp⊗ C(Y ) Sp⊗ C(X)

D(Y ) D(X)

Σ∞

f∗

Σ∞

F̃

f∗

F̃

f∗

is the Beck–Chevalley map f!F ⇒ Ff!, hence an equivalence by S-cocontinuity
of F , and similarly the mate of the top square is an equivalence by the above.
By the compatibility of mates with pastings, we conclude that the Beck–Chevalley
map f!F̃ ⇒ F̃ f! becomes an equivalence after precomposition with Σ∞ : C(X) →
Sp(C(X)). However, both f!F̃ and F̃ f! are cocontinuous functors, so the claim
follows from the universal property of Sp⊗ – (cf. the previous lemma). �

Let us restate the key step in the above proof separately for easy reference:

Corollary 8.6. Let C,D be as above. Then a fiberwise cocontinuous functor
F : Sp⊗ C → D is S-cocontinuous if and only if F ◦ Σ∞ : C → D is so. �

Finally, let us move to the setting of genuine stability:
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Definition 8.7. Let P ⊂ T be atomic orbital. A T -category C is called P -stable
if it is P -semiadditive (Definition 6.5) and fiberwise stable (Definition 8.1).

Lemma 8.8. Let P ⊂ S be atomic orbital in T and let C be a P -semiadditive
S-cocomplete T -category. Then Sp⊗ C is P -stable.

Proof. We already know that Sp⊗C is S-cocomplete and fiberwise stable. Moreover,
its underlying S-category is P -semiadditive by [CLL23, Lemma 6.2.6], so Sp⊗ C is
also P -semiadditive as a T -category by Remark 6.10. �

Definition 8.9. We define SpPS⊲T := Sp ⊗ CMonPS⊲T , and we write Σ∞
+ for the

composite

SpcS⊲T
P−→ CMonPS⊲T

Σ∞
−−→ Sp⊗ CMonPS⊲T = SpPS⊲T .

Remark 8.10. Note that Σ∞
+ is by construction an extension of the S-functor

Σ∞
+ := Σ∞ ◦ P : SpcS → Sp⊗ CMonPS = SpPS from [CLL23, Definition 6.2.12].

Combining the above fiberwise results with the universal property of CMonPS⊲T
from Theorem 6.19 we get:

Theorem 8.11. The T -category SpPS⊲T is S-presentable and P -stable. For any S-
cocomplete P -stable T -category D evaluation at S := Σ∞

+ (∗) induces an equivalence

FunS-ccT (SpPS⊲T ,D) ≃ D. �

We can also compare this to SpPT :

Theorem 8.12. The essentially unique S-cocontinuous functor ι! : Sp
P
S⊲T → SpPT

preserving S is fully faithful. Moreover, it admits an S-right adjoint ι∗, which in
turn admits a further S-right adjoint ι∗ (again fully faithful for formal reasons).

Proof. The functor Sp⊗ ι! : SpPS⊲T = Sp⊗CMonPS⊲T → Sp⊗CMonPT = SpPT admits
an S-right adjoint given by Sp⊗ ι∗ (as ι∗ is itself an S-left adjoint). For each A ∈ T
the unit id → Sp⊗(ι∗ι!) is then induced by the unit of ι! ⊣ ι∗, so it is an equivalence
as ι! is fully faithful (Theorem 6.18). Thus, also Sp⊗ ι! is fully faithful. Moreover,
it sends Σ∞

+ (∗) to Σ∞
+ (∗) simply by naturality, so this is the functor SpPS⊲T → SpPT

in question.

It only remains to show that also Sp ⊗ ι∗ admits an S-right adjoint. However, by
construction it admits a pointwise right adjoint, and it is moreover S-cocontinuous
as a consequence of Corollary 8.6 (for T = S), so the claim follows. �

9. The universal property of equivariant spectra

In this section, we will describe the universal equivariantly presentable equivari-
antly stable (i.e. Orb-stable) global category in terms of classical equivariant stable
homotopy theory.

9.1. G-equivariant spectra. We start by introducing the global category of equi-
variant spectra, and state our main results.

Definition 9.1. We write Spectra for the 1-category of symmetric spectra [HSS00]
in simplicial sets. For any finite G, we write G-Spectra for the category of G-
objects; by slight abuse of language, we will refer to its objects simply as G-spectra.
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We refer the reader to [Hau17, Definition 2.35] for the definition of the G-stable weak
equivalences of G-spectra. Below, we will simply refer to these as G-equivariant
weak equivalences.

Proposition 9.2 (See [Hau17, Theorem 4.8 and Proposition 4.9]). The category
G-Spectra carries a model structure with

(1) weak equivalences the G-equivariant weak equivalences
(2) acyclic fibrations those maps f such that fn is a GG,Σn -acyclic fibration for

every n ≥ 0.

We call this the G-equivariant projective model structure. It is combinatorial and
stable. �

All that we will need to know about this model structure below is that the sphere
spectrum is cofibrant, which follows from [Hau17, discussion after Corollary 2.26]
or by simply observing that the above acyclic fibrations are surjective in degree 0
and hence have the right lifting property against 0 → S.

Lemma 9.3. Let α : G → G′ be any homomorphism. Then α∗ : G′-Spectra →
G-Spectra is left Quillen with respect to the above model structures.

Proof. Factoring α, we may assume that it is either injective or surjective. In the
first case, the claim is an instance of [Hau17, 5.2], while in the latter case it follows
by combining 5.3 and 5.1 of op. cit. �

As before, we therefore get a global category Sp with SpG := Sp(G) the localization
of (projectively cofibrant) G-spectra at the G-weak equivalences, and with structure
maps given by the left derived functors Lα∗. We will refer to this as the global
category of equivariant spectra. It has a natural section S given by the equivariant
sphere spectra (determined by the usual sphere in Sp1).

Using this, we can now state our main results:

Theorem 9.4. The global category Sp is equivariantly presentable and equivari-
antly stable. For any other equivariantly cocomplete equivariantly stable D evalua-
tion at S defines an equivalence Funeq-cc

Glo (Sp,D) ≃ D.

Theorem 9.5. The essentially unique equivariantly cocontinuous global functor
SpOrb

Orb ⊲Glo → Sp sending S to S is an equivalence.

The proof will be given at the end of this section. For now let us stop to observe
that some pleasant properties one might have hoped for SpPS⊲T to satisfy do not
hold even for SpOrb

Orb ⊲Glo ≃ Sp:

Warning 9.6. For any f : G → G′ the functor Lf∗ : SpG′ → SpG admits a right
adjoint Rf∗ by Lemma 9.3. However, these do not satisfy the Beck–Chevalley
condition in general (i.e. Sp does not have finite global products). To see this,
consider the pullback

Z/2× Z/2 Z/2

Z/2 1

y
pr1

pr2

q

q
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in Glo, giving rise to a map Lq∗Rq∗X → Rpr2∗Lpr
∗
1X for any X ∈ SpZ/2; we will

now show that this cannot be an equivalence for X = S by computing the result of
applying Rq∗ to both sides:

The functor Rq∗ is given by taking categorical Z/2-fixed points, so the tom Dieck-
splitting [tD75] tells us that

Rq∗S ≃
∨

G⊂Z/2
Σ∞

+ B
(
(Z/2)/G

)
.

The right hand side is actually cofibrant, so Lq∗Rq∗S is simply given by equipping
this with the trivial Z/2-action. Accordingly, another application of the tom Dieck
splitting shows

Rq∗Lq
∗Rq∗S ≃

∨

G⊂Z/2

∨

H⊂Z/2
Σ∞

+

(
B
(
(Z/2)/G

)
×B

(
(Z/2)/H

))
.

If we take π0, then each wedge summand contributes a summand of Z (being the
unreduced suspension of a connected space), so π0(Rq∗Lq∗Rq∗S) is free abelian of
rank 4.

On the other hand, by uniqueness of adjoints Rq∗Rpr2∗ agrees with Rr∗ for
r : Z/2 × Z/2 → 1 the unique map, so Rq∗Rpr2∗Lpr

∗
1S is given by the categorical

(Z/2 × Z/2)-fixed points of S. By another application of the tom Dieck splitting
(or using the classical computation of the zeroth equivariant homotopy groups of S
as the Burnside ring), we therefore see that π0(Rq∗Rpr2∗Lpr

∗
1S) ∼= πZ/2×Z/2

0 (S) is
free abelian of rank the number of subgroups of Z/2×Z/2, which is 5 instead of 4.

Remark 9.7. The extra Z-summand in π0(Rq∗Rpr2∗Lpr
∗
1S) can be attributed to

the fact that Z/2×Z/2 has a subgroup that is not given as a product of subgroups
of its factors, namely the diagonal subgroup. A similar phenomenon appears for
general G, and as observed in [Nic22] this is what prevents the tom Dieck map

∨

(H⊂G)/conj.

Σ∞(
E(WGH) ∧WGH XH

)
→ FGΣ∞X (15)

for a pointed G-simplicial set X from being a global weak equivalence instead of
just a non-equivariant weak equivalence: after taking categorical K-fixed points on
both sides, the left hand side only contains the wedge summands of the tom Dieck
splitting of FK×GΣ∞X corresponding to subgroups of the form L ×H ⊂ K × G
for L ⊂ K,H ⊂ G. In fact, this is the only obstruction to (15) being a global weak
equivalence, see op. cit. for details.

Warning 9.8. Sp is neither globally cocomplete nor fiberwise complete, and hence
neither is SpOrb

Orb ⊲Glo by Theorem 9.5. In fact, already the restriction functor
Lq∗ : Sp1 → SpZ/2 induced by the unique map q : Z/2 → 1 does not preserve
all products, and in particular it does not admit a left adjoint. The third author
learned the following argument for this fact from Denis Nardin: By [BDS16, The-
orem 3.3], Lq∗ preserves all products if and only if Rq∗ preserves compact objects.
However, as observed above Rq∗S contains Σ∞

+ B(Z/2) as a wedge summand. As
the latter is not compact, neither is Rq∗S, yielding the desired contradiction. A
similar argument shows that Lq∗ does not have a left adjoint whenever q has a
non-trivial kernel.
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9.2. G-global spectra. As before, the proof of Theorems 9.4 and 9.5 will proceed
via comparison with a model of the universal globally presentable equivariantly
stable category.

Definition 9.9. A map f : X → Y in G-Spectra is called a G-global weak equiv-
alence if α∗f is an H-equivariant weak equivalence for every finite group H and
every homomorphism α : H → G.

We emphasize that we are not deriving α∗ here with respect to the equivariant
model structures (as otherwise this would of course simply recover the G-weak
equivalences again).

Proposition 9.10 (See [Len20, Corollary 3.1.46–Proposition 3.1.48]). The category
G-Spectra admits a model structure with

(1) weak equivalences the G-global weak equivalences
(2) cofibrations the injective cofibrations.

We call this the injective G-global model structure. It is combinatorial, simplicial,
proper, and stable. �

Basically by definition, the restriction functors α∗ : G′-Spectra → G-Spectra are
homotopical and left Quillen. In particular, we again obtain a global category Spgl.

Theorem 9.11 (See [CLL23, Corollary 7.3.3]). Sp is globally presentable and equiv-

ariantly stable. The essentially unique globally cocontinuous functor SpOrb
Glo → Sp

sending Σ∞
+ (∗) to the global sphere spectrum S is an equivalence. �

9.3. Proof of Theorems 9.4 and 9.5. Let us begin with a comparison of the
above models complementing Theorem 8.12:

Lemma 9.12. There is a global functor L id : Sp → Spgl with the following prop-
erties:

(1) It is fully faithful and sends S to S.
(2) It admits an Orb-right adjoint.

Proof. For any G, [Len20, Proposition 3.3.1] provides a Quillen adjunction

id : G-SpectraG-equiv. proj. ⇄ G-SpectraG-gl. inj. : id . (16)

In particular, G-equivariant weak equivalences between projectively cofibrant spec-
tra are G-global weak equivalences (also see Lemma 9.3), so the inclusion of projec-
tively cofibrant objects yields a functor L id : Sp → Spgl sending S to S. Moreover,
the right adjoint in (16) evidently induces a localization, so that L id is fully faithful.

It only remains that the right adjoints assemble into an Orb-right adjoint. However,
the pointset level Beck–Chevalley maps α∗◦id ⇒ id◦α∗ are isomorphisms for trivial
reasons, and for injective α, α∗ is also homotopical in the equivariant world [Hau17,
5.2], so that this already models the derived Beck–Chevalley map. �

Proof of Theorems 9.4 and 9.5. By Theorem 8.11 it is enough to prove that Sp
is equivariantly stable and equivariantly cocomplete, and that the preferred map
SpOrb

Orb ⊲Glo → Sp is an equivalence.
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For this, let us write E for the essential image of L id : Sp → Spgl; this is then
closed under equivariant colimits as L id admits an Orb-right adjoint, and it is
closed under desuspension as each SpG is stable. It follows that E and hence also
Sp is indeed equivariantly cocomplete and equivariantly stable.

Now let F : SpOrb
Orb ⊲Glo → Sp be the unique equivariantly cocontinuous functor

preserving S. Then L id ◦ F : SpOrb
Orb ⊲Glo → Spgl is an equivariantly cocontinuous

functor sending S to S. The same holds for the composite

SpOrb
Orb ⊲Glo

ι!−−→ SpOrb
Glo

∼−−→ Spgl

of the fully faithful functor from Theorem 7.16 with the equivalence from Theo-
rem 9.11, so they have to agree by the universal property of SpOrb

Orb ⊲Glo. In partic-
ular, F is fully faithful. To see that it is also essentially surjective, it is by [Hau17,
Proposition 4.9] enough to see that it hits the suspension spectra Σ∞

+ (G/H) for all
H ⊂ G. However, as before we have i!S ≃ Σ∞

+ (G/H) for i : H →֒ G the inclusion,
so the claim follows from the defining properties of F . �

Again this immediately implies a variant for the G-category of G-spectra for any
finite group G:

Theorem 9.13. Recall the functor υG : OrbG → Glo from Construction 5.11.

(1) The G-category υ∗GSp (sending G/H to SpH) is G-presentable and G-
stable. Moreover, the unique left adjoint SpOrbG

→ υ∗GSp preserving S
is an equivalence.

(2) For any G-cocomplete G-stable D, evaluation at S defines an equivalence
FunG-cc

OrbG
(υ∗GSp,D) ≃ D.

A proof of this has previously been sketched by Nardin as [Nar16, Theorem A.4].

Proof. Arguing as in the unstable (Theorem 5.12) and semiadditive case (Theo-
rem 7.29), it only remains to show that there is for any atomic orbital P ⊂ T and

A ∈ T an equivalence π∗
ASp

P
T ≃ SpT

P
/A
T/A

preserving S. This however follows at once
from Proposition 7.30 by applying Sp⊗ – to both sides. �
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AND THE UNIVERSALITY OF SPANS
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Abstract. Using the framework of ambidexterity developed by Hopkins and
Lurie, we introduce a parametrized analogue of higher semiadditivity called
Q-semiadditivity, depending on a chosen class of morphisms Q. Our first
main result identifies the free Q-semiadditive parametrized category on a sin-
gle generator with a certain parametrized span category Span(Q), simulta-
neously generalizing a result of Harpaz in the non-parametrized setting and
a result of Nardin in the equivariant setting. As a consequence, we deduce

that the Q-semiadditive completion of a parametrized category C consists of
the Q-commutative monoids in C, defined as Q-limit preserving parametrized
functors from Span(Q) to C.

As our second main result, we provide an explicit ‘Mackey sheaf’ description
of the free presentable Q-semiadditive category. Using this, we reprove the
Mackey functor description of global spectra first obtained by the second-
named author and generalize it to G-global spectra. Moreover, we obtain
universal characterizations of the categories of Z-valued G-Mackey profunctors
and of quasi-finitely genuine G-spectra as studied by Kaledin and Krause–
McCandless–Nikolaus, respectively.
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1. Introduction

The notion of ambidexterity, introduced by Hopkins and Lurie [HL13], is a vast
generalization of the notion of semiadditivity in category theory.1 Recall that a

1Throughout this article, we will say ‘category’ for ‘∞-category.’

1
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category C is called semiadditive if it admits finite products and finite coproducts
which canonically agree with each other. Thinking of finite products (resp. coprod-
ucts) as limits (resp. colimits) indexed by a finite set X , this can be expressed as the
condition that a certain norm map NmX : colimX → limX between the X-indexed
limit and colimit functors is a natural equivalence. The formalism of ambidexter-
ity allows one to consider such properties for a broader class of indexing objects
X , leading to a diverse range of generalized notions of semiadditivity, including
higher semiadditivity [HL13, Har20, CSY22], tempered ambidexterity [Lur19], and
equivariant semiadditivity [Nar16,QS21,CLL23a].

The concept of semiadditivity is closely related to the algebraic structure of com-
mutative monoids. For example, a category with finite products is semiadditive if
and only if it admits an enrichment in the category of commutative monoids. At
the heart of this lies the fact that, when C admits finite products, the category
CMon(C) of commutative monoids in C is the universal semiadditive category ad-
mitting a functor to C which preserves finite products. We might summarize this
by saying that CMon(C) is the semiadditive completion of C.
Each of the generalized notions of semiadditivity mentioned above comes with its
own generalized notion of commutative monoid: in the case of higher semiadditivity
these are known as m-commutative monoids, while for equivariant semiadditivity
these usually go under the name of Mackey functors. It turns out that also in these
two cases the semiadditive completion of a category C is given by the commutative
monoids in C. For m-commutative monoids this universal property was established
by Harpaz [Har20], and for Mackey functors this was done by Nardin [Nar16].

The goal of this article is to show that the above phenomenon is not specific to these
two examples and occurs for a large family of notions of (higher) semiadditivity in
the context of parametrized category theory. Given an (∞-)topos B, we refer to
a limit-preserving functor Bop → Cat as a B-category. The generalized notions
of semiadditivity we consider depend on a choice of a so-called locally inductible
subcategory Q of B, meaning that Q is a local class of locally truncated morphisms
in C which is closed under diagonals, see Definition 3.1. We then define:

Definition (Q-semiadditivity). Given a locally inductible subcategory Q ⊆ B, we
say that a B-category C is Q-semiadditive if the following conditions are satisfied:

(1) It admits Q-colimits : The functors q∗ := C(q) : C(B) → C(A) for q : A → B in
Q admit left adjoints q! : C(A)→ C(B) satisfying base change;

(2) It satisfies ambidexterity for Q: For every n ≥ −2 and any n-truncated mor-

phism q : A → B in Q an inductively defined transformation Ñmq : q
∗q! →

idC(A) exhibits the left adjoint q! additionally as a right adjoint to q∗.

We are mostly interested in the case of presheaf topoi B = PSh(T ) for a small
category T . In this case, the data of a B-category is equivalent to that of a functor
T op → Cat by restricting to representables; the original functor PSh(T ) → Cat is
recovered via limit-extension. In this situation, it usually suffices to check conditions
(1) and (2) only for a much smaller subcategory Q ⊆ PSh(T ) that ‘generates’ Q in
a suitable sense; we will speak of Q-semiadditivity in this case. For example:

• When T = ∗, a functor T op → Cat is just a category. Taking Q to be the subcat-
egory Fin ⊆ Spc = PSh(∗) of finite sets, condition (1) demands the existence of
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finite coproducts, while condition (2) asks that finite coproducts are also exhib-
ited as products (via some preferred map). In other words: Fin-semiadditivity is
precisely ordinary semiadditivity for categories.
• More generally, taking Q to be the subcategory Spcm ⊆ Spc of m-finite spaces2

for −2 ≤ m < ∞, we recover the notion of m-semiadditivity: a category is m-
semiadditive if and only if (1) it admits A-indexed colimits for every m-finite
space A, and (2) if these colimits are also exhibited as limits via a preferred map.
• For a finite group G, contravariant functors OrbopG → Cat from the orbit category
of G are known as G-categories [BDG+16]. Taking Q to be the subcategory
FinG ⊆ SpcG = PSh(OrbG) of finite G-sets precisely recovers the notion of
G-semiadditivity introduced by Nardin [Nar16].
• Various variations are possible, including p-typical m-semiadditivity, equivariant
semiadditivity, global semiadditivity and very G-semiadditivity for an arbitrary
group G; see Section 3.4.

Our first main result identifies the free Q-semiadditive B-category with a certain
parametrized span category Span(Q). Recall that the span category Span(C) of a
category C with pullbacks is a category with the same objects as C, but where
a morphism from X to Y is given by a span X ← Z → Y in C; composi-
tion is given via pullback. The assignment A 7→ Span(Q/A) defines a B-category
Span(Q) : Bop → Cat, where the functoriality in A is given by the pullback functors
f∗ : Span(Q/B) → Span(Q/A) for f : A → B. This B-category is Q-semiadditive:
the functor f∗ admits a left adjoint given by applying Span(−) to the postcompo-
sition functor f! : Q/A → Q/B, and by self-duality of span categories this is also a
right adjoint of f∗. We then show:

Theorem A (Theorem 5.1). The B-category Span(Q) is the free Q-semiadditive
B-category on a single generator.

More precisely, this means that for every Q-semiadditive B-category D, evaluation
at the identity maps idA ∈ Span(Q/A) induces an equivalence of parametrized
categories

FunQ-×(Span(Q),D) ∼−−→ D.
Here the left-hand side denotes the full subcategory of the parametrized functor
category spanned by the functors which are Q-continuous, meaning that they com-
mute with the rights adjoints of q∗.

To appreciate the generality of Theorem A, let us explain how it recovers various
results previously established in the literature. As before we take B = PSh(T ) and
assume Q is generated by some smaller subcategory Q.

• For T = ∗ and Q = Fin, we recover the fact that the span category Span(Fin) of
finite sets is the free semiadditive category;
• For T = ∗ and Q = Spcm, we obtain the fact that the span category Span(Spcm)
of m-finite spaces is the free m-semiadditive category, as was previously estab-
lished by Harpaz [Har20, Theorem 1.1]. In fact, our proof strategy for Theorem A
mostly parallels Harpaz’s arguments.

2Recall that a space is m-finite if it is m-truncated, has finitely many path components, and
has finite homotopy groups.
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• Taking T = Q = Spcm, we get a strengthening of Harpaz’s result: if we embed m-
semiadditive categories into Spcm-semiadditive Spcm-categories by sending a cat-
egory C to the functor Fun(–, C) : Spcopm → Cat, then Theorem A shows that the
image of Span(Spcm) is even free among all Spcm-semiadditive Spcm-categories,
not just those coming from m-semiadditive categories. This strengthening will
be crucial in forthcoming work by Ben-Moshe on transchromatic characters.
• Taking T = OrbG and Q = FinG for a finite group G, we recover the statement
that the G-category G/H 7→ Span(FinH) is the free G-semiadditive G-category,
as was previously established by Nardin [Nar16, Theorem 6.5, Proposition 5.11].

If C is a B-category admitting Q-limits (the dual of condition (1) in the above
definition), we define the B-category of Q-commutative monoids in C as

CMonQ(C) := FunQ-×(Span(Q), C).

Building on Theorem A, we prove:

Theorem B (Theorem 7.4,Theorem 7.27). For a B-category C admitting Q-limits,
the forgetful functor CMonQ(C)→ C is terminal among Q-limit-preserving functors
D → C from a Q-semiadditive B-category D:

FunQ-×(D,CMonQ(C)) ∼−−→ FunQ-×(D, C).
We will say that CMonQ(C) is the Q-semiadditive completion of C.
Moreover, if C is presentable (and Q satisfies a mild smallness condition), then
also CMonQ(C) is presentable, and the forgetful functor admits a left adjoint C →
CMonQ(C) which is initial among left adjoint functors C → D into a presentable
Q-semiadditive B-category D:

FunL(CMonQ(C),D) ∼−−→ FunL(C,D).

Q-commutative monoids as Mackey sheaves. Even though Q-commutative
monoids in C are defined as certain parametrized functors, we will show as our
second main result that they admit a concrete non-parametrized description in
terms of Mackey sheaves for suitable choices of C. If E is a presentable category,
we may consider the presentable B-category Shv(B; E) of E-valued sheaves, de-

fined by assigning to B ∈ B the category Shv(B/B; E) = FunR(B/B, E) of E-valued
sheaves on the slice category B/B. We then show that a Q-commutative monoid in
Shv(B; E) is equivalently given by a E-valued Mackey sheaf on B, defined as a functor
F : Span(B,B,Q) → E whose restriction to the subcategory Bop ≃ Span(B,B, ιB)
preserves limits. In fact, assembling the E-valued Mackey functors on all slices B/B
into a B-category MackQ(B; E), we prove:

Theorem C (Theorem 8.2). For every presentable category E , there exists a nat-
ural equivalence

CMonQ(Shv(B; E)) ≃MackQ(B; E).

When E is the category Spc of ∞-groupoids, Shv(B; Spc) is the B-category SpcB
of B-groupoids, and combining Theorem C with Theorem B we deduce that ev-
ery Q-semiadditive B-category C is canonically enriched in Mackey sheaves: the
parametrized Hom-functor Hom: Cop×C → SpcB uniquely lifts to MackQ(B; Spc).
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In practice, the data of a Mackey sheaf can be significantly reduced, leading to
simpler descriptions more in line with classical Mackey functors. We explain this
reduction in Section 9.1.

Global Mackey functors. We then apply Theorem C to give Mackey functor
descriptions of various categories considered in (global) equivariant homotopy the-
ory. In particular, we use the universal property of global spectra established in
[CLL23a] to deduce the following result which has also been concurrently proven
by Pützstück [Pü24]:

Theorem D (Theorem 9.11). Let G be any finite group. Then the category of
G-global spectra from [Len20] is naturally equivalent to

Fun⊕(Span(F/BG,F/BG,F/BG[F†]), Sp)

where F/BG is the (2, 1)-category of finite groupoids overBG, and F/BG[F†] denotes
the wide subcategory of faithful functors.

We further use our results in [CLL23b] to reprove the Mackey functor description
of G-equivariant stable homotopy theory from [CMNN20], see Corollary 9.16.

Mackey profunctors. As a new application of our results, we further general-
ize the aforementioned Mackey functor description of equivariant stable homotopy
theory to give for any discrete group G a parametrized interpretation of the cate-
gory of quasi-finitely genuine G-spectra as defined by Krause–McCandless–Nikolaus
[KMN23] building on work of Kaledin [Kal22].

For this, let QFinG ⊆ SetG denote the full subcategory spanned by the quasi-finite3

G-sets, i.e. those G-sets S for which all orbits are finite and for which the fixed point
sets SH are finite for all cofinite subgroups H ⊆ G. Following [KMN23], we define
a quasi-finitely genuine G-spectrum to be a functor M : Span(QFinG) → Sp such
that for every quasi-finite G-set S the canonical map

M(S)→
∏

s∈S/G

M(π−1(s))

is an equivalence, where π : S → S/G denotes the quotient map. The category of

all such functors is denoted SpqfgenG .

Letting ÔrbG ⊆ QFinG denote the full subcategory spanned by the finite orbits

G/H , we will refer to ÔrbG-categories as G-procategories. We then define what it
means for a G-procategory to be very G-semiadditive by applying our framework
to Q = QFinG, and we prove:

Theorem E (Theorem 9.20). The category SpqfgenG of quasi-finitely genuine G-
spectra is the underlying category of the free presentable very G-semiadditive stable
G-procategory.

We further provide a similar universal interpretation of Kaledin’s category M̂(G,Z)
of Z-valued Mackey profunctors, see Theorem 9.21.

3We adopt the terminology from [KMN23]; Kaledin used the term ‘admissible’.
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2. Recollections on parametrized category theory

The variants of higher semiadditivity we are interested in are most conveniently
phrased using the language of parametrized category theory, which we will briefly
recall now.

Definition 2.1 (Parametrized categories). Throughout this article, we will use the
following two notions of parametrized categories:

(1) For a small category T , we define a T -category to be a functor C : T op →
Cat. We write CatT := Fun(T op,Cat) for the (very large) category of
T -categories.

(2) For an (∞-)topos B, we define a B-category to be a limit-preserving functor

C : Bop → Cat. We write Cat(B) := FunR(Bop,Cat) for the (very large)
category of B-categories.

For a morphism f : A→ B in T or B, we refer to the functor f∗ := C(f) : C(B)→
C(A) as the restriction functor of f .

Remark 2.2. The formalism of B-categories is more general than that of T -
categories: restriction along the Yoneda embedding T →֒ PSh(T ) defines an equiv-
alence Cat(PSh(T )) ∼−−→ CatT between PSh(T )-categories and T -categories, with
inverse given by limit-extension. Given a T -category C, we will generally abuse
notation and denote its limit-extension PSh(T )op → Cat again by C.
While the general formalism of parametrized semiadditivity will be developed for
B-categories, most of our examples will come from T -categories for suitable T . It
will occasionally be convenient to state definitions that apply both to B-categories
as well as to T -categories; in these cases we work with functors Aop → Cat for some
(either small or large) category A.
Example 2.3 (B-groupoid). Every object B of B defines a B-category B via the
Yoneda embedding:

B := homB(−, B) : Bop → Spc →֒ Cat .

The B-categories of this form are called B-groupoids.
Example 2.4 (The B-category of B-groupoids). Since B is a topos, the functor
Bop → Cat given by B 7→ B/B (i.e. the cartesian unstraightening of the target map
Ar(B)→ B) preserves limits and thus defines a B-category that we denote by SpcB
and refer to as the B-category of B-groupoids.
Definition 2.5 (Underlying category). Every B-category C has an underlying cat-
egory ΓC := C(1), where 1 ∈ B is the terminal object.
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Definition 2.6 (Parametrized functor category). The category Cat(B) is cartesian
closed by [Mar21, Proposition 3.2.11]. We denote the internal hom by FunB(C,D)
(or by Fun(C,D) if B is clear from the context), and denote its underlying category
by FunB(C,D) := ΓFun(C,D).

Proposition 2.7 (Categorical Yoneda Lemma, cf. [CLL23a, Lemma 2.2.7, Corol-
lary 2.2.9]). For an object B ∈ B, evaluation at idB ∈ B(B) defines a natural
equivalence

FunB(B, C) ∼−−→ C(B).

As a consequence, there are natural equivalences

FunB(B, C) ≃ C(B ×−)

and

FunB(C,D)(B) ≃ FunB(C ×B,D) ≃ FunB(C,FunB(B,D)).

Proof. In the special case B = PSh(T ) (whence Cat(B) ≃ CatT ), this is the content
of [CLL23a, Lemma 2.2.7 and Corollary 2.2.9]. For the general case, we claim that
the embedding Cat(B) →֒ Fun(Bop,CAT) preserves internal homs, where we jump
universes to ensure smallness of B. For this, let C,D ∈ Cat(B) arbitrary. By the
above special case, the internal hom in the category on the right satisfies

ι
(
Fun(C,D)(A)[n]

)
≃ ιFun(C × [n],D)(A) ≃ ιFun(C × [n],D(A× –))

= hom(C × [n],D(A × –)),

for every A ∈ B and n ≥ 0; in particular, the complete Segal space associated
to Fun(C,D)(A) is contained in the original universe, so Fun(C,D) is contained in

Fun(Bop,Cat). It remains to show that it is even contained in FunR(Bop,Cat). As
Fun(C, –) is a right adjoint, it suffices that Bop → Fun(Bop,CAT), A 7→ D(A × –)
preserves small limits. Since limits in functor categories are pointwise, this amounts
to saying that D(– × B) : Bop → CAT preserves small limits for every B, which
directly follows from cartesian closure of B and the sheaf property of D. �

Remark 2.8. In what follows, we will freely cite results from [CLL23a] for internal
homs of T -categories even when working with general B-categories; in each case the
reduction step used in the proof of Proposition 2.7 applies.

Remark 2.9. Given an object B ∈ B, every B-category C canonically gives rise to a
B/B-category π∗

BC by precomposing C with the (colimit-preserving) forgetful functor
πB : B/B → B. The resulting functor π∗

B : Cat(B) → Cat(B/B) preserves internal
homs by [CLL23a, Corollary 2.2.11], and as a result there is for all C,D ∈ Cat(B)
and every B ∈ B a natural equivalence

FunB(C,D)(B) ∼−−→ FunB/B
(π∗

BC, π∗
BD).

Under this equivalence, restriction along f : A → B corresponds to restriction
along B/f : B/A → B/B and conjugating by the evident equivalence, see [CLL23a,
Lemma 2.2.12].



8 BASTIAAN CNOSSEN, TOBIAS LENZ, AND SIL LINSKENS

2.1. Parametrized colimits. In parametrized category theory, there is a notion
of ‘groupoid-indexed colimit’ that we will now recall. To this end, recall that a
class of morphisms Q in a category A is said to be closed under base change if base
changes (= pullbacks) of morphisms in Q along morphisms in A exist and are again
in Q.
Definition 2.10 (Q-colimits). Let A be a category and let Q be a class of mor-
phisms in A closed under base change. Given a functor C : Aop → Cat, we say that
C admits Q-colimits or is Q-cocomplete if the following conditions are satisfied:

(1) For every morphism q : A → B in Q, the functor q∗ : C(B) → C(A) admits a
left adjoint q! : C(A)→ C(B).

(2) For every pullback square

A′ A

B′ B

q′

g

y
q

f

in A with q in Q, the Beck–Chevalley transformation BC! : q
′
!g

∗ → f∗q! of
functors C(A)→ C(B′) is an equivalence.

Dually, we define what it means for C to admit Q-limits.

Remark 2.11. By [MW21, Corollary 3.2.11], the above amounts to saying that
q∗ : π∗

BC → Fun(A, π∗
BC) ≃ C(A×B –) has a parametrized left adjoint q!, i.e. a left

adjoint in the homotopy 2-category of Fun
(
(A/B)

op,Cat
)
.

We will mostly use this notion in the case of B-categories for a topos B. In this
case, we will further assume that the class of morphisms Q in B is local, meaning
that a morphism q : A→ B is in Q whenever there exists an effective epimorphism∐

i∈I Bi ։ B in B such that each of the base change maps A×B Bi → Bi is in Q.
Remark 2.12. Let T be small and let Q ⊆ T be closed under base change. We
define Q := Qloc as the collection of all maps q : X → Y in PSh(T ) such that for
every map A → Y from a representable the base change A ×Y X → A belongs to
Q. Given an effective epimorphism

∐
i Yi → Y , the Yoneda lemma shows that any

map A → Y from a representable factors through one of the Yi. Thus, Qloc is a
local class in PSh(T ), and we will refer to it as the local class generated by Q. By
[CLL23a, Remark 2.3.15], a T -category is then Q-cocomplete if and only if its limit
extension is Qloc-cocomplete.

Definition 2.13. Let C,D : Aop → Cat be Q-cocomplete. A natural transforma-
tion F : C → D is said to preserve Q-colimits if for every morphism q : A→ B in Q
the Beck–Chevalley map q!FA → FBq! is an equivalence; alternatively we say that
F is Q-cocontinuous.
If A = B is a topos, we denote by Cat(B)Q-∐ ⊆ Cat(B) the (non-full) subcategory
spanned by those B-categories admittingQ-colimits and those B-functors preserving
Q-colimits. Dually, we define the non-full subcategory Cat(B)Q-× ⊆ Cat(B).
Remark 2.14. If A = T is small and Q ⊆ T is closed under base change, [CLL23a,
Lemma 2.3.16] shows that a functor F : C → D in CatT preserves Q-colimits if and
only if it preserves Qloc-colimits when viewed as a map in Cat(PSh(T )).
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Example 2.15. In the case B = Spc, the condition of being Q-cocomplete reduces
to a non-parametrized cocompleteness condition. Recall that taking global sections
defines an equivalence Cat(Spc) ∼−−→ Cat, with inverse given by sending a category
C to Fun(–, C). For local Q ⊆ Spc, a category C then has Q-colimits if and only
if q∗ : Fun(B, C) → Fun(A, C) has a left adjoint (satisfying base change) for every
q : A→ B in Q. Specializing to B = 1, we see that C has A-indexed colimits for all
A ∈ Q/1 ⊆ Spc ⊆ Cat; conversely, if C admits such colimits, then Kan’s pointwise
formula and the closure of Q under base change show that all the required adjoints
exist and satisfy base change, i.e. C is Q-cocomplete as a B-category.
In the same way, we see that a Spc-functor is Q-cocontinuous if and only if it
preserves Q/1-colimits as a functor of non-parametrized categories.

Construction 2.16. For a local class of morphisms Q in B and an object B ∈ B,
we denote by

UQ(B) ⊆ B/B
the full subcategory spanned by those morphisms q : A → B which are contained
in Q. Since Q is closed under base change, pullback along a morphism f : A → B
restricts to a functor f∗ : UQ(B) → UQ(A), and since Q is local we obtain a
B-subcategory UQ ⊆ SpcB.

Remark 2.17. The B-category UQ is a class of B-groupoids in the terminology
of [MW21], and thus determines a notion of UQ-colimits in a B-category. By
Proposition 5.4.2 of op. cit. this precisely recovers the above definitions of Q-
colimits and Q-cocontinuity.
Proposition 2.18 ([MW21, Proposition 5.2.7]). Let C and D be B-categories, and
assume that D has Q-colimits. Then:

(1) The B-category Fun(C,D) again has all Q-colimits.
(2) For any C → C′ the restriction Fun(C′,D)→ Fun(C,D) is Q-cocontinuous.
(3) For any Q-cocontinuous functor D → D′ the induced functor Fun(C,D)→

Fun(C,D′) is again Q-cocontinuous. �
Construction 2.19. Let C,D be Q-cocomplete B-categories. We define a full B-
subcategory FunQ-∐

B (C,D) ⊆ FunB(C,D) spanned in degree B ∈ B by the objects

corresponding to π−1
B Q-cocontinuous functors π∗

BC → π∗
BD under the equivalence

from Remark 2.9; see [MW21, Remark 5.2.4] for a proof that this is indeed a B-
category.

By [CLL23a, Remark 2.3.27], FunQ-∐
B (C,D) can equivalently be described as the

full subcategory spanned in degree B ∈ B by those objects that correspond to Q-
cocontinuous functors C → Fun(B,D) under the final equivalence of Proposition 2.7.

Assume now that the morphisms in Q are closed under composition and contain all
equivalences, so that Q ⊆ B defines a wide subcategory. In this case, the B-category
UQ admits Q-colimits. In fact, it is universal with this property:

Proposition 2.20 ([MW21, Theorem 7.1.13]). The B-category UQ is the free Q-
cocomplete B-category with Q-colimits: for every Q-cocomplete B-category D, eval-
uation at the point pt : 1→ UQ defines an equivalence of B-categories

FunQ-∐(UQ,D) ∼−−→ D,
whose inverse is given by left Kan extension along pt : 1→ UQ. �
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While most of our paper only refers to the above ‘groupoid indexed colimits,’ we
will on some rare occasions need the complementary notion of fiberwise colimits :

Definition 2.21. Let K be a (non-parametrized) category. We say that a B-
category C has fiberwise K-shaped colimits if the category C(A) has K-shaped col-
imits for every A ∈ B and the restriction functor f∗ : C(B) → C(A) preserves
K-shaped colimits for each f : A→ B in B.
Given a functor F : C → D of B-categories with fiberwise K-shaped colimits, we say
that F preserves fiberwise K-shaped colimits if each FA : C(A) → D(A) preserves
K-shaped colimits.

Remark 2.22. [MW21, Proposition 5.7.2] also proves the analogue of Proposi-
tion 2.18 for fiberwise colimits in B-categories and functors preserving them, making
precise that all colimits in functor categories are pointwise.

Combining the above two notions of colimits we define:

Definition 2.23. A B-category is called cocomplete if it is B-cocomplete in the
sense of Definition 2.10 and moreover fiberwise cocomplete, i.e. has all small fiberwise
colimits in the sense of Definition 2.21.

A B-functor F : C → D of cocomplete B-categories is called cocontinous if it is
B-cocontinuous and preserves all small fiberwise colimits.

Warning 2.24. If B = PSh(T ), we referred to the above notion as T -cocompleteness
in [CLL23a,CLL23b], which clashes with the terminology in Definition 2.10 above.

Remark 2.25. If C is cocomplete, then the inclusion of constant diagrams π∗
AC →

Fun(K, π∗
AC) has a left adjoint for every A ∈ B and every small B/A-category K

by [MW21, Corollary 5.4.7]. In particular, it makes sense to talk about K-shaped
colimits in π∗

AC for any such K.

3. Parametrized semiadditivity

In this section, we introduce a wide range of generalized notions of semiadditivity
for parametrized categories, using the framework of ambidexterity by Hopkins and
Lurie [HL13].

3.1. Ambidexterity. We start with a recollection on ambidexterity.

Definition 3.1 (Inductible subcategory). Let A be a category and let Q be a wide
subcategory of A closed under base change. We say that Q is inductible if the
following conditions are satisfied:

(1) Q is closed under diagonals : for every morphism q : A → B in Q, the
diagonal map ∆q : A→ A×B A is again in Q;

(2) Q is truncated : every morphism q : A → B in Q is truncated (i.e. nq-
truncated for some natural number nq).

The assumptions on Q allow us to make inductive definitions for morphisms in Q
by iteratively passing to diagonals, explaining our terminology. The condition that
Q is closed under diagonals in A admits various alternative characterizations:

Lemma 3.2. For a wide subcategory Q ⊆ A closed under base change, the following
conditions are equivalent:
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(1) Q is closed under diagonals;
(2) Q is left-cancelable: for morphisms p : A → B and q : B → C in A, if both q

and qp are in Q then also p is in Q;
(3) Q admits pullbacks and the inclusion Q →֒ A preserves pullbacks.

Proof. For (1) =⇒ (2), observe that with p and q as in (2) we may factor p as the
composite of (1, p) : A→ A×C B and prB : A×C B → B. The first map is a base
change of ∆q : B → B ×C B and the second map is a base change of qp, hence by
assumption both lie in Q and thus so does p. For (2) =⇒ (3), consider morphisms
A → B and A′ → B in Q. It follows from (2) that a map C → A ×B A′ is in Q
if and only if the two components C → A and C → A′ are, from which (3) is an
immediate consequence. The implication (3) =⇒ (1) is clear. �

Consider an inductible subcategory Q of a category A, and let C : Aop → Cat
be a functor which is Q-cocomplete in the sense of Definition 2.10. The restric-
tion of C to Qop admits a cartesian unstraightening

∫
(C|Qop) → Q, which due to

Q-cocompleteness of C is a Beck–Chevalley fibration in the sense of [HL13, Defini-
tion 4.1.3] and thus gives rise to a notion of C-ambidexterity:

Construction 3.3 (Ambidexterity, [HL13, Construction 4.1.8]). Let Q be an in-
ductible subcategory of a category A and let C : Aop → Cat be a functor which is
Q-cocomplete in the sense of Definition 2.10. We will inductively define what it
means for an n-truncated morphism q : A→ B in Q to be C-ambidextrous, in which

case we will construct a transformation µ
(n)
q : idC(B) → q!q

∗ exhibiting q! as a right
adjoint to q∗.

The induction starts at n = −2, in which case any (−2)-truncated morphism q is
declared to be C-ambidextrous. Since q is an equivalence, the counit map q!q

∗ →
idC(B) is an equivalence, and we define µ

(−2)
q : idC(B) → q!q

∗ as its inverse.

Assume now that we have defined the n-truncated C-ambidextrous morphisms for

some n ≥ −2 and have assigned to them the required transformations µ
(n)
q . We

say that an (n + 1)-truncated morphism q : A → B in Q is weakly C-ambidextrous
if its diagonal ∆q : A→ A×B A is C-ambidextrous (which is well-defined since ∆q

is n-truncated). Consider the following commutative diagram:

A

A×B A A

A B.

idA

idA

∆

pr2

pr1

y
q

q

We define the adjoint norm map Ñmq : q
∗q! → id as the following composite:

Ñmq : q
∗q!

BC−1
!−−−−→ pr1!pr

∗
2

µ
(n)
∆−−−→ pr1!∆!∆

∗pr∗2 ≃ id.

An (n + 1)-truncated morphism q : A → B is called C-ambidextrous if every base

change q′ of q is weakly C-ambidextrous and the adjoint norm map Ñmq′ : q
′∗q′∗ →

idC(A′) exhibits q
′
! as a right adjoint of q′∗. In this case, we let µ

(n+1)
q : idC(B) → q!q

∗

denote the corresponding unit for the resulting adjunction q∗ ⊣ q!.
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Remark 3.4. The norm map is independent of the choice of pullback. In partic-
ular, taking the same object A ×B A but with the two projection maps swapped,
we see that we can equivalently define the adjoint norm map as the composite

q∗q! ≃ pr2!pr
∗
1

µ−−→ pr2!∆!∆
∗pr∗1 ≃ id.

Remark 3.5. Let f : A′ → A be a functor and let Q′ ⊆ A′ be inductible such that
f(Q′) ⊆ Q and f preserves pullbacks along maps in Q′. Given any C : Aop → Cat,
we define f∗C := C ◦ f : A′op → Cat. It then follows straight from the definition
that f∗C is Q′-cocomplete if C is Q-cocomplete, and that q ∈ Q′ is (weakly) f∗C-
ambidextrous if f(q) is (weakly) C-ambidextrous. Moreover, the adjoint norm map
for q agrees with the adjoint norm map for f(q) in C.
Remark 3.6 (Norm map). In the situation of Construction 3.3, consider a weakly
C-ambidextrous morphism q : A → B. If the functor q∗ : C(B) → C(A) admits

a right adjoint q∗ : C(A) → C(B), then the adjoint norm map Ñmq : q
∗q! → id

corresponds to a transformation Nmq : q! → q∗ that we call the norm map associated
to q. In this case, it follows that q is C-ambidextrous if and only if for each base
change q′ the restriction functor q′∗ admits a right adjoint q′∗ and the norm map
Nmq′ : q

′
! → q′∗ is an equivalence.

The above construction interacts with natural transformations as one would expect:

Proposition 3.7 (cf. [CSY22, Theorem 3.2.3]). Let F : C → D be a natural trans-
formation of Q-cocomplete functors Aop → Cat. Assume that for every (n − 1)-
truncated map p in Q at least one of the Beck–Chevalley maps BC! : p!F → Fp!
and BC∗ : Fp∗ → p∗F is invertible.

(1) Let q be an n-truncated map that is both weakly C-ambidextrous and weakly
D-ambidextrous. Then the following diagram commutes:

q∗q!F q∗Fq! Fq∗q!

F F.

Ñmq F

BC! ≃

F Ñmq

(2) Assume in addition that q∗ : C(B) → C(A) and q∗ : D(B) → D(A) admit
right adjoints q∗. Then the following diagram commutes:

q!F q∗F

Fq! Fq∗.

Nmq

BC!

F (Nmq)

BC∗

(3) Assume that q is C-ambidextrous and D-ambidextrous and that at least one
of the Beck–Chevalley maps q!F → Fq! and Fq∗ → q∗F is invertible. Then
also the following diagram commutes:

F Fq!q
∗

q!q
∗F q!Fq∗.

µq

F (µq)

BC!



PARAMETRIZED HIGHER SEMIADDITIVITY AND THE UNIVERSALITY OF SPANS 13

Proof. First fix n and q and observe that (2) follows from (1) via adjoining over,
also see [CSY22, Lemma 2.2.11]. We will now show that this in turn implies (3):
indeed, in the diagram

F Fq∗q∗ Fq!q
∗

q∗q∗F q∗Fq∗ q!Fq∗

F (η)

η BC∗

F (Nm−1)

Nm−1

BC!

the right-hand square commutes by (2) and the assumption that at least one of
the two Beck–Chevalley maps is invertible, while the left-hand square commutes by
direct inspection.

Using this, we will now prove (1) by induction on n. For n = −2, Ñmq is simply
the inverse of the unit id → q∗q!, and the statement follows by a standard mate
argument, also see [CSY22, Lemma 2.2.3(3)]. If we already know the statement for
n− 1, then we consider the diagram

q∗q!F (pr1)!pr
∗
2F (pr1)!∆!∆

∗pr∗2F F

(pr1)!Fpr∗2 (pr1)!∆!∆
∗Fpr∗2

q∗Fq! (pr1)!∆!F∆∗pr∗2 F

(pr1)!Fpr∗2 (pr1)!F∆!∆
∗pr∗2

Fq∗q! F (pr1)!(pr2)
∗ F (pr1)!∆!∆

∗pr∗2 F

∼

BC−1
!

BC!

∼

BC!

BC!

BC−1
!

BC!

(∗)

µ∆

µ∆

µ∆

µ∆

(†) ∼

∼

(∗)

whose top and bottom row spell out Ñmq and F (Ñmq), respectively; here and in
what follows, we will simply denote the naturality constraints of an Aop-natural
transformation by equality signs to streamline notation.

The two subdiagrams marked (∗) commute by basic mate arguments, cf. [CSY22,
Lemma 2.2.4(1)], while the subdiagram (†) commutes by the induction hypothesis
and the above implication (1) ⇒ (3). As all the remaining subdiagrams commute
simply by naturality, this completes the inductive step. �

As an immediate consequence, we can now describe the interaction of the norm
with base change, cf. [HL13, Proposition 4.2.1 and Remark 4.2.3]:

Corollary 3.8. Let

A′ A

B′ B

q′

g

y
q

f

be a pullback in A such that q is a map in Q (whence so is q′).
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(1) If C is Q-cocomplete and q is weakly C-ambidextrous, then we have a com-
mutative diagram

q′∗f∗q! g∗q∗q!

q′∗q′!g
∗ g∗.

g∗ ÑmqBC!

Ñmq′

(2) Assume in addition that q∗ and q′∗ admit right adjoints. Then also

f∗q! f∗q∗

q′!g
∗ q′∗g

∗

f∗ Nmq

BC∗BC!

Nmq′

commutes.

Proof. For the first statement, let πB : A/B → A denote the projection. It then
suffices to apply Proposition 3.7(1) to the A/B-natural transformation f∗ : π∗

BC →
C(A×B –), using Remark 3.5 to identify the adjoint norms on both sides.

The second statement follows in the same way from Proposition 3.7(2). �

3.2. Parametrized semiadditivity. The notion of ambidexterity leads to a vari-
ety of notions of parametrized semiadditivity for B-categories. These varieties are
most naturally indexed on locally inductible subcategories, which we introduce now.

Definition 3.9. A wide local subcategory Q of a topos B is locally inductible if

(1) every morphism q : A → B in Q locally truncated : there exists a covering
(Bi → B)i∈I (i.e. the induced map

∐
i∈I Bi → B is an effective epimor-

phism) such that each base change qi : Bi ×B A→ Bi is truncated, and
(2) Q is closed under diagonals.

Definition 3.10 (Q-semiadditivity). Let B be a topos equipped with a local in-
ductible subcategory Q. We say that a B-category C is Q-semiadditive if it admits
Q-colimits and if every truncated map q : A→ B in Q is C-ambidextrous.

Remark 3.11. Let f : B′ → B be a left adjoint functor that preserves pullbacks,
and let Q′ ⊆ B′,Q ⊆ B be locally inductible with f(Q′) ⊆ Q. Specializing Re-
mark 3.5, we see that for any Q-semiadditive B-category C the restriction f∗C is a
Q′-semiadditive B′-category, with the evident (adjoint) norms for truncated maps.

In particular, if A ∈ B is arbitrary, we can apply this to the forgetful functor
πA : B/A → B and the locally inductible subcategory Q′ = B/A[Q] := π−1

A (Q). This
will in various proofs allow us to restrict to slices, simplifying notation.

Remark 3.12. Suppose that C is Q-semiadditive. Because parametrized (co)limits
in functor categories are computed pointwise, one easily checks by induction that
Fun(I, C) is againQ-semiadditive for every small B-category I, with (adjoint) norm
maps given pointwise by the norms in C.
Remark 3.13. Note that the definition of Q-semiadditivity for a locally inductible
classQ only requires that truncated maps in Q are C-ambidextrous, because only in
this case does the inductive procedure of Construction 3.3 terminate. Nevertheless,
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we will show in Theorem 6.11 that there are natural units and counits witnessing
an adjunction q∗ ⊣ q! for any map q ∈ Q.

Conversely, it suffices to check Q-cocompleteness on the classes Q≤n of n-truncated
maps for every finite n:

Lemma 3.14. Let Q ⊆ B be a locally truncated local class. Then a B-category C
is Q-cocomplete if and only if it is Q≤n-cocomplete for every n ≥ −2.

Proof. The ‘only if’ part is clear. For the other direction, fix q : A → B and
consider the full subcategory Σ ⊆ B/B of all f : B′ → B such that the pullback
q′ := f∗(q) : A×BB′ → B′ is truncated. This is a sieve as truncated maps are stable
under pullback, and it is covering by the assumption that q be locally truncated.
Moreover, Q≤n-cocompleteness for all n ≥ −2 shows that q′∗ admits a left adjoint
q′! satisfying base change along maps in Σ. Letting q vary, the lemma is therefore
an instance of Corollary A.4. �

In the same way Lemma A.5 specializes to:

Lemma 3.15. Let Q ⊆ B be local and locally truncated. Then a functor F : C → D
of Q-cocomplete B-categories is Q-cocontinuous if and only if it is Q≤n-cocontinuous
for all n ≥ −2. �

While the definition of Q-semiadditivity only refers to Q-colimits, we in fact also
have all Q-limits:

Corollary 3.16. Every Q-semiadditive B-category C admits Q-limits.

Proof. By Lemma 3.14op it is enough to show that it has Q≤n-limits for all n ≥ −2.
Let q : A→ B be a map in Q≤n. By Q-semiadditivity, we know that q∗ has a right
adjoint q∗, so it only remains to verify the Beck–Chevalley condition, i.e. that for
every pullback

A′ A

B′ B

q′

f ′

y
q

f

the Beck–Chevalley map BC∗ : f∗q∗ → q′∗f
′∗ is an equivalence. However, this

follows immediately from Corollary 3.8 by 2-out-of-3. �

In the same way one shows (using Lemma 3.15 and its dual):

Corollary 3.17. A functor between Q-semiadditive B-categories preserves Q-limits
if and only if it preserves Q-colimits. �

Definition 3.18. A functor F : C → D of Q-semiadditive B-categories is called
Q-semiadditive if it preserves Q-colimits or, equivalently, Q-limits. We write
Cat(B)Q-⊕ for the category of Q-semiadditive B-categories and Q-semiadditive
functors. Given C,D ∈ Cat(B)Q-⊕, we write FunQ-⊕(C,D) := FunQ-×(C,D) =
FunQ-∐(C,D).
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3.3. Presheaf topoi. For the applications we have in mind, we are mainly inter-
ested in the case where the topos B is a presheaf topos PSh(T ) on some small cate-
gory T , so that B-categories correspond to T -categories T op → Cat by Remark 2.2.
In this case, the local classes Q that appear in practice are usually generated by a
much smaller collection of morphisms, and the condition of Q-semiadditivity of a
T -category simplifies accordingly. We suggestively refer to these smaller classes as
‘pre-inductible’:

Definition 3.19 (Pre-inductible subcategory). Let T be a small category and let
Q ⊆ PSh(T ) be a replete subcategory containing all representable presheaves. We
say that Q is pre-inductible if the following conditions are satisfied:

(1) (Locality) Consider a morphism q : A→ B in PSh(T ) with B ∈ Q. Then q
lies in Q if and only if for every pullback square

A′ A

B′ B

q′

f

y
q

g

in PSh(T ) with B′ ∈ T the base change q′ lies in Q.
(2) (Diagonals) For every morphism q in Q, also its diagonal ∆q lies in Q.
(3) (Truncation) Every morphism in Q with target in T is truncated.

Remark 3.20. The first axiom together with the pasting law implies that Q is
closed under base change along maps f : A → B such that A,B ∈ Q (but f need
not be a map in Q).

There are two ‘extreme’ cases of pre-inductible subcategories:

Example 3.21. Every inductible subcategory Q ⊆ T is pre-inductible when re-
garded as a subcategory of PSh(T ): condition (3) holds by assumption and condi-
tions (1) and (2) are a consequence of the fact that the Yoneda embedding preserves
pullbacks.

Example 3.22. Every locally inductible subcategory Q ⊆ PSh(T ) is in particular
pre-inductible: conditions (1) and (2) hold by assumption and condition (3) follows
from the fact that every locally truncated map with representable target A ∈ T is
already truncated: any cover (Ai → A)i∈I ofA has to contain a map Ai → A hitting
the component of idA, so that already Ai → A itself is an effective epimorphism,
implying the claim.

Definition 3.23 (Q-semiadditivity). Let Q ⊆ PSh(T ) be a pre-inductible subcat-
egory, and let A ⊆ PSh(T ) be the full subcategory spanned by the objects of Q.
For a T -category C, we denote by C|Aop : Aop → Cat its right Kan extension along
T op →֒ Aop, or equivalently the restriction to Aop of C : PSh(T )op → Cat.

(1) We say that C is Q-cocomplete if C|Aop is Q-cocomplete in the sense of
Definition 2.10;

(2) We say that C is Q-semiadditive if in addition every truncated morphism q
in Q is C|Aop -ambidextrous.

Remark 3.24. If Q = Q ⊆ PSh(T ) is in fact locally inductible then A = PSh(T )
and one observes that Definition 3.23 specializes to Definition 3.10.



PARAMETRIZED HIGHER SEMIADDITIVITY AND THE UNIVERSALITY OF SPANS 17

Remark 3.25. If T = B happens to be a topos and Q = Q ⊂ B is an inductible
local class, then after passing to a larger universe we may regard Q as a pre-
inductible subcategory of PSh(B) by Example 3.21. In this case we get A = B,
and we see that a B-category C is Q-semiadditive in the sense of Definition 3.10
if and only if its underlying functor Bop → Cat is Q-semiadditive in the sense of
Definition 3.23.

The main reason for introducing Q-semiadditivity for pre-inductible Q is the flexi-
bility of this setup: essentially all examples of parametrized semiadditivity provided
in Section 3.4 below will be of this form. We will now show that this setup is indeed
a special case of our general formalism of Q-semiadditivity for locally inductible Q.
Construction 3.26. Let Q ⊆ PSh(T ) be a pre-inductible subcategory. A mor-
phism q : A→ B in PSh(T ) is said to be locally in Q if for every morphism B′ → B
in PSh(T ) with B′ ∈ Q we have that the base change map A ×B B′ → B′ lies
in Q. Since such morphisms are clearly closed under composition and contain all
equivalences, they determine a wide subcategory Qloc of PSh(T ). We refer to Qloc

as the locally inductible subcategory generated by Q.

Remark 3.27. If Q = Q is already locally inductible, then we have Qloc = Q.
Lemma 3.28. For every pre-inductible subcategory Q ⊆ PSh(T ), the wide subcat-
egory Qloc ⊆ PSh(T ) is locally inductible.

Proof. It is easy to check that Qloc is closed under base change and composition,
and it is local by the same argument as in Remark 2.12.

For a morphism q : A→ B in Qloc we may cover B by representable objects so that
assumption (3) immediately implies that q is locally truncated. It remains to show
that Qloc is closed under diagonals. By Lemma 3.2, we may equivalently show that
Qloc is left-cancellable: if p : A→ B and q : B → C are morphisms of presheaves on
T such that q and qp are in Qloc, then also p must be in Qloc. In other words, given
a morphism b : B′ → B in PSh(T ) with B′ ∈ Q, we have to show that the base
change p′ : A×B B′ → B′ is in Q. To this end, consider the following commutative
pullback diagram:

A×B B′ A×C B′ A

B′ B ×C B′ B

B′ C.

p′

1×q1

y
p′′

pr1

y
p

(b,1)

= q′

pr1

y
q

qb

Since q and qp are locally in Q, the morphisms q′ and q′p′′ are in Q. As Q is closed
under diagonals, Lemma 3.2 implies that also p′′ is in Q, and hence p′ is in Q by
Remark 3.20. This finishes the proof. �

The following is the main result of this subsection:

Proposition 3.29. Let Q ⊆ PSh(T ) be a pre-inductible subcategory.

(1) A T -category C is Q-cocomplete in the sense of Definition 3.23 if and only
if its limit-extension C : PSh(T )op → Cat is Qloc-cocomplete in the sense
of Definition 2.10.
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(2) A T -category C is Q-semiadditive in the sense of Definition 3.23 if and only
if its limit-extension C : PSh(T )op → Cat is Qloc-semiadditive in the sense
of Definition 3.10.

Proof. For the first statement, the ‘if’-part is clear; for the other direction, we
note that it even suffices to check the existence of adjoints and the Beck–Chevalley
conditions after restricting to maps in Qloc with representable target by [CLL23a,
Remark 2.3.15].

For the second statement, the ‘if’-direction is again clear. For the ‘only if’-direction,
we will argue by induction that C is (Qloc)≤n-semiadditive for all n ≥ −2.
For n = −2 there is nothing to show. Now assume that we already know that C
is (Qloc)≤n−1-semiadditive. By assumption, the restriction along any n-truncated

q ∈ Q has a right adjoint q∗, and Ñm: q∗q! → id adjoins to an equivalence q! → q∗.
Arguing as in Corollary 3.16, we deduce from Corollary 3.8 that q∗ satisfies base
change along maps in A, so [CLL23a, Remark 2.3.15op] shows that C is (Qloc)≤n-
complete. Given now a general map q : A → B in Q, Corollary 3.8 shows that
f∗Nmq agrees up to equivalence with the norm along q′ := f∗(q); in particular,
f∗Nmq is invertible whenever B′ is representable (so that q′ ∈ Q). Covering B by
representables, we see that Nmq itself is invertible, as desired. �

3.4. Examples. We will now provide various examples of pre-inductible subcate-
gories and discuss their associated notion of semiadditivity. Let us start with the
non-parametrized examples:

Example 3.30 (Ordinary semiadditivity). The subcategory Fin ⊆ Spc of finite sets
is pre-inductible. A category C is Fin-semiadditive if and only if it is semiadditive
in the classical sense.

Example 3.31 (m-semiadditivity). Given an integer −2 ≤ m < ∞, recall that a
space is called m-finite for −2 ≤ m <∞ if it is m-truncated, has finitely many path
components, and all its homotopy groups are finite. The subcategory Spcm ⊆ Spc
by the m-finite spaces is pre-inductible, and a category C is Spcm-semiadditive if
and only if C is m-semiadditive in the sense of [HL13, Definition 4.4.2].

Example 3.32 (∞-semiadditivity). Recall that a space is called π-finite if it is
m-finite for some integer m. The subcategory Spcπ ⊆ Spc of π-finite spaces is pre-
inductible, and the associated notion of semiadditivity is that of ∞-semiadditivity
[CSY22, Definition 3.1.10]: a category C is ∞-semiadditive if and only if it is m-
semiadditive for all m ≥ −2.
Example 3.33 (p-typical m-semiadditivity). As a variation on the previous two

examples, let p be a prime and let Spc(p)m ⊆ Spcm be the full subcategory consisting
of the m-finite p-spaces, i.e. those m-finite spaces all of whose homotopy groups

are p-groups. Then Spc(p)m is pre-inductible, and the corresponding notion of semi-
additivity is that of p-typical m-semiadditivity [CSY21, Definition 3.1.1]. Working

with Spc(p)π , the category of π-finite p-spaces, similarly gives the notion of p-typical
∞-semiadditivity.

Example 3.34. As the common generalization of the previous examples, let Q ⊆
Spc be a full subcategory of truncated spaces which is closed under base change
and extensions and which satisfies 1 ∈ Q. Then Q is pre-inductible, giving rise
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to a notion of Q-semiadditivity for categories C. A non-parametrized category is
Q-semiadditive in our sense if and only if it admits A-shaped colimits and A-shaped
limits for every A ∈ Q, and the norm NmA : colimA → limA is an equivalence for
each such A.

In fact, this is the most general form of semiadditivity our formalism provides in the
non-parametrized setting: given an arbitrary locally inductible subcategory Q ⊆
Spc, the full subcategory Q := Q/1 ⊆ Spc/1 = Spc satisfies the above assumptions,
and since Q = Qloc we see that Q-semiadditivity agrees with Q-semiadditivity by
Proposition 3.29.

It turns out that the individual categories of a parametrized semiadditive category
inherit some degree of non-parametrized semiadditivity.

Lemma 3.35 (Fiberwise semiadditivity). Let Q be a locally inductible subcategory
of a topos B and consider the full subcategory Qfib ⊆ Spc consisting of those spaces
A which are truncated and for which the map colimA1→ 1 in B is contained in Q.
(1) The subcategory Qfib ⊆ Spc is pre-inductible;
(2) Every Q-semiadditive B-category C : Bop → Cat is fiberwise Qfib-semiadditive,

i.e. factors through the (non-full) subcategory CatQfib-⊕ of Qfib-semiadditive
categories.

Proof. Denote by L : Spc→ B be the unique left exact left adjoint, given on objects
by sending a space A to colimA1 ∈ B. Note that Qfib consists precisely of those
truncated spaces A such that the canonical map L(A)→ L(pt) = 1 is in Q. Since
L preserves colimits and finite limits, it follows that Qfib contains the point and is
closed under base change and extensions, hence it is pre-inductible by Example 3.34.

Given now any object X ∈ B, the functor X × L(–) is again a pullback-preserving
left adjoint. Since Q is closed under base change, we see that X × L(A) → X is
in Q for all A ∈ Qfib, and thus by left-cancelability and locality of Q we deduce
that X × L(–) maps all morphisms of (Qfib)loc ⊆ Spc to morphisms in Q. By
Remark 3.11 we conclude that the category C(X) is Qfib-semiadditive. Moreover,
if f : X → Y is any map in B, then the base change condition for C shows that
f∗ : C(Y ) → C(X) preserves A-indexed (co)limits for A ∈ Qfib. It follows that C
factors through CatQfib-⊕, finishing the proof. �

Example 3.36. If Q ⊆ B is a locally inductible subcategory containing the map
1∐ 1→ 1 (hence all fold maps X ∐X → X), then each C(X) is semiadditive in the
usual sense, and each f∗ : C(Y )→ C(X) is a semiadditive functor.

We now come to the examples of semiadditivity that are truly parametrized.

Example 3.37 (G-semiadditivity). For a finite group G the subcategory FinG ⊆
SpcG = PSh(OrbG) of finite G-sets is pre-inductible. A G-category C : OrbopG → Cat
is FinG-semiadditive if and only if C is G-semiadditive in the sense of [Nar16,QS21].

Example 3.38 (Equivariant semiadditivity). Consider the subcategory Glo ⊆ F of
the (2, 1)-category F of finite groupoids spanned by the connected finite groupoids,
i.e. groupoids of the form BG for a finite group G. Consider also the wide subcate-
gory F† of F spanned by the faithful functors between finite groupoids. Identifying
F with the full subcategory of PSh(Glo) spanned by the finite disjoint unions of
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representable objects, the resulting subcategory F† of PSh(Glo) is pre-inductible.
A global category C : Gloop → Cat is F†-semiadditive if and only if it is equivariantly
semiadditive in the sense of [CLL23a, Example 4.5.2].

Example 3.39 (Global semiadditivity). In fact, also the full subcategory F ⊆
PSh(Glo) is pre-inductible. We will refer to the associated notion of semiadditivity
as global semiadditivity. Informally, the difference to the notion from the previous
example is that we now require that for any homomorphism α : H → G of finite
groups the restriction functor α∗ admits both adjoints and that they agree, instead
of just requiring this for subgroup inclusions.

The notion of global semiadditivity may be seen as a generalization of the notion
of 1-semiadditivity from Example 3.31 as follows: Given a (non-parametrized) cat-
egory C we may form its Borelification CBor, i.e. the global category defined via
CBor(BG) := Fun(BG, C); here we use the canonical embedding Glo ⊆ F →֒ Spc.
Since the essential image of the inclusion functor F →֒ Spc is precisely the subcat-
egory of 1-finite spaces, one observes that a category C is 1-semiadditive if and only
if its Borelification is globally semiadditive, also cf. [CLL23c, Lemma 5.9]. In this
sense, global semiadditivity generalizes 1-semiadditivity (see also Remark 9.14).

Example 3.40 (P -semiadditivity). As a common generalization of Examples 3.30,
3.37, and 3.38 (but not of the previous example), let T be a small category and let
P ⊆ T be an atomic orbital subcategory, in the sense of [CLL23a, Definition 4.3.1].
Let FT ⊆ PSh(T ) be the full subcategory of PSh(T ) spanned by finite disjoint
unions of representable presheaves, and let FP

T ⊆ FT be the wide subcategory
consisting of finite disjoint unions of morphisms of the form

∐n
i=1 pi :

∐n
i=1 Ai → B,

where each morphism pi : Ai → B lies in P . Then the subcategory FP
T ⊆ PSh(T ) is

pre-inductible. A T -category C is FP
T -semiadditive if and only if it is P -semiadditive

in the sense of [CLL23a, Definition 4.5.1].

Example 3.41 (Very G-semiadditive G-procategories). Let G be an arbitrary
group. We denote by ÔrbG ⊆ OrbG the full subcategory spanned by the orbits
of the form G/H where H is a finite-index subgroup of G.4 We refer to functors
C : ÔrbopG → Cat as G-procategories.

In [Kal22, Definition 3.1], Kaledin considers G-sets S satisfying the following two
conditions:

(1) For every s ∈ S the stabilizer subgroup Gs ⊆ G is cofinite.
(2) Every cofinite subgroup H ⊆ G the fixed point set SH is finite.

Following [KMN23], we will call such G-sets quasi-finite, and write QFinG for
the the full subcategory of SetG spanned by them. Assigning to S the presheaf
G/H 7→ SH determines a fully faithful functor QFinG →֒ PSh(ÔrbG) which ex-
hibits QFinG as a pre-inductible subcategory. We say a profinite G-category C is
very G-semiadditive if it is QFinG-semiadditive.

Example 3.42 (Tempered ambidexterity). Let T be a subcategory of Glo con-
taining the final object 1, and consider the category PSh(T ). We write R : Spc→
PSh(T ) for the fully faithful right adjoint of ev1 : PSh(T )→ Spc. We observe that
R(Spcπ) is a pre-inductible subcategory of PSh(T ). To see this, note that the cate-
gory T is a full subcategory of Spc, and so by Yoneda’s lemma R(BG) is equivalent

4This subcategory is denoted OrbG by [KMN23].
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to the representable object associated to G ∈ T . The remaining properties of a pre-
inductible subcategory are inherited from π-finite spaces, using that R preserves
limits. In [Lur19], Lurie considers the case where T is the full subcategory of Glo
spanned by the groupoids with abelian isotropy. The main result of [Lur19] shows
that the T -category of tempered local systems associated to an oriented P-divisible
group is R(Spcπ)-semiadditive.

Example 3.43. In [Sch23, Lecture 6], Scholze defined for every six-functor for-
malism D notions of cohomologically proper and cohomologically étale morphisms
f : roughly speaking, this condition demands that the functor f! given by the co-
variant functoriality of the six-functor formalism is right (resp. left) adjoint to the
morphism f∗ coming from the contravariant functoriality in some preferred way.

Only remembering the contravariant functoriality, every six-functor formalism D
forgets to a category parametrized by some category T . As we will show in future
work, the class Q of maps in T that are both cohomologically étale and cohomology
proper form an inductible subcategory of T , and D is Q-semiadditive in the sense
of Definition 3.23.

3.5. Alternative characterizations of Q-semiadditivity. Let us close this sec-
tion by discussing various equivalent definitions of Q-semiadditivity:

Proposition 3.44. Let C be a Q-complete and Q-cocomplete B-category. The
following are equivalent:

(1) The category C is Q-semiadditive.
(2) The category Cop is Q-semiadditive.
(3) For every truncated q : A → B in Q, the functor q! : Fun(A, π∗

BC) → π∗
BC

preserves Q-limits.
(4) For every truncated q : A → B in Q, the functor q∗ : Fun(A, π∗

BC) → π∗
BC

preserves Q-colimits.
(5) For every pullback square

A′ A

B′ B

q′

p′

y
q

p

consisting of truncated maps in Q the double Beck–Chevalley transforma-
tion BC!,∗ : p!q′∗ → q∗p′! is an equivalence.

(6) For every truncated map q : A→ B in Q the double Beck–Chevalley trans-
formation BC!,∗ : q!pr1∗ → q∗pr2! associated to the pullback square

A×B A A

A B.

pr1

pr2

y
q

q

in Q is an equivalence.

Proof. We will prove that (1) ⇒ (3) ⇒ (5) ⇒ (6) ⇒ (1). Dually, we then have
(2)⇒ (4)⇒ (5)⇒ (6)⇒ (2), so that all statements are indeed equivalent.
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For (1) ⇒ (3), note that q! is a left adjoint, so it preserves Q-colimits by [MW21,
Proposition 5.2.5], whence Q-limits by Corollary 3.17. The implication (3) ⇒ (5)
simply amounts to spelling out the definition of preservingQ-limits, while (5)⇒ (6)
is immediate. Finally, for (6)⇒ (1), we will be done by induction if we show that
for any truncated q the norm map Nmq : q! → q∗ can be factored as the composite

q! ≃ q!pr1∗∆∗
Nm−1

∆−−−−→ q!pr1∗∆!
BC!,∗−−−→ q∗pr2!∆! ≃ q∗.

Up to replacing C by Cop, the proof of this claim is identical to that of [CLL23a,
Lemma 4.4.2] and will hence be omitted. �

We will later prove that one can equivalently drop all the truncatedness assump-
tions, see Corollary 6.12.

4. Parametrized span categories

Fix a topos B equipped with a locally inductible subcategory Q ⊆ B. The goal of
this section is to construct the B-category Span(Q) and show it is Q-semiadditive.

Definition 4.1. Let Q′ ⊆ Q ⊆ B be another locally inductible subcategory. For
every A ∈ B, we denote by

Q/A[Q′] ⊆ Q/A

the wide subcategory consisting of those morphisms in Q/A whose underlying map
in Q lies in Q′. As Q′ is a local class of morphisms, this defines a B-subcategory
UQ[Q′] ⊆ UQ.

Lemma 4.2. For every object A ∈ B, the category Q/A admits finite limits and
the wide subcategory Q/A[Q′] ⊆ Q/A is closed under base change.

Proof. Note that Q/A admits pullbacks by Lemma 3.2. It also admits a terminal
object, given by the identity map on A, and thus admits all finite limits. The
second claim is immediate from the fact that morphisms in Q′ are closed under
base change. �

Construction 4.3 (Parametrized span category). Let QL,QR ⊆ Q be locally
inductible subcategories of B. By Lemma 4.2, the triple (Q/A,Q/A[QL],Q/A[QR])
is an adequate triple for every A ∈ B, in the sense of [Bar17, Definition 5.2]. Since
Q, QL and QR are local classes, this defines a limit-preserving functor

(UQ,UQ[QL],UQ[QR]) : Bop → AdTrip

to the category of adequate triples by [HHLN23, Lemma 2.4]. We define the
parametrized span category Span(Q,QL,QR) as the composite

Bop
(UQ,UQ[QL],UQ[QR])
−−−−−−−−−−−−−−−→ AdTrip

Span−−−−→ Cat .

Since the functor Span: AdTrip→ Cat is a right adjoint [HHLN23, Theorem 2.18]
and hence preserves limits, it follows that Span(Q,QL,QR) is indeed a B-category.
For simplicity, we will write Span(Q) for Span(Q,Q,Q), so that for A ∈ B we have

Span(Q)(A) = Span(Q/A).

For a morphism f : A→ B in B, the restriction functor f∗ : Span(Q/B)→ Span(Q/A)
is given by pullback along f .
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Warning 4.4. Wewarn the reader that the underlying category of Span(Q,QL,QR)
is not equivalent to Span(Q,QL,QR), because Q/1 6= Q.

The contravariant and covariant parts of the span categories give rise to canonical
inclusions

UQ[QL]
op →֒ Span(Q,QL,QR) ←֓ UQ[QR]

of B-categories. For later reference, let us record the following property of these
inclusions:

Following [Sha22, Definition 3.1] we define a factorization system on a B-category
C to be a pair (E,M) of wide B-subcategories E,M ⊆ C such that for every B ∈ B
the wide subcategories E(B) and M(B) of C(B) define a factorization system on
C(B) in the sense of [Lur09, Definition 5.2.8.8]. We denote maps in E with the
symbol ։ and maps in M with the symbol .

Proposition 4.5. Let QL,QR ⊆ Q be locally inductible subcategories. The inclu-
sions UQ[QL]

op,UQ[QR] →֒ Span(Q,QL,QR) define the left and right class of a
factorization system.

Proof. This follows by applying [HHLN23, Proposition 4.9] levelwise. �

The parametrized span category Span(Q) can be seen to be both Q-complete and
Q-cocomplete, with the relevant adjoints given by applying Span(–) to the post-
composition functor q! : Q/A → Q/B for q in Q. More generally, we have:

Proposition 4.6. Let QL,QR ⊆ Q ⊆ B be locally inductible subcategories.

(1) The B-category Span(Q,QL,QR) admits QR-colimits, and the inclusion of
UQ[QR] into Span(Q,QL,QR) preserves QR-colimits;

(2) Dually, Span(Q,QL,QR) admits QL-limits, and the inclusion of UQ[QL]
op

into Span(Q,QL,QR) preserves QL-limits.

Proof. Since Span(Q,QL,QR)
op ≃ Span(Q,QR,QL), part (2) is dual to part (1).

To prove (1), consider a morphism q : A→ B in QR, and consider the adjunction

q! : Q/A ⇄ Q/B :q∗,

where q!(f : A
′ → A) = q ◦ f . Note that both functors preserve pullbacks and

preserve morphisms in QL and QR, so that they are morphisms of adequate triples.

We will apply [BH21, Corollary C.21] to show that this adjunction induces the
required adjunctions at the level of span categories. In order to do so, let us spell
out the unit and counit maps of this adjunction. For an object (f : A′ → A) ∈ Q/A,
the unit of the adjunction is given by the map

A′ (f,1)−−−→ A×B A′ = q∗q!A
′

in Q/A. Observe that this map is a base change of the diagonal ∆q : A→ A ×B A
of q, and hence lies in QR since QR is locally inductible. As a direct consequence
of the pasting law of pullback squares, we see that for any other map g : A′′ → A
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and any map h : A′′ → A′ over A, the naturality square

A′′ A×B A′′

A′ A×B A′

h
y
(g,1)

1×h

(f,1)

is a pullback square. Similarly, for an object (g : B′ → B) ∈ Q/B, the counit of the
adjunction is provided by the projection map

q!q
∗B′ = A×B B′ pr2−−→ B′

in Q/B, where the source lives over B via the composite A×BB′ pr1−−→ A
q−→ B. This

map is a base change of q, and thus lies in QR. Again it follows from the pasting
law of pullback squares that for any morphism h : B′′ → B′ over B the naturality
square

A×B B′′ B′′

A×B B′ B′

1×h

pr2

h

pr2

is a pullback square. Thus, [BH21, Corollary C.21] implies that the adjunction
q! : Q/A ⇆ Q/B :q∗ induces an adjunction at the level of spans of the form

Span(q!) : Span(Q,QL,QR)(A) ⇄ Span(Q,QL,QR)(B) :Span(q∗)

with unit and counit given by the right-pointing arrows associated to the original
unit and counit. The Beck–Chevalley conditions for the adjunctions q! ⊣ q∗ then
immediately imply the Beck–Chevalley conditions for the adjunctions Span(q!) ⊣
Span(q∗). We conclude that Span(Q,QL,QR) admits QR-colimits and that the
inclusion UQ[QR] →֒ Span(Q,QL,QR) preserves QR-colimits. �

Corollary 4.7. A functor F : Span(Q,QL,QR)→ C preserves QR-colimits if and

only if the composite UQ[QR]
ι−֒→ Span(Q,QL,QR)

F−→ C preserves QR-colimits.
The dual statement for QL-limits also holds.

Proof. Since ι preserves QR-colimits by Proposition 4.6, the ‘only if’-direction is
clear. For the converse, assume that F ◦ ι preserves QR-colimits. We have to show
that for any map q : A→ B inQR, the Beck–Chevalley transformation q!FA ⇒ FBq!
filling the right square of the following diagram is an equivalence:

Q/A[QR] Span(Q/A,Q/A[QL],Q/A[QR]) CA

Q/B[QR] Span(Q/B ,Q/B[QL],Q/B[QR]) CB.
≃ q!

FA

FB

q!

ιB

q!

ιA

Since the inclusion ιA : Q/A[QR] →֒ Span(Q/A,Q/A[QL],Q/A[QR]) is essentially
surjective, it suffices to test this after precomposing by ιA. But since Beck–
Chevalley transformations compose and ι : UQ[QR] →֒ Span(Q,QL,QR) preserves
QR-colimits, this follows from the assumption that F ◦ ι preserves QR-colimits.
This finishes the proof of the first statement. Once again the second statement is
formally dual to the first. �
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By Proposition 4.6, the restriction functors f∗ of Span(Q) admit both left and
right adjoints which canonically agree, suggesting that it is Q-semiadditive. This
is indeed the case:

Lemma 4.8. Let QL,QR ⊆ Q ⊆ B be locally inductible subcategories. Then the
B-category Span(Q,QL,QR) is (QL ∩ QR)-semiadditive.

Proof. Let q : B → C be a morphism in QR. By Proposition 4.6, the functor
q! : Span(Q/B ,Q/B[QL],Q/B[QR]) → Span(Q/C ,Q/C [QL],Q/C [QR]) is given on
objects by q!(f) = qf for any (f : A→ C) ∈ Q/B, with unit

A
=←−− A

(id,f)−−−−→ A×C B.

The associated counit is then given on any g : A→ C by

A×C B
=←−− A×C B

pr1−−→ A.

Dually, if q is in QL, then q∗f = qf with counit and unit given by the flipped spans

A×C B
(id,f)←−−− A

=−−→ A and A
pr1←−−− A×C B

=−−→ A×C B,

respectively. Thus, the duality equivalence Span(Q) ≃ Span(Q)op flipping spans
exhanges the adjunctions q! ⊣ q∗ and q∗ ⊣ q∗ for any q ∈ QL∩QR, and hence maps
the Beck–Chevalley maps q!pr

∗
1 → pr∗2q! and pr∗2q∗ → q∗pr∗1 to each other (note

q! = q∗). As the above equivalence is given on groupoid cores by inverting, we
conclude that these two Beck–Chevalley maps are just inverse to each other, and
so the double Beck–Chevalley transformation from part (6) of Proposition 3.44 is
simply the canonical equivalence q!pr1∗ = q!pr1!

∼−−→ q!pr2! = q∗pr2!. In particular,
Span(Q,QL,QR) is (QL ∩ QR)-semiadditive by Proposition 3.44 as claimed. �

Remark 4.9. Using the inductive description of the norm maps in terms of the
double Beck–Chevalley maps given in the proof of Proposition 3.44, we see that
with respect to the above choices the norm map q! → q∗ is simply the identity for
every truncated q ∈ QL ∩ QR. We immediately get that the adjoint norm map
Ñm: q∗q! → id and the corresponding map µ : id → q!q

∗ are just the counit and
unit q∗q! → id and id→ q!q

∗ constructed in the above proof, i.e. they are given by
flipping the spans representing the unit and counit, respectively, of q! ⊣ q∗.

5. The universal property of parametrized spans

Throughout this section, we fix a topos B together with a locally inductible sub-
category Q ⊆ B. The goal of this section is to show that the parametrized span
category Span(Q) admits a universal property: it is the free Q-semiadditive B-
category on a single generator. More precisely, if we denote by pt : 1 → Span(Q)
the functor given in degree B ∈ B by the object idB ∈ Q/B ⊆ Span(Q/B), we have:

Theorem 5.1. For every Q-semiadditive B-category D, restriction along the func-
tor pt : 1→ Span(Q) induces an equivalence of B-categories.

FunQ-⊕(Span(Q),D) ∼−−→ D.

As we will explain at the end of this section, this can be seen as a parametrized
generalization of a theorem of Harpaz [Har20] identifying the free non-parametrized
m-semiadditive category. Our proof of Theorem 5.1 is inspired by an alternative
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approach to this non-parametrized result due to Lior Yanovski, and we would like
to thank him for sharing his ideas and notes with us.

The first key technical ingredient needed for the proof of the universal property
is an extension result for functors out of parametrized span categories, letting us
increase the number of right-pointing arrows on which the functor is defined. We
will present a general form of this result in Section 5.1 and specialize to span
categories in Section 5.2. As the second key ingredient, we prove in Section 5.3
that for functors into a semiadditive category this result can be dualized, allowing
us to increase the number of left -pointing arrows. Combining these ingredients, we
then establish the universal property in Section 5.4.

5.1. The coSegal condition. This section contains one of the main technical
ingredient needed for the proof of the universal property of parametrized spans: the
existence of unique extensions for so-called coSegal functors, see Proposition 5.18
below. We start with various definitions.

Definition 5.2 (Distinguished object). Let (E,M) be a factorization system on a
B-category C. We say an object X ∈ ΓM ⊆ ΓC is distinguished if the corresponding
B-functor X : 1 → M is fully faithful. We will frequently denote a distinguished
object by pt, and denote the corresponding inclusion by {pt} →֒M . By restriction
we also obtain an object ptB := B∗pt ∈ C(B) for every B ∈ B. Given an object
X ∈ C(B), we refer to maps in M of the form ptB  X as coSegal maps.

Given the inclusion C ⊆ D of a subcategory and an object X ∈ ΓC, we write C/X
for the pullback C ×D D/X .

Definition 5.3. Let F : C′ → D be a functor, and let C ⊆ C′ be a full subcategory.
We say F is (pointwise) left Kan extended from C if for every object A ∈ B and
every object X ∈ C′(A), the B/A-parametrized colimit of the composite π∗

AC/X →
π∗
AC → π∗

AD exists and the canonical map

colimπ∗
AC/X

π∗
AF → FA(X)

is an equivalence.

Remark 5.4. It follows from [MW21, Remark 6.3.6] that a pointwise left Kan
extension admits the universal property of a left Kan extension.

Definition 5.5 (CoSegal functor). Let C and D be B-categories, let (E,M) be a
factorization system on C, and let pt be a distinguished object. We say a B-functor
F : C → D is coSegal if F |M is left Kan extended from pt. We let FuncoSeg(C,D) ⊆
FunB(C,D) denote the full subcategory of coSegal B-functors.
Example 5.6. As we will show in the next subsection, pt is a distinguished object
for the standard factorization system on Span(Q), and a functor Span(Q) → D
into a Q-cocomplete category is coSegal if and only if it is Q-cocontinuous.

Given a general subcategory C◦ ⊆ C, it does not even make sense to ask whether the
restriction of a coSegal functor on C to C◦ is again coSegal. We therefore introduce:

Definition 5.7 (Adapted subcategory). Let (E,M) be a factorization system on
an non-parametrized category C. We call a subcategory C◦ ⊆ C adapted if the
following two conditions hold for every object X ∈ C◦:
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(1) Every morphism X ։ Y in C belongs to C◦.
(2) For a morphism e : X ։ X ′ in C, a morphism f : X ′ → Y belongs to C◦ if

and only if the composite fe : X → Y belongs to C◦.
Given a parametrized factoriation system (E,M) on some B-category C, we call a
parametrized subcategory C◦ ⊆ C adapted if each C◦(A) ⊆ C(A) is adapted in the
above sense.

Example 5.8. A full subcategory C◦ ⊆ C is adapted if and only if it satisfies the
following (a priori weaker) version of the first axiom: given X ։ Y with X ∈ C◦,
also Y ∈ C◦.

Corollary 5.9. If C◦ ⊆ C is adapted, then E◦ := E ∩ C◦ and M◦ := M ∩ C◦ form
a factorization system on C◦.

Proof. It suffices to prove the non-parametrized statement. First note that if f is
a morphism in C◦ with factorization f = me in (C, E,M), then e belongs to E◦

by the first axiom of an adapted subcategory, so m belongs to M◦ by the second
axiom.

It then only remains to show that E◦ and M◦ are orthogonal to each other, which
amounts to saying that for every commutative square

X Y

X ′ Y ′

in C◦ the essentially unique lift X ′ → Y in C already belongs to C◦. This is again
immediate from part (2) of the definition. �

Definition 5.10 (Good subcategory). Let C be equipped with a factorization sys-
tem (E,M) and a distinguished object pt. We say that a subcategory C◦ is good if
it adapted and contains the coSegal maps ptB  X for all X ∈ C◦(B).

Note that for a good subcategory C◦ we may now again talk about coSegal functors:
Corollary 5.9 shows that (E◦,M◦) is a parametrized factorization system on C◦,
while the fact that C◦ contains all coSegal maps ensures that C◦ inherits a distin-
guished object pt◦ = pt. The goal for the rest of this section is to show that every
coSegal functor on C◦ uniquely extends to C and that all coSegal functors on C are
of this form. We start with the following preliminary result:

Lemma 5.11. Restriction along a good inclusion C◦ →֒ C takes coSegal functors
to coSegal functors, and the resulting functor FuncoSeg(C,D) → FuncoSeg(C◦,D) is
conservative.

Proof. For the first claim, we must show that for a coSegal functor F : C → D
the restriction F |M◦ is pointwise left Kan extended from {pt}. By definition, this
requires the comparison of FAX with a certain colimit indexed by a category of
morphisms ptB  X in M◦ for X ∈ C◦(B). But by assumption this indexing
category agrees with the category of all morphisms ptB  X in M , hence the
claim is immediate from the coSegal property of F .
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For the second claim, it suffices to observe that further composition with evaluation
at pt ∈ C is conservative: it equals the composition

FuncoSeg(C,D)→ FuncoSeg(M,D) ∼−−→ Fun({pt},D) ≃ D,
where the first functor is conservative since M ⊆ C is wide, and the second functor
is an equivalence by the definition of being coSegal. �

Next, we show that the coSegal condition behaves well with respect to left Kan
extension along the inclusion C◦ →֒ C. For an object X ∈ C and an adapted
subcategory C◦ ⊆ C, we use the notation

C◦/X := C◦ ×C C/X and M◦
/X := M◦ ×M M/X .

Lemma 5.12. For every global section X ∈ ΓC, the inclusion M/X →֒ C/X admits
a parametrized left adjoint, and the resulting adjunction C/X ⇄ M/X restricts to
C◦/X ⇄ M◦

/X.

Proof. Let A ∈ B. Then the inclusionM/X(A) →֒ C/X(A) can be identified with the
inclusion M(A)/XA

→ C(A)/XA
. By [CLL23b, proof of Proposition 3.33] the latter

is fully faithful and it admits a left adjoint λA such that the unit consists of maps
in C(A)/XA

×C(A)E(A). To see that the λA’s assemble into a parametrized functor,
it will be enough to check the Beck–Chevalley condition. By full faithfulness of
the inclusions this just amounts to saying that for every f : A → A′ there is some
dashed arrow filling

C(A′)/XA′ C(A)/XA

M(A′)/XA′ M(A)/XA
.

f∗

λA′ λA

This follows at once from the fact that the vertical arrows are localizations at
C(A′)/XA′ ×C(A′) E(A′) and C(A)/XA

×C(A) E(A), respectively, by loc. cit.

Next we show the second statement, which entails showing that the left adjoint λ
as well as the unit and counit restrict accordingly. The fact that λA sends objects
of C◦/X to objects of M◦

/X and that the unit lies pointwise in C◦/X is immediate

from the first axiom of an adapted subcategory, while the second axiom guarantees
that it maps morphisms of C◦/X to morphisms in M◦

/X . Finally, the counit is an

equivalence, whence lies pointwise in M◦
/X as claimed. �

Corollary 5.13. The inclusion M◦
/X →֒ C◦/X is final in the sense of [MW21, Propo-

sition 4.6.1], i.e. C◦/X-shaped colimits can be computed after restricting to M◦
/X .

Proof. We will prove more generally that any parametrized right adjoint R : C → D
is final. By Quillen’s Theorem A for parametrized categories, see [Mar21, Corollary
4.4.8], it suffices to show that the comma category π∗

ACX/ is weakly contractible for
all X ∈ D(A). However by [MW21, Corollary 3.3.5] this category even admits an
initial object, and so is clearly weakly contractible. �

Proposition 5.14. Let ι : C◦ →֒ C be a good inclusion such that C is small, and
suppose that D admits all colimits. Then the Beck–Chevalley transformation filling
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the square

Fun(C◦,D) Fun(C,D)

Fun(M◦,D) Fun(M,D)
−|M◦

ι!

ι!

−|M

is an equivalence.

Note that in the above situation the two left Kan extension functors indeed exist
by [MW21, Corollary 6.3.7].

Proof. Consider a functor F : C◦ → D and let X ∈M(A). Then a quick computa-
tion shows that the composite

colimπ∗
AM◦

/X
F ≃ ι!(F |M◦)(X)→ (ι!F )|M (X) ≃ colimπ∗

AC◦
/X

F

is induced on colimits by the map π∗
AM

◦
/X → π∗

AC◦/X of B/A-categories. However

we note that π∗
AC◦ →֒ π∗

AC is again a good inclusion, and so this is an equivalence
by the previous corollary. �

Definition 5.15. Let C be a B-category equipped with a factorization system and
a distinguished object. We say a B-category D admits C-coSegal colimits if for
every object Y ∈ ΓD the pointwise left Kan extension of Y : {pt} → D along the
inclusion {pt} →֒M exists.

Remark 5.16. Suppose D admits C-coSegal colimits and suppose C◦ ⊆ C is a good
inclusion. Then D also admits C◦-coSegal colimits.

Lemma 5.17. Let C◦ ⊆ C be a good subcategory and suppose D is a B-category
with C-coSegal colimits. For every coSegal B-functor F ◦ : C◦ → D, there exists a left
Kan extension F : C → D along the inclusion C◦ →֒ C. Furthermore, the B-functor
F is again coSegal, and the canonical map F ◦(pt)→ F (pt) is an equivalence.

Proof. By changing universe we may assume that C is small. Let us first assume that
D is cocomplete, so that we may apply Proposition 5.14 to deduce the restriction
F |M : M → D is the left Kan extension along M◦ →֒ M of the restriction F ◦|M◦ .
Because F ◦ is coSegal, F ◦|M◦ is itself left Kan extended from {pt}, and thus it
follows from transitivity of left Kan extension that also F |M is left Kan extended
from {pt}, i.e. that F is coSegal. The final claim follows from the assumption that
the inclusions {pt} →֒M◦ and {pt} →֒M are fully faithful.

For arbitrary D, pick an embedding D →֒ D′ into a cocomplete B-category D′

which preserves all colimits that exists in D (e.g. the coYoneda embedding). By
the previous paragraph, the left Kan extension F of F ◦ exists as a functor into D′

and has the required properties. Furthermore as we have seen, once F is restricted
to M it is pointwise left Kan extended from {pt} and hence lands in D by the
assumption that D has coSegal colimits. However M ⊆ C is a wide subcategory,
and so F itself lands in D. �

Putting everything together, we obtain the main result of this subsection:
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Proposition 5.18. Consider a good inclusion ι : C◦ →֒ C, and let D be a B-category
with C-coSegal colimits. Then restriction along C◦ →֒ C induces an equivalence of
categories

FuncoSeg(C,D) ∼−−→ FuncoSeg(C◦,D).

Proof. By Lemma 5.11 the restriction functor ι∗ : Fun(C,D)→ Fun(C◦,D) restricts
to a conservative functor FuncoSeg(C,D) → FuncoSeg(C◦,D). By Lemma 5.17, this
restriction admits a left adjoint

ι! : FuncoSeg(C◦,D)→ FuncoSeg(C,D),
given by left Kan extension along ι. Since ι∗ is conservative when restricted to the
coSegal functors, it remains to show that the unit id→ ι∗ι! of this adjunction is an
equivalence. This follows again from Lemma 5.17 and the fact that evaluation at
the point is conservative. �

5.2. Good inclusions of span categories. Our main interest in Proposition 5.18
is in the case where C is a parametrized span category. In this subsection, we show
that various inclusions of parametrized span categories are good inclusions.

Convention 5.19. Throughout this section, we fix locally inductible subcategories
QL,QR ⊆ Q ⊆ B. We will always equip the span category Span(Q,QL,QR) with
the canonical factorization system from Proposition 4.5, in which the left class
consists of the left-pointing maps and the right class consists of the right-pointing
maps:

A ։ B = (A← B = B),

A  B = (A = A→ B).

We further take the distinguished object of the span category to always be the
identity map pt := (1→ 1) ∈ ι(Q/1) ⊆ Span(Q,QL,QR)(1).

As a first step, we show that the C-coSegal colimits for C = Span(Q,QL,Q) can be
expressed in terms of Q-colimits.

Proposition 5.20. Let D be Q-cocomplete. Then D has Span(Q,QL,Q)-coSegal
colimits and a functor F : Span(Q,QL,Q)→ D is coSegal if and only if it preserves
Q-colimits.

Proof. By Proposition 2.20, the left Kan extension of any 1 → D along {pt} →֒
UQ exists exists, and a functor UQ → D arises this way if and only if it is Q-
cocontinuous. The claim follows as by Corollary 4.7 a functor F : Span(Q,QL,Q)→
D preservesQ-colimits if and only if the composite G : UQ → Span(Q,QL,Q)→ D
preserves Q-colimits. �

We now provide two examples of good inclusions of parametrized span categories.

Lemma 5.21. The inclusion

ι : Span(QL) →֒ Span(Q,QL,Q)
is good. In particular, for a B-category D admitting Q-colimits, restriction along ι
induces an equivalence of ∞-categories

ι∗ : FuncoSeg(Span(Q,QL,Q),D) ∼−−→ FuncoSeg(Span(QL),D).
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Proof. Note that Span(QL) is a full subcategory of Span(Q,QL,Q) by left-cancel-
ability, and obviously contains pt. Therefore Span(QL) is clearly good if it is
adapted. Condition (1) follows from left-cancelability of QL, while Condition (2) is
automatic. The final claim follows immediately from Proposition 5.18 and Propo-
sition 5.20. �

Notation 5.22. Given any collection of maps Q ⊆ B, we write ∆(Q) for the
collection of all maps in B of the form ∆q : A→ A×B A for morphisms q : A→ B
in Q.
Lemma 5.23. Assume that ∆(Q) ⊆ QR. Then the inclusion

ι : Span(Q,QL,QR) →֒ Span(Q,QL,Q)
is good. In particular, for any B-category D admitting Q-colimits, restriction along
ι induces an equivalence of ∞-categories

FuncoSeg(Span(Q,QL,Q),D) ∼−−→ FuncoSeg(Span(Q,QL,QR),D).

Proof. Note that Span(Q,QL,QR) contains all left-pointing maps in Span(Q,QL,Q),
and thus condition (1) of an adapted subcategory is immediate. Condition (2) fol-
lows from a simple calculation of the composition in the relevant span categories,
showing that Span(Q,QL,QR) is an adapted subcategory. To see it is even a good
subcategory, it remains to show that it contains the coSegal maps s : ptB  A for
all A ∈ Q/B, which boils down to showing that for every span

B B A

B

s

f

in Q/B the morphism s is contained in QR. To this end, consider the following
diagram in Q

B A B

A A×B A A

A B

f

s

∆

f

s f

y

y
s

y

in which all squares are pullbacks. Since the diagonal map ∆: A → A ×B A lies
in QR by assumption, also its base change s : B → A lies in QR as desired. We
conclude that Span(Q,QL,QR) is a good subcategory. The final claim follows
immediately from Proposition 5.18 and Proposition 5.20. �

Using this, we can give a more concrete description of coSegal functors out of
Span(Q,QL,QR) when ∆(Q) ⊆ QR, generalizing Proposition 5.20.

Construction 5.24 (CoSegal map). Let D be a B-category admitting Q-colimits,
and let F : UQ[QR]→ D be a B-functor. Assume moreover that ∆(Q) ⊆ QR. We
will construct for every morphism q : A→ B in Q a coSegal map

coSegal: q!F (idA)→ F (q).
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For this, let F ′ : UQ → D be the left Kan extension of F (id1) : 1 → D. By
Lemma 5.23 (for QL = ιQ), the restriction of F ′ to UQ[QR] is still left Kan
extended along {id1} →֒ UQ[QR], and hence there exists a unique natural trans-
formation

coSegal: F ′|UQ[QR] → F

which results in the identity of F (id1) when evaluated on id1. Since F ′ preserves
Q-colimits by Proposition 2.20, we have F ′(q) ≃ q!F

′(idA) = q!F (idA) for every
morphism q : A→ B in Q, resulting in the desired map

q!F (idA) ≃ F ′(q)
coSegal−−−−→ F (q).

Construction 5.25. We continue to assume that ∆(Q) ⊆ QR. Consider any B-
functor F : Span(Q,QL,QR) → D. For every morphism q : A → B in Q, we may
apply Construction 5.24 to the restriction of F to UQ[QR] to obtain a coSegal map

coSegal: q!F (idA)→ F (q).

Unwinding definitions, we see that F is a coSegal functor if and only if the coSegal
map is an equivalence for every q ∈ Q.

5.3. CoSegal functors as Segal functors. While Lemma 5.23 allows us to ex-
tend the covariant functoriality of a functor out of a parametrized span category,
we will also need an analogous result which lets us extend the contravariant functo-
riality, at least under suitable semiadditivity assumptions on D. We will accomplish
this by showing that in this case a functor out of a parametrized span category is
coSegal if and only if it is Segal, defined dually. We continue using the notations
from Convention 5.19.

Definition 5.26 (Segal functor). A functor F : Span(Q,QL,QR) → D is called
Segal if the composite

Span(Q,QR,QL) ≃ Span(Q,QL,QR)
op F op

−−→ Dop

is coSegal. We denote by

FunSeg(Span(Q,QL,QR),D) ⊆ FunB(Span(Q,QL,QR),D)
the full subcategory spanned by the Segal functors.

The following is the main result of this subsection:

Proposition 5.27. Let D be a Q-semiadditive B-category. If ∆(Q) ⊆ QL ∩ QR,
then a B-functor F : Span(Q,QL,QR)→ D is Segal if and only if it is coSegal.

Before discussing the proposition, let us record the main corollary:

Corollary 5.28. Let D be a Q-semiadditive B-category and assume that ∆(Q) ⊆
QL. Then restricting along the inclusion Span(Q,QL,Q) →֒ Span(Q) defines an
equivalence of categories

FuncoSeg(Span(Q),D) ∼−−→ FuncoSeg(Span(Q,QL,Q),D).

Proof. By Proposition 5.27, we may equivalently show the claim for Segal functors.
Unwinding definitions, this reduces to the claim that restriction along the inclusion
Span(Q,Q,QL) →֒ Span(Q) defines an equivalence

FuncoSeg(Span(Q),Dop) ∼−−→ FuncoSeg(Span(Q,Q,QL),Dop).
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This is a special case of Lemma 5.23. �

The proposition should not be too surprising: as explained above, the coSegal
condition amounts to demanding that for every q ∈ Q a certain map q!F (pt)→ F (q)
is an equivalence, while the Segal condition amounts to saying that the dually
defined map F (q) → q∗F (pt) is an equivalence. The equivalence Nmq : q!F (pt) ≃
q∗F (pt) coming from Q-semiadditivity of D thus strongly suggests that these two
conditions are equivalent. While this is true, relating the above two maps (defined
basically in terms of maps in Span(Q)) to the norm map Nmq of D turns out to be
somewhat subtle and will take up the remainder of this subsection.

We begin by describing the coSegal map explicitly in the above situation:

Lemma 5.29. Let q : A→ B be a morphism in Q and assume ∆(Q) ⊆ QR. Then
the coSegal map q!F (idA)→ F (q) is adjoint to

F (idA)
F (∆q)−−−−→ F (q∗(q)) = q∗F (q).

Here the map ∆q : idA → q∗(q) = (pr1 : A×B A→ A) is the morphism in the slice
Q/A[QR] corresponding to the diagonal map ∆q : A→ A×B A.

Proof. Consider the following diagram:

F ′(q) q!F
′(idA) q!F (idA)

F ′(q!q∗(q)) q!F
′(q∗(q)) q!F (q∗(q))

F ′(q!q∗(q)) q!q
∗F ′(q) q!q

∗F (q)

F ′(q) F ′(q) F (q).

F ′(q!∆q)

∼ coSegal

∼

q!F
′(∆q) q!F (∆q)

∼ coSegal

F ′(pr1)

∼ coSegal

εq εq

coSegal

The right half of the diagram commutes by naturality of the coSegal map F ′ → F .
In the left half of the diagram we use that F ′ : UQ → D preserves Q-colimits; the
bottom left square commutes because the counit εq : q!q

∗(q)→ q in UQ is given by
the projection map pr1 : A ×B A → A. The left vertical composite is the identity
as ∆q : A→ A×B A is a section of pr1. As the top of the diagram is the canonical
identification F ′(q) = q!(idA), the claim follows. �

Corollary 5.30. Assume again that ∆(Q) ⊆ QR. Let D be a B-category admitting
Q-colimits and let F : UQ[QR]→ D be a B-functor. Consider a pullback square

A B

C D

q′

p′ y
p

q
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in Q, expressing the relation q′ = p∗(q) in UQ. Then the diagram

q′!F (idA) q′!(p
′)∗F (idC) p∗q!F (idC)

F (q′) p∗F (q)

coSegal

BC!

p∗(coSegal)

commutes up to homotopy.

Proof. By Lemma 5.29, this is equivalent to the commutativity of the following
diagram:

F (idA) p′∗F (idC)

q′∗F (q′) q′∗p∗F (q) p′∗q∗F (q).

F (∆q′ ) p′∗F (∆q)

But this is immediate from the fact that the image of the map ∆q : C → C ×D C
under the pullback functor p′∗ : Q/C → Q/A is the diagonal ∆q′ : A→ A×B A. �

The description of the coSegal map from Lemma 5.29 naturally leads us to consider
the following more general coSegal maps:

Construction 5.31. Let F : UQ[QR]→ D be a B-functor and assume that ∆(Q) ⊆
QR. For morphisms p : A→ B and q : B → C in Q, we define a coSegal map

coSegal: q!F (p)→ F (qp)

as the map adjoint to F (p)
F (1,p)−−−−→ F (q∗(qp)) = q∗F (qp). Here (1, p) : p→ q∗(qp) is

the morphism in the slice Q/B[QR] corresponding to the map (1, p) : A→ A×C B.

Remark 5.32. On Span(Q), the functor q◦ : p 7→ qp is simply the left adjoint q!
of q∗, and the maps (1, p) form the unit, see Proposition 4.6. In particular, we see
that the above generalized coSegal map ‘is’ natural in p.

Proposition 5.33. Let QL,QR ⊆ Q be subclasses with ∆(Q) ⊆ QL ∩ QR and let
D be a Q-semiadditive B-category. For a B-functor F : Span(Q,QL,QR)→ D that
is coSegal the composite

q!F (idA) F (q) q∗F (idA)
coSegal Segal

is homotopic to the norm map Nmq : q!F (idA)→ q∗F (idA) in D.

Proof. As QL contains the diagonal ∆q : A→ A×B A of q by assumption, the span

A×B A
∆q←−−− A

=−−→ A

defines a map q∗q → idA in Span(Q,QL,QR)(A) = Span(Q/A,Q/A[QL],Q/A[QR]);
we will denote this span by ∇q. The dual of Lemma 5.29 shows that the Segal map
F (q)→ q∗F (idA) is adjoint to the composite

q∗F (q) = F (q∗q)
F (∇q)−−−−→ F (idA).

The proposition is thus equivalent to the claim that the composite

q∗q!F (idA)
coSegal−−−−→ q∗F (q) = F (q∗q)

F (∇q)−−−−→ F (idA)
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is homotopic to the adjoint norm map Ñmq of D.
To prove this, we consider the following diagram, where the top row spells out the
definition of Ñmq : q

∗q!F (idA)→ F (idA):

q∗q!F (idA) pr1!pr
∗
2F (idA) pr1!∆∗∆∗pr∗2F (idA) pr1!∆!∆

∗pr∗2F (idA) F (idA)

F (q∗q) pr1!F (idA×BA) pr1!∆∗∆∗F (idA×BA) pr1!∆!∆
∗F (idA×BA)

pr1!F (∆∗idA) pr1!F (∆!idA)

pr1!F (∆) pr1!F (∆) F (pr1∆)

coSegal

BC−1
! η Nm−1

∆ ∼

∼
coSegal−1 η

F (η)

BC∗=Segal

(∗)
BC!=coSegal

F (Nm−1
∆ )

coSegal

Here the square on the left commutes by Corollary 5.30. Moreover, as ∆ is a map
in QL ∩QR by assumption, Proposition 3.7 shows that the rectangle (∗) commutes
before inverting the norm equivalences; as the right hand vertical map is invertible
by assumption, we conclude that also the rectangle with the inverted norm maps
commutes. The rightmost rectangle commutes by direct inspection, and so does the
triangle in the second column. To finish the proof it will therefore suffice to show
that the bottom composite F (q∗q)→ F (idA) is simply the map F (∇). However by
Remark 5.32, the subcomposite F (pr1) = F (q∗q)→ F (pr1∆) agrees with F (pr1◦η),
so this is a straight-forward computation in Span(Q,QL,QR), using that the unit
map η : idA×BA → ∆ is given by the analogous span in Q/A×BA:

A×B A
∆q←−−− A

=−−→ A. �

Proof of Proposition 5.27. By symmetry, it suffices to show that any coSegal func-
tor F : Span(Q,QL,QR) → D is also Segal. But this is immediate from Proposi-
tion 5.33 since Nmq is an equivalence. �

5.4. The universal property. Combining all results of this section, we will now
prove the universal property of Span(Q) from Theorem 5.1: for everyQ-semiadditive
B-category D evaluation at the global section pt restricts to an equivalence of B-
categories

evpt : Fun
Q-⊕(Span(Q),D) ∼−−→ D.

The main part will be an induction proving the analogous statement for the trun-
cations Q≤n. In order to pass to the full span category, we will use:

Lemma 5.34. Let V be a B-category. Assume we have an increasing chain V0 ⊆
V1 ⊆ · · · ⊆ V of full B-subcategories such that each X ∈ V(A) is locally in the Vn’s
in the following sense: there exists a cover (fi : Ai → A)i∈I and for each i ∈ I a
natural number ni ∈ N such that f∗

i X ∈ Vni(Ai).

Then the inclusions exhibit V as the colimit in Cat(B) of the Vn’s.

Proof. Let us write B′ := FunR(Bop, Spc) ≃ B. Identifying Cat with complete Segal
spaces we then obtain a fully faithful functor

Cat(B) = FunR(Bop,Cat)→ FunR(Bop,Fun(∆op, Spc)) ≃ Fun(∆op,B′)
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given in degree [k] ∈ ∆ by C 7→ ι
(
C[k]

)
, also see [Mar21, Proposition 3.5.1]. As fully

faithful functors reflect colimits and since colimits in functor categories are point-

wise, it will be enough to show that ι(V [k]) is the colimit of the ι(V [k]
n )’s. Clearly,

each ι(V [k]
n ) → ι(V [k]) is fully faithful (i.e. a monomorphism of B-groupoids).

Given now an object X• = (X0 → · · · → Xk) ∈ V [k](A) we can find covers

(f
(j)
i : A

(j)
i → A)i∈Ij such that each (f

(j)
i )∗Xj is contained in some V [k]

ni,j . Pass-
ing to a common refinement and setting ni = max{ni,0, . . . , ni,k} we see that X• is

locally in the V [k]
n ’s. Replacing V by ι(V [k]) we are therefore altogether reduced to

proving the analogous statement in B′.

In Spc, transfinite compositions of monomorphisms are monomorphisms; exhibit-
ing B′ ≃ B as a left exact localization of a presheaf topos, we therefore see that
the same holds true in B′, and it only remains to show that the subgroupoid in-
clusion colimnVn → V is essentially surjective. This follows immediately from the
assumption that each X ∈ V(A) be locally in the Vn’s. �

Proof of Theorem 5.1. The map evpt is given in degree B ∈ B by

Funπ
−1
B Q-×(π∗

BSpan(Q), π∗
BD) ≃ Funπ−1

B Q-×(Span(π−1
B Q), π∗

BD)→ (π∗
BD)(idB) = D(B).

Replacing B by B/B, it therefore suffices to prove the statement on underlying
functor categories.

By the previous lemma, the inclusions exhibit Span(Q) as a colimit of the trunca-
tions Span(Q≤n), which by Lemma 3.15 induces an equivalence

FunQ-⊕(Span(Q),D) ∼−−→ limn≥−2 Fun
Q≤n-⊕(Span(Q≤n),D).

Thus, it suffices to prove the theorem for Q replaced by Q≤n for all n ≥ −2. As a
functor Span(Q≤n) → D is Q≤n-semiadditive if and only if it is coSegal (Proposi-
tion 5.20), we are altogether reduced to prove that evaluation at the identity defines
an equivalence

FuncoSeg(Span(Q≤n),D) ∼−−→ ΓD.
We proceed by induction on n. When n = −2, we get that Span(Q≤n) = 1 is
the terminal B-category and every functor is coSegal, so the claim holds trivially.
Assume that the result holds for n− 1, and consider the inclusions

Span(Q≤n−1) →֒ Span(Q≤n,Q≤n−1,Q≤n) →֒ Span(Q≤n).

As ∆(Q≤n) ⊆ Q≤n−1, Lemma 5.21 and Corollary 5.28 show that restriction along
these inclusions induce equivalences

FuncoSeg(Span(Q≤n),D) ∼−−→ FuncoSeg(Span(Q≤n,Q≤n−1,Q≤n),D)
and

FuncoSeg(Span(Q≤n,Q≤n−1,Q≤n),D) ∼−−→ FuncoSeg(Span(Q≤n−1),D). �

5.5. Examples. We will now specialize the universal property of parametrized
spans to the examples given in Section 3.4. Recall that in each of these examples
the topos B is a presheaf topos PSh(T ) on a small category T and that the locally
inductible subcategory Q is of the form Qloc for some pre-inductible subcategory
Q ⊆ PSh(T ). For easier reference, we explicitly spell out this special case of the
theorem:
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Theorem 5.35. For a pre-inductible subcategory Q ⊆ PSh(T ), the free Q-semiad-
ditive T -category is the T -category Span(Q) given by

Span(Q) : T op → Cat, B 7→ Span(Q/B).

Proof. Taking B = PSh(T ) and Q = Qloc, Theorem 5.1 says that the free Qloc-
semiadditive B-category is given by the B-category Span(Qloc) : Bop → Cat sending
B to Span((Qloc)/B). By Proposition 3.29, it follows that its underlying T -category
is the free Q-semiadditive T -category. Since for B ∈ T we have (Qloc)/B = Q/B,
the claim follows. �

Example 5.36 (Ordinary semiadditivity). Taking Q = Fin ⊆ Spc recovers the
well-known fact that the category Span(Fin) of spans of finite sets is the free semi-
additive category on a single generator.

Example 5.37 (m-semiadditivity). For −2 ≤ m < ∞, taking Q = Spcm ⊆ Spc
recovers the fact that the category Span(Spcm) of spans of m-finite spaces is the
free m-semiadditive category on a single generator, as was previously established by
Harpaz [Har20, Theorem 1.1]. Similarly, taking Q = Spcπ shows that Span(Spcπ)
is the free ∞-semiadditive category on a single generator. Analogous results hold

for Span(Spc(p)m ) and Span(Spc(p)π ) in the p-typical setting.

Example 5.38 (Equivariant semiadditivity). For Q = F† ⊆ PSh(Glo), [CLL23a,
Lemma 5.2.3] provides a natural equivalence Q/BG ≃ FinG. Thus, we deduce that
the assignment G 7→ Span(FinG) determines the free equivariantly semiadditive
global category.

Example 5.39 (G-semiadditivity). For a finite group G, taking Q = FinG ⊆ SpcG
shows that the G-category Span(FinG) : G/H 7→ Span(FinH) of spans of finite
G-sets is the free G-semiadditive G-category.

Example 5.40 (P -semiadditivity). More generally when P ⊆ T is an atomic
orbital subcategory of a small category T , we deduce that the T -category Span(FP

T )
is the free P -semiadditive T -category.

Example 5.41. If Q ⊆ T is an inductible subcategory, it is in particular a pre-
inductible subcategory of PSh(T ) by Example 3.21, and hence Span(Q) is the free
Q-semiadditive T -category.

Remark 5.42. The previous example can be used to provide a strengthening of
Harpaz’s result from Example 5.37. If we take T to be the category Spcm of m-
finite spaces, then assigning to a category C the T -category Fun(–, C) : Spcopm → Cat
provides a fully faithful inclusion Cat →֒ CatT , whose essential image consists of
those functors Spcopm → Cat that preserve m-finite limits. Under this inclusion,
the span category Span(Spcm) gets sent to the functor A 7→ Span(Spcm)A ≃
Span((Spcm)/A), which is precisely the parametrized span category Span(Q) for
T = Q = Spcm. The previous example then tells us that Span(Q) is free among all
Spcm-semiadditive T -categories, strengthening Harpaz’s statement that it is free
among just those contained in the essential image of the inclusion Cat →֒ CatT .

This strengthening of Harpaz’s result will be crucially used in forthcoming work of
Shay Ben-Moshe on transchromatic characters.
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6. The Span(Q)-tensoring on Q-semiadditive B-categories

In this section, we will show that the property for a B-category to beQ-semiadditive
can be characterized via a suitable notion of Span(Q)-tensorings, generalizing the
analogous result of [Har20, Section 5.1] in the m-semiadditive situation. We will
further discuss various useful consequences of this characterization.

Definition 6.1. Let C,D, E be B-categories. We will use the term bifunctor for a
B-functor –⊠ –: C × D → E .
If C and E are Q-cocomplete, then we say such a bifunctor preserves Q-colimits in
the first variable if the curried functor C → Fun(D, E) is Q-cocontinuous, or equiv-
alently if the curried functor D → Fun(C, E) factors through the full subcategory
FunQ-∐(C, E). Analogously, we define what it means for a bifunctor to preserve
Q-colimits in the second variable (if D and E have Q-colimits), or in both variables
(if all three of them have Q-colimits).

Of course, there is a dual notion of preserving Q-limits in some or all of the variables.

Remark 6.2. Unraveling the definitions, a functor F : C × D → E preserves Q-
colimits in the first variable if and only if for every q : A→ B in Q, X ∈ C(A), and
Y ∈ D(B) the projection map

q!(X ⊠ q∗Y )→ q!X ⊠ Y,

defined as the mate of the naturality equivalence q∗(– ⊠ Y ) = q∗(–) ⊠ q∗Y is an
equivalence.

Example 6.3. Let C be Q-cocomplete. By Proposition 2.20 the evaluation functor
evpt : Fun

Q-∐(UQ, C) → C is an equivalence, so it has a unique section (automati-
cally an equivalence, hence in particular Q-cocontinuous). In other words, there is
a unique bifunctor – ⊗ –: UQ × C → C that preserves Q-colimits in each variable
and restricts to the identity on {pt} × C.

Using the universal property of spans we can extend this tensoring in the case that
C is Q-semiadditive:

Corollary 6.4. Let C be Q-semiadditive. Then the above tensoring UQ × C → C
extends uniquely to a bifunctor Span(Q) × C → C. Moreover, this tensoring again
preserves Q-colimits in each variable separately.

Proof. Note that any such extension is necessarily Q-cocontinuous in each variable
by Corollary 4.7. Conversely, Theorem 5.1 gives by the same argument as in the
previous example a bifunctor Span(Q)× C → C preserving Q-colimits in each vari-
able. Its restriction to UQ × C then again preserves Q-colimits in each variable
by another application of Corollary 4.7, so it necessarily agrees with the canonical
tensoring. �

The main goal for the rest of this section will be to prove the following converse:

Theorem 6.5. Let D be Q-cocomplete and let V be Q-semiadditive. Assume there
exists a bifunctor –⊠–: V×D → D preserving Q-colimits in each variable separately
together with a global section I ∈ ΓV such that – ⊠ – restricts to the identity on
{I} × D. Then D is Q-semiadditive.
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In practice one applies the previous theorem in the case that V is Span(Q); however,
the notation in the proof is simplified by assuming V is arbitrary.

6.1. Bifunctors and the adjoint norm. The key idea to prove the theorem will
be to use the maps µ : id → q!q

∗ in V to construct analogous transformations in C
that together with the adjoint norm maps will exhibit q! as right adjoint to q∗. To
do so, we will first have to understand the interaction of general bifunctors with
these sorts of maps better.

Lemma 6.6. Let C, D, and E be B-categories and assume that C and E are Q-
cocomplete and Q≤n−1-semiadditive. Let −⊠− : C×D → E be a bifunctor preserving
Q-colimits in the first variable and let q : A→ B be an n-truncated map in Q.

(1) The diagram

q∗q!(id⊠ q∗) id⊠ q∗

q∗(q! ⊠ id) q∗q! ⊠ q∗

Ñm

proj ∼

=

Ñm⊠q∗

of natural transformations between functors C(A) × D(B) → E(A) com-
mutes.

(2) Assume that C is even Q≤n-semiadditive. Then the composite

q∗ ⊠ q∗ = q∗(id⊠ id)
q∗(µ⊠id)−−−−−−→ q∗(q!q

∗ ⊠ id)
proj−1

−−−−→ q∗q!(q
∗ ⊠ q∗)

Ñm−−→ q∗ ⊠ q∗

is the identity.

Proof. Unravelling definitions, the first part is an instance of Proposition 3.7-(1) ap-
plied to the composite π∗

AC → Fun(π∗
AD, π∗

AE)→ (π∗
AE)D(A). The second part then

follows immediately from this together with the triangle identity for the adjunction
q∗ ⊣ q! in C. �

We will also need the following complementary result:

Proposition 6.7. Let C,D, E be Q-cocomplete Q≤n−1-semiadditive B-categories,
and let – ⊠ –: C × D → E be a bifunctor preserving Q-colimits in each variable.
Moreover, let q be any n-truncated map in Q. Then:

(1) The following diagram commutes:

q!(q
∗ ⊠ q∗q!) q!q

∗ ⊠ q!

q!(q
∗ ⊠ id) q!(q

∗q!q∗ ⊠ id).

q!(q
∗⊠Ñm)

proj

proj−1

q!(q
∗ Ñm⊠id)

(1)

(2) Assume that C is even Q≤n-semiadditive. Then the following composite is
the identity:

id⊠ q!
µ⊠id−−−→ q!q

∗ ⊠ q!
proj−1

−−−−→ q!(q
∗ ⊠ q∗q!)

q!(q
∗⊠Ñm)−−−−−−−→ q!(q

∗ ⊠ id)
proj−−→ id⊠ q!.
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Unlike the previous result, this does not seem to directly translate to a statement
about non-parametrized functors, making its proof a bit more involved computa-
tionally. We start with the following Beck–Chevalley lemma whose proof we leave
to the reader:

Lemma 6.8. Let C,D, E be Q-cocomplete B-categories and let – ⊠ –: C × D → E
be any bifunctor. Assume moreover we have a commutative diagram

A B

C D

g′

f ′

g

f

(2)

in Q. Then the diagram

f!g
′
!(f

′∗g∗ ⊠ g′∗) f!(g
′
!f

′∗g∗ ⊠ id) f!(f
∗g!g∗ ⊠ id) g!g

∗ ⊠ f!

g!f
′
! (f

′∗g∗ ⊠ g′∗) g!(g
∗ ⊠ f ′

! g
′∗) g!(g

∗ ⊠ g∗f!) g!g
∗ ⊠ f!

proj BC!⊠id proj

projproj g∗⊠BC!

∼

commutes, where the unlabeled equivalence is induced by (2). �

Proof of Proposition 6.7. Consider the following diagram:

q!(q
∗ ⊠ q∗q!) q!q

∗ ⊠ q! q!(q
∗q!q∗ ⊠ id)

q!(q
∗ ⊠ pr2!pr

∗
1) q!pr2!(pr

∗
2q

∗ ⊠ pr∗1) ≃ q!pr1!(pr
∗
2q

∗ ⊠ pr∗1) q!(pr1!pr
∗
2q

∗ ⊠ id)

q!(q
∗ ⊠ pr2!∆!∆

∗pr∗1) q!(pr1!∆!∆
∗pr∗2q

∗ ⊠ id)

q!(q
∗ ⊠ id) q!(q

∗ ⊠ id).

q!(q
∗⊠BC−1

! )

proj proj−1

q!(BC−1
! ⊠id)

q!(q
∗⊠pr2!µ)

proj−1 proj

q!(pr1!µ⊠id)

∼ ∼

Note that the right-hand vertical column spells out the definition of q!(Ñm⊠id),

while the left-hand column agrees with q!(q
∗⊠ Ñm) by virtue of Remark 3.4. Thus,

the first statement amounts to saying that the total rectangle commutes.

To prove this we first note that the top rectangle commutes by the previous lemma.
To show that the bottom rectangle commutes, we expand it as follows:

q!(pr1!pr
∗
2q

∗ ⊠ id) q!pr1!(pr
∗
2q

∗ ⊠ pr∗1) q!pr2!(pr
∗
2q

∗ ⊠ pr∗1) q!(q
∗ ⊠ pr2!pr

∗
1)

q!(pr1!∆!∆
∗pr∗2q

∗ ⊠ id) q!pr1!∆!(∆
∗pr∗2q

∗ ⊠∆∗pr∗1) q!pr2!∆!(∆
∗pr∗2q

∗ ⊠∆∗pr∗1) q!(q
∗ ⊠ pr2!∆!∆

∗pr∗1)

q!(q
∗ ⊠ id) q!(q

∗ ⊠ id)

q!(pr1!µ⊠id)

proj

q!pr1!µ

∼ proj

q!pr2!µ q!(q
∗⊠pr2!µ)

∼

∼

∼ ∼∼

∼

The top square in the middle column commutes by naturality, and the bottom
middle square commutes since the composite homotopy qpr1∆ ≃ qpr2∆ ≃ q agrees
with the homotopy induced by pr1∆ ≃ id. To see that the two pentagons commute
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we begin by observing that they are symmetric, and so it suffices to spell out the
left-hand one. For this we expand it once again:

q!(pr1!pr
∗
2q

∗ ⊠ id) q!pr1!(pr
∗
2q

∗ ⊠ pr∗1) q!pr1!∆!∆
∗(pr∗2q

∗ ⊠ pr∗1)

q!(pr1!∆!∆
∗pr∗2q

∗ ⊠ id) q!pr1!(∆!∆
∗pr∗2q

∗ ⊠ pr∗1) q!pr1!∆!(∆
∗pr∗2q

∗ ⊠∆∗pr∗1)

q!(pr1!∆!q
∗ ⊠ id) q!pr!(∆!q

∗ ⊠ pr∗1) q!pr1!∆!(q
∗ ⊠∆∗pr∗1)

q!(q
∗ ⊠ id) q!(q

∗ ⊠ id).

µ

proj

µ

µ

∼

proj

∼

proj

∼

∼
proj proj

∼

Here the top left square as well as the two squares in the middle row commute by
naturality, the top right square commutes by Lemma 6.6 (note that ∆ is (n − 1)-
truncated), and the bottom rectangle commutes by direct inspection. This finishes
the proof of the first statement.

For the second statement, we consider the diagram

q!(q
∗ ⊠ id) q!(q

∗q!q∗ ⊠ id) q!(q
∗ ⊠ id)

id⊠ q! q!q
∗ ⊠ id q!(q

∗ ⊠ q∗q!)

(q∗µ⊠id)

proj ∼ proj∼

q!(Ñm⊠id)

µ⊠id proj−1

∼
q!(q

∗⊠Ñm)

where the left square commutes by naturality while the right-hand square commutes
by part (1). As the composite of the top row is the identity by the triangle identity
in C, the claim follows. �

Using this, we can now easily prove the theorem:

Proof of Theorem 6.5. It suffices by induction to show that if C isQ≤n-semiadditive

and if q : A → B is any (n + 1)-truncated map, then Ñm: q∗q! → id is the counit
of an adjunction.

We claim that the natural map m : id→ q!q
∗ defined as the composite

id = I⊠ id
µ⊠id−−−−→ q!q

∗I⊠ id
proj−1

−−−−−→ q!(q
∗I⊠ q∗) = q!q

∗

provides a compatible unit, i.e. we have to verify the triangle identities. The identity
(Ñm q∗) ◦ (q∗m) = id is simply a special case of Lemma 6.6-(2), while (q! Ñm) ◦
(mq!) = id follows from Proposition 6.7-(2) as the projection map q!(q

∗⊠id)→ id⊠q!
is simply the identity when restricted to I in the first component. �

6.2. Applications. The characterization of semiadditivity in terms of the exis-
tence of a Span(Q)-tensoring has various interesting consequences:

Theorem 6.9. Let C,D be B-categories such that C is Q-semiadditive and D is
Q-complete. Then FunQ-×(C,D) is again Q-semiadditive.

Proof. By Proposition 2.18op, Fun(C,D) is Q-complete. If F : C → Fun(A,D)
defines any object of Fun(C,D)(A) and q : A → B is any map in Q, then q∗F is
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simply given by the composition

C F−−→ Fun(A,D) q∗−−→ Fun(B,D),
hence Q-continuous as a composition of Q-continuous functors. In other words,
FunQ-×(C,D) is closed under Q-limits and hence in particular itself Q-complete. It
will therefore suffice by Theorem 6.5op to construct a functor

Span(Q)× FunQ-×(C,D)→ FunQ-×(C,D)
preserving Q-limits in each variable and restricting to the identity on {pt} ×
FunQ-×(C,D). Adjoining over, this amounts to constructing a Q-continuous section

FunQ-×(C,D)→ FunQ-×(Span(Q),FunQ-×(C,D)) (3)

of the evaluation functor.

For this we observe that we have by Corollary 6.4op a functor −⊠− : Span(Q)×C →
C preserving Q-limits in each variable and restricting to the identity on {pt} × C.
Using this, we consider the composite

Fun(C,D) ⊠∗
−−→ Fun(Span(Q)× C,D) adjunction−−−−−−−→∼ Fun

(
Span(Q),Fun(C,D)

)
.

We claim that this restricts to the desired section (3). Indeed, one easily checks that
this is Q-continuous (in fact, it preserves all limits that exist in D) and a section.
The claim that it lands in FunQ-×(Span(Q),FunQ-×(C,D)) amounts to saying that
for every Q-continuous F : C → DA the composite F (– ⊠ –): Span(Q) × C → DA

preserves Q-limits in each variable. This is clear by assumption on ⊠. �

Finally, let us use the tensoring to show that the left and right adjoints q! and q∗
also agree for non-truncated q, and to moreover upgrade this to a parametrized
comparison.

Construction 6.10. Fix q : A→ B in Q, and let C be Q-semiadditive. We define
a natural transformation m from the identity of π∗

BC to the composite

π∗
BC

q∗−−→ C(A×B –)
q!−−→ π∗

BC
as follows: write ⊠ for the (essentially unique) Span(Q)-tensoring of C and let
pt = (idB : B → B) denote the prefered global section of π∗

BSpan(Q); then we
define m as the composite

idπ∗
BC = pt⊠ id

p⊠id−−−→ q!q
∗pt⊠ id ∼−−→ q!(q

∗pt⊠ q∗) = q!q
∗

where p : pt→ q!q
∗pt is represented by the span B

q←− A
=−→ B and the unlabeled

equivalence comes from the projection formula, i.e. it is the adjunct of the map
q∗pt⊠ q∗ → q∗q!q∗pt⊠ q∗ induced by the unit.

Unravelling definitions, we see that for any f : B′ → B and q′ := f∗(q) : A′ → B′,
the value of m on f is precisely the transformation mq′ : id → q′!q

′∗ considered in
the proof of Theorem 6.5. In particular, we have shown that it is the unit of an
adjunction q′∗ ⊣ q′! whenever q

′ is truncated, with corresponding counit Ñm.

Theorem 6.11. Let C be Q-semiadditive and let q : A→ B be any map in Q, not
necessarily truncated. Then the above transformation m : id→ q!q

∗ is the unit of a
parametrized adjunction q∗ ⊣ q! of B/B-categories. In particular, there is a natural
equivalence Nmq : q!

∼−−→ q∗ of B/B-functors.
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As explained before, the parametrized transformation Nmq recovers the usual in-
ductively defined norm on underlying categories whenever q is truncated.

Proof. Fix q : A→ B in Q; to simplify notation, we will replace B by B/B, so that
B is terminal. We have to show that m is the unit of an adjunction, or equivalently
that q! admits a left adjoint q! and that the adjoined map q! → q∗ is an equivalence.

For the construction of q!, we once more consider the covering sieve Σ ⊆ B of
the terminal object given by those f : B′ → 1 such that the pulled back map
q′ := f∗(q) : B′ × A → B′ is truncated. By the above, we then have for each
such q′ an adjunction (q′)! = q′∗ ⊣ q′! with unit mq′ ; the fact that m is a natural
transformation of B-functors then translates to saying that for every map g : B′′ →
B′ in Σ the Beck–Chevalley transformation (q′′)!(A×g)∗ → g∗(q′)! of (A×g)∗ is just
the naturality equivalence (q′′)∗(A × g)∗ → g∗(q′)∗ again, in particular invertible.
Thus, Proposition A.3 shows that the parametrized left adjoint q! exists.

Consider now the natural transformation of B-functors m̃ : q! → q∗ induced by m.
By construction of q!, m̃B′ is an equivalence (even the identity) whenever B′ ∈ Σ.
Given an arbitrary B ∈ B, we can now cover it by objects of Σ (for example via
the projections C × B → B with C ∈ Σ). It therefore follows immediately from
naturality and descent that m̃ is an equivalence as claimed. �

Corollary 6.12. Let C be a Q-complete and Q-cocomplete B-category. The follow-
ing are equivalent:

(1) C is Q-semiadditive.
(2) For every q : A→ B in Q there exists an equivalence of parametrized func-

tors q! ≃ q∗ : Fun(A, π∗
BC)→ π∗

BC (a priori unrelated to the norms).
(3) For every q : A → B in Q, the functor q! : Fun(A, π∗

BC) → π∗
BC admits a

parametrized left adjoint.
(4) For every q : A → B in Q, the functor q! : Fun(A, π

∗
BC) → π∗

BC preserves
Q-limits.

Proof. Clearly, (2) ⇒ (3) ⇒ (4). The implication (1) ⇒ (2) is the content of the
previous theorem, while (4)⇒ (1) follows from Proposition 3.44. �

7. Q-commutative monoids and their universal property

In this section, we introduce the B-category CMonQ(D) of Q-commutative monoids
in a Q-complete B-categoryD, and show that the forgetful functor CMonQ(D)→ D
exhibits it as the Q-semiadditive completion of D.

7.1. Q-commutative monoids. The following is the key definition of this section:

Definition 7.1 (Commutative monoids). Given a Q-complete B-category D, we
define its B-category of Q-commutative monoids as

CMonQ(D) := FunQ-×(Span(Q),D).
We let U := evpt : CMonQ(D)→ D denote the evaluation functor at the point.

Informally speaking, we may think of a Q-commutative monoid in D as a global
sectionM ofD equipped with certain ‘parametrized addition/transfer maps.’ Recall
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from Proposition 2.20op that every global section M uniquely extends to a Q-
continuous functor Uop

Q → D given at level B ∈ B by sending a map q : A → B

in Q to the q-indexed product (MB)
A := q∗q∗MB ∈ D(B). Enhancing M to a

Q-commutative monoid in D is then equivalent to providing an extension of this
functor along the inclusion Uop

Q →֒ Span(Q), which we may interpret as providing

a suitably coherent collection of ‘addition/transfer maps’
∫
q
: (MB)

A →MB.

Remark 7.2. For A ∈ B a B/A-functor F : Span(π−1
A Q) ≃ π∗

ASpan(Q) → π∗
AD

belongs to CMonQ(D)(A) if and only if it is a Segal functor in the sense of Defini-
tion 5.26, see Proposition 5.20op.

Let us note the following immediate consequence of Theorem 6.9:

Corollary 7.3. In the above situation, CMonQ(D) is Q-semiadditive. �

In fact, it is the universal Q-semiadditive completion of D in the following sense:

Theorem 7.4. We have an adjunction incl : CatQ-⊕
B ⇄ CatQ-×

B :CMonQ, with
counit given by the evaluation functor U = evpt : CMonQ(D)→ D.

Proof. First observe that CMonQ indeed lands in Q-semiadditive categories by
the previous corollary. Moreover, Proposition 2.18op shows that it preserves Q-
continuous functors and that U is Q-continuous. Thus, it only remains to show
that U : CMonQ(D) → D is an equivalence for every Q-semiadditive D and that
CMonQ(U) : CMonQ(CMonQ(D)) → CMonQ(D) is an equivalence for every Q-
complete D.
The first statement is precisely the content of Theorem 5.1. Similarly, appealing
to the previous corollary once more, we know that UCMonQ(D) is an equivalence for
every Q-complete D. Thus, it will suffice for the second statement that the auto-
morphism of Fun(Span(Q),Fun(Span(Q),D)) exchanging the two span-factors in-
duces an automorphism of CMonQ(CMonQ(D)). But this follows immediately from
the observation that the adjunction equivalence Fun(Span(Q),Fun(Span(Q),D)) ≃
Fun(Span(Q) × Span(Q),D) identifies CMonQ(CMonQ(D)) with the full subcate-
gory of functors preserving Q-limits in each variable separately. �

We can further refine this universal property to a statement about parametrized
functor categories, generalizing previous results due to Nardin for equivariant semi-
additivity [Nar16, Corollary 5.11.1 and Theorem 6.5] and due to Harpaz for higher
non-parametrized semiadditivity [Har20, Corollary 5.15]:

Theorem 7.5. Let C be Q-semiadditive and let D be Q-complete. Then postcom-
position with U defines an equivalence of B-categories

FunQ-×(C,CMonQ(D)) ∼−−→ FunQ-×(C,D).

Proof. It suffices to show that for any Q-complete B-category T the induced map

homCat(B)Q-×
(
T ,FunQ-×(C,CMonQ(D))

)
→ homCat(B)Q-×

(
T ,FunQ-×(C,D)

)
(4)

is an equivalence. However, using the adjunction equivalence for Fun and keeping
track of Q-limit conditions as in the proof of the previous theorem, this map agrees
up to equivalence with the map

homCatQ-×
B

(
C,CMonQ(FunQ-×(T ,D))

)
→ homCatQ-×

B

(
C,FunQ-×(T ,D)

)
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induced by U, so this is a consequence of the previous theorem. �

We close this subsection by giving two variants of the above universal property.
Both of these rely on the following observation:

Lemma 7.6. Let R ⊆ B be any local class. If D is R-complete and Q-complete,
then CMonQ(D) is R-complete and U : CMonQ(D) → D preserves and reflects
R-limits.

Similarly, if K is any non-parametrized category and D admits fiberwise K-shaped
limits, then so does CMonQ(D), and U preserves and reflects K-shaped limits.

Proof. Proposition 2.18 shows that the full functor category Fun(Span(Q),D) has
all R-limits if D has them and that the evaluation functor evpt preserves R-limits

in this case. As CMonQ(D) ⊆ Fun(Span(Q),D) is closed under R-limits by the
same argument as in the beginning of the proof of Theorem 6.9, we then get the
same statement for U : CMonQ(D)→ D.
The existence and preservation of fiberwise limits follows in the same way from
Remark 2.22. To finish the proof it then suffices to prove that U is conservative for
every Q-complete D. But U factors as the composite

FunQ-×(Span(Q),D) res−−→ FunQ-×(Uop
Q ,D) ev−−→ D

and the first functor is conservative as Uop
Q ⊆ Span(Q) is a wide subcategory, while

the second functor is even an equivalence by Proposition 2.20op. �

Corollary 7.7. Let C be Q-semiadditive, let D be Q-complete, and let F : C → D
be Q-continuous. Then F lifts uniquely to a functor C → CMonQ(D).

Proof. By Theorem 7.4 there is a unique such lift that is in addition Q-continuous,
while the previous lemma shows that in fact any lift is Q-continuous. �

Corollary 7.8. Let C,D be complete B-categories and assume C is Q-semiadditive.
Then postcomposition with the forgetful functor induces an equivalence

FunR(C,CMonQ(D))→ FunR(C,D)
of B-categories of continuous functors.

Proof. This follows from Theorem 7.5, observing that by Lemma 7.6 a functor C →
Fun(A,CMonQ(D)) is continuous if and only if the induced functor C → Fun(A,D)
is so. �

7.2. Non-parametrized (higher) semiadditivity. Let us make explicit how
Theorem 7.5 recovers various results from non-parametrized higher category the-
ory, and in particular Harpaz’s result alluded to above. Recall once more that
taking global section defines an equivalence Cat(Spc) ∼−−→ Cat, and hence Spc-
parametrized functor categories are just non-parametrized functor categories be-
tween the underlying categories. By Example 2.15, the subcategory of Q-limit
preserving functors then consists precisely of those functors that preserve A-shaped
limits in the usual sense for every A ∈ Q/1 ⊆ Spc ⊆ Cat.
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Example 7.9 (Commutative monoids). Applying the theorem to the pre-inductible
subcategory Fin ⊆ Spc of finite sets recovers the well-known result that for every
category C with finite products the forgetful functor

Fun×(Span(Fin), C) evpt−−−→ C
exhibits its source as the universal semiadditive category equipped with a finite-
product-preserving functor to C. In other words, we have an equivalence of cat-
egories CMon(C) ≃ Fun×(Span(Fin), C), as was previously established by Cranch
[Cra09, Theorem 5.4] (for an ad-hoc construction of Span(Fin)) or in [BH21, Propo-
sition C.1] (using Barwick’s construction of Span).

Example 7.10 (m-commutative monoids, [Har20, Corollary 5.14]). More gener-
ally, consider the pre-inductible subcategory Spcm ⊆ Spc of m-finite spaces for
some −2 ≤ m < ∞, and let C be a category with m-finite limits. Then Theorem
7.5 translates to saying that the forgetful functor

CMonm(C) := Funm-fin(Span(Spcm), C) evpt−−−→ C
exhibits CMonm(C) as the universal m-semiadditive category equipped with an
m-finite limit-preserving functor to C, a fact previously proven by Harpaz [Har20,
Corollary 5.14]. If we instead consider the subcategory Spcπ ⊆ Spc, we also obtain
the analogous statement for m = ∞, previously proven by Carmeli, Schlank, and
Yanovski [CSY21, Proposition 2.1.16].

Example 7.11 (p-typical m-commutative monoids). As a new variant of the pre-
vious example, we may consider for −2 ≤ m < ∞ the pre-inductible subcateory

Spc(p)m ⊆ Spc of p-typical m-finite spaces from Example 3.33. For a category C
admitting Spc(p)m -indexed limits, we define the category CMonm(p)(C) of p-typically
m-commutative monoids in C as the full subcategory

CMonm(p)(C) ⊆ Fun(Span(Spc(p)m ), C),

of functors which preserve Spc(p)m -indexed limits. The evaluation functor to C then
enjoys the ‘p-typical analogue’ of the previous universal property.

7.3. Q-stability. Building on the result of Section 7.1, we can now introduce a
notion of Q-stability generalizing our work in [CLL23a]. For this let us first recall
the notion of fiberwise stability from [Nar16, Definition 3.5] and [MW22, Defini-
tion 7.3.4]:

Definition 7.12. A B-category D : Bop → Cat is called fiberwise stable if it fac-
tors through the non-full subcategory Catex ⊆ Cat of stable categories and exact
functors. We write Cat(B)fib ex := FunR(Bop,Catex) and call its maps fiberwise
exact.5

Remark 7.13. Write Catlex for the category of left exact functors between cat-
egories with finite limits, and set Cat(B)fib lex := FunR(Bop,Catlex). Then the

inclusion Cat(B)fib ex →֒ Cat(B)fib lex admits a right adjoint Spfib given by post-

composing with the right adjoint Sp of Catlex →֒ Catex.

5Note that Catex admits all limits, which are computed in Cat, by [Lur17, Theorem 1.1.4.4].
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Definition 7.14. We say that D is Q-stable if it is both Q-semiadditive and fiber-
wise stable. We write Cat(B)Q-ex := Cat(B)Q-⊕ ∩ Cat(B)fib ex for the category
whose objects are the Q-stable categories and whose morphisms are the functors
that are both fiberwise exact and Q-semiadditive.

Lemma 7.15. The adjunction incl : Cat(B)fibex ⇄ Cat(B)fib lex :Spfib restricts to
an adjunction Cat(B)Q-ex ⇄ Cat(B)Q-⊕, lex.

Proof. Observe that the functor Sp = Funexc
∗ (Spcfin∗ , –) can be extended to an

(∞, 2)-functor; all that we will need below is that it induces a functor on homo-
topy (2, 2)-categories. Observe now that each q∗ : C(B) → C(A) has a left exact
left adjoint q! ≃ q∗ by Q-semiadditivity, so 2-functoriality of Sp implies that also
Sp(q∗) = q∗ : Spfib(C)(B)→ Spfib(C)(A) has a left adjoint given by Sp(q!) with the
induced unit and counit. The Beck–Chevalley maps for these left adjoints are then
again obtained from the Beck–Chevalley maps in C via applying Sp, and in partic-
ular the left adjoints again satisfy basechange, i.e. Spfib(C) is Q-cocomplete. In the

same way, one shows that Spfib(C) is Q-complete and that Spfib sends Q-continuous
functors to Q-continuous functors.
It will then be enough to show by Proposition 3.44 that for any pullback

A×B A A

A B

pr1

pr2
y

q

q

in Q the double Beck–Chevalley map q!pr1∗ → q∗pr2! for Spfib(C) is an equiva-

lence. This however follows again immediately from 2-functoriality of Spfib and the
corresponding statement for C. �

Definition 7.16. Let C be a B-category with Q-limits and finite fiberwise limits.
We define SpQ(C) := Spfib(CMonQ(C)), and we write Ω∞ : SpQ(C) → C for the
composite

Spfib(CMonQ(C)) Ω∞
−−−→ CMonQ(C) U−−→ C.

Proposition 7.17. This defines a functor SpQ : Cat(B)Q-×, fib lex → Cat(B)Q-ex

right adjoint to the inclusion, with counit given by Ω∞.

Proof. It suffices by Lemma 7.15 to show that the adjunction incl : CatQ-⊕
B ⇄

CatQ-×
B :CMonQ from Theorem 7.4 restricts to CatQ-⊕, fib lex

B ⇄ CatQ-×, fib lex
B . This

is immediate from Lemma 7.6. �

7.4. A presentable universal property for Q-commutative monoids. If D
has Q-limits, then Theorem 7.5 identifies (certain) functors into CMonQ(D); the
goal of this subsection is to give (under a mild smallness assumption) a similar
property for functors out of CMonQ(D) whenever D is a presentable B-category.
For this we first recall:

Definition 7.18. A B-category C : Bop → Cat is called presentable if it is B-
cocomplete and factors through the non-full subcategory PrL ⊆ Cat, i.e. each C(A)
is presentable and each f∗ : C(B)→ C(A) is a left adjoint.
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We write Pr(B)L for the category of presentable B-categories and left adjoint func-
tors, and Pr(B)R for the category of presentable B-categories and right adjoint
functors.

Remark 7.19. [MW22] instead defines presentable B-categories as accessible Bous-
field localization of presheaf categories. This is equivalent to the above definition
by Theorem 6.2.4 of op. cit.

Remark 7.20. By definition, every presentable B-category is in particular co-
complete. Moreover, an easy application of the non-parametrized Special Adjoint
Functor Theorem shows that every presentable B-category is also complete, also
see [MW22, Corollary 6.2.5].

Because we have not bounded the size of Q, the B-category CMonQ(C) does not
necessarily have to be presentable, even if C was presentable. To fix this, we intro-
duce:

Definition 7.21. We say that a wide local subcategory Q ⊆ B is slicewise small
if the category Q/A is (essentially) small for every A ∈ B, i.e. if UQ is a small
B-category.
Example 7.22. If Q ⊆ PSh(T ) is a small pre-inductible category, then the cor-
responding locally inductible subcategory Qloc of PSh(T ) is slicewise small. This
follows immediately from the fact that UQ is the limit extension of the small T -
category A 7→ Q/A.

In particular, all examples of locally inductible categories from Section 3.4 are
slicewise small.

Proposition 7.23. Assume that Q is slicewise small and let D be presentable.
Then the inclusion CMonQ(D) ⊆ FunB(Span(Q),D) is an accessible Bousfield lo-
calization. In particular, CMonQ(D) is again presentable.

Proof. As seen in the proof of Lemma 7.6, CMonQ(D) is complete and the inclusion
is continuous. It will therefore suffice to show that we have an accessible Bousfield
localization in each individual level A ∈ B: the pointwise left adjoints will then
assemble into a B-left adjoint by Remark A.2.

For this recall the description FunB(Span(Q),D)(A) ≃ FunB/A
(π∗

ASpan(Q), π∗
AD),

under which CMonQ(D)(A) corresponds precisely to the π∗
AQ-continuous functors

(see Construction 2.19). In other words, after replacing B by B/A it will suffice to
give a set of maps S such that a functor F ∈ FunB(Span(Q),D) preserves Q-limits
if and only if it is S-local.

We now observe that since each D(B) for B ∈ B is presentable, we can find a set
TB ⊆ D(B) of objects jointly detecting equivalences. Moreover, observe that for any
X ∈ Span(Q)(B) the evaluation functor FunB(Span(Q),D) → D(B), F 7→ FA(B)
agrees up to the equivalence from the Yoneda lemma with restriction along the map
B → C classifying X , so it is a right adjoint (with left adjoint given by parametrized
Kan extension).

Fix now any map q : A → B in Q and X ∈ Span(Q)(A). Then the compar-
ison map q∗FA(X) → FBq∗(X) in D(B) is natural in F and hence so is the
induced map hom(T, q∗FA(X)) → hom(T, FBq∗(X)) of spaces for any T ∈ TB.
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The source and target of this map are corepresentable by the above, so this map
agrees by the Yoneda lemma with hom(t, F ) for some suitable map t = tq,X,T in
FunB(Span(Q),D). By choice of TB we see that q∗FA → FBq∗ is an equivalence
if and only if F is local with respect to the set of all tq,X,T with T ∈ TB and X
running through objects of Span(Q) (up to equivalence).

Pick now a small categoryM together with a left exact localization L : PSh(M)→
B, yielding a set B0 := L(M) of objects of B such that every B ∈ B can be covered
by elements of B0. By Lemma A.5, we then see that F is Q-continuous if and only
if the Beck–Chevalley map Fq∗ → q∗F is an equivalence for all q : A → B in Q
such that B ∈ B0. By choice of B0 and assumption on Q, there is only a set worth
of such maps (up to equivalence). Thus, we may take S to be the set of all tq,X,T

for such q and for X and T as before. �

Corollary 7.24. Assume that Q is slicewise small and let D be presentable. Then
the forgetful functor U : CMonQ(D)→ D admits a left adjoint P.

Proof. We may factor U as the composite

CMonQ(D) →֒ FunB(Span(Q),D)
evpt−−−→ FunB(1,D) ≃ D.

The first functor admits a left adjoint by the previous proposition, while the second
one admits a left adjoint via parametrized left Kan extension. �

Proposition 7.25. If Q is slicewise small, then the adjunction

incl : Cat(B)Q-⊕ ⇆ Cat(B)Q-× :CMonQ

restricts to an adjunction Pr(B)R ⇄ Pr(B)R,Q-⊕.

Proof. The previous proposition and corollary show that CMonQ restricts on ob-

jects accordingly and that the counit U lies in PrR. Moreover, the unit is even an
equivalence as the inclusion is fully faithful, so it only remains to show that for
any adjunction F : C ⇄ D :G of presentable B-categories, CMonQ(G) is again a
right adjoint. But indeed, the composition of Fun(Span(Q), F ) with the localiza-
tion FunB(Span(Q),D) → CMonQ(D) is easily seen to restrict to the desired left
adjoint. �

Dualizing we get:

Corollary 7.26. If Q is slicewise small, the inclusion Pr(B)L,Q-⊕ →֒ Pr(B)L ad-
mits a left adjoint given on objects by D 7→ CMonQ(D) and with unit given by the
left adjoints P of the forgetful maps. �

The usual argument internalizes this to the following equivalence of B-categories:

Theorem 7.27. Assume Q is slicewise small, let C be presentable, and let D be
Q-semiadditive and presentable. Then restriction along P : C → CMonQ(C) induces
an equivalence

FunL
B(CMonQ(C),D) ∼−−→ FunL

B(C,D). �
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7.5. Fiberwise modules. We can also prove a presentable universal property for
SpQ(C) when C is presentable. In fact the only thing relevant about the property
of stability is that it is equivalent to being a module over the idempotent object Sp
in PrL. We present the argument in this generality.

Definition 7.28 (See [CSY21, Definition 5.2.4]). A mode is an idempotent object

in PrL, i.e. a pair (E , E) of a presentable category E together with an object E ∈ E
such that the map E ≃ Spc⊗ E → E ⊗ E induced by E is an equivalence.

Given any mode (E , E), a module over it is a presentable category F such that the

map F ≃ Spc⊗F → E ⊗F induced by E is an equivalence. We write ModE ⊆ PrL

for the full subcategory of E-modules.

As usual, we will just refer to E as a mode when the object E ∈ E is understood.

Remark 7.29. In the above setting, E actually admits a (unique) commutative al-
gebra structure with unit E [Lur17, Proposition 4.8.2.9], and for this algebra struc-
ture the forgetful functor from E-modules (in the usual sense) to presentable cate-
gories is fully faithful with essential image ModE , see [Lur17, Proposition 4.8.2.10],
justifying the terminology.

As a direct consequence, the inclusion ModE →֒ PrL admits a left adjoint given by
E ⊗ –; in particular, ModE is closed under limits.

Remark 7.30. As a left adjoint, E ⊗ –: PrL → PrL preserves all colimits; we
will need below that it also preserves certain limits, namely limits of diagrams
X : K → PrL such that all structure maps X(k→ ℓ) are also right adjoints. Indeed,

on PrL ∩PrR the functoriality of the Lurie tensor product E ⊗ C = FunR(Eop, C) is
simply given by postcomposition, so the statement is clear.

Example 7.31. The pair (Spc, 1) is a mode, and every presentable category is a
Spc-module.

Example 7.32. The pair (Sp, S) is a mode, and the Sp-modules are precisely the
stable presentable categories, see [Lur17, Proposition 4.8.2.18].

Example 7.33. The pair (Set, 1) is a mode, and the Set-modules are precisely the
presentable 1-categories, see [Lur17, Proposition 4.8.2.15].

Example 7.34. The pair (Ab,Z) is a mode, and the Ab-modules are precisely
the presentable additive 1-categories; this is immediate from the previous example
together with [GGN15, Theorem 4.6].

Example 7.35 (cf. [Har20, Corollary 5.21]). Let Q ⊆ Spc be locally inductible.

We claim that (CMonQ(Spc),P(1)) is a mode whose modules are precisely the
Q-semiadditive categories.

Indeed, if D is presentable, then the map D → CMonQ(Spc)⊗D is left adjoint to the

forgetful map FunR(Dop,CMonQ(Spc))→ FunR(Dop, Spc) ≃ D, and Corollary 7.8
shows that this is an equivalence whenever D is Q-semiadditive and cocomplete
(so that Dop is complete). It follows immediately that CMonQ(Spc) is a mode and
that every presentable Q-semiadditive category is a module over it. On the other
hand, one easily checks that FunR(Dop,CMonQ(Spc)) is Q-semiadditive for every

presentable D, so conversely every CMonQ(Spc)-module is Q-semiadditive.
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Definition 7.36. A fiberwise presentable B-category C : Bop → PrL is called a
fiberwise E-module if it factors through the full subcategory ModE ⊆ PrL, i.e. if
every C(A) is an E-module. We write ModE(B) ⊆ PrL(B) for the full subcategory
spanned by those presentable categories that are in addition fiberwise E-modules.

Example 7.37. By Example 7.32, a (fiberwise) presentable B-category is fiberwise
stable if and only if it is a fiberwise Sp-module.

Example 7.38. By Lemma 3.35 and Example 7.35, a (fiberwise) presentable Q-
semiadditive B-category is always a fiberwise CMonQfib(Spc)-module.

Lemma 7.39. Let E be any mode. Then the inclusion ModE(B) ⊆ PrL(B) admits
a left adjoint given by applying E ⊗ – pointwise, with unit C → E ⊗C induced by the
map Spc→ E.
Moreover, this restricts to an adjunction ModQ-⊕

E (B) ⇄ PrL,Q-⊕(B).

Proof. First observe that the pointwise tensor product E ⊗C is indeed a B-category
for any presentable B-category C by Remark 7.30. Next, let us show that E ⊗ C is
again B-cocomplete, whence presentable. For this we recall that the tensor product
lifts to an (∞, 2)-functor; all we will need below is that it is a functor on the

homotopy 2-category of PrL (which also follows immediately from its construction
as a functor category), and hence sends adjunctions to adjunctions. Given now any
f : A→ B in B, both f∗ and f! are left adjoints, so they form an internal adjunction
in PrL and hence induce an adjunction E ⊗ f! ⊣ E ⊗ f∗. Given any g : B′ → B,
the base change map (E ⊗ f ′

! )(E ⊗ g′∗) → (E ⊗ g∗)(E ⊗ f!) is then induced via 2-
functoriality from the base change map f ′

! g
′∗ → g∗f!, so it is invertible as the latter

one is. Finally, the same 2-functoriality argument together with Proposition A.1
shows that the canonical map C → E ⊗ C is indeed a parametrized left adjoint.

If C is now Q-semiadditive, then the functor q∗ is itself a map in PrL for any
q : A → B in Q (as q∗ ≃ q!), so the right adjoint of E ⊗ q∗ is given by E ⊗ q∗,
with the induced unit and counit. Arguing as before, we see that the double Beck–
Chevalley map (E ⊗ pr1!)(E ⊗ q∗) → (E ⊗ pr2∗)(E ⊗ q!) is invertible, so that E ⊗ C
is Q-semiadditive, proving the second statement. �

Let us specialize this to the stable case (Example 7.37):

Corollary 7.40. Assume Q is slicewise small. The inclusion Pr(B)L,Q-ex →֒
Pr(B)L admits a left adjoint SpQ := Sp ⊗ CMonQ. For every presentable C, the
unit Σ∞

+ : C → SpQ(C) is given by the composite

C P−→ CMonQ(C) Σ∞
+−−−→ Sp⊗ CMonQ(C) = SpQ(C).

Proof. Combine Proposition 7.25 with Lemma 7.39. �

As before, we formally deduce the following internal version:

Theorem 7.41. Assume Q is slicewise small. Let C be any presentable B-category,
and let D be presentable and Q-stable. Then restriction along Σ∞

+ : C → SpQ(C)
induces an equivalence

FunL
B(Sp

Q(C),D) ∼−−→ FunLB(C,D). �
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8. Q-Mackey sheaves

Our definition of Q-commutative monoids in a general B-category C makes heavy
use of the language of parametrized category theory. In this section, we will see that
Q-commutative monoids admit a concrete non-parametrized description whenever
C is obtained in a suitable way from a non-parametrized category.

Recall from [MW22, Section 8.3] that every presentable category E gives rise to a
presentable B-category Shv(B; E) of ‘E-valued sheaves,’ given on objects by assign-

ing to B ∈ B the category Shv(B/B; E) := FunR((B/B)op, E) of E-valued sheaves on
the slice topos B/B, and on morphisms by sending a map f : A→ B in B to the func-
tor f∗ : Shv(B/B; E)→ Shv(B/A; E) given by precomposition with f! : B/A → B/B.
The goal of this section is to explicitly describe the B-category CMonQ(Shv(B; E))
in terms of Mackey sheaves :

Definition 8.1 (Q-Mackey sheaves). An E-valued Q-Mackey sheaf on B is a (non-
parametrized) functor M : Span(B,B,Q)→ E for which the restriction

Bop ≃ Span(B,B, ιB) →֒ Span(B,B,Q) M−−→ E
is an E-valued sheaf on B, i.e. preserves limits. We let MackQ(B; E) denote the full
subcategory of Fun(Span(B,B,Q), E) spanned by the Q-Mackey sheaves.

The assignment A 7→ (B/A,B/A,B/A[Q]) extends to a functor B → AdTrip via
pushforward, hence giving rise to a B-presheaf of categories

A 7→ Fun(Span(B/A,B/A,B/A[Q]), E).
We denote by MackQ(B; E) the full subfunctor given in degree A by the subcategory

MackB/A[Q](B/A; E). It comes equipped with a forgetful map U : MackQ(B; E) →
Shv(B; E) induced by the inclusions (B/A,B/A, ιB/A) →֒ (B/A,B/A,B/A[Q]).
Theorem 8.2. Let E be a presentable category. Then there is a unique equivalence

MackQ(B; E) ∼−−→ CMonQ(Shv(B; E))
of B-presheaves over Shv(B; E). In particular, MackQ(B; E) is a B-category.

Before moving to the proof of the theorem, let us explain how it allows us to describe
the free presentable Q-semiadditive and Q-stable B-categories in non-parametrized
terms:

Corollary 8.3. Assume Q is slicewise small. Then the B-category MackQ(B; Spc)
is the free presentable Q-semiadditive B-category, i.e. for every other presentable Q-
semiadditive D evaluation at a certain ‘free Q-Mackey sheaf’ P(1) ∈ MackQ(B; Spc)
induces an equivalence

FunL(MackQ(B; Spc),D) ∼−−→ D.

We will give a concrete description of P(1) in Corollary 8.27.

Proof. Note that for E = Spc we have Shv(B; E) = SpcB. The claim thus follows
from the string of equivalences

FunL(MackQ(B; Spc),D) 8.2≃ FunLB(CMonQ(SpcB),D)
7.27≃ FunLB(SpcB,D) ∼−−→ D,

where the last equivalence holds by [MW21, Theorem 7.1.1]. �



PARAMETRIZED HIGHER SEMIADDITIVITY AND THE UNIVERSALITY OF SPANS 53

Corollary 8.4. Assume Q is slicewise small. Then the B-category MackQ(B; Sp)
is the free presentable Q-stable B-category, i.e. for any other such D evaluation at
a certain global section S ∈MackQ(B; Sp) induces an equivalence

FunL(MackQ(B; Sp),D) ∼−−→ D.

Proof. Combining Corollaries 7.40 and 8.3, the free presentable Q-stable cate-
gory is given by Sp ⊗ MackQ(B; Spc). Using the explicit description of Sp ⊗ –

as FunR(Spop, –), this is immediately seen to be equivalent to MackQ(B; Sp). �
Remark 8.5. More generally, if E is any mode, then Lemma 7.39 shows that
MackQ(B; Spc)⊗E ≃MackQ(B; E) is the free presentable Q-semiadditive fiberwise
E-module.

Remark 8.6 (Fiberwise semiadditivity, redux). Let F ⊆ Spc be locally inductible
such that the unique left exact left adjoint Spc→ B maps F into Q; for example, we
could take the maximal such class Qfib ⊆ Spc from Lemma 3.35. Combining said
remark with Example 7.35, we see that every presentable Q-semiadditive category
C is a fiberwise CMonF(Spc)-module, so that CMonF(Spc)⊗C ∼−−→ C. Specializing
C, we obtain an equivalence MackQ(B; CMonF (E)) ∼−−→ MackQ(B; E).
In particular, we see that if Q contains the map 1∐1→ 1, then the free presentable
Q-semiadditive B-category can be equivalently described as MackQ(B; CMon).

We also record the following useful corollary:

Corollary 8.7. Given a Q-semiadditive B-category D, every Q-continuous functor
D → Shv(B; E) admits a unique lift to MackQ(B; E): the forgetful functor

FunQ-×(D,MackQ(B; E))→ FunQ-×(D, Shv(B; E))
is an equivalence.

Proof. This is immediate from Theorem 8.2 and the universal property of CMonQ

from Theorem 7.5. �
Corollary 8.8. For every Q-semiadditive B-category D, there is a unique func-
tor HomQ

D : Dop × D → MackQ(B; Spc) that lifts the parametrized hom-functor
HomD : Dop ×D → SpcB. �

8.1. Reduction to presheaves. It will be technically convenient to deduce the
theorem from a more general result about ‘Mackey presheaves.’ Throughout, let A
be any category, not necessarily small, and let Q ⊆ A be left-cancelable and closed
under base change.

Definition 8.9. For any category E , we write MackPShQ(A; E) for the functor

Aop → Cat, A 7→ Fun(Span(A/A,A/A,A/A[Q]), E)
with functoriality via pushforward. We will refer to global sections of this asMackey
presheaves.

We further define PSh(A; E) := MackPShιA(A; E) : A 7→ Fun((A/A)
op, E), and we

write U : MackPShQ(A; E)→ PSh(A; E) for the evident forgetful map.

Remark 8.10. If A = T is small, the category PSh(A; E) is denoted ET and called
the category of T -objects in [CLL23a, Example 2.1.11].
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Lemma 8.11. The A-category PSh(A; E) has all Q-limits.

Proof. Let q : A → B be any map in Q. As Q is closed under base change,
A/q : A/A → A/B has a right adjoint given by pullback along q, and this satis-
fies base change with respect to pushforward along maps in A by the pasting law
for pullbacks. The claim now follows simply from 2-functoriality of PSh. �

Construction 8.12. If A has all pullbacks, then the target map t : Ar(A) → A
is a cartesian fibration classifying the functor Aop → Cat, A 7→ A/A. If Q ⊆ A is

closed under base change, then this restricts to a cartesian fibration t : Ar(A)Q → A
where the source denotes the full subcategory spanned by the maps in Q; this then
classifies the functor UQ : A 7→ Q/A considered before if A = B is a topos.

If nowA is arbitrary, then embedding it in a pullback-preserving way into a category
with all pullbacks, we see that t : Ar(A)Q → A is still a cartesian fibration. We
denote the straightening Aop → Cat again by A 7→ Q/A; note that this agrees with
the previous functor of the same name if A = B is a topos. Taking spans levelwise
then as before gives us a functor Span(Q) : A 7→ Span(Q/A).

Proposition 8.13. There is an equivalence

Φ: MackPShQ(A; E) ∼−−→ FunQ-×
A

(
Span(Q),PSh(A; E)

)

of A-categories over PSh(A; E).

The proof of the proposition will take up most of this section; for now let us record
that it immediately implies the theorem:

Proof of Theorem 8.2, assuming Proposition 8.13. Applying the previous proposi-
tion for A = B (and using the comparison of internal homs from the proof of
Proposition 2.7), it only remains to show that F : Span(B/A,B/A,B/A[Q]) → E
restricts to a sheaf (B/A)op → E if and only if Φ(F ) : π∗

ASpan(Q) → π∗
APSh(B; E)

factors through Shv(B; E). As Φ is a functor over PSh(B; E), it is clear that F
restricts to a sheaf if and only if Φ(F )(idA) : Bop

/A → E is a sheaf. However, in this

case we have for any f : B → A in B and any q : C → B in Q equivalences

Φ(F )(q) ≃ Φ(F )(q∗(fq)
∗idA) ≃ q∗(fq)

∗Φ(F )(idA)

byQ-continuity; the claim follows as Shv(B; E) ⊆ PSh(B; E) is closed under Q-limits
by the above description of limits and local cartesian closure of B. �

8.2. Comparison of underlying categories. Before establishing the full param-
etrized equivalence from Proposition 8.13, we will prove in this subsection that there
exists an equivalence on global sections:

Fun(Span(A,A,Q), E) ∼−−→ FunQ-×(Span(Q),PSh(A; E)).
The outline of the proof is as follows:

(1) As we will recall below, there is a 1:1-correspondence between A-functors
F : Span(Q)→ PSh(A; E) and non-parametrized functors F̃ :

∫
Span(Q)→

E from the total category of the cocartesian unstraightening of Span(Q).
Following [HHLN23], we describe this unstraightening

∫
Span(Q) explicitly

in terms of certain spans in the arrow category Ar(A) of A.
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(2) Next, we prove that a parametrized functor F : Span(Q)→ PSh(A; E) pre-
serves Q-limits if and only if its associated functor F̃ :

∫
Span(Q) → E

inverts a certain explicit class of maps W , see Proposition 8.16. In partic-
ular, Q-continuous functor Span(Q) → PSh(A; E) correspond to functors
out of the localization of

∫
Span(Q) at W .

(3) Finally, we show in Proposition 8.19 that this localization is given by the
span category Span(A,A,Q).

Let us start by making the unstraightening
∫
Span(Q) explicit:

Proposition 8.14. Let Ar(A)Q ⊆ Ar(A) again denote the full subcategory spanned
by the maps of Q and write Ar(A)Q, fw ⊆ Ar(A)Q for the wide subcategory of all
maps inverted by t : Ar(A)Q → A.
Then (Ar(A)Q,Ar(A)Q,Ar(A)Q, fw) is an adequate triple, and

t : Spanfw(Ar(A)Q) := Span(Ar(A)Q,Ar(A)Q,Ar(A)Q, fw)→ Span(A,A, ιA) ≃ Aop

is a cocartesian fibration classifying the functor Span(Q) from Construction 8.12.

Proof. This is an instance of [HHLN23, Theorem 3.9], using that t : Ar(A)Q → A
is (by definition) the cartesian fibration classifying A 7→ Q/A. �

Lemma 8.15. For every presentable category E, there is a natural equivalence

FunA(Span(Q),PSh(A; E)) ∼−−→ Fun(Spanfw(Ar(A)Q), E).

Proof. Applying [CLL23a, Lemma 2.2.13] in a larger universe, there is a natural
equivalence

FunA(Span(Q),PSh(A; E)) ≃ Fun(
∫
Span(Q), E);

The claim is now immediate from the above explicit description of
∫
Span(Q). �

Now that we have obtained a description of A-functors Span(Q) → PSh(A; E) as
non-parametrized functors out of an explicit span category, we would like to identify
which of them correspond toQ-continuous parametrized functors. This is addressed
by the following result:

Proposition 8.16. Consider an A-functor F : Span(Q)→ PSh(A; E), and let

F̃ : Span(Ar(A)Q,Ar(A)Q,Ar(A)Q,fw)→ E
denote the associated functor from Lemma 8.15. Then F preserves Q-limits if and

only if F̃ inverts the collection WSpan
s of all maps of the form

C C C

B A Aq

qf ff (5)

for composable morphisms f and q in Q.

The proof relies on the following simple observation:
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Lemma 8.17. Let A be any category and let Q be a wide subcategory. Then the
source map s : Ar(A)Q → A is a localization at the class Ws of maps of the form

A A

B C

f qf

q

(6)

with q and f in Q. Moreover, s admits a left adjoint const given by the inclusion
of constant arrows.

Proof. It is clear that the inclusion of constant arrows is left adjoint and right
inverse to s. To complete the proof it now suffices to observe that s inverts the
maps (6) and that the counit const ◦ s→ id is levelwise of this form. �

Proof of Proposition 8.16. We first recall from Corollary 4.7 and Proposition 2.20
that F preserves Q-limits if and only if its restriction to Uop

Q is right Kan extended

from the point. Similarly, the invertibility condition on F̃ only depends on its
restriction to the subfibration t : (Ar(A)Q)op → Aop classifying Uop

Q ; by naturality,
we are therefore reduced to proving that a functor F : Uop

Q → PSh(A; E) is right Kan

extended from the point if and only if the associated functor F̃ : (Ar(A)Q)op → E
inverts the maps (Ws)

op from (6).

For this let us consider the naturality square

Fun(Uop
Q ,PSh(A; E)) Fun((Ar(A)Q)op, E)

Fun(1,PSh(A; E)) Fun(Aop, E)

∼

res res=(constop)∗

∼

associated to the map 1→ UQ classifying the point.

The horizontal maps are equivalences and the vertical maps admit right adjoints;
it then follows formally that the top horizontal map restricts to an equivalence
between the essential images of these adjoints. The right adjoint of the verti-
cal arrow on the left is precisely right Kan extension. On the other hand, by
Lemma 8.17 we have an adjunction sop ⊣ constop, so that the right adjoint of
(constop)∗ : Fun((Ar(A)Q)op, E) → Fun(Aop, E) is given by (sop)∗. Appealing to
the lemma once more, the essential image of this functor is precisely characterized
by the above invertibility condition. �

As a consequence of the previous result, a functor Spanfw(Ar(A)Q)→ E preserves
Q-limits if and only if it factors through the localization of Spanfw(Ar(A)Q) at the
maps of the form (5). We will now give an explicit description of this localization:

Construction 8.18. Consider the source functor s : Ar(A)Q → A once more.
By left-cancelability of Q, this maps Ar(A)Q, fw into Q. As Q is closed under
base change, this then further shows that the pullback of a map in Ar(A)Q, fw

along a map in Ar(A)Q is just computed pointwise, so that s preserves all req-
uisite pullbacks. Altogether, we see that s defines a map of adequate triples
(Ar(A)Q,Ar(A)Q,Ar(A)Q, fw)→ (A,A,Q), and thus induces a functor

s : Spanfw(Ar(A)Q)→ Span(A,A,Q).
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Proposition 8.19. This is a localization at the class of maps WSpan
s from (5).

Proof. By the localization criterion from [CHLL24, Theorem 4.1.1], it will be
enough to show that s : Ar(A)Q → A is a localization at the maps Ws and that
s : Ar(A)Q, fw → Q is a right fibration. However, the first statement is an in-
stance of Lemma 8.17, while for the second statement it is enough to observe that
Ar(Q)fw = Ar(A)Q, fw consists precisely of the cartesian edges of the cartesian
fibration s : Ar(Q)→ Q. �

Combining the above results, we can now prove the equivalence from Proposi-
tion 8.13 on underlying non-parametrized categories:

Proposition 8.20. There is a natural equivalence of non-parametrized categories
FunQ-×(Span(Q),PSh(A; E)) ≃ Fun(Span(A,A,Q), E).

Proof. Combining Lemma 8.15 and Proposition 8.16, the left hand side is equiva-
lent to the full subcategory F ⊆ Fun(Spanfw(Ar(A)Q), E) spanned by the functors
inverting WSpan

s . On the other hand, Proposition 8.19 shows that precomposing
with s induces an equivalence between Fun(Span(A,A,Q), E) and the same F . �

8.3. Proof of Proposition 8.13. We will now show how one can upgrade the
non-parametrized equivalence of Proposition 8.20 to a parametrized equivalence,
yielding a proof of Proposition 8.13 and thus completing the proof of Theorem 8.2.
The basic idea will be to reduce this to the unparametrized statement with A
replaced by A/A for all A ∈ A; however, some care has to be taken to get all
coherences straight.

Observation 8.21. Let C be an A-category and let E be presentable. Combin-
ing the categorical Yoneda lemma with [CLL23a, Lemma 2.2.13], we obtain an
equivalence

FunA(C,PSh(A; E))(A) ∼−−→ Fun(
∫
(C ×A), E) = Fun(

∫
C ×Aop (A/A)

op, E)

natural in C, E , and in A ∈ Aop.

Below we will apply this to C = Span(Q), in which case we have the same explicit
description of the cocartesian unstraightening as before. Let us also describe the
resulting pullback explicitly:

Lemma 8.22. Let A be any category and let A ∈ A. Then (Ar(πA), t) : Ar(A/A)→
Ar(A)×AA/A is an equivalence of cartesian fibrations over A. Moreover, this can
be made natural in A ∈ A (with respect to the functoriality via postcomposition).

Proof. It is clear that this is a map of cartesian fibrations, so it is enough to show
that it underlies an equivalence in Fun(A,Cat/A) ≃ Fun(A,Cat)/constA.
We begin by making some cocartesian unstraightenings explicit. The cocartesian
unstraightening of A/• : A → Cat is the fibration t : Ar(A) = Fun([1],A)→ A. As
unstraightening commutes with Cat-tensors it also commutes with Cat-cotensors,
so the unstraightening X → A of Ar(A/•) is given by the cotensor t[1] in Catcocart/A ,
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i.e. by the pullback

X Fun([1]× [1],A)

A Fun([1],A)

y
(–,1)∗

const

where (–, 1): [1] → [1] × [1] denotes the map classifying the edge (0, 1) → (1, 1).
The composite

X → Fun([1]× [1],A) ((−,0)∗,(1,1)∗)−−−−−−−−−→ Fun([1],A)×A
then straightens to a natural transformation given pointwise by Ar(πA), while the
target map Ar(A/•)→ A/• unstraightens to the map X → Fun([1],A) induced by
restricting to the edge (1, 0)→ (1, 1). Altogether, we get a commutative square of
maps of cocartesian fibrations

X Fun([1],A)×A

A

Fun([1],A) A×A

(1,1)∗

(1,–)∗

((−,0)∗,(1,1)∗)

t×A

pr2

t

(s,t)

pr2

such that the induced map on pullbacks pointwise straightens to the map (Ar(πA), t).
Moreover, the diagonal composite X → A × A straightens to the structure map
Ar(A/•) → constA, so it only remains to show that this is a pullback square in
Cat.

By direct inspection, the pullback is given by Fun(Λ2
1,A) ≃ Fun([2],A) with the

comparison map X → Fun([2],A) induced by restriction along the map f : [2] →
[1]× [1] classifying (0, 0)→ (1, 0)→ (1, 1). The claim therefore amounts to saying
that f induces an equivalence [2] →

(
[1] × [1]

)/(
[1] × {1}

)
. However, one im-

mediately checks that an inverse equivalence is induced by the map [1] × [1] →
[2], (a, b) 7→ min{2, a+ 42b}. �

Observation 8.23. The equivalence from the previous lemma restricts to natural
equivalences of cartesian fibrations

Ar(A/A)
Q := Ar(A/A)

A/A[Q] ∼−−→ Ar(A)Q ×A A/A

for all A ∈ A. By direct inspection, this identifies the weak equivalences Ws ⊆
Ar(A/A)

Q from Lemma 8.17 with Ws ×A A/A.

Similarly, one checks that it restricts to an equivalence

Ar(A/A)
Q, fw ∼−−→ Ar(A)Q, fw ×ιA ι(A/A).

Using that Span preserves pullbacks of adequate triples, we therefore get a natural
commutative diagram

(
Ar(A/A)

Q)op (
Ar(A)Q

)op ×Aop (A/A)
op

Spanfw
(
Ar(A/A)

Q)
Spanfw

(
Ar(A)Q)op ×Aop (A/A)

op

∼

∼
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where the horizontal maps are equivalences of cocartesian fibrations, and the lower
one identifies WSpan

s with WSpan
s ×Aop (A/A)

op.

Combining this with Observation 8.21 we get a natural equivalence

FunA
(
Span(Q),PSh(A; E)

)
(A) ∼−−→ Fun

(
Spanfw

(
Ar(A/A)

Q), E
)
.

Corollary 8.24. Consider any F ∈ Fun(Span(Q),PSh(A; E))(A), with associ-

ated functor F̃ : Spanfw(Ar(A/A)
Q) → E. Then F belongs to the full subcategory

FunQ-×(Span(Q),PSh(A; E))(A) if and only if F̃ inverts all maps in WSpan
s .

Proof. As in the proof of Proposition 8.16, both conditions only rely on the restric-
tion to backwards arrows. We now have a commutative square

A/A A×A A/A

Ar(A/A)
Q Ar(A)Q ×A A/A

const const×AA/A

∼

and hence altogether a commutative square

FunA
(
Uop

Q ,PSh(A; E)
)
(A) Fun

(
(Ar(A/A)

Q)op, E
)

FunA
(
1,PSh(A; E)

)
(A) Fun((A/A)

op, E).
pt∗

∼

(constop)∗

∼

By the same formal Beck–Chevalley yoga as before, an object of the top left corner is
Q-continuous if and only if the top horizontal equivalence maps it into the essential
image of the right adjoint of the right-hand vertical map. Replacing A by A/A, this
essential image was identified in the proof of Proposition 8.16 as precisely those
functors satisfying the above invertibility condition. �

Proof of Proposition 8.13. By the above, we have a map of A-categories
FunQ-×

A
(
PSh(A; E)

)
→ Fun

(
Spanfw(Ar(A/•)

Q), E
)

that induces an equivalence onto the full subcategory F spanned in degree A ∈
A by those functors that invert WSpan

s . On the other hand, we have a natural
map s : Spanfw(Ar(A/•)Q) → Span(A/•,A/•,A/•[Q]), and using Proposition 8.19
with A replaced by A/A this likewise induces an equivalence onto F , yielding an

equivalence MackPShQ(A; E) ≃ FunQ-×
A (Span(Q),PSh(A; E)). It remains to show

that this is equivalence is compatible with the forgetful functors.

We will show more generally that our equivalence is compatible with passing to a
smaller left-cancelableQ′ ⊆ Q closed under base change. This is clear for restriction
along s. For the map FunA(Span(Q),PSh(A; E)) → Fun(Spanfw(Ar(A/•)Q), E)
note that this holds for the intermediate composite FunA(Span(Q),PSh(A; E)) →
Fun(Spanfw(Ar(A)Q)×Aop (A/•)op, E) simply by naturality. Finally, the equivalence

Spanfw(Ar(A)Q) ×Aop (A/•)op ≃ Spanfw(Ar(A/•)Q) was construced as restriction
of a fixed equivalence Span(Ar(A)) ×Aop (A/•)op ≃ Span(Ar(A/•)), so it is again
compatible with passing to a subclass. �
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8.4. The free Mackey sheaf. Classically, an easy application of the Yoneda
lemma shows that the free Mackey functor Span(FinG) → Ab is corepresented
by the 1-point set. The analogue holds in our setting, except that proving that the
corepresented functor actually is a Q-Mackey sheaf is not entirely trivial:

Lemma 8.25. The functor hom(1, –): Span(B,B,Q)→ Spc is a Q-Mackey sheaf.
Its restriction to Bop agrees with the functor ιUQ : Bop → Spc which sends A to
the groupoid core of Q/A.

Proof. As UQ is a B-category, it will be enough to prove the second statement. We
will prove this by computing the cocartesian unstraightening of the restriction of
hom(1, –) to Bop, and show it agrees with the unstraightening of ιUQ. We first give
an explicit description of the forgetful functor π : Span(B,B,Q)1/ → Span(B,B,Q),
which is the unstraightening of hom(1, –): Span(B,B,Q)→ Spc. To this end, con-
sider the adequate triple Q[1] from [HHLN23, Lemma 2.5 and Definition 2.16]: the

underlying category is the full subcategory of Fun(Λ2
0,B) spanned by the functors

sending 0→ 2 to a map in Q. The backward maps consist of all diagrams

X1 X0 X2

Y1 Y0 Y2

y

such that the right-hand square is a pullback. The forward maps are given by those
natural transformations that are pointwise in Q and for which the left-hand square
is a pullback.

By Corollary 2.22 of op. cit., we may identify the functor (s, t) : Ar(Span(B,B,Q))→
Span(B,B,Q)×2 with the map (ev1, ev2) : Span(Q[1]) → Span(B,B,Q)×2. Pulling
back to {1} in the first factor and using that Span preserves limits, we obtain
the following description of π : Span(B,B,Q)1/ → Span(B,B,Q): the source is the

category of spans in Ar(B)Q of the form

Y0 X0 Z0

Y2 X2 Z2

x

q

where the left-hand square is a pullback and q belongs to Q (note that compared
to the previous diagram this has been rotated by 3

2π radians); the forgetful map is
then given by the target map.

We thus obtain the unstraightening of hom(1, –)|Bop by restricting this forgetful
functor to Bop ≃ Span(B,B, ιQ) in the target. The resulting functor is the target
map top : (Ar(B)Qcart)op → Bop, where Ar(B)Qcart is the wide subcategory of Ar(B)Q
spanned by the cartesian squares. As these are precisely the cartesian morphisms
for the cartesian fibration t : Ar(B)Q → B classified by UQ, we conclude that this
resulting functor is indeed the cocartesian unstraightening of ιUQ, finishing the
proof. �

Remark 8.26. The above proof actually allows to describe hom(1, –) as a func-
tor on all of Span(B,B,Q): it is obtained from Barwick’s unfurling of UQ (see
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[HHLN23, Example 3.4]) by passing to groupoid cores pointwise. In particular, the
covariant functoriality in Q is given by postcomposition.

Corollary 8.27. The free Q-Mackey sheaf P(1) : Span(B,B,Q)→ Spc is corepre-
sented by 1.

Proof. By the non-parametrized Yoneda lemma, homSpan(1, –) corepresents eval-
uation at 1 on the category of all functors Span(B,B,Q) → Spc. As the same

holds true on MackQ(B; Spc) for P(1) by adjointness, and since homSpan(1, –) ∈
MackQ(B; Spc) by Lemma 8.25, the claim follows. �

9. Examples and applications

In this section, we discuss various examples and applications of our results. We
start in Section 9.1 by proving a general result which lets us in many practical sit-
uations reduce the big Mackey sheaf descriptions obtained in the previous section
to much more manageable descriptions. In the remainder of the section we then
specialize this result to the contexts of higher semiadditivity, equivariant semiad-
ditivity, and ‘very G-semiadditivity,’ and discuss various interesting consequences
and applications.

9.1. Smaller spans. As indicated above, the information encoded in a Mackey
sheaf F : Span(B,B,Q)→ E is most of the time highly redundant. For example, if
B is the topos of ∞-groupoids and Q is the class of finite covering maps, then the
above does not immediately recover the definition of the category of commutative
monoids as Fun×(Span(Fin), E) but instead describes it in a somewhat bloated
way as a subcategory of Fun(Span(Spc, Spc,Finloc), E). As the most extreme case,
consider an arbitrary topos B with Q = ιB (no semiadditivity conditions), i.e. of
a continuous functor F : Bop → E . If B = PSh(T ), such a functor is completely
determined by its restriction along the Yoneda embedding. More generally, if B
is given by sheaves on some site A we may equivalently describe F as a functor
Aop → E satisfying descent. We will now give a similar sheaf description for non-
trivial Q as long as the latter is defined via the site A.
Definition 9.1 (Mackey sheaves on a site). Let A be a small category equipped
with a Grothendieck topology τ , and let Q ⊆ A be a wide τ -local subcategory
closed under base change and diagonals. Given a complete category E , we define an
E-valued Q-Mackey τ-sheaf on (A, τ) to be a functorM : Span(A,A, Q)→ E whose
restriction M |Aop : Aop → E is a τ -sheaf. The categories of Mackey sheaves over
(A/A, τ) for varying A ∈ A then assemble into a functor MackQτ (A; E) : Aop → E .
Example 9.2. If Q ⊆ Shvτ (A) is locally inductible, then its preimage in A satisfies
the above assumptions.

Proposition 9.3. Let Q ⊆ B be a locally inductible subcategory. Assume we have
a small full subcategory A ⊆ B equipped with a subcanonical Grothendieck topology
τ such that the following conditions are satisfied:

(1) The inclusion A →֒ B extends to an equivalence Shvτ (A) ∼−−→ B.
(2) A is closed under maps in Q in the following sense: for every B ∈ A and

A→ B in Q, also A ∈ A.
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Then the inclusion (A,A,A ∩Q) →֒ (B,B,Q) is a map of adequate triples and the
restriction functor Fun(Span(B,B,Q), E) → Fun(Span(A,A,A ∩ Q), E) admits a
right adjoint, restricting to an adjoint equivalence

MackQ(B; E) ≃MackA∩Q
τ (A; E).

Proof. Consider a pullback square

A′ A

B′ B

f ′

y
q′ q∈Q∩A

f∈A

in B with f ∈ A and q ∈ Q∩A as indicated. Since Q is closed under base change,
q belongs again to Q, so the second assumption implies that all four objects belong
to A. It follows immediately that (A,A,A ∩ Q) is an adequate triple and that
(A,A,A ∩Q) →֒ (B,B,Q) is indeed a map of adequate triples.

We now observe that the second assumption on Q guarantees that the induced map
ι : Span(A,A,A ∩Q)→ Span(B,B,Q) is fully faithful. We claim that we have an
adjunction

ι∗ : Fun(Span(B,B,Q), E) ⇄ Fun(Span(A,A,A ∩Q), E) : ι∗
with fully faithful right adjoint and such that ι∗X |Bop is right Kan extended from
X |Aop . Indeed, after embedding E in a limit preserving way into a very large

category Ê with large limits, this is an instance of Proposition 5.14op (for B = Spc)
as the second assumption on A guarantees that Span(A,A,A∩Q) ⊆ Span(B,B,Q)
is an adapted subcategory with respect to the canonical factorization systems; by
the above explicit description of ι∗X |Bop this right adjoint then actually restricts
accordingly.

It is then clear that ι∗ restricts to a functor MackQ(B; E) → MackA∩Q
τ (A; E). On

the other hand, appealing to the above description of ι∗X |Bop once more shows that
ι∗ restricts to an essentially surjective functor in the other direction since a functor
Bop → E is continuous if and only if it is right Kan extended from an A-sheaf by
[Lur18, Proposition 1.3.1.7]. �
Corollary 9.4. In the above situation, restriction along A →֒ B induces an equiv-
alence

MackQ(B; E)|Aop
∼−−→ MackA∩Q

τ (A; E).

Proof. It is clear that the inclusion induces anAop-natural map MackQ(B; E)|Aop →
MackA∩Q

τ (A; E), and the previous proposition with A replaced by A/A for varying
A ∈ A shows that is indeed an equivalence. �
Corollary 9.5. Let A ⊆ B be equipped with a topology τ satisfying the assumptions
of Proposition 9.3. Identifying B-categories with τ-sheaves of categories on A, we
have:

(1) The free presentable Q-semiadditive B-category is given by MackA∩Q
τ (A; Spc).

(2) The free presentable Q-stable B-category is given by MackA∩Q
τ (A; Sp).

Proof. In light of Corollary 8.3 and Corollary 8.4, these are direct consequences of
the previous corollary applied to the two cases E = Spc and E = Sp. �
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Example 9.6 (Presheaf topoi). The conditions of Proposition 9.3 are in particular
satisfied in the case where B = PSh(T ) is a presheaf topos on some small category
T and where Q = Qloc is obtained from a small pre-inductible subcategory Q ⊆
PSh(T ). In this case, we let A ⊆ PSh(T ) denote the essential image of the inclusion
Q →֒ PSh(T ), and equip it with the Grothendieck topology τ in which collection
{fi : Ai → A} generates a covering sieve if and only if the map

∐
i∈I Ai → A is an

effective epimorphism in PSh(T ), or equivalently if every morphism B → A from a
representable object B ∈ T factors through one of the morphisms fi.

To see that the conditions of Proposition 9.3 are satisfied, first note that condition
(2) is clear. For condition (1), notice that the image of the full inclusion T →֒ A →֒
Shvτ (A) consists of completely compact objects which generate Shvτ (A) under
colimits, so that restriction along this functor defines an equivalence Shvτ (A) ∼−−→
PSh(T ) by [Lur09, Corollary 5.1.6.11]. It is clear that this equivalence restricts on
A to the inclusion A →֒ PSh(T ), showing condition (1).

Example 9.7 (Trivial descent). As an extreme special case of Example 9.6, assume
that T is a small category equipped with an inductible subcategory Q ⊆ T . Then
Q = Qloc ⊂ PSh(T ) and A = T ⊂ PSh(T ), equipped with the trivial Grothendieck
topology, satisfy the assumptions of Corollary 9.5. We conclude that the free pre-
sentable Q-semiadditive T -category CMonQ(SpcT ) is given by the functor

A 7→ Fun(Span(T/A, T/A, T/A[Q]), Spc).

Note that the functors are not required to satisfy any sort of descent or limit-
preservation condition. In particular, we obtain:

Corollary 9.8. Let T be a small category and let Q ⊆ T be an inductible sub-
category. For every Q-semiadditive T -category C, there is a unique collection of
functors

HomQ
C(A) : C(A)op × C(A)→ Fun(Span(T/A, T/A, T/A[Q]), Spc)

which are natural in A ∈ T op and whose underlying functors C(A)op ×C(A)→ Spc
given by evaluation at idA are the Hom-functors.

Proof. Given the identification of the previous example, the corollary follows imme-
diately from the fact that the parametrized hom functor HomC(−,−) : Cop × C →
SpcT uniquely lifts through the functor U : CMonQ(SpcT )→ SpcT , which holds by
Corollary 7.7. �

9.2. Equivariant and global homotopy theory. We will now explain how to
use this to prove, in a unified way, Mackey functor descriptions of various categories
classically studied in equivariant homotopy theory, and to conversely establish uni-
versal properties of some categories of Mackey functors considered previously.

Throughout, we will work with T -categories, i.e. B = PSh(T ). Let us first consider
the case of P -semiadditivity for P ⊆ T atomic orbital (see Example 3.40). We
write FT for the finite coproduct completion of T , and FP

T for the wide subcategory
whose maps are finite coproducts of maps

∐n
i=1 Ai → B with each Ai → B in P .

Corollary 9.9. The free P -semiadditive presentable T -category is given by

MackPT : A 7→ Fun×(Span((FT )/A, (FT )/A, (FT )/A[FP
T ]), Spc).
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More precisely, for every P -semiadditive presentable T -category D, evaluation at
hom(1, –): Span(FT ,FT ,FP

T )→ Spc defines an equivalence

FunL
T (MackPT ,D) ∼−−→ D.

Similarly, the free P -stable presentable T -category is given by

A 7→ Fun×(Span((FT )/A, (FT )/A, (FT )/A[FP
T ]), Sp).

More generally, if P ⊆ T is any wide subcategory such that FP
T is pre-inductible,

then these define the free presentable (FP
T )loc-semiadditive and -stable T -categories,

respectively.

An independent proof of this corollary (excluding the last sentence) has been given
concurrently by Pützstück [Pü24] using the theory of cartesian patterns of [CH22].

Proof. We will focus on the semiadditive case, the proof of the stable statement
being analogous.

The topology from Lemma 9.6 on A = FT ⊆ PSh(T ) is just the disjoint union
topology. Corollary 9.5 thus shows that the free (FP

T )loc-semiadditive presentable
T -category is the full subcategory of Fun(Span((FT )/•, (FT )/•, (FP

T )/•), Spc) given
at A ∈ T by the functors whose restriction to (FT )

op
/A preserves products. However,

by Corollary 4.7 (or direct inspection), each Span((FT )/A, (FT )/A, (FP
T )/A) has finite

products, and a functor out of it preserves finite products if and only if its restriction
to (FT )

op
/A does so, verifying the above description.

Finally, Corollary 8.27 shows that hom(1, –) is the universal element, and so the
equivalence FunLT (MackPT ,D) ∼−−→ D is given by evaluation at hom(1, –) as stated.

�

Remark 9.10. We can also describe the universal element of the above model of
the P -stable presentable T -category as follows:

As FP
T contains all fold maps X ∐X → X , Remark 8.6 implies that MackPT (Spc) is

equivalent to Fun⊕(Span(FT ,FT ,FP
T ),CMon) via the forgetful map.

As the delooping functor CMon → Sp is left adjoint to the forgetful functor (in
particular semiadditive), it induces a functor Fun⊕(Span(FT ,FT ,FP

T ),CMon) →
Fun⊕(Span(FT ,FT ,FP

T ), Sp) left adjoint to the forgetful functor. By adjointness,
this then sends (the lift of) hom(1, –) to the universal element S; in other words, S
is given by pointwise delooping the unique E∞-monoid structure on hom(1, –).

Let us make one special case of the above result explicit:

Theorem 9.11. There exists an equivalence, natural in G ∈ Glo, between the
(∞-)category of G-global special Γ-spaces in the sense of [Len20, Definition 2.2.50]
and Fun⊕(Span(F/BG,F/BG,F/BG[F†]),CMon), where as before F = FGlo is the
(2, 1)-category of 1-groupoids and F† denotes the wide subcategory of faithful func-
tors.

Similarly, there exists a natural equivalence between the category of G-global spectra
[Len20, Theorem 3.1.40] and Fun⊕(Span(F/BG,F/BG,F/BG[F†]), Sp).
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Proof. By [CLL23a, Theorem 5.3.1] the categories ofG-global special Γ-spaces make
up the free presentable equivariantly semiadditive global category. The same holds
for the categories of Mackey functors by Corollary 9.9, proving the first statement.

The second statement follows similarly from [CLL23a, Theorem 7.3.2]. �
Remark 9.12. In the special case G = 1 the above models recover Schwede’s
ultra-commutative monoids and global spectra [Sch18] for the global family of finite
groups. In this setting they first appeared as [Len22, Theorems 4.22 and 5.17].

We can further use this to describe the free presentable globally semiadditive and
globally stable global categories (Example 3.39):

Corollary 9.13. The assignment MackGlo
Glo : G 7→ Fun⊕(Span(F/BG),CMon) de-

fines the free presentable globally semiadditive global category. Similarly, the free
presentable globally stable global category is given by G 7→ Fun⊕(Span(F/BG), Sp).

�
Remark 9.14. Note that compared to the category MackSpc1Spc of 1-commutative
monoids, we have fewer limit conditions in MackGlo

Glo, i.e. the two notions do not
agree. Instead, the above descriptions tell us that 1-commutative monoids embed
fully faithfully into ‘fully globally commutative monoids’ as those objects whose
underlying global space is in the image of the fully faithful right adjoint of the
forgetful functor U = ev1 : PSh(Glo) → Spc. Such global spaces are called cofree
in [Sch18, Definition 1.2.28] or Borel complete in [CLL23c].

Remark 9.15. Compared to the objects of classical global homotopy theory, the
above ‘fully global’ versions come with extra structure in the form of ‘deflations,’
additive transfers along surjective group homomorphisms.

In addition to the non-equivariant examples arising via the previous remark, several
interesting ultra-commutative monoids like the infinite orthogonal, unitary, and
symplectic groups O, U, and Sp [Sch18, Examples 2.3.6, 2.3.7, and 2.3.9], as well
as various global spectra occuring in nature like the sphere, the global algebraic K-
theory of anyQ-algebra [Sch22, Definition 10.2 and Remark 10.7], or global complex
topological K-theory KU [Sch18, Construction 6.4.9] and its real analogue KO are
expected to enhance accordingly, making these fully global categories interesting
objects of study. As another example, fully global Mackey functors arising from K-
theoretic constructions have recently been applied to height 1 chromatic homotopy
theory, see [Yua24] and [CY23]. We moreover remark that objects of the category

MackGlo
Glo(Ab)

(
which can be viewed as a decategorification of MackGlo

Glo(Sp)
)
, or

more generally MackGlo
Glo(ModR) for an ordinary commutative ring R, have been

well-studied in representation theory under the name biset functors, see e.g. [Bou10].

As another application, we can reprove the (by now classical) Mackey functor de-
scription of G-equivariant spectra [CMNN20, Theorem A.1] for a finite group G as
well as its refinement to equivariantly commutative monoids recently established
by Marc [Mar24]:

Corollary 9.16. There is an equivalence, natural in G ∈ Orb, between MackG :=
Fun⊕(Span(FG),CMon) and Shimakawa’s G-equivariant special Γ-spaces [Shi89].

Similarly, there is a natural equivalence between genuine G-spectra (say, in the in-

carnation of symmetric G-spectra [Hau17])and MackG(Sp) := Fun⊕(Span(FG), Sp).
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Proof. These follow as before as these models make up the universal presentable
equivariantly semiadditive and equivariantly stable Orb-categories, respectively, by
[CLL23b, Theorems 7.17 and 9.5]. �

9.3. Mackey profunctors and quasi-finitely genuine G-spectra. As a new
application of our result, we obtain universal characterizations for the category
M̂(G,Z) of Z-valued G-Mackey profunctors introduced by Kaledin [Kal22] and the
category SpqfinG of quasi-finitely genuine G-spectra of Krause–McCandless–Nikolaus
[KMN23].

Let G be an arbitrary group. Recall from Example 3.41 the pre-inductible subcat-
egory QFinG ⊆ PSh(ÔrbG) of quasi-finite G-sets.

Definition 9.17 (Mackey profunctors, cf. [Kal22, Definition 3.2], [KMN23, Def-
inition 4.5]). Let G be a group and let E be a presentable category. A functor
M : Span(QFinG) → E is called very additive if for every quasi-finite G-set S the
canonical map

M(S)→
∏

s∈S/G

M(π−1(s))

is an equivalence in E , where π : S → S/G denotes the quotient map. We write

MackproG (E) := Funvadd(Span(QFinG), E)
for the full subcategory of the functor category spanned by the very additive func-
tors, and refer to its objects as E-valued G-Mackey profunctors. The assignment
G/H 7→ MackproH (E) naturally defines a G-procategory MackproG (E) : ÔrbopG → Cat.

In order to apply our main results to this situation, we have to understand the
Grothendieck topology τ on QFinG provided by Example 9.6.

Lemma 9.18. A functor M : Span(QFinG) → E is a τ-sheaf if and only if it is
very additive.

Proof. For the ‘only if’-direction, note that for every quasi-finite G-set S the canon-
ical map

∐
s∈S/G π−1(s) ։ S is a surjection on H-fixed points for all finite-index

H 6 G, and thus becomes an effective epimorphism in PSh(ÔrbG). In particular,
the inclusions {π−1(s) →֒ S}s∈S/G define a τ -cover, showing that M is very additive
whenever it is a τ -sheaf.

Conversely, assume that M is very additive. We have to show that M is a τ -
sheaf, or equivalently that its restriction M ′ := M |QFinop

G
: QFinopG → E extends

to a continuous functor PSh(ÔrbG)
op → E Define N : PSh(ÔrbG)

op → E as the
limit-extension of the restriction M ′|Ôrbop

G
: ÔrbopG → E . Because QFinG is a full

subcategory of PSh(ÔrbG), the restriction of N to QFinopG is precisely the right
Kan extension of M ′|Ôrbop

G
along the inclusion, so that there is a canonical map

M ′ → N |QFinop
G

extending the identity on ÔrbG. As both sides are very additive (for

N by the first paragraph), we see that this an equivalence, finishing the proof. �

Corollary 9.19. For a presentable category E there is a canonical equivalence

CMon
QFinG

B (Shv(B; E)) ≃MackproG (E),
where B := PSh(ÔrbG).
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Proof. Both sides are canonically equivalent to Mack
QFinG

B (E): for the left-hand
side this is by Theorem 8.2 while for the right-hand side this is a combination of
the previous lemma with Corollary 9.4. �

In the case E = Sp, the category MackproG (Sp) is precisely the category SpqfinG of
quasi-finitely genuine G-spectra of Krause–McCandless–Nikolaus [KMN23, Defini-
tion 4.5]. Corollary 8.4 therefore specializes to:

Theorem 9.20. The category SpqfinG is the underlying category of the free pre-
sentable very G-semiadditive stable G-procategory. �

On the other hand, for E = Ab the category MackproG (Ab) is precisely the category

M̂(G,Z) of Z-valued Mackey profunctors introduced by Kaledin [Kal22, Defini-
tion 3.2]. Combining Remark 8.5 with Example 7.34 we therefore similarly get:

Theorem 9.21. The category M̂(G,Z) of G-Mackey profunctors in abelian groups
is the underlying category of the free presentable 1-truncated very G-additive G-
procategory. �

Appendix A. A criterion for adjoints

In this short appendix we will recall a criterion from [MW21] for the existence of ad-
joints of parametrized functors and specialize it to a statement about parametrized
colimits. We begin with the following characterization:

Proposition A.1 (See [MW21, Proposition 3.2.9]). A B-functor G : C → D admits
a left adjoint if and only if the following conditions are satisfied:

(1) For each A ∈ B, the functor GA : C(A)→ D(A) admits a left adjoint FA.
(2) For each f : A → B the Beck–Chevalley transformation FAf

∗ → f∗FB is
an equivalence.

In this case, the left adjoint F is given at any object A ∈ B by the pointwise left
adjoint FA, and for any morphism f : A→ B by the Beck–Chevalley square. �

Remark A.2. If the restriction functor f∗ has a right adjoint f∗, the second
condition is equivalent to demanding that the Beck–Chevalley map GBf∗ → f∗GA

be invertible. In particular, if C and D are B-complete, then G has a left adjoint if
and only if it preserves B-limits and each GA has a left adjoint.

The following proposition allows us to significantly reduce the amount of conditions
we have to check:

Proposition A.3. Let G : C → D be a B-functor. Assume there exists a covering
sieve Σ ⊆ B of the terminal object 1 ∈ B such that for every A ∈ Σ the functor GA

admits a left adjoint FA and such that for every f : A→ B in Σ the Beck–Chevalley
map FAf

∗ → f∗FB is invertible. Then G admits a left adjoint.

Proof. As Σ is a sieve, the assumptions imply via the previous proposition that for
every A ∈ Σ the B/A-functor π∗

AG : π∗
AC → π∗

AD is a right adjoint. As the objects
of Σ cover 1 ∈ B, [MW21, Remark 3.3.6] then implies that also G itself is a right
adjoint as claimed. �
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Corollary A.4. Let Q ⊆ B local and let C be any B-category. Assume that for
every q : A→ B there exists a covering sieve Σ ⊆ B/B such that for every (f : B′ →
B) ∈ Σ restriction functor q′∗ : C(B′) → C(A ×B B′) along q′ := q∗(f) admits a
left adjoint q′!, and such that these left adjoint satisfy base change along maps in Σ.
Then C is Q-cocomplete.

Proof. We have to show that for each q the B/B-functor q∗ : π∗
BC → Fun(A, π∗

BC)
admits a left adjoint. This is however simply an instance of the previous proposition
(with B/B in place of B). �

We also note the following result complementing this corollary:

Lemma A.5. Let Q ⊆ B be local and let F : C → D be a functor of Q-cocomplete
B-categories. Assume that for every q : A→ B in Q there exists a cover (fi : Bi →
B)i∈I (not necessarily a sieve) such that for every i ∈ I the Beck–Chevalley map
q′!FA×BB′

i
→ FB′

i
q′! is an equivalence, where q′ = f∗

i (q) denotes the pullback of q
along fi. Then F is Q-cocontinuous.

Proof. Fix q : A → B together with such a covering; we have to show that the
Beck–Chevalley map BC! : q!FA → FBq! is an equivalence. As the fi form a cover,
it will be enough to show that f∗

i BC! is an equivalence for every i ∈ I, i.e. that the
pasting

C(A) C(B) C(Bi)

D(A) D(B) D(Bi)

F

q!

F

f∗
i

FBC!

q! f∗
i

is invertible. However, pasting with the equivalences f∗
i q! → q′!f

∗
i coming from

Q-cocompleteness and appealing to the compatibility of mates with pastings this
is equivalent to saying that the pasting

C(A) C(A×B Bi) C(Bi)

D(A) D(A×B Bi) D(Bi)

(A×Bfi)
∗

F F

q′!

F

(A×Bfi)
∗ q′!

BC!

is invertible, which holds by assumption on fi. �
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HOMOTOPY-COHERENT ALGEBRA VIA SEGAL CONDITIONS

HONGYI CHU AND RUNE HAUGSENG

Abstract. Many homotopy-coherent algebraic structures can be described by Segal-type limit
conditions determined by an “algebraic pattern”, by which we mean an ∞-category equipped

with a factorization system and a collection of “elementary” objects. Examples of structures that
occur as such “Segal O-spaces” for an algebraic pattern O include∞-categories, (∞, n)-categories,
∞-operads (including symmetric, non-symmetric, cyclic, and modular ones), ∞-properads, and

algebras for a (symmetric) ∞-operad in spaces.
In the first part of this paper we set up a general framework for algebraic patterns and their

associated Segal objects, including conditions under which the latter are preserved by left and
right Kan extensions. In particular, we obtain necessary and sufficent conditions on a pattern O

for free Segal O-spaces to be described by an explicit colimit formula, in which case we say that
O is “extendable”.

In the second part of the paper we explore the relationship between extendable algebraic pat-
terns and polynomial monads, by which we mean cartesian monads on presheaf∞-categories that

are accessible and preserve weakly contractible limits. We first show that the free Segal O-space
monad for an extendable pattern O is always polynomial. Next, we prove an∞-categorical version
of Weber’s Nerve Theorem for polynomial monads, and use this to define a canonical extendable
pattern from any polynomial monad, whose Segal spaces are equivalent to the algebras of the

monad. These constructions yield functors between polynomial monads and extendable algebraic
patterns, and we show that these exhibit full subcategories of “saturated” algebraic patterns and

“complete” polynomial monads as localizations, and moreover restrict to an equivalence between
the ∞-categories of saturated patterns and complete polynomial monads.
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2 HONGYI CHU AND RUNE HAUGSENG

1. Introduction

Homotopy-coherent algebraic structures, where identities between operations are replaced by an
infinite hierarchy of compatible coherence equivalences, have played an important role in algebraic
topology since the 1960s1, when they were first introduced in the special case of A∞-spaces by
Stasheff [Sta63], and have since found a variety of applications in many fields of mathematics. From
a modern perspective, homotopy-coherent algebraic structures can be considered as the natural
algebraic structures in the setting of ∞-categories (which are themselves the homotopy-coherent
analogues of categories).

It turns out that many interesting homotopy-coherent algebraic structures can be described by
“Segal conditions”, i.e. they can be described as functors satisfying a specific type of limit condition.
The canonical (and original) example is Segal’s [Seg74] description of homotopy-coherently commu-
tative monoids in spaces (or E∞-spaces) as “special Γ-spaces”. In ∞-categorical language, these
are functors F : F∗ → S, where F∗ is a skeleton of the category of pointed finite sets, with objects
〈n〉 := ({0, 1, . . . , n}, 0), and S is the ∞-category of spaces (or ∞-groupoids), which are required to
satisfy the following condition:

For all n, the map

F (〈n〉)→
n∏

i=1

F (〈1〉),

induced by the morphisms ρi : 〈n〉 → 〈1〉 given by

ρi(j) =

{
0, j 6= i,

1, j = i,

is an equivalence.

Other key examples of structures described by Segal conditions include:

• associative (or A∞- or E1-)monoids, using the simplex category ∆op (in unpublished work of
Segal),
• ∞-categories, again using ∆op, in the form of Rezk’s Segal spaces [Rez01],
• (∞, n)-categories, using Joyal’s categories Θop

n , also in work of Rezk [Rez10],
• ∞-operads, using the dendroidal category Ωop of Moerdijk–Weiss [MW07], in work of Cisinski

and Moerdijk [CM13],
• algebras for an ∞-operad O (in the sense of [Lur17]) in S, using the “category of operators” O

itself.

Given these and other examples (many of which we will discuss below in §3), we might wonder why
so many different algebraic structures can be described by Segal conditions. Our main results in
this paper provide an explanation of this situation, by answering the following question:

Question 1.1. Which homotopy-coherent algebraic structures can be described (in a reasonable
way) by Segal conditions, and how canonical is this description?

Before we describe our answer, we need to formulate a more precise version of this question,
by defining the terms that appear. First of all, we will consider algebraic structures on (families
of) spaces, which we take to mean algebras for monads on functor ∞-categories Fun(I, S) (where
I is any small ∞-category). Next, let us specify what precisely we mean by “Segal conditions”.
Returning to the example of special Γ-spaces, the category F∗ has the following features that we
wish to abstract:

• A morphism φ : 〈n〉 → 〈m〉 is called inert if |φ−1(j)| = 1 for j 6= 0, and active if φ−1(0) = {0}.
The inert and active morphisms form a factorization system on F∗: every morphism factors
as an inert morphism followed by an active morphism, and this decomposition is unique up to
isomorphism.

1More general frameworks for homotopy-coherent algebra, such as operads, arose out of work on infinite loop
spaces by Boardman–Vogt [BV73] and May [May72] in the early 1970s.
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• The morphisms ρi are precisely the inert morphisms 〈n〉 → 〈1〉.
• If Fint

∗ denotes the subcategory of F∗ with only inert morphisms, then the special Γ-spaces are
precisely the functors F : F∗ → S such that the restriction F |Fint

∗ is a right Kan extension of
F |{〈1〉}.

These features recur in our other examples, which suggests that the input data for a class of “Segal
conditions” should consist of an ∞-category O equipped with a factorization system (whereby
every morphism factors as an “active” morphism followed by an “inert” morphism) and a class
of “elementary” objects (or generators). From this data, which we will refer to as an algebraic
pattern2, we obtain the relevant Segal-type limit condition on a functor F : O → S by imposing
the requirement that for every O ∈ O the object F (O) is the limit over all inert morphisms to
elementary objects,

F (O)
∼−→ lim

E∈Oel
O/

F (E);

we say that such a functor F is a Segal O-space.3 If O is any algebraic pattern, and SegO(S) denotes
the full subcategory of Fun(O, S) on the Segal O-spaces, then the restriction functor

SegO(S)→ Fun(Oel, S)

has a left adjoint. This adjunction is always monadic, and we write TO for the corresponding
monad on Fun(Oel, S). The monad TO is then “described by” the algebraic pattern O. In general,
however, it is not possible to describe this monad explicitly, because the left adjoint involves an
abstract localization. We only want to consider a pattern to be “reasonable” if this localization is
unnecessary, in which case TO is given by a concrete formula, namely as

TOF (E) ' colim
X∈ActO(E)

lim
E′∈Oel

X/

F (E′),

where ActO(E) is the space of active morphisms to E in O. We call such patterns O extendable, and
give explicit necessary and sufficient conditions for a pattern to be extendable in Proposition 8.8.

We can now state the precise version of the previous question that we will address:

Question 1.2. Which monads on presheaf ∞-categories can be described as the free Segal O-space
monad for an extendable algebraic pattern O, and how canonical is this description?

We will characterize these monads as a certain class of polynomial4 monads, by which we mean
the monads on presheaf ∞-categories that are cartesian5 and whose underlying endofunctors are
accessible and preserve weakly contractible limits. Our first main result provides functors in both
directions between ∞-categories of extendable patterns and of polynomial monads:

Theorem 1.3.

(i) If O is an extendable algebraic pattern then the free Segal O-space monad TO is polynomial.
This determines a functor M from extendable patterns to polynomial monads.

(ii) If T is a polynomial monad on Fun(I, S) then there exists a canonical extendable algebraic pat-
tern W(T ) such that SegW(T )(S) is equivalent to the∞-category of T -algebras. This determines
a functor P from polynomial monads to extendable patterns.

We prove part (i) in §10 and part (ii) in §13. Part (ii) depends on an ∞-categorical version of
Weber’s nerve theorem [Web07], which we prove in §11 and use to construct a factorization system
on the Kleisli ∞-category of a polynomial monad in §12.

Our second main result characterizes the images of these functors:

2This terminology is inspired by Lurie’s categorical patterns [Lur17, §B], the key examples of which all arise from
algebraic patterns in our sense, and should not be confused with the notion of “pattern” considered by Getzler [Get09].

3Here we write Oint for the subcategory of O containing only the inert morphisms, Oel for the full subcategory of
Oint spanned by the elementary objects, and define Oel

O/
:= Oel ×Oint Oint

O/
.

4The analogous monads on ordinary categories are sometimes called strongly cartesian monads.
5The cartesian monads are those whose multiplication and unit transformations are cartesian natural transfor-

mations, which in turn means that their naturality squares are all cartesian, i.e. are pullback squares.
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Theorem 1.4.

(i) Restricting to slim6 extendable patterns, there is a natural transformation σ : id → PM, and
the component σO is an equivalence if and only if the pattern O is saturated, meaning that it
is a slim extendable pattern such that the functors

MapO(O, –) : O→ S

are Segal O-spaces for O ∈ O. The pattern W(T ) for a polynomial monad T is always saturated,
and the transformation σ exhibits the full subcategory of saturated patterns as a localization of
the ∞-category of slim extendable patterns.

(ii) There is a natural transformation τ : id → MP, and τT is an equivalence for a polynomial
monad T on Fun(I, S) if and only if T is complete, meaning that the essentially surjective
functor I → W(T )el is an equivalence. The monad TO for an extendable pattern O is always
complete, and the transformation τ exhibits the full subcategory of complete polynomial monads
as a localization of the ∞-category of polynomial monads.

(iii) The functors P and M restrict to an equivalence between the ∞-categories of saturated patterns
and complete polynomial monads.

We will prove part (i) in §14 and parts (ii) and (iii) in §15.
The answer to our question above is thus that the monads of the form TO for an extendable pattern

O are precisely the complete polynomial monads, and there is a unique extendable pattern describing
this monad that is saturated, namely the canonical pattern W(TO). For example, returning to our
initial example of commutative monoids described by an algebraic pattern structure on F∗, this
pattern is extendable, with free commutative monoids describe by the expected formula

X 7→
∞∐

n=0

X×nhΣn
,

but it is not saturated. The corresponding saturated pattern is instead the ∞-category of free
commutative monoids on finite sets (i.e. the Lawvere theory for commutative monoids), which by
work of Cranch [Cra11] can be identified with the (2, 1)-category Span(F) of finite sets with spans
(or correspondences) as morphisms; see 14.22 for more details.

1.1. Overview. In the first part of the paper we set up a general categorical framework for algebraic
patterns and Segal objects. In §2 we introduce these objects more formally and prove some of their
basic properties, before we look at examples of algebraic patterns and their Segal objects in §3.
We then introduce morphisms of algebraic patterns in §4 and construct an ∞-category of algebraic
patterns in §5, where we also prove that this has limits and filtered colimits. Next, we provide
conditions under which Segal objects are preserved by right and left Kan extensions in §6 and §7,
respectively.

In §8 we apply our work on left Kan extensions to analyze free Segal objects; in particular,
we obtain necessary and sufficient conditions for a pattern O to be extendable, meaning that free
Segal O-spaces are described by a colimit formula. In §9 we study (weak) Segal fibrations, which
generalize Lurie’s definitions of symmetric monoidal ∞-categories and symmetric ∞-operads. We
show that any weak Segal fibration over an extendable base is again extendable, and moreover left
Kan extension along any morphism of weak Segal fibrations preserves Segal objects; this recovers, for
example, the formula of [Lur17] for operadic left Kan extensions of ∞-operad algebras in cartesian
monoidal ∞-categories.

In §10 we introduce polynomial monads, and prove that the free Segal O-space monad for any
extendable pattern is polynomial. We then prove an ∞-categorical version of Weber’s Nerve Theo-
rem for presheaf ∞-categories in §11, and apply this to define a factorization system on the Kleisli
∞-category of a polynomial monad in §12. This gives a canonical algebraic pattern for every poly-
nomial monad, which we study in §13. Next, we study the relationship between an extendable

6This is a mild technical hypothesis; it is satisfied in almost all examples, and the patterns W(T ) are always slim.
Moreover, any extendable pattern can be replaced by a full subcategory that is slim and determines the same monad.
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pattern and the canonical pattern of its free Segal space monad; under a mild hypothesis there is a
functor between these, and we show that this is an equivalence precisely when the pattern is satu-
rated. Finally, in §15 we study complete polynomial monads, and prove that there is an equivalence
between these and saturated patterns.

1.2. Related Work. There is an extensive literature on using (finite) limit conditions to describe
algebraic structures in category theory, going back at least to Lawvere’s thesis [Law68], where he
introduced algebraic theories. Our work is in particular closely related to the “nerve theorem”, one
version of which almost says that a strongly cartesian monad on a presheaf category is described
by Segal conditions; this version was first proved in unpublished work of Leinster (though his proof
did not use the factorization system), and later extended by Weber [Web07] to a description of
certain weakly cartesian monads.7 We were particularly inspired by the simpler proof given by
Berger, Melliès, and Weber [BMW12]. Their work has more recently been extended by Bourke
and Garner [BG19], who study general classes of monads that can be described by some notion of
“theories with arities”, including in the enriched context.

1.3. Acknowledgments. H.C. thanks the Labex CEMPI (ANR-11-LABX-0007-01) and Max Planck
Institute for Mathematics for their support during the process of writing this article. The first ver-
sion of this paper was written while R.H. was employed by the IBS Center for Geometry and Physics
in a position funded through the grant IBS-R003-D1 of the Institute for Basic Science, Republic of
Korea. We thank Philip Hackney for helpful comments on the first version of the paper, and Roman
Kositsyn for pointing out that the conclusion of Lemma 9.14 follows from extendability.

2. Algebraic Patterns and Segal Objects

In this section we introduce the basic structures we will study in this paper, namely algebraic
patterns and their Segal objects.

Definition 2.1. An algebraic pattern O is an ∞-category O equipped with:

• a factorization system (Oint,Oact), the morphisms in which we refer to as the inert and active
morphisms in O,
• a full subcategory Oel ⊆ Oint whose objects we call the elementary objects of O.

Unless stated otherwise, we will assume by default that algebraic patterns are essentially small.

Remark 2.2. Here a factorization system on an ∞-category C means a pair of subcategories
(CL,CR) such that both contain all objects of C, and for every morphism f : X → X ′ in C, the space
of factorizations 




Y

X X ′

rl

f

: l ∈ CL, r ∈ CR





is contractible.

Remark 2.3. We will often abuse notation and conflate an algebraic pattern with its underlying
∞-category O, i.e. we will simply say that O is an algebraic pattern.

Notation 2.4. If O is an algebraic pattern, we will often indicate an inert map between objects
O,O′ of O as O� O′ and an active map as O  O′. These symbols are not meant to suggest any
intuition about the nature of inert and active maps.

7Weakly cartesian monads are of interest in the case of ordinary categories, as many “algebraic” monads that
involve symmetries, such as the free commutative monoid monad, are not cartesian. This issue disappears if we
replace sets by groupoids, and so weakly cartesian monads are not relevant in our ∞-categorical setting.
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Notation 2.5. If O is an algebraic pattern and X is an object of O, then we write Oel
X/ for the

fibre product of ∞-categories Oel ×Oint Oint
X/. Thus the objects of Oel

X/ are inert morphisms X � E

where E is elementary, and the morphisms are commutative triangles

X

E E′

where all morphisms are inert, and E and E′ are elementary.

Definition 2.6. Let O be an algebraic pattern. We say an∞-category is O-complete if it has limits
of shape Oel

X/ for all X ∈ O.

Definition 2.7. Let O be an algebraic pattern and C an O-complete ∞-category. A Segal O-object
in C is a functor F : O→ C such that for every X ∈ O the canonical map

F (X)→ lim
E∈Oel

X/

F (E)

is an equivalence. We write SegO(C) for the full subcategory of Fun(O,C) spanned by the Segal
O-objects.

Notation 2.8. We will often refer to Segal O-objects in the ∞-category S of spaces as Segal O-
spaces, and to Segal O-objects in the ∞-category Cat∞ of ∞-categories as Segal O-∞-categories.

Lemma 2.9. Let C be an O-complete ∞-category. Then F : O→ C is a Segal O-object if and only
if the restriction F |Oint is a right Kan extension of F |Oel .

Proof. Since C is O-complete, F |Oint is a right Kan extension of F |Oel if and only if for all X ∈ Oint,
the natural map

F (X)→ lim
E∈Oel

X/

F (E)

is an equivalence. �

Definition 2.10. Let O be an algebraic pattern. For O ∈ O we write y(O)Seg for the colimit
colimE∈(Oel

O/
)op y(E) in Fun(O, S), where y denotes the Yoneda embedding Oop → Fun(O, S). If

C is a cocomplete ∞-category, and thus is tensored over S, then we can consider C ⊗ y(O) and
C ⊗ y(O)Seg in Fun(O,C) for C ∈ C.

Lemma 2.11. Let O be an algebraic pattern and C a cocomplete ∞-category.

(i) F ∈ Fun(O,C) is a Segal O-object if and only if F is local with respect to the canonical maps
C ⊗ y(O)Seg → C ⊗ y(O) for all O ∈ O.

(ii) If C is κ-presentable, then F is a Segal O-object if and only if F is local with respect to these
maps where C is κ-compact.

(iii) If C is presentable, then the full subcategory SegO(C) is an accessible localization of Fun(O,C).
(iv) If C is presentable, then so is the ∞-category SegO(C).

Proof. The object F is local with respect to C ⊗ y(O)Seg → C ⊗ y(O) precisely when the morphism
of spaces

MapFun(O,C)(C ⊗ y(O), F )→ MapFun(O,C)(C ⊗ y(O)Seg, F )

is an equivalence. Here we have equivalences

MapFun(O,C)(C ⊗ y(O), F ) ' MapFun(O,S)(y(O),MapC(C,F )) ' MapC(C,F (O)),
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using the Yoneda Lemma, and similarly

MapFun(O,C)(C ⊗ y(O)Seg, F ) ' MapFun(O,S)(y(O)Seg,MapC(C,F ))

' lim
E∈Oel

O/

MapFun(O,S)(y(E),MapC(C,F ))

' MapC(C, lim
E∈Oel

O/

F (E)).

Thus F is local with respect to this morphism for all C and O if and only if F (O)
∼−→ limE∈Oel

O/
F (E)

for all O, i.e. F is a Segal object. This proves (i). If C is κ-presentable, then to conclude that the
Segal map F (O) → limE∈Oel

O/
F (E) is an equivalence it suffices to consider C in Cκ, which proves

(ii).
It follows that if C is presentable, then SegO(C) is the full subcategory of objects in Fun(O,C)

that are local with respect to a set of morphisms. Parts (iii) and (iv) then follow from [Lur09,
Proposition 5.5.4.15]. �

3. Examples of Algebraic Patterns

In this section we will briefly describe some examples of algebraic patterns and their associated
Segal objects.

Example 3.1. We write F[∗ for the algebraic pattern structure on F∗ given by the inert–active

factorization system we discussed above in the introduction, with F[,el
∗ containing the single object

〈1〉. Then a Segal F[∗-space is precisely a commutative monoid, or equivalently a special Γ-space in
the sense of [Seg74].

Example 3.2. We can also consider another pattern structure on F∗: We define F\∗ by the same

factorization system, but now F\,el
∗ contains the two objects 〈0〉 and 〈1〉, with the unique inert

morphism 〈1〉 → 〈0〉. Segal F\∗-objects are functors F : F\∗ → C such that

F (〈n〉) ' F (〈1〉)×F (〈0〉)n,

where the right-hand side denotes an iterated fibre product over F (〈0〉); this is equivalently a
commutative monoid in the slice C/F (〈0〉).

Example 3.3. We write ∆ for the simplex category, i.e. the category of non-empty finite ordered
sets [n] := {0, . . . , n} and order-preserving maps between them. A morphism f : [n] → [m] is inert
if it is the inclusion of a sub-interval, i.e. f(i) = f(0) + i for all i, and active if f preserves the end-
points, i.e. f(0) = 0 and f(n) = m. Every morphism in ∆ factors uniquely as an active morphism
followed by an inert one, so this determines an inert–active factorization system on ∆op. Using this
factorization system we can define two interesting algebraic pattern structures on ∆op:

• ∆op,\ denotes the pattern where ∆op,\,el contains the two objects [0] and [1], and the two inert
morphisms [1]⇒ [0],

• ∆op,[ denotes the pattern where ∆op,[,el := {[1]}.
A Segal ∆op,\-object is a functor F : ∆op → C such that

F ([n])
∼−→ F ([1])×F ([0]) · · · ×F ([0]) F ([1]).

In particular, a Segal ∆op,\-space is precisely a Segal space in the sense of Rezk [Rez01], which

describes the algebraic structure of an ∞-category. On the other hand, a Segal ∆op,[-object F
satisfies

F ([n]) ' F ([1])×n,

and describes an associative monoid.
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Example 3.4. For any integer n the product ∆n,op := (∆op)×n has a coordinate-wise factorization
system (i.e. a morphism is active or inert precisely when all of its components are). Using this we

can define two algebraic pattern structures ∆n,op,\ and ∆n,op,[, where

∆n,op,\,el := (∆op,\,el)n

consists of all objects ([i1], . . . , [in]) with is = 0 or 1 for all s, while

∆n,op,[,el := {([1], . . . , [1])}.
These are both special cases of products of algebraic patterns (Corollary 5.5). Segal ∆n,op,\-spaces
are n-uple Segal spaces, which describe internal ∞-categories in internal ∞-categories in . . . in
∞-categories. A special class of these was first introduced by Barwick [Bar05] as a model for
(∞, n)-categories. On the other hand, the Dunn–Lurie additivity theorem [Lur17, Theorem 5.1.2.2]

implies that Segal ∆n,op,[-objects are equivalent to En-algebras, i.e. algebras for the little n-disc
operad.

Example 3.5. Let Θn be defined inductively by Θ0 := ∗ and Θn := ∆ o Θn−1, where for any
category C the wreath product ∆ o C has objects [n](C1, . . . , Cn) with Ci ∈ C, and morphisms
[n](C1, . . . , Cn) → [m](C ′1, . . . , C

′
m) given by morphisms φ : [n] → [m] in ∆ together with maps

ψij : Ci → Cj in C whenever φ(i−1) < j ≤ φ(i). (This category was first considered in unpublished
work of Joyal; the “wreath product” definition is due to Berger [Ber07].) Then Θn has an inductively
defined factorization system (first defined in [Ber02, Lemma 1.11]): the morphism above is inert
(or active) if φ is inert (active) and each ψij is inert (active). We can again use this to define two
algebraic patterns. To do so we need some notation: We inductively define objects C0, . . . , Cn in
Θn by C0 := [0]() and Cn := [1](Cn−1), starting with C0 being the unique object of Θ0. Then

• Θop,\
n is defined by taking Θop,\,el

n to contain the objects C0, . . . , Cn; we can depict this category
as

Cn ⇒ Cn−1 ⇒ · · ·⇒ C0.

• Θop,[
n is defined by taking Θop,[,el

n to contain the single object Cn.

Segal Θop,\
n -spaces are then precisely Rezk’s Θn-spaces [Rez10], which describe the algebraic struc-

ture of (∞, n)-categories. On the other hand, Segal Θop,[
n -objects are again equivalent to En-algebras

— this follows from [Bar18, Theorem 8.12] together with the Dunn–Lurie additivity theorem.

Example 3.6. All the examples considered so far are special cases of the following construction,
due to Barwick: Suppose Φ is a perfect operator category in the sense of [Bar18], and let Λ(Φ) be its
Leinster category, which is the Kleisli category of a certain monad on Φ. This has an active-inert
factorization system by [Bar18, Lemma 7.3], where the active morphisms are the free morphisms on
morphisms of Φ. Using this factorization system we can define two natural algebraic patterns:

• Λ(Φ)[ is defined by taking Λ(Φ)[,el to consist only of the terminal object ∗ ∈ Φ,
• Λ(Φ)\ is defined by taking Λ(Φ)\,el to contain all objects E such that there is an inert map
∗� E in Λ(Φ).

If O denotes the category of (possibly empty) ordered finite sets then Λ(O) ' ∆op, while if F
denotes the category of finite sets then Λ(F) ' F∗, and these pattern structures agree with those
defined above. The same holds for Θop

n , which can be described as the Leinster category of a wreath
product Oon of operator categories.

Example 3.7. Let Ω be the dendroidal category of Moerdijk and Weiss [MW07, §3]; this can
be defined as the category of free operads on trees. This has a natural active-inert factorization
system, described for example in [Koc11] (where the inert maps are called “free” and the active

ones “boundary-preserving”). Using this we can define an algebraic pattern Ωop,\ where Ωop,\,el

consists of the corollas Cn (i.e. trees with one vertex) and the plain edge η. Segal Ωop,\-spaces
are the dendroidal Segal spaces introduced by Cisinski and Moerdijk [CM13], which describe the
algebraic structure of∞-operads. The Segal condition says that the value of a Segal object at a tree
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decomposes as a limit over the corollas and edges of the tree. (We can also consider a pattern Ωop,[

where the elementary objects are just the corollas; then Segal Ωop,[-spaces describe∞-operads with
a single object.)

Example 3.8. If Φ is an operator category, let ∆Φ be the category defined in [Bar18, Definition
2.4]. This has pairs ([m], f : [m] → Φ) as objects, and morphisms ([m], f) → ([n], g) are given by
morphisms φ : [m] → [n] in ∆ together with certain natural transformations η : f → g ◦ φ. We
define a morphism (φ, η) : ([m], f) → ([n], g) in ∆Φ to be inert if φ is inert in ∆, and active if φ
is active and ηi : f(i) → g(φ(i)) is an isomorphism for every 0 ≤ i ≤ m. This gives an inert–active

factorization system on ∆op
Φ , and we define an algebraic pattern ∆op,\

Φ by taking the elementary

objects to be ([0], ∗) and ([1], I → ∗) (where ∗ denotes the terminal object). Then Segal ∆op,\
Φ -spaces

are precisely the Segal Φ-operads of [Bar18, §2], which describe Φ-∞-operads. (When Φ is F these
agree with ∞-operads in the sense of Lurie by [Bar18, Theorem 10.16], and with dendroidal Segal
spaces by [CHH18, Theorem 1.1].)

Example 3.9. Let Γ be the category of acyclic connected finite directed graphs defined by Hackney,
Robertson, and Yau in [HRY15]. Then Γop has an inert–active factorization system described in
[Koc16, 2.4.14] (where the active maps are called “refinements” and the inert maps are called

“convex open inclusions”). Using this we can define an algebraic pattern structure Γop,\ by taking

the elementary objects to be the elementary graphs with at most one vertex. Segal Γop,\-spaces are
equivalent to the model of ∞-properads as “graphical spaces” satisfying a Segal condition that is
briefly discussed in [HR18]; this is presumably equivalent (after imposing a completeness condition)
to the model of ∞-properads as certain presheaves of sets on Γ constructed in [HRY15].

Example 3.10. Let Ξ denote the category of unrooted trees defined in [HRY19]. Then Ξop has
an inert–active factorization system, described in [HRY19, §4], and using this we can give Ξop an

algebraic pattern structure Ξop,\ where the elementary objects are the stars and the plain edge. Segal
Ξop,\-spaces are then precisely the model for cyclic ∞-operads considered by Hackney, Robertson,
and Yau [HRY19].

Example 3.11. Let U denote the category of connected graphs defined in [HRY20]. Then Uop

has an inert–active factorization system, described in [HRY20, §2.1], and we can use this to equip
Uop with an algebraic pattern structure Uop,\ where the elementary objects are the stars and the
plain edge. We can also consider an algebraic pattern Uop,[ where the elementary objects are just
the stars; Segal Uop,[-objects are then the Segal modular operads defined by Hackney, Robertson,
and Yau [HRY20].

Remark 3.12. Below in §9 we will define (weak) Segal fibrations over an algebraic pattern, which
give general classes of examples of algebraic patterns. As a special case, we will see that every
∞-operad O in the sense of Lurie [Lur17] has an algebraic pattern structure O[ such that a Segal
O[-object in an ∞-category C with finite products is precisely an O-monoid in C.

4. Morphisms of Algebraic Patterns

In this section we define morphisms of algebraic patterns, and consider when they are compatible
with Segal objects. We then discuss some examples of such morphisms.

Definition 4.1. Let O and P be algebraic patterns. A morphism of algebraic patterns from O to
P is a functor f : O → P such that f preserves both active and inert maps, and takes elementary
object in O to elementary objects in P.

In general, morphisms of algebraic patterns do not necessarily interact well with Segal objects.
We therefore isolate the class of morphisms that preserve Segal objects under restriction:

Definition 4.2. A morphism of algebraic patterns f : O→ P is called a Segal morphism if it satisfies
the following condition:
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(∗) For all X ∈ O the induced functor Oel
X/ → Pel

f(X)/ induces an equivalence

lim
Pel
f(X)/

F
∼−→ lim

Oel
X/

F ◦ f el

for every Segal P-space F : P→ S.

Remark 4.3. The condition depends only on the restriction of F to Pel, so we could equivalently
have considered functors Pel → S that occur as restrictions of Segal P-spaces.

Remark 4.4. In practice, a morphism f is a Segal morphism because the functor Oel
X/ → Pel

f(X)/

is coinitial, in which case we say that f is a strong Segal morphism. However, the more general
definition allows for the following characterization:

Lemma 4.5. The following are equivalent for a morphism of algebraic patterns f : O→ P:

(1) f is a Segal morphism.
(2) The functor f∗ : Fun(P, S)→ Fun(O, S) restricts to a functor SegP(S)→ SegO(S).
(3) For every∞-category C, the functor f∗ : Fun(P,C)→ Fun(O,C) restricts to a functor SegP(C)→

SegO(C).

Proof. It is immediate from the definition that (1) is equivalent to (2) and that (3) implies (2). It
remains to check that (2) implies (3). Suppose F : P→ C is a Segal P-object; we need to show that
f∗F is a Segal O-object, i.e. that for all X ∈ O the natural map

lim
Pel
f(X)/

F → lim
Oel
X/

F ◦ f el

is an equivalence in C. Equivalently, we must show that for any C ∈ C, the map of spaces

lim
Pel
f(X)/

Map(C,F )→ lim
Oel
X/

Map(C,F ) ◦ f el

is an equivalence, which is true since Map(C,F ) is a Segal P-space. �

Remark 4.6. One might feel that the Segal property is sufficiently fundamental that it should
be included as part of the notion of a morphism of algebraic patterns. However, more general
morphisms also turn out to be occasionally useful. For example, the identity functor of F∗ viewed

as a functor F[∗ → F\∗ is a morphism of patterns, but is not a Segal morphism, and we will see later

in §6 that it induces a functor from Segal F[∗-objects to Segal F\∗-object that can be viewed as a
right Kan extension along idF∗ .

Proposition 4.7. Suppose f : O → P is a Segal morphism of algebraic patterns, and C is a pre-
sentable ∞-category. Then there is an adjunction

LSegf! : SegO(C)� SegP(C) :f∗

where LSeg is the localization functor left adjoint to the inclusion SegO(C) ↪→ Fun(O,C), and f! is
the functor of left Kan extension along f .

Proof. Since f∗ restricts to a functor on Segal objects, for F ∈ SegP(C) and G ∈ SegO(C) we have
a natural equivalence

MapSegO(C)(LSegf!F,G) ' MapFun(O,C)(f!F,G) ' MapFun(P,C)(F, f
∗G) ' MapSegP(C)(F, f

∗G),

which implies the claim. �

Remark 4.8. Below in §7 we will give conditions on a morphism f such that the left Kan extension
functor f! preserves Segal objects, and so gives a left adjoint to f∗ without localizing.

We now consider some examples of morphisms of patterns:
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Example 4.9. There is a functor |–| : ∆op → F∗ which takes an object [n] to |[n]| := 〈n〉 and a
morphism α : [n]→ [m] in ∆ to |α| : |[m]| → |[n]| given by

|α|(i) =

{
j if α(j − 1) < j ≤ α(j)

0 otherwise

This functor gives a Segal morphism of algebraic patterns ∆op,\ → F\∗ as well as ∆op,[ → F[∗.

Example 4.10. There is a functor τn : ∆n,op → Θop
n , defined inductively by setting τ0 := id and

τn([i1], . . . , [in]) := [i1](τn−1([i2], . . . , [in]), . . . , τn−1([i2], . . . , [in])).

This functor gives a Segal morphism of algebraic patterns ∆n,op,\ → Θop,\
n as well as ∆n,op,[ →

Θop,[
n .

Example 4.11. The previous examples are special cases of the following: Let f : Φ → Ψ be an
operator morphism between perfect operator categories, as defined in [Bar18, Definition 1.10]. As
discussed in [Bar18, §7] this induces a functor Λ(f) : Λ(Φ) → Λ(Ψ) between the corresponding
Leinster categories, and it is easy to check that this preserves the inert and active morphisms. Since
operator morphisms preserve terminal objects by definition, it follows from Example 3.6 that Λ(f)
preserves elementary objects, and hence gives morphisms of algebraic patterns Λ(Φ)\ → Λ(Ψ)\ and
Λ(Φ)[ → Λ(Ψ)[. The latter is evidently a Segal morphism, since

Λ(Φ)[,el
I/
∼= {∗ → I} ∼= {∗ → f(I)} ∼= Λ(Ψ)[,el

f(I)/,

where the seond isomorphism is part of the definition of an operator morphism.

Example 4.12. Every operator category Φ has a unique operator morphism |–| : Φ → F, which

gives a Segal morphism Λ(Φ)[ → F[∗. This is also a Segal morphism Λ(Φ)\ → F\∗ provided the

category Λ(Φ)\,el
I/ is weakly contractible for all I ∈ Φ.

Example 4.13. By [HRY19, Definition 1.20], the category Ω of trees can be identified with a
subcategory of the category Ξ of unrooted trees, and [HRY19, Definition 4.2] and [HRY19, Remark

4.3] show that this inclusion gives a morphism of algebraic patterns ι : Ωop,\ → Ξop,\. The descrip-
tion of morphisms in Ωop in [HRY19, Definition 1.20] implies that for every X ∈ Ωop and every

α ∈ Ξop,el
ιX/ , the ∞-category Ωop,el

X/ ×Ξop,el
ιX/

(Ξop,el
ιX/ )/α has a terminal object. In particular, the functor

Ωop
X/ → Ξop

ιX/ is coinitial, and hence ι is a strong Segal morphism. The resulting functor

ι∗ : SegΞop,\(S)→ SegΩop,\(S)

is the forgetful functor from cyclic ∞-operads to ∞-operads.

5. The ∞-Category of Algebraic Patterns

In this section we construct the∞-category of algebraic patterns, and describe limits and filtered
colimits in this ∞-category. As a first step, we consider the ∞-category of ∞-categories equipped
with a factorization system:

Definition 5.1. We define Fact to be the full subcategory of Fun(Λ2
2,Cat∞) (where Λ2

2 denotes the
category 0→ 2← 1) spanned by those cospans

CL → C← CR

that describe factorization systems, i.e. those such that the functors CL,CR → C are essentially
surjective subcategory inclusions, and FunL,R(∆2,C)→ Fun(∆{0,2},C) is an equivalence, where the
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domain is defined as the pullback

FunL,R(∆2,C) Fun(∆2,C)

Fun(∆1,CL)× Fun(∆1,CR) Fun(∆{0,1},C)× Fun(∆{1,2},C).

Proposition 5.2. The∞-category Fact is closed under limits and filtered colimits in Fun(Λ2
2,Cat∞).

In particular, the ∞-category Fact has limits and filtered colimits, and the forgetful functor to Cat∞
preserves these.

This will follow from the following observation:

Lemma 5.3. In the ∞-category Fun(∆1,Cat∞), the full subcategories of subcategory inclusions8,
essentially surjective subcategory inclusions, and full subcategory inclusions, are all closed under
limits and filtered colimits.

Proof. A functor F : C→ D is a subcategory inclusion precisely when C' → D' is a monomorphism
of spaces, and MapC(x, y) → MapD(Fx, Fy) is a monomorphism of spaces for all x, y ∈ C. A
subcategory inclusion F is essentially surjective if the map C' → D' is an equivalence, and a
full subcategory inclusion if the maps MapC(x, y) → MapD(Fx, Fy) are equivalences for all x, y ∈
C. Since mapping spaces and the underlying space of a limit (or filtered colimit) in Cat∞ are
computed as limits (or filtered colimits) of spaces, it suffices to observe that equivalences and
monomorphisms are closed under limits and filtered colimits in S. This is obvious for equivalences,
and for monomorphisms it follows from the characterization of these by [Lur09, Lemma 5.5.6.15]
as the morphisms f : X → Y such that the diagonal X → X ×Y X is an equivalence, since filtered
colimits commute with finite limits and limits commute. �
Proof of Proposition 5.2. It follows from Lemma 5.3 that cospans of subcategory inclusions are
closed under limits and filtered colimits in Fun(Λ2

2,Cat∞). Since limits commute, the ∞-category
FunL,R(∆2, –), viewed as a functor Fun(Λ2

2,Cat∞) → Cat∞, preserves limits, which implies that

objects such that the natural map FunL,R(∆2, –)→ Fun(∆{0,2}, –) is an equivalence are also closed
under limits. The same holds for filtered colimits, since the objects mapped out of in the definition
of FunL,R(∆2, –) are compact, and filtered colimits commute with finite limits in Cat∞. �
Definition 5.4. We now define the∞-category AlgPatt of algebraic patterns as the full subcategory
of the fibre product Fact×Cat∞ Fun(∆1,Cat∞) (where the pullback is over ev0 : Fact→ Cat∞ and
ev1 : Fun(∆1,Cat∞)→ Cat∞) containing the objects

C′ → CL → C← CR

where C′ → CL is a full subcategory inclusion.

Applying Lemma 5.3 again, now in the case of full subcategory inclusions, we get:

Corollary 5.5. The full subcategory AlgPatt is closed under limits and filtered colimits in

Fun(Λ2
2,Cat∞)×Cat∞ Fun(∆1,Cat∞).

In particular, AlgPatt has limits and filtered colimits, and the forgetful functor to Cat∞ preserves
these. �
Remark 5.6. The ∞-category AlgPatt contains all morphisms of algebraic patterns; restricting
these to Segal morphisms gives a (wide) subcategory AlgPattSeg. However, note that Segal mor-
phisms do not seem to be closed under filtered colimits or general pullbacks, though by Lemma 4.5
and the next example they are closed under finite products.

8Note that we use “subcategory inclusion” in the equivalence-invariant sense — in other words, a subcategory in
our sense must include all equivalences between its objects.
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Example 5.7. For any pair of algebraic patterns O, P we have a cartesian product pattern O× P.
For this we have an equivalence

SegO×P(C) ' SegO(SegP(C))

for any O × P-complete ∞-category C. To see this, observe that a right Kan extension along
Oel × Pel → Oint × Pint can be computed in two stages in two ways, by first doing the right Kan
extension to either Oel × Pint or Oint × Pel; this shows that F : O × P → C is a Segal object if and
only if F (O, –) is a P-Segal object for all O ∈ O and F (–, P ) is an O-Segal object for all P ∈ P.

Example 5.8. The pattern ∆op,[ can be described as the pullback ∆op,\ ×F\∗ F
[
∗ using the map

∆op,\ → F\∗ from Example 4.9 and the identity of F∗ viewed as a morphism of patterns F[∗ → F\∗.
(Similarly, for the other pairs of patterns O[,O\ mentioned in §3 the pattern O[ is the pullback

O\ ×F\∗ F
[
∗ for a morphism of patterns O\ → F\∗.)

Example 5.9. Let Θop,\ be the colimit colimn≥0 Θop,\
n induced by the sequence of natural inclusions

Θop,\
n ↪→ Θop,\

n+1, n ≥ 0, where Θop,\
n is the algebraic pattern defined in Example 3.5. The underlying

category Θ is equivalent to that introduced by Joyal [Joy97] to give a definition of weak higher
categories. It is easy to see that in this case we have an equivalence

SegΘop,\(S) ' lim
n≥0

SegΘop,\
n

(S),

so that Segal Θop,\-spaces model (∞,∞)-categories (in the inductive sense). In particular, the
canonical functor SegΘop,\(S) → SegΘop,\

n
(S) gives the underlying (∞, n)-category of an (∞,∞)-

category.

6. Right Kan Extensions and Segal Objects

Our goal in this section is to give a sufficient criterion on a morphism of algebraic patterns
f : O→ P such that right Kan extension along f preserves Segal objects.

Definition 6.1. We say that a morphism f : O → P of algebraic patterns has unique lifting of
active morphisms if for every active morphism φ : P → f(O) in P, the ∞-groupoid of lifts of φ to
an active morphism O′ → O in O is contractible. More precisely, the fibre (Oact

/O)'φ of the morphism

(Oact
/O)' → (Pact

/f(O))
'

at φ is contractible. Equivalently, f has unique lifting of active morphisms if this morphism of
∞-groupoids is an equivalence for all O ∈ O.

Lemma 6.2. A morphism of algebraic patterns f : O→ P has unique lifting of active morphisms if
and only if it satisfies the following condition:

(∗) For all P ∈ P the functor

Oint
P/ → OP/

is coinitial.

Proof. By [Lur09, Theorem 4.1.3.1], the functor Oint
P/ → OP/ is coinitial if and only if for every

morphism φ : P → f(O) in P, the ∞-category (Oint
P/)/φ is weakly contractible. This ∞-category has

objects pairs 
O

′ α−→ O,

P

f(O′) f(O)

ι φ

f(α)


 ,

where ι is inert. The morphism α has an essentially unique inert–active factorization, and since f
is compatible with this factorization we see that the full subcategory of objects where α is active is
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cofinal. By uniqueness of factorizations a morphism in this subcategory is required to be an equiv-
alence, hence this is an ∞-groupoid, and so (∗) is equivalent to this ∞-groupoid being contractible.
But an object in this subcategory gives an inert–active factorization of φ, and we see that it is
equivalent to the ∞-groupoid of lifts of the active part of φ to an active morphism in O. �

Proposition 6.3. Suppose f : O → P is a morphism of algebraic patterns that has unique lifting
of active morphisms and C is an O- and P-complete ∞-category such that the pointwise right Kan
extension

f∗ : Fun(O,C)→ Fun(P,C)

exists. Then f∗ restricts to a functor

f∗ : SegO(C)→ SegP(C).

Remark 6.4. We emphasize that the condition of unique lifting of active morphisms is far from
a necessary one. Indeed, the functor f∗ will preserve Segal objects if and only if its left adjoint f∗

preserves Segal equivalences. In [CHH18] the latter condition was checked for a certain morphism

τ : ∆1,op
F → Ωop, which clearly does not have unique lifting of active morphisms.

Proof of Proposition 6.3. By Lemma 6.2, the condition that f has unique lifting of active morphisms
implies that for any functor F : O→ C, the Beck–Chevalley transformation

(f∗F )|Pint → f int
∗ (F |Oint)

is an equivalence. If F is a Segal O-object, then F |Oint ' iO,∗F |Oel , where iO is the inclusion
Oel ↪→ Oint, so in this case we have (f∗F )|Pint ' f int

∗ iO,∗F |Oel . By naturality of right Kan extensions
in the commutative square

Oel Pel

Oint Pint

iO

fel

iP

f int

this can in turn be identified with iP,∗f el
∗ F |Oel . Moreover, since Pel is a full subcategory of Pint, we

have
f el
∗ F |Oel ' i∗PiP,∗f el

∗ F |Oel ' i∗Pf int
∗ iO,∗F |Oel ' i∗Pf int

∗ F |Oint .

Combining these equivalences, we see that (f∗F )|Pint ' iP,∗(i∗Pf
int
∗ F |Oint) ' iP,∗(f∗F )|Pel , where

the second equivalence is given by i∗Pf
int
∗ (F |Oint) ' i∗P(f∗F )|Pint ' (f∗F )|Pel . Hence f∗F is a Segal

P-object. �

Remark 6.5. If f in Proposition 6.3 is moreover a Segal morphism, we get an adjunction

f∗ : SegP(C)� SegO(C) :f∗

by restricting the adjunction f∗ a f∗ on functor ∞-categories.

Example 6.6. Suppose we have two categorical patterns O1 and O2 with the same underlying
∞-category O and the same inert–active factorization system, and Oel

1 is a full subcategory of Oel
2 .

Then the identity functor of O gives a morphism of algebraic patterns O1 → O2 for which unique
lifting of active morphisms holds trivially. In this case, this just means that the Segal condition for
O1 is stronger than that for O2. For example, this holds for the identity morphism of F∗ viewed

as a morphism F[∗ → F\∗. On the other hand, the identity functor would typically not be a Segal
morphism.

Example 6.7. The inclusion i : {[0]} →∆op,\ clearly has unique lifting of active morphisms, since
the only active morphism to [0] in ∆op is the identity. In this case, the right Kan extension functor

i∗ : C ' Fun({[0]},C)→ Fun(∆op,C)

takes an object C ∈ C to the simplicial object i∗C given by (i∗C)n '
∏n
i=0 C, with face maps

corresponding to projections and degeneracies given by diagonal maps. This clearly satisfies the
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Segal condition. More generally, the inclusion Θop,\
n−1 ↪→ Θop,\

n has unique lifting of active morphisms
for all n ≥ 1.

Example 6.8. Let ι : Ωop,\ → Ξop,\ be the Segal morphism of Example 4.13. Since the active
morphisms in Ξop are the boundary-preserving ones, it is easy to see that ι has unique lifting of
active morphisms. Then Proposition 6.3 and Remark 6.5 give an adjunction

ι∗ : SegΞop(S)� SegΩop,\(S) : ι∗,

where ι∗ is a right adjoint to the forgetful functor ι∗ from cyclic∞-operads to∞-operads. According
to [DCH19, §2.15] the analogue of this right adjoint for ordinary cyclic operads was first considered
in the unpublished thesis of J. Templeton.

7. Left Kan Extensions and Segal Objects

In this section we will give conditions under which left Kan extension along a morphism f pre-
serves Segal objects in C. In contrast to the case of right Kan extensions, this requires strong
assumptions on both f and the target ∞-category C. Part of the condition is a uniqueness require-
ment on lifts of inert morphisms, which we consider first:

Definition 7.1. A morphism of algebraic patterns f : O → P is said to have unique lifting of
inert morphisms if for every inert morphism f(O)→ P the ∞-groupoid of lifts to inert morphisms
O → O′ is contractible. More precisely, the fibre (Oint

O/)
'
φ of the morphism

(Oint
O/)
' → (Pint

f(O)/)
'

at φ is contractible. Equivalently, f has unique lifting of inert morphisms if this morphism of
∞-groupoids is an equivalence for all O ∈ O.

Lemma 7.2. A morphism of algebraic patterns f : O→ P has unique lifting of inert morphisms if
and only if it satisfies the following condition:

(∗) For all P ∈ P the functor

Oact
/P → O/P

is cofinal.

Proof. This follows by the same argument as for Lemma 6.2, with the roles of active and inert
morphisms reversed. �

Unique lifting of inert morphisms allows us to functorially transport active morphisms along inert
morphisms, in the following sense:

Proposition 7.3. Suppose f : O→ P has unique lifting of inert morphisms. Let

X ⊆ O×P P∆1

be the full subcategory of the fibre product over evaluation at 0, with objects those pairs

(O, f(O)
φ−→ P )

where φ is active. Then the projection X → P given by evaluation at 1 ∈ ∆1 is a cocartesian
fibration, and a morphism 



O

O′

ω ,

f(O) P

f(O′) P ′

f(ω)




is cocartesian if and only if ω is inert.
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Proof. We first show that such a morphism with ω inert is cocartesian. This means that given a
morphism O → X in O and a commutative diagram

f(O) f(X)

f(O′)

P Q,

P ′

f(ω)

there exists a unique lift O′ → X making the diagram commute.
The morphism O → X has a unique inert–active factorization as O � O′′  X. Since f

is compatible with the factorization system, we see that the unique inert–active factorization of
f(O)→ Q is f(O)� f(O′′) f(X) Q.

On the other hand, the inert–active factorization of f(O′) → Q gives another factorization
f(O)� f(O′)� Q′  Q, where by uniqueness we must have Q′ ' f(O′′). Since f has unique lifts
of inert morphisms, the map f(O′) � f(O′′) lifts to a unique morphism O′ � O′′, and moreover
by uniqueness the composite O � O′ � O′′ must be the inert map O � O′′ arising from the
factorization of O → X.

Thus, there are unique diagrams

O O′ O′′ X,

f(O) f(O′) f(O′′) f(X)

P P ′ Q,

which give the required unique factorization (since any other factorization through (O′, f(O′) P ′)
must induce these by uniqueness of inert–active factorizations).

We next check that X→ P is a cocartesian fibration. This amounts to showing that cocartesian

morphisms exist, and by the first part of the proof it suffices to check that given (O, f(O)
φ P )

with φ active and a morphism P → P ′, there exists a morphism



O

O′

ω ,

f(O) P

f(O′) P ′

f(ω)




with ω inert. This again follows from unique lifting of inert morphisms, which ensures that the
inert–active factorization of f(O) P → P ′ gives such a diagram.

It remains to show that ω must be inert for any cocartesian morphism. Since cocartesian mor-
phisms are unique when they exist, this follows from the existence of the cocartesian morphisms we
just described. �

Straightening this cocartesian fibration, we get:
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Corollary 7.4. Suppose f : O→ P has unique lifting of inert morphisms. Then there is a functor
P→ Cat∞ that takes P to Oact

/P . The functor Oact
/P → Oact

/P ′ assigned to a morphism P → P ′ takes a

pair (O, f(O) P ) to (O′, f(O′) P ′) where f(O)� f(O′) P ′ is the inert–active factorization
of f(O) P → P ′. �

Remark 7.5. Let O be an algebraic pattern, and write Fun(∆1,O)act for the full subcategory of
Fun(∆1,O) spanned by the active morphisms. As a simple special case of the previous result (taking
f to be idO) we see that

ev1 : Fun(∆1,O)act → O

is a cocartesian fibration. This corresponds to a functor O → Cat∞ that takes O to Oact
/O and a

morphism φ : O → O′ to a functor Oact
/O → Oact

/O′ that takes X  O to X ′  O′, where X � X ′  O′

is the inert–active factorization of the composite X  O → O′.

Remark 7.6. Suppose f : O→ P has unique lifting of inert morphisms, and let Xint → Pint be the
pullback of the cocartesian fibration X → P of Proposition 7.3 to the subcategory Pint. Then for
every active morphism φ : f(O) P in P we can define a functor Pint

P/ → Oint
O/ as the composite

Pint
P/ → Xint

(O,φ)/ → Oint
O/

where the first functor takes α : P � P ′ to the cocartesian morphism (O,φ) → (α!O,α!φ) for the
cocartesian fibration X (where α!φ is the active part of the map α ◦ φ), and the second is induced
by the forgetful functor X→ O. In particular, we can restrict to Pel

P/ and compose with the functor

O
int,op
O/ → Oop

Oel
–/−−→ Cat∞ to get a functor P

el,op
P/ � Cat∞ that takes α : P → E to Oel

α!O/
. We write

Oel(φ)→ Pel
P/ for the corresponding cartesian fibration.

Using this functoriality we can now state the conditions we require of a morphism of algebraic
patterns:

Definition 7.7. A morphism of algebraic patterns f : O→ P is extendable if the following conditions
are satisfied:

(1) The morphism f has unique lifting of inert morphisms.
(2) For P ∈ P, let LP denote the limit of the composite functor εP : Pel

P/ → Pint → Cat∞ taking E

to Oact
/E (where the second functor is that of Corollary 7.4). Then the canonical functor

Oact
/P → LP

is cofinal.
(3) For every active morphism φ : f(O) P , the canonical functor

Oel(φ)→ Oel
O/

induces an equivalence

lim
Oel
O/

F
∼−→ lim

Oel(φ)
F

for every functor F : Oel → S.

Remark 7.8. We have used the limit in condition (2) as this seems the most natural choice in
Definition 7.11; we could also have used the lax limit instead, provided the same change is made in
Definition 7.11. In the cases of interest the lax limit actually agrees with the usual limit, as it will
either be a finite product or a limit of ∞-groupoids, so the distinction turns out not to matter in
practice.

Remark 7.9. In practice, condition (3) holds because the map Oel(φ)→ Oel
O/ is coinitial.
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Remark 7.10. Condition (3) implies that for a functor Φ: Oel → C, we have an equivalence

lim
E∈Oel

O/

Φ(E) ' lim
α∈Pel

P/

lim
E∈Oel

α!O/

Φ(E)

whenever either limit exists in C. If Φ is a Segal O-object, this implies that the following “relative
Segal condition” holds:

Φ(O) ' lim
α∈Pel

P/

Φ(α!O).

We now turn to the requirements we must make of our target category, for which we need the
following notion:

Definition 7.11. Consider a functor K : I → Cat∞ with corresponding cocartesian fibration
π : K → I. Let L be the limit of K, which we can identify with the ∞-category of cocartesian
sections Funcocart

I (I,K). We then have a functor p : I × L → K adjoint to the forgetful functor
Funcocart

I (I,K) → Fun(I,K); the composite π ◦ p is moreover the projection L × I → I. This gives
a commutative diagram

L× I K I

L ∗,

p

pr1

pr2

π

ι

λ

which for any ∞-category C (with appropriate limits and colimits) determines an equivalence of
functors between functor ∞-categories

p∗π∗ι∗ ' pr∗1λ
∗.

This induces a mate transformation

λ∗ι∗ → pr1,∗pr∗2 ' pr1,∗p
∗π∗,

and this is an equivalence: for Φ: I→ C, λ∗ι∗Φ is the constant functor with value limI Φ while the
right Kan extension pr1,∗ takes limits over I fibrewise so that pr1,∗pr∗2Φ is also the constant functor
with value limI Φ. From this equivalence we in turn obtain, by moving adjoints around, a natural
transformation

λ!pr1,∗p
∗ → λ!pr1,∗p

∗π∗π! ' λ!λ
∗ι∗π! → ι∗π!.

For a functor F : K→ C we can interpret this as a natural morphism

colim
L

lim
I
p∗F → lim

i∈I
colim
Ki

F |Ki
.

We say that I-limits distribute over K-colimits in C if this morphism is an equivalence for any
functor F .

Definition 7.12. Let f : O → P be an extendable morphism of algebraic patterns. We say
that an ∞-category C is f -admissible if C is O- and P-complete, the pointwise left Kan exten-
sion f! : Fun(O,C) → Fun(P,C) exists, and Pel

P/-limits distribute over εP -colimits for all P ∈ P,

where εP is the functor from Definition 7.7(2). In other words, if C is f -admissible then for every
P ∈ P and every functor Φ, the natural map

colim
(OE)

E∈Pel
P/
∈LP

lim
E∈Pel

P/

Φ(OE)→ lim
E∈Pel

P/

colim
OE∈Oact

/E

Φ(OE)

is an equivalence.

Having made these definitions, we can now state our result on left Kan extensions:
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Proposition 7.13. Suppose f : O → P is an extendable morphism of algebraic patterns, and C is
an f -admissible ∞-category. Then left Kan extension along f restricts to a functor

f! : SegO(C)→ SegP(C),

given by f!Φ(P ) ' colimO∈Oact
/P

Φ(O).

Proof. Given Φ ∈ SegO(C), we must show that f!Φ is a Segal object, i.e. that the natural map

(f!Φ)(P )→ lim
E∈Pel

P/

(f!Φ)(E)

is an equivalence. We have a sequence of equivalences

f!Φ(P ) ' colim
O∈O/P

Φ(O)

' colim
O∈Oact

/P

Φ(O) (by 7.2)

' colim
O∈Oact

/P

lim
E∈Pel

P/

Φ(OE) (by 7.7(3))

' colim
(OE)E∈Lp

lim
E∈Pel

P/

Φ(OE) (by 7.7(2))

' lim
E∈Pel

P/

colim
OE∈Oact

/E

Φ(OE) (by 7.12)

' lim
E∈Pel

P/

(f!Φ)(E),

which completes the proof. �

Having identified conditions under which f! preserves Segal objects, we now turn to the question
of when these conditions hold. For extendability, we will see some general classes of examples below
in §9; here, we will discuss two classes of examples where f -admissibility holds. The starting point
is the following examples of distributivity of limits over colimits:

Definition 7.14. We say an∞-category C is ×-admissible if it has finite products and the cartesian
product preserves colimits in each variable.

Lemma 7.15. Suppose C is ×-admissible. Then finite products distribute over all colimits in C.

Proof. For any functors Fi : Ii → C (i = 1, . . . , n) whose colimits exist we have

colim
I1×···×In

F1 × · · · × Fn ' colim
I1

· · · colim
In

F1 × · · · × Fn ' colim
I1

F1 × · · · × colim
In

Fn. �

Proposition 7.16. Let C be a presentable ∞-category and write t : S → C for the unique colimit-
preserving functor taking ∗ to the terminal object ∗C of C. Consider a functor K : I→ S and suppose
the following conditions hold:

(1) t preserves I-limits.
(2) The functor C/t(S) → limS C ' Fun(S,C) induced by taking pullbacks along ∗C ' t(∗) → t(S),

is an equivalence for S = limIK(i) and S = Ki for all i ∈ I.

Then I-limits distribute over K-colimits in C.

Proof. Condition (2) implies that we have a commutative diagram of right adjoints

C/t(S) Fun(S,C)

C

∼

–×t(S) const
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Passing to left adjoints, we get the commutative triangle

Fun(S,C) C/t(S)

C,

∼

colim src

from which we see that under the equivalence of (2) the colimit of a diagram S → C is given by the
source of the corresponding morphism to t(S). Given F : S → C, it follows that we have pullback
squares

F (s) colimS F

∗C t(S)
t(s)

for s ∈ S.
Now consider a functor F : K → C, where K → I is the left fibration corresponding to K. We

have a commutative square

colimL limI F limi∈I colimKi F

colimL limI ∗C limi∈I colimKi ∗C,
where L := limIK(i). Here the bottom horizontal map can be identified with the natural map

t(L) ' colim
L
∗C → lim

i∈I
colim
Ki
∗C ' lim

i∈I
t(Ki).

This is an equivalence by assumption (1). The equivalence of assumption (2) then implies that the
top horizontal map is an equivalence if and only if it induces an equivalence on fibres over each map
t(l) : ∗C → t(L) for l ∈ L. Using the pullback squares above and the fact that limits commute, we
see that the map on fibres at (ki)i ∈ L is the identity

lim
I
F (ki)→ lim

I
F (ki). �

This argument applies to C being S, or more generally any ∞-topos, giving:

Corollary 7.17. Given any functor K : I→ S we have that:

(i) I-limits distribute over K-colimits in S,
(ii) I-limits distribute over K-colimits in any ∞-topos provided I is a finite ∞-category.

Proof. Condition (2) of Proposition 7.16 holds in ∞-topoi by descent, [Lur09, Theorem 6.1.3.9],
while condition (1) holds for finite limits since t is the left adjoint of a geometric morphism by
[Lur09, Proposition 6.3.4.1] and so preserves finite limits. In the case of S the finiteness condition
is unnecessary since t is an equivalence and so preserves all limits. �

Corollary 7.18. Let f : O → P be an extendable morphism of algebraic patterns such that Pel
P/ is

a finite set for all P ∈ P. Suppose C is a ×-admissible ∞-category, and assume the pointwise left
Kan extension f! : Fun(O,C)→ Fun(P,C) exists. Then C is f -admissible, and the left Kan extension
along f restricts to a functor

f! : SegO(C)→ SegP(C). �
Remark 7.19. The assumption of ×-admissibility can be slightly weakened: It is enough to assume
that the cartesian product in C preserves colimits of shape Oact

/E in each variable for all E ∈ Pel.

Corollary 7.20. Suppose X is an ∞-topos, and f : O→ P is an extendable morphism of algebraic
patterns such that

(1) Oact
/E is an ∞-groupoid for all E ∈ Pel,
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(2) the ∞-category Pel
P/ is finite for all P ∈ P (or arbitrary if X is the ∞-topos S).

Then X is f -admissible, and the left Kan extension restricts to a functor

f! : SegO(X)→ SegP(X). �

8. Free Segal Objects

Suppose O is an algebraic pattern, and C an O-complete ∞-category. Restricting Segal objects
to the subcategory Oel gives a functor

UO : SegO(C)→ Fun(Oel,C).

We think of free Segal O-objects as being given by a left adjoint FO to this functor, when this exists.
The subcategory Oint has a canonical pattern structure restricted from O (so only equivalences

are active morphisms and the elementary objects are still those of Oel), and using this the inclusion
jO : Oint → O is a Segal morphism. The∞-category SegOint(C) is by definition the full subcategory of
Fun(Oint,C) spanned by the functors that are right Kan extensions along the fully faithful inclusion
iO : Oel → Oint, which means that the restriction functor SegOint(C)→ Fun(Oel,C) is an equivalence.
The functor UO thus factors as the composite

SegO(C)
j∗O−→ SegOint(C)

i∗O−→ Fun(Oel,C),

where the second functor is an equivalence with inverse the right Kan extension functor iO,∗. If C
is presentable, using Proposition 4.7 this means the left adjoint FO is given by

Fun(Oel,C)
iO,∗−−→ SegOint(C)

LSegf!−−−−→ SegO(C).

In this section we will first show that this adjunction is monadic, and then specialize the results of
the previous section to jO to get conditions under which the free Segal objects are described by a
formula in terms of limits and colimits.

Monadicity is a special case of the following observation:

Proposition 8.1. Suppose f : O → P is an essentially surjective Segal morphism and C is a pre-
sentable ∞-category. Then:

(i) A functor F : P→ C is a Segal object if and only if f∗F is a Segal O-object.
(ii) The adjunction

Lf! : SegO(C)� SegP(C) :f∗

is monadic.

Proof. We first prove (i). One direction amounts to f being a Segal morphism, which is true by
assumption. To prove the non-trivial direction, observe that for Φ: O→ C we have for every O ∈ O

canonical morphisms

Φ(f(O))→ lim
E∈Pel

f(O)/

Φ(E)→ lim
E′∈Oel

O/

Φ(f(E′)).

Here the second morphism is an equivalence since f is a Segal morphism, and if f∗Φ is a Segal O-
object then the composite morphism is an equivalence. Thus the first morphism is an equivalence,
and so Φ satisfies the Segal condition at every object of P in the image of f ; since f is essentially
surjective this completes the proof.

Using the monadicity theorem for ∞-categories [Lur17, Theorem 4.7.3.5], to prove (ii) it suffices
to show that f∗ detects equivalences, that SegP(C) has colimits of f∗-split simplicial objects, and
these colimits are preserved by f∗. Since f is essentially surjective it is immediate that f∗ detects
equivalences. Consider an f∗-split simplicial object p : ∆op → SegP(C). Let p : (∆op). → Fun(P,C)
denote the colimit of p in Fun(P,C). Since f∗, viewed as a functor Fun(P,C) → Fun(O,C), is a
left adjoint, f∗p is the colimit of f∗p in Fun(O,C). On the other hand, since f∗p extends to a split
simplicial diagram, and all functors preserve colimits of split simplicial diagrams, we see that the
colimit of f∗p in SegO(C) is also the colimit in Fun(O,C). In particular, f∗p(∞) lies in SegO(C). By
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(i) this implies that p(∞) is in SegP(C). This completes the proof, since the colimit of p in SegP(C)
is the localization of p(∞), which is already local. �

Applying this to jO, we get:

Corollary 8.2. Let O be an algebraic pattern and C a presentable ∞-category. Then the free-
forgetful adjunction

FO : Fun(Oel,C) ' SegOint(C)� SegO(C) :UO

is monadic. �
Now we apply the results of the previous section to jO to understand when the free algebras are

simply given by the left Kan extension jO,!. It is convenient to first introduce some notation:

Notation 8.3. Let O be an algebraic pattern. For O ∈ O we write ActO(O) for the ∞-groupoid of
active morphisms to O in O; this is equivalent to (Oint)act

/O since the only active morphisms in Oint

are the equivalences.

Remark 8.4. By Remark 7.5 the ∞-categories Oact
/O are functorial in O ∈ O. Passing to the

underlying ∞-groupoids this means the ∞-groupoids ActO(O) are functorial in O ∈ O, via the
factorization system.

Definition 8.5. We say an algebraic pattern O is extendable if the inclusion jO : Oint → O is
extendable in the sense of Definition 7.7. This is equivalent to the following pair of conditions:

(1) The morphism
ActO(O)→ lim

E∈Oel
O/

ActO(E)

is an equivalence for all O ∈ O. In other words, ActO is a Segal O-space.

(2) For every active map O
φ−→ O′ in O, the canonical functor Oel(φ)→ Oel

O/ induces an equivalence

on limits
lim
Oel
O/

F → lim
Oel(φ)

F

for every functor F : Oel → S.

Remark 8.6. Condition (2) implies that

lim
E∈Oel

O/

Φ(E)→ lim
α∈Oel

O′/

lim
E∈Oel

α!O/

Φ(E)

is an equivalence for any functor Φ: Oel → C, provided either limit exists, and O → α!O → E is

the inert–active factorization of O → O′
α−→ E. This in particular implies the following “generalized

Segal condition”: If Φ is a Segal object, then for any active morphism φ : O → O′, we have

Φ(O) ' lim
α∈Oel

O′/

Φ(α!O).

Remark 8.7. In practice, condition (2) holds because the map Oel(φ)→ Oel
O/ is coinitial. However,

with the more general formulation we get the following characterization of the extendable patterns:

Proposition 8.8. The following are equivalent for an algebraic pattern O:

(1) O is extendable.
(2) jO,! : Fun(Oint, S)→ Fun(O, S) restricts to a functor SegOint(S)→ SegO(S).

Proof. Suppose (1) holds. Since ActO(O) is an ∞-groupoid for all O, the ∞-category S is jO-
admissible by Corollary 7.20, and so (2) follows from Proposition 7.13.

We now show that (2) implies the two conditions in Definition 8.5. To prove condition (1),
consider the terminal object ∗ ∈ Fun(Oint, S). For this we have

jO,! ∗ (O) ' colim
ActO(O)

∗ ' ActO(O),
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so since ∗ is a Segal Oint-space, assumption (2) implies that ActO(–) is a Segal O-space. To prove
condition (2), consider F : Oel → S and its right Kan extension F ′ := iO,∗F , which is a Segal
Oint-space. Then jO,!F

′ is a Segal O-space, which means that in the commutative square

colimX∈ActO(O) F
′(X) limE∈Oel

O/
colimY ∈ActO(E) F

′(Y )

ActO(O) limE∈Oel
O/

ActO(E),∼

the top horizontal morphism is an equivalence. Hence we get an equivalence on fibres at each active
morphism (φ : X → O) ∈ ActO(O), which we can identify with the natural map

F ′(X)
∼−→ lim

α∈Oel
O/

F ′(α!X).

Using the description of F ′ as a right Kan extension we get

lim
Oel
X/

F
∼−→ lim

α∈Oel
O/

lim
Oel
α!X/

F ' lim
Oel(φ)

F,

as required. �

Definition 8.9. We say an ∞-category C is O-admissible if Oel
O/-limits distribute over colimits

indexed by the functor Oel
O/ → S taking E to ActO(E) for all O ∈ O.

From Corollaries 7.18 and 7.20 we get:

Example 8.10. Let O be an extendable algebraic pattern. Then:

(i) S is O-admissible.
(ii) Any ∞-topos is O-admissible if the ∞-categories Oel

O/ are all finite.

(iii) Any ×-admissible ∞-category is O-admissible if the ∞-categories Oel
O/ are all finite sets.

Corollary 8.11. Let O be an extendable algebraic pattern and C an O-admissible∞-category. Then
left Kan extension along jO : Oint → O restricts to a functor

jO,! : SegOint(C)→ SegO(C),

left adjoint to the restriction j∗O : SegO(C)→ SegOint(C). This functor is given by

jO,!Φ(O) ' colim
O′∈ActO(O)

Φ(O′).

Combining this with the equivalence SegOint(C) ' Fun(Oel,C) given by right Kan extension along
iO, we can reformulate this as:

Corollary 8.12. Let O be an extendable algebraic pattern and C an O-admissible∞-category. Then
the restriction

UO : SegO(C)→ Fun(Oel,C)

has a left adjoint FO, which is given by

FO(Φ)(O) ' jO,!iO,∗Φ(O) ' colim
O′∈ActO(O)

lim
E∈Oel

O′/

Φ(E).

We end this section with some examples of extendable patterns:

Example 8.13. The algebraic patterns F[∗ and F\∗ are extendable. In the former case, we recover
the familiar formula for free commutative monoids:

UF[∗FF[∗(X) '
∞∐

n=0

X×nhΣn
.
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In the latter case, we get

UF\∗FF\∗(X → Y ) '
∞∐

n=0

X×Y nhΣn
→ Y,

which describes a free commutative monoid on X → Y in the slice over Y .

Example 8.14. The algebraic patterns ∆op,[ and ∆op,\ are extendable. In the former case, we get
the expected formula for free associative monoids:

U∆op,[F∆op,[(X) '
∞∐

n=0

X×n,

while in the latter case we get the formula for free ∞-categories:

U∆op,\F∆op,\




X

Y Y


 '




∐∞
n=0X ×Y · · · ×Y X

Y Y


 .

Example 8.15. More generally, the algebraic pattern Θop,\
n is extendable for every n; the conditions

are checked in [Hau18], giving a formula for free (∞, n)-categories. (On the other hand, the pattern

Θop,[
n is not extendable for n > 1.)

Example 8.16. The algebraic pattern Ωop,\ is extendable; the conditions are checked in [GHK17,

§5.3], giving a formula for free∞-operads. (On the other hand, the pattern ∆op,\
F is not extendable.)

9. Segal Fibrations and Weak Segal Fibrations

In this section we first consider Segal fibrations over an algebraic pattern, which are the cocarte-
sian fibrations corresponding to Segal objects in Cat∞, and then generalize these to the class of weak
Segal fibrations; for the pattern F[∗, these objects are respectively symmetric monoidal∞-categories
and symmetric ∞-operads in the sense of [Lur17]. Our main goal is to show that extendability can
be lifted from a base pattern to morphisms between (weak) Segal fibrations. Combined with our
previous results this allows us, for example, to reproduce (in the cartesian setting) Lurie’s formula
for operadic Kan extensions along morphisms of symmetric ∞-operads.

Definition 9.1. Let O be an algebraic pattern. A Segal O-fibration is a cocartesian fibration E→ O

whose corresponding functor O→ Cat∞ is a Segal O-∞-category.

Examples 9.2.

(i) A Segal F[∗-fibration is a symmetric monoidal ∞-category.

(ii) A Segal ∆op,[-fibration is a monoidal ∞-category, and a Segal ∆op,\-fibration is a double
∞-category.

(iii) Segal ∆n,op,[-fibrations and Segal Θop,[
n -fibrations both describe En-monoidal ∞-categories.

Definition 9.3. Suppose O is an algebraic pattern, and π : E → O is a Segal O-fibration. We say
a morphism in E is inert if it is cocartesian and lies over an inert morphism in O, and active if it
lies over an active morphism in O; moreover, we say an object of E is elementary if it lies over an
elementary object of O.

Lemma 9.4. Equipped with this data, E is an algebraic pattern, and π : E→ O is a Segal morphism.

Proof. The inert and active morphisms form a factorization system by [Lur17, Proposition 2.1.2.5],
so we have defined an algebraic pattern structure on E. To see that π is a Segal morphism it suffices
to show that for X ∈ EX the induced functor

Eel
X/
→ Oel

X/

is coinitial. But this functor is an equivalence since for each inert morphism X → E with E
elementary there is a unique cocartesian morphism with source X lying over it. �
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We now show that we can lift extendability along Segal fibrations:

Proposition 9.5. Consider a commutative square

E F

O P,

F

p q

f

where f is an extendable morphism of algebraic patterns, p : E → O and q : F → P are Segal
fibrations, and F preserves cocartesian morphisms. Then F is extendable. Moreover, if C is f -
admissible and either

(i) Pel
P/-limits distribute over η-colimits in C for all functors η : Pel

P/ → Cat∞ and all P ∈ P, or

(ii) p and q are left fibrations, and Pel
/P -limits distribute over η-colimits in C for all functors

η : Pel
/P → S and all P ∈ P,

then C is F -admissible.

Proof. It is immediate from the definitions that F preserves inert and active morphisms. We now
observe that F has unique lifting of inert morphisms. Given O ∈ E lying over O ∈ O, and an inert
morphism ε : F (O) � P in F, lying over ε : f(O) � P in P, there exists a unique inert morphism
γ : O � O′ such that f(γ) ' ε, since f is extendable. Since inert morphisms in E are cocartesian,

there exists a unique inert morphism γ : O� O
′

lying over γ. Moreover, as F preserves cocartesian
morphisms, the morphism F (γ) is the unique inert morphism over ε with source F (O), i.e. F (γ) ' ε,
and since cocartesian morphisms are unique, γ is the unique inert morphism that maps to ε.

For every active morphism φ : F (O)  P lying over φ : f(O)  P , equivalences of the type
Eel
X/
' Oel

X/ imply that Eel(φ) → Eel
O/

is equivalent to Oel(φ) → Oel
O/, hence condition (3) in

Definition 7.7 follows immediately from f being extendable. It remains to prove condition (2). For

P ∈ F lying over P ∈ P and ε : P � P
′

an inert morphism in F lying over ε : P � P ′, we have a
functor

Eact
/P
→ Eact

/P
′ ,

which fits in a commutative square

Eact
/P

Eact
/P
′

Oact
/P Oact

/P ′ .

We claim that here the vertical functors are cocartesian fibrations, and the top horizontal functor
preserves cocartesian morphisms. The functor

E/P := E×F F/P → O×P P/P =: O/P

is a fibre product of cocartesian fibrations along functors that preserve cocartesian morphisms, hence
it is again a cocartesian fibration. We can write Eact

/P
as a pullback E/P ×O/P O

act
/P , hence Eact

/P
→ Oact

/P

is a pullback of a cocartesian fibration and so is itself cocartesian. Moreover, a morphism in Eact
/P

is

cocartesian if and only if its image in E is cocartesian (since the functor F/P → F detects cocartesian

morphisms, by [Lur09, Proposition 2.4.3.2]). Since inert morphisms are cocartesian, this implies that
the top horizontal functor preserves cocartesian morphisms by the 3-for-2 property of cocartesian
morphisms ([Lur09, Proposition 2.4.1.7]).
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For P ∈ F we therefore have a commutative square

Eact
/P

limα : P�E∈Pel
P/

Eact
/α!P

Oact
/P limα : P�E∈Pel

P/
Oact
/E .

where the vertical functors are cocartesian fibrations, the top horizontal functor preserves cocartesian
morphisms, and the bottom horizontal functor is cofinal, since f is extendable. Our goal is to
show that the top horizontal functor is cofinal. Since pullbacks of cofinal functors along cocartesian
fibrations are cofinal by [Lur09, Proposition 4.1.2.15], it suffices to show that the square is cartesian,
which in this situation is equivalent to the functor on fibres being an equivalence.

Since the fibration Eact
/P
→ Oact

/P is a fibre product, its fibre at (O,ψ : f(O) P ) is the fibre product

EO ×Ff(O)
(Fact
/P

)ψ; since F is cocartesian over P, we can use the cocartesian pushforward over ψ to

identify this with a fibre product EO ×FP FP/P over the composite functor EO → Ff(O)
ψ!−→ FP .

If ψ is active, then as f is extendable and E→ O is a Segal fibration we have an equivalence

EO
∼−→ lim

α∈Pel
P/

Eα!O

by Remark 7.10. Putting this together with the equivalence FP/P
∼−→ limα∈Pel

P/
FE/α!P

(and similarly

for FP ) we get

(Eact
/P

)(O,ψ)
∼−→ lim

α∈Pel
P/

(Eact
/α!P

)(E,ψα),

i.e. the functor we get on fibres is indeed an equivalence, which completes the proof that F is
extendable.

For admissibility, observe that since limα∈Pel
P/

Eact
/α!P

→ limα∈Pel
P/

Oact
/E is a cocartesian fibration,

if we compute the colimit of a functor Φ over its source in two stages using the left Kan extension
along this functor, we get

colim
lim

α∈Pel
P/

Eact
/α!P

Φ ' colim
(ωα)∈lim

α∈Pel
P/

Oact
/E

colim
lim

α∈Pel
P/

(Eact
/α!P

)ωα

Φ,

from which we see that F -admissibility follows from f -admissibility plus either (i) or (ii). �

Definition 9.6. Let O be an algebraic pattern. A weak Segal O-fibration is a functor p : E → O

such that:

(1) For every object X in E lying over X ∈ O and every inert morphism i : X → Y in O there exists
a p-cocartesian morphism ı : X → Y lying over i.

(2) For every object X ∈ O, the functor

EX → lim
E∈Oel

X/

EE ,

induced by the cocartesian morphisms over inert maps, is an equivalence.
(3) Given X in EX , choose a cocartesian lift ξ : (Oel

X/)
/ → E of the diagram of inert morphisms

from X in O, taking −∞ to X. Then for any Y ∈ O and Y ∈ EY , the commutative square

MapE(Y ,X) limE∈Oel
X/

MapE(Y , ξ(E))

MapO(Y,X) limE∈Oel
X/

MapO(Y,E)

is cartesian.
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Remark 9.7. Condition (3) in the definition can be rephrased as: For every map φ : Y → X in O,
the natural map

MapφE(Y ,X)→ lim
α : X�E∈Oel

X/

MapαφE (Y , α!X)

is an equivalence, where MapφE(Y ,X) denotes the fibre at φ of MapE(Y ,X)→ MapO(Y,X). If φ is

active, let Y
αY� Yα

φα E denote the inert–active factorization of Y
φ X

α� E, then combining this
equivalence with the cocartesian morphisms Y � αY,!Y over αY we obtain an equivalence

MapφE(Y ,X) ' lim
α : X�E∈Oel

X/

MapφαE (αY,!Y , α!X).

Examples 9.8.

(i) A weak Segal F[∗-fibration is a symmetric ∞-operad, and a weak Segal F\∗-fibration is a gener-
alized ∞-operad, in the sense of [Lur17].

(ii) A weak Segal ∆op,[-fibration is a non-symmetric ∞-operad, and a weak Segal ∆op,\-fibration
is a generalized non-symmetric ∞-operad, as considered in [GH15].

(iii) If Φ is a perfect operator category and Λ(Φ) is its Leinster category, then a weak Segal Λ(Φ)[-
fibration is a Φ-∞-operad, in the sense of [Bar18], and weak Segal Λ(Φ)\-fibrations are the
natural extension of generalized ∞-operads to generalized Φ-∞-operads.

(iv) Weak Segal Θop,\
n -fibrations can be viewed as an ∞-categorical analogue of the n-operads of

Batanin [Bat98].

Definition 9.9. Suppose O is an algebraic pattern, and π : E→ O is a weak Segal O-fibration. We
say a morphism in E is inert if it is cocartesian and lies over an inert morphism in O, and active if
it lies over an active morphism in O; moreover, we say an object of E is elementary if it lies over an
elementary object of O.

Lemma 9.10. Equipped with this data, E is an algebraic pattern, and π : E→ O is a Segal morphism.

Proof. As Lemma 9.4. �

Remark 9.11. A cocartesian fibration E → O is a Segal fibration if and only if it is a weak Segal
fibration.

Remark 9.12. Suppose E → O and F → O are weak Segal fibrations. Then a morphism E → F

over O is a Segal morphism if and only if it preserves inert morphisms.

Remark 9.13. Let CatWSF
∞/O denote the subcategory of Cat∞/O whose objects are the weak Segal

fibrations and whose morphisms are those that preserve inert morphisms. This ∞-category is
described by a categorical pattern in the sense of [Lur17, §B], and so arises from a combinatorial

model category by [Lur17, Theorem B.0.20]. It follows that CatWSF
∞/O is a presentable ∞-category.

For weak Segal fibrations we can prove a weaker version of Proposition 9.5; for this we need the
following consequence of extendability, which we learned from Roman Kositsyn:

Lemma 9.14. Let O be an extendable pattern. Then the functor O→ Cat∞ taking O to Oact
/O from

Remark 7.5 is a Segal O-∞-category. In particular, for any active maps φ : X  O, ψ : Y  O in
O, the morphism of mapping spaces

MapOact
/O

(φ, ψ)→ lim
α : O�E∈Oel

O/

MapOact
/E

(φα, ψα)

is an equivalence.

Proof. We must show that for any O ∈ O, the functor

Oact
/O → lim

E∈Oel
O/

Oact
/E
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is an equivalence; to see this it suffices to check that it is an equivalence on underlying∞-groupoids
and is fully faithful. The map on underlying∞-groupoids is the map ActO(O)→ limE∈Oel

O/
ActO(E),

which is an equivalence by assumption since O is extendable. Given active maps φ : X  O,
ψ : Y  O, the morphism of mapping spaces

MapOact
/O

(φ, ψ)→ lim
α : O�E∈Oel

O/

MapOact
/E

(φα, ψα)

fits in a commutative cube

MapOact
/O

(φ, ψ) ActO(Y )

limα :O�E∈Oel
O/

MapOact
/E

(φα, ψα) limα :O�E∈Oel
O/

ActO(α!Y )

{φ} ActO(X)

limα :O�E∈Oel
O/
{φα} limα :O�E∈Oel

O/
ActO(α!X),

where the back and front faces are cartesian. Since O is extendable, we can apply the “extended
Segal condition” of Remark 7.10 to ActO(–) and conclude the horizontal morphisms in the right-hand
square are equivalences. It follows that the map on fibres in the left square is also an equivalence,
as required. �

Using this we can prove the following key observation:

Proposition 9.15. Suppose O is an extendable algebraic pattern. Consider a commutative triangle

E F

O,

f

p q

where p and q are weak Segal fibrations and f preserves inert morphisms. Then for any F ∈ F the
functor

Eact
/F → lim

α∈Oel
q(F )/

Eact
/α!F

is an equivalence.

Proof. For any active morphisms φ : Y  X, ψ : X  q(F ) in O and α ∈ Oel
q(F )/ the inert-active

factorization gives a commutative diagram

Y X q(F )

Yα Xα E.

φ

αY αX α

φα

By combining Remark 7.10 (the “generalized Segal condition”) with the argument of Remark 9.7
we then get an equivalence

MapφE(Y ,X)
∼−→ lim

α∈Oel
q(F )/

MapφαE (αY,!Y , αX,!X).

Thus in the commutative square

MapEact
/F

(Y ,X) limα∈Oel
q(F )/

MapEact
/α!F

(αY,!Y , αX,!X)

MapOact
/qF

(Y,X) limα∈Oel
q(F )/

MapOact
/E

(Yα, Xα),



HOMOTOPY-COHERENT ALGEBRA VIA SEGAL CONDITIONS 29

the map on fibres is an equivalence for all φ : Y  X, which means the square is cartesian. The
bottom horizontal morphism is an equivalence by Lemma 9.14 since O is extendable. Hence we see
that the functor Eact

/F → limα∈Oel
q(F )/

Eact
/α!F

induces equivalences on mapping spaces, and so is fully

faithful. To see that this functor is also essentially surjective, consider the commutative square of
∞-groupoids

(Eact
/F )' limα∈Oel

q(F )/
(Eact
/α!F

)'

(Oact
/q(F ))

' limα∈Oel
q(F )/

(Oact
/E )';

we want to show that the top horizontal morphism is an equivalence. The bottom horizontal
morphism is an equivalence by assumption, since O is extendable; it therefore suffices to show
the map on fibres over φ : O → q(F ) is an equivalence. The fibre (Eact

/F )'φ we can identify with

E'O ×F'O
(F/F )'φ . By condition (2) in Definition 9.6 we have an equivalence E'O ' limα∈Oel

O/
E'E , and

similarly for F. Moreover, condition (3) implies that in the commutative square

(F/F )'φ limα∈Oel
O/

(F/α!F )'φα

F'O limα∈Oel
O/

F'E ,
∼

the map on fibres over each object of F'O is an equivalence, hence the top horizontal morphism is
an equivalence. Since limits commute, it follows that we have an equivalence

(Eact
/F )'φ → lim

α∈Oel
O/

(Eact
/α!F

)'φα ,

which completes the proof. �

Corollary 9.16. Suppose O is an extendable algebraic pattern. Then any morphism between weak
Segal fibrations over O that preserves inert morphisms is extendable.

Proof. Suppose E and F are weak Segal fibrations over O. Then any morphism of algebraic pat-
terns f : E → F over O has unique lifting of inert morphisms, as an inert morphism is uniquely
determined by its source and its image in O. Moreover, f satisfies condition (2) in Definition 7.7 by
Proposition 9.15, and condition (3) reduces to the extendability of O. �

Corollary 9.17. Suppose O is an extendable algebraic pattern, and E→ O is a weak Segal fibration.
Then E is extendable.

Proof. The restriction Eint → O is also a weak Segal fibration, hence we can apply Corollary 9.16
to the inclusion Eint → E. �

Example 9.18. The pattern F[∗ is extendable. Our previous results therefore specialize to tell
us that any morphism f : O → P of symmetric ∞-operads is extendable. If C is a cocomplete ×-
admissible∞-category, we conclude that left Kan extension along f restricts to a functor f! : SegO(C)→
SegP(C), given by the formula

(f!F )(P ) ' colim
O∈Oact

/P

F (O).

Note that this agrees with the formula for operadic left Kan extensions from [Lur17, §3.1.2], though
in our case the target must be a cartesian symmetric monoidal ∞-category.

Example 9.19. Let us spell out the description of free Segal O-objects for a symmetric ∞-operad
O → F∗ in a bit more detail. We can identify Oel with the ∞-groupoid O'〈1〉, and for X ∈ O〈1〉 the

space ActO(X) decomposes as
∐∞
n=0 ActO(X)n, where ActO(X)n is the space of morphisms to X
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in O lying over the unique active morphism 〈n〉 → 〈1〉 in F∗. If C is a cocomplete ×-admissible
∞-category, then for F ∈ Fun(O'〈1〉,C) our formula for the free Segal O-object monad TO gives:

(TOF )(X) '
∞∐

n=0

colim
(Y1,...,Yn)∈ActO(X)n

F (Y1)× · · · × F (Yn).

If O'〈1〉 is contractible, we can identify the space O(n) of n-ary operations with the fibre of ActO(X)→
ActF∗(〈1〉) ' BΣn, and so rewrite this as the familiar formula

TOC '
∞∐

n=0

colim
BΣn

colim
O(n)

C × · · · × C '
∞∐

n=0

(
O(n)× C×n

)
hΣn

for C ∈ C ' Fun(O'〈1〉,C).

Remark 9.20. Our description of free algebras differs from what Lurie calls “free algebras” in
[Lur17, Section 3.1.3], because Lurie defines these to be given by operadic Kan extension along
the inclusion O ×F∗ Fint

∗ → O where the source is the subcategory containing all morphisms in O

lying over inert morphisms in F∗, not just the cocartesian ones. Lurie’s construction amounts to
specifying the unary operations in advance and freely adding the n-ary operations for n > 1, while
our version adds all the operations freely.

Example 9.21. The pattern ∆op,[ is also extendable. The analogues of Examples 9.18 and 9.19
hence also hold for non-symmetric ∞-operads.

Example 9.22. The patterns F\∗ and ∆op,\ are also extendable. Hence any morphism of generalized
symmetric or non-symmetric ∞-operads is extendable.

Remark 9.23. Suppose

O P

F∗

f

is a morphism of generalized symmetric ∞-operads. Then the previous example does not say that
we can compute free Segal P[-objects on Segal O[-objects, as f! generally will not restrict to a
functor between these. In the definition of extendability, condition (1) is still automatic (as the

inert morphisms in F\∗ and F[∗ are the same), while condition (3) reduces to F[∗ being extendable.
Thus the morphism f [ : O[ → P[ is extendable if and only if for all P over 〈n〉 in F∗ the functor

Oact
/P →

n∏

i=1

Oact
/ρi,!P

is cofinal, where ρi : 〈n〉 → 〈1〉 is as in the introduction.

10. Polynomial Monads from Patterns

In this section we introduce the notion of polynomial monad on an ∞-category of presheaves,
and prove that the free Segal O-space monad for an extendable pattern O is polynomial. Moreover,
we show that this is compatible with Segal morphisms of algebraic patterns, yielding a functor

M : AlgPattSeg
ext → PolyMnd

between the subcategory of AlgPatt consisting of extendable patterns and Segal morphisms, and an
∞-category of polynomial monads. We start by introducing some terminology:
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Definition 10.1. A natural transformation φ : F → G is cartesian if the naturality squares

F (x) F (y)

G(x) G(y)

F (f)

φx φy

G(f)

are all cartesian.

Definition 10.2. A functor F : C→ D is a local right adjoint if for every c ∈ C the induced functor
C/c → D/Fc is a right adjoint.

Lemma 10.3. If C and D are presentable ∞-categories, then the following are equivalent for a
functor F : C→ D:

(1) F is accessible and preserves weakly contractible limits.
(2) F is a local right adjoint.
(3) The functor F/∗ : C→ D/F (∗) has a left adjoint.

Proof. The equivalence of (1) and (2) was proved as [GHK17, Proposition 2.2.8]. Since (3) is a
special case of (2), it remains to prove that (3) implies (1). By the adjoint functor theorem [Lur09,
Corollary 5.5.2.9], it follows from (3) that F/∗ is accessible and preserves limits. The forgetful
functor D/F (∗) → D preserves and creates all colimits, as well as weakly contractible limits, by
[GHK17, Lemma 2.2.7], so this implies that F itself is accessible and preserves weakly contractible
limits. �

Definition 10.4. A monad T is cartesian if its multiplication and unit are cartesian natural trans-
formations, and is polynomial if it is cartesian and the underlying endofunctor is a local right
adjoint.

Remark 10.5. For ordinary categories, our notion of polynomial monads is the same as the strongly
cartesian monads considered in [BMW12]. For monads on ∞-categories of the form S/X for X ∈ S,
we recover the polynomial monads studied in [GHK17] (see Theorem 2.2.3 there), which is our
reason for adopting this terminology.

Proposition 10.6. If O is an extendable algebraic pattern, then the free Segal O-space monad TO
on Fun(Oel, S) is a polynomial monad.

Proof. Since SegO(int)(S) is an accessible localization of Fun(O(int), S), the inclusions SegO(int)(S) ↪→
Fun(O(int), S) are accessible and preserve limits. The endofunctor TO of SegOint(S) factors as a
composite

SegOint(S) ↪→ Fun(Oint, S)
jO,!−−→ Fun(O, S)

j∗O−→ Fun(Oint, S),

where the composite lands in the subcategory SegOint(S). To see that TO is a local right ad-
joint it suffices to show that the three functors in this composition are accessible and preserve
weakly contractible limits. All three functors are clearly accessible and except for jO,! they pre-
serve limits. It therefore remains to show that jO,! preserves weakly contractible limits. By
Lemma 7.2 for O ∈ O and F ∈ Fun(Oint, S), the value of jO,!F at O is colimX∈ActO(O) F (X). Since

ActO(O) = (Oint)act
/O is an ∞-groupoid, this factors through the forgetful functor S/ActO(O) → S,

which detects weakly contractible limits by [GHK17, Lemma 2.2.7]. It therefore suffices to show
that the functor Fun(Oint, S) → S/ActO(O) taking F to colimX∈ActO(O) F (X) → ActO(O) preserves

weakly contractible limits. But this factors as restriction along ActO(O) → Oint, which certainly
preserves limits, followed by the colimit functor Fun(ActO(O), S)→ S/ActO(O), which is an equiva-
lence.
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Next, we show that the multiplication transformation T 2
O → TO is cartesian. For O ∈ O, we have

an equivalence

(T 2
OF )(O) ' colim

X∈ActO(O)
(TOF )(O) ' colim

X∈ActO(O)
colim

Y ∈ActO(X)
F (Y ) ' colim

(Y X O)∈Act2
O

(O)
F (Y ),

where Act2
O(O)→ ActO(O) is the left fibration for the functor taking X  O to ActO(X). We then

have an identification

Act2
O(O) ' {Y g X

f O : f, g active}

under which the multiplication transformation T 2
OF (X) → TOF (X) is the morphism induced on

colimits by the map Act2
O(O)→ ActO(O) given by composition of active morphisms. Given F → G,

we want to show that the square

colim(Y X O)∈Act2
O

(O) F (Y ) colim(Y X O)∈Act2
O

(O)G(Y )

colim(Y O)∈ActO(O) F (Y ) colim(Y O)∈ActO(O)G(Y )

is cartesian. To see this it suffices to show that the square on fibres over (Y
f O) ∈ ActO(O) is

cartesian. The fibre (T 2
OF (X))f we can identify with the colimit over the fibre

Act2
O(O)f '





X

Y O
f





of the constant functor with value F (Y ). The square of fibres is therefore

Act2
O(O)f × F (Y ) Act2

O(O)f ×G(Y )

F (Y ) G(Y ),

which is indeed cartesian.
The value of the unit transformation F (O)→ TOF (O) is similarly induced by the map {idO} →

ActO(O). To see that the unit transformation is cartesian we must show that for F → G the square

F (O) G(O)

colim(Y O)∈ActO(O) F (Y ) colim(Y O)∈ActO(O)G(Y )

is cartesian. It again suffices to consider the square of fibres over (X
f O) ∈ ActO(O). The fibre

of {idO} → ActO(O) at f is the space

Pf := MapActO(O)(idO, f)
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of paths from idO to f in ActO(O) (which is empty if idO and f are not equivalent), and the square
of fibres is

Pf × F (O) Pf ×G(O)

F (X) G(X),

which is cartesian as required. �

Remark 10.7. We can regard polynomial monads as being the monads in an (∞, 2)-category whose
objects are presheaf∞-categories, whose morphisms are local right adjoints, and whose 2-morphisms
are cartesian transformations. The natural morphisms between polynomial monads are then the
lax morphisms of monads in this (∞, 2)-category. If T is a polynomial monad on SI and S is a
polynomial monad on SJ, then by the results of [Hau20] these correspond to commutative squares

AlgS(SJ) AlgT (SI)

SJ SI,

Φ

US UT

f∗

for some functor f : I→ J, such that the mate transformation

FT f
∗ → ΦFS

is cartesian. Noting the contravariance here, this motivates the following definition of an∞-category
of polynomial monads:

Definition 10.8. Consider the pullback

Fun(∆1, Ĉat∞)×
Ĉat∞

Cat∞

along ev1 : Fun(∆1, Ĉat∞) → Ĉat∞ and S(–) : Catop
∞ → Ĉat∞. We write PolyMndop for the sub-

category of this pullback whose objects are the monadic right adjoints of polynomial monads, and
whose morphisms are commutative squares whose mate transformations are cartesian.

Remark 10.9. Note that since UT detects pullbacks, the mate transformation above is cartesian
if and only if the transformation

Tf∗ → f∗S

obtained by composing with UT is cartesian.

Next, we observe that any Segal morphism between extendable patterns gives a morphism of
polynomial monads:

Proposition 10.10. Suppose f : O → P is a Segal morphism between extendable patterns. Then
the mate transformation

jO,!f
int,∗ → f∗jP,!

of functors SegPint(S)→ SegO(S) is cartesian.

Proof. We have to show that for every morphism Φ→ Ψ the commutative square

jO,!f
int,∗Φ f∗jP,!Φ

jO,!f
int,∗Ψ f∗jP,!Ψ
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is cartesian in SegO(S). Since SegPint(S) has a terminal object it suffices to consider Ψ ' ∗, in which
case we obtain the commutative square

colimX∈ActO(E) Φ(fX) colimY ∈ActP(f(E)) Φ(Y )

ActO(E) ActP(f(E))

after evaluating at an object E ∈ Oel. To show that this square is cartesian, it now suffices to observe
that for every point (X → E) ∈ ActO(E), the map on fibres is the identity Φ(fX)→ Φ(fX). �

Definition 10.11. We let AlgPattSeg
ext denote the subcategory of AlgPatt whose objects are the

extendable patterns and whose morphisms are the Segal morphisms.

Corollary 10.12. The functor AlgPattSeg → Fun(∆1,Cat∞)op taking a pattern O to the monadic

right adjoint UO : SegO(S)→ Fun(Oel, S) restricts to a functor M : AlgPattSeg
ext → PolyMnd. �

11. Generic Morphisms and the Nerve Theorem

In the previous section we saw that the free Segal space monad for any extendable pattern was a
polynomial monad. Our next goal is to extract an extendable pattern from any polynomial monad.
As a first step towards this, in this section we prove an ∞-categorical version of Weber’s nerve the-
orem [Web07]; our proof was particularly inspired by that of Berger, Melliès, and Weber [BMW12].

We begin by defining generic morphisms with respect to a local right adjoint functor, and extend
some basic observations about them from [Web04] to the ∞-categorical setting.

Definition 11.1. Suppose F : C → D is a local right adjoint functor between presentable ∞-
categories. Let L∗ : D/F (∗) → C be the left adjoint to F/∗ : C→ D/F (∗); we will abusively write L∗D

for the value of L∗ at an object D → F (∗). For any morphism D
φ−→ F (C) in D, we can view φ as a

morphism in D/F (∗) via the map F (q) : F (C)→ F (∗), where q is the unique morphism C → ∗. We
say φ is F -generic (or just generic if F is clear from context) if the adjoint morphism

L∗D ' L∗(F (q) ◦ φ)→ C

is an equivalence. (In other words, the generic morphisms are precisely the unit morphisms D →
F/∗L∗D.)

Remark 11.2. Using the universal property of the left adjoint, we can rephrase this definition
purely in terms of F as follows: φ : D → F (B) is F -generic if for every commutative square

D F (A)

F (B) F (∗)

ψ

φ F (α)

F (β)

there exists a unique morphism γ : B → A such that F (γ)◦φ ' ψ and the equivalence in the square
arises by combining this with the canonical equivalence F (α) ◦ F (γ) ' F (αγ) ' F (β) induced by ∗
being terminal. This is the version of the definition considered in [Web04].

Lemma 11.3. Let φ : D → F (B) be an F -generic morphism. Then given a commutative square

D F (A)

F (B) F (X),

ψ

φ F (α)

F (β)
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there exists a unique commutative triangle

A B

X

γ

α β

such that F (γ)◦φ ' ψ and the equivalence in the square arises by combining this with the equivalence
F (α) ◦ F (γ) ' F (αγ) ' F (β) given by applying F to the triangle.

Proof. The existence of a unique filler in the original square is equivalent to the existence of such a
filler in the adjoint square

LXD A

B X.

α

β

Since F preserves pullbacks, if ξ denotes the unique morphism X → ∗ we have a commutative
square of right adjoints

C D/F (∗)

C/X D/F (X).

F/∗

ξ∗ F (ξ)∗

F/X

This induces a corresponding square of left adjoints

D/F (X) C/X

D/F (∗) C.

LX

F (ξ)! ξ!

L∗

Thus ξ!LX ' L∗F (ξ)!; since ξ! detects equivalences, we see that for D
φ−→ F (B)

F (β)−−−→ F (X) the
adjoint morphism LXD → B over X is equivalent to L∗X → B computed using the morphism

F (B) → F (∗) that is the image of B → ∗, as this is the composite F (B)
F (β)−−−→ F (X)

F (ξ)−−−→ F (∗).
Since φ is generic, it therefore follows that the map LXD → B is also an equivalence, hence the
unique filler arises from the composite B ' LXD → A. �

Remark 11.4. For any morphism φ : D → F (C), if ψ : L∗D → C is the adjoint morphism, we can
write φ as a composite

D
ηD−−→ F (L∗D)

F (ψ)−−−→ F (C),

where ηD is the unit of the adjunction L∗ a F/∗. This is the unique factorization of φ as a generic
morphism followed by a morphism in the image of F ; we will often refer to this as the generic–free
factorization of φ.

Lemma 11.5 (Cf. [Web04, Proposition 5.10]). Suppose F,G : C→ D are local right adjoint functors
between presentable ∞-categories and φ : F → G is a cartesian natural transformation. Then a
morphism f : D → F (C) is F -generic if and only if the composite D → F (C)→ G(C) is G-generic.

Proof. Since φ is a cartesian transformation, we have natural cartesian squares

F (X) G(X)

F (∗) G(∗).φ(∗)
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This means we can write F/∗ as the composite

C
G/∗−−→ D/G(∗)

φ(∗)∗−−−→ D/F (∗).

But then the left adjoint L∗,F of F/∗ is the composite

D/F (∗)
φ(∗)!−−−→ D/G(∗)

L∗,G−−−→ C,

where L∗,G denotes the left adjoint to G/∗. Given f : D → F (C), this means the adjoint morphism
L∗,FD → C is the same as the adjoint morphism L∗,GD → C for the composite D → F (C) →
G(C). �
Lemma 11.6 (Cf. [Web04, Lemma 5.14]). Suppose F : C → D and G : D → E are local right
adjoint functors between presentable ∞-categories. If f : D → F (C) is F -generic and g : E → G(D)
is G-generic, then the composite

E
g−→ G(D)

G(f)−−−→ GF (C)

is GF -generic.

Proof. The functor (GF )/∗ factors in two steps as

C
F/∗−−→ D/F (∗)

G/F (∗)−−−−→ E/GF (∗).

The left adjoint is therefore also computed in two steps; to find the morphism adjoint to G(f)g we
first get the commutative diagram

L∗,GE D F (C)

F (∗),

∼ f

and then L∗,FL∗,GE
∼−→ L∗,FD

∼−→ C, which is an equivalence as required. �
Definition 11.7. Suppose I is a small ∞-category and T is a polynomial monad on the functor
∞-category SI. We define U(T )op to be the full subcategory of SI spanned by the objects X that
admit a generic morphism I → TX with I ∈ Iop (regarded as an object of SI through the Yoneda
embedding). We write W(T )op for the full subcategory of AlgT (SI) spanned by the free T -algebras
on the objects of U(T ).

Remark 11.8. From the definition of generic morphisms it follows that we can equivalently describe
the objects of U(T )op as those of the form L∗I for some I ∈ Iop and some morphism I → T∗ in SI.

Lemma 11.9. Let T be a polynomial monad on SI.

(i) For any object X ∈ SI, the unit map X → T (X) is generic.

(ii) If X
φ−→ T (Y ) and Y

ψ−→ T (Z) are generic morphisms, then the composite

X
φ−→ TY

Tψ−−→ T 2Z
µZ−−→ TZ

is generic, where µ denotes the multiplication transformation of the monad.

Proof. Since T is a polynomial monad, the unit transformation id → T is cartesian and so by
Lemma 11.5 the unit map X → TX is generic for all X (since an id-generic map is precisely an
equivalence).

The composite X
φ−→ TY

Tψ−−→ T 2Z is T 2-generic by Lemma 11.6, and as the multiplication µ is
a cartesian transformation this implies the composite of this with µZ : T 2Z → TZ is T -generic by
Lemma 11.5. �
Proposition 11.10. Let T be a polynomial monad on SI.

(i) The full subcategory U(T )op contains Iop.
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(ii) For any generic morphism X → TY with X ∈ U(T )op, the object Y also lies in U(T )op.

Proof. The unit map I → TI is generic by Lemma 11.9(i). Hence I → TI → T∗ is a generic–free
factorization, where the second map is the image under T of the unique map I → ∗. This shows
that I is in U(T )op, which proves (i).

To prove (ii), observe that since X is in U(T )op, we have a generic morphism I → TX with I in
Iop. Then by Lemma 11.9(ii) the composite

I → TX → T 2Y
µY−−→ TY

is also generic, which means that Y is also in U(T )op. �

Remark 11.11. Note that the functor U(T ) → W(T ) need not exhibit U(T ) as a subcategory of
W(T ).

Our goal is now to show that the algebras for the polynomial monad T can be described in
terms of the ∞-categories U(T ) and W(T ) — this is the content of the nerve theorem. The next
proposition gives the key input needed to prove this.

Notation 11.12. Given a functor j : Aop → SI, we let

νA : SI → Fun((SI)op, S)
j∗−→ SA

denote the composition of the Yoneda embedding and j∗. Thus νA takes Φ: I→ S to MapSI(j(–),Φ).

Proposition 11.13. Let T be a polynomial monad on SI.

(i) The functor νU(T ) : SI → SU(T ) is fully faithful, and given by right Kan extension along the
inclusion I ↪→ U(T ).

(ii) For every Φ ∈ SI, the diagram

(U(T )op)./Φ → SI

is a colimit diagram.
(iii) For every Φ in SI the composite diagram

(U(T )op)./Φ → SI
T−→ SI

νU(T )−−−→ SU(T )

is a colimit diagram. (In other words, the colimit diagram in (ii) is preserved by the functor
νU(T )T .)

The proof uses the following technical observation:

Lemma 11.14. Suppose j : Aop ↪→ SI is a full subcategory of a presheaf ∞-category SI such that
Iop (viewed as a full subcategory of SI via the Yoneda embedding) is contained in Aop, so that we
have a fully faithful functor i : I→ A. Then:

(i) νA is equivalent to the functor i∗ : SI → SA given by right Kan extension along i.
(ii) νA is fully faithful.

(iii) For every Φ in SI, the diagram

(Aop)./Φ → SI

is a colimit diagram, and this colimit is preserved by νA.

Proof. For any Φ ∈ SI, the diagram (Iop)./Φ → SI is a colimit, so we have a natural equivalence

νAΦ(a) ' Map(j(a),Φ) ' Map( colim
x∈(Iop)/j(a)

y(x),Φ) ' lim
x∈Ia/

Φ(x) ' (i∗Φ)(a).

This proves (i). Since i : I→ A is fully faithful, it follows that i∗ is also fully faithful, which proves
(ii). To prove (iii), since νA is fully faithful it suffices to show that the composite

(Aop)./Φ → SI
νA−−→ SA

is a colimit diagram. But this is now a Yoneda cocone for Aop, which is always a colimit in SA. �
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Proof of Proposition 11.13. (i) and (ii) follow from Proposition 11.10(i) and Lemma 11.14. To prove
(iii), since colimits in functor categories are computed objectwise, it suffices to show that for every
X ∈ U(T ) and Φ ∈ SI, the morphism

colim
Y ∈(U(T )op)/Φ

MapSI(X,TY )→ MapSI(X,TΦ)

is an equivalence. Let E→ (U(T )op)/Φ be the left fibration for the functor (U(T )op)/Φ → S taking
Y to MapSI(X,TY ); then we have a pullback square

E SIX/

(U(T )op)/Φ SI SI,T

so that an object of E is a pair (Y → Φ, X → TY ). By [Lur09, Proposition 3.3.4.5], the space
colimY ∈(U(T )op)/Φ

MapSI(X,TY ) is equivalent to the space ‖E‖ obtained by inverting all morphisms
in E, and the morphism we are interested in is the map of spaces induced by the functor of ∞-

categories E → MapSI(X,TΦ) taking (Y
α−→ Φ, X → TY ) to the composite X → TY

Tα−−→ TΦ. By
[Lur09, Proposition 4.1.1.3] a morphism of spaces that arises from a cofinal functor of ∞-categories
is an equivalence, so it suffices to show that the functor E→ MapSI(X,TΦ) is cofinal. Since every
functor to an∞-groupoid is a cartesian fibration, to prove this we may apply [Lur09, Lemma 4.1.3.2],
which says that a cartesian fibration with weakly contractible fibres is cofinal. It thus suffices to
check that the fibres Eφ at φ : X → TΦ are weakly contractible. But the fibre Eφ is the ∞-category

of factorizations of φ of the form X → TY
Tα−−→ TΦ. Since T is a local right adjoint, this∞-category

has an initial object, corresponding to the generic-free factorization X → TY → TΦ, as Y also lies
in U(T ) by Proposition 11.10(ii); hence Eφ is indeed weakly contractible, as required. �

Theorem 11.15 (Nerve Theorem). Suppose T is a polynomial monad on SI, and let jT denote the
restriction of F op

T to a functor U(T )→W(T ). Then the commutative square

AlgT (SI) Fun(W(T ), S)

SI Fun(U(T ), S)

νW(T )

UT j∗T
νU(T )

is cartesian, and the mate transformation

jT,!νU(T ) → νW(T )FT

is an equivalence. In particular, νW(T ) : AlgT (SI) → Fun(W(T ), S) is fully faithful, and the left
adjoint jT,! restricts to FT .

Proof. We want to apply [GHK17, Proposition 5.3.5] to conclude that the square is cartesian. All
the requirements for this are clearly satisfied, with one exception: We must show that the mate
transformation

jT,!νU(T ) → νW(T )FT

is an equivalence, i.e. is given by an equivalence when evaluated at every object Φ ∈ SI. We first
consider the case of X ∈ U(T )op ⊆ SI. Then νU(T )X is the presheaf on U(T ) represented by X,

hence jT,!νU(T )X is represented by jTX ' FTX, and so jT,!νU(T )X
∼−→ νW(T )FTX, as required.

Now let Φ ∈ SI be a general object. Since j∗T detects equivalences, it suffices to show that the
evaluation of the transformation

j∗T jT,!νU(T ) → j∗T νW(T )FT ' νU(T )T
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at Φ is an equivalence. We know from Lemma 11.14(iii) and Proposition 11.13(iii) that Φ is the
colimit of the diagram (U(T )op)/Φ → SI taking X → Φ to X, and this colimit is preserved by the
functors νU(T ) and νU(T )T . Since j∗T jT,! preserves colimits (being itself a left adjoint), we have a
commutative square

colimX∈(U(T )op)/Φ
j∗T jT,!νU(T )X colimX∈(U(T )op)/Φ νU(T )TX

j∗T jT,!νU(T )Φ νU(T )TΦ,

o o

where the vertical morphisms are equivalences. Moreover, the top horizontal morphism is an equiva-
lence, since it is the colimit of equivalences j∗T jT,!νU(T )X

∼−→ νU(T )TX for X ∈ U(T )op. The bottom
horizontal morphism is therefore also an equivalence, which completes the proof. �
Corollary 11.16. AlgT (SI) is equivalent to the full subcategory of Fun(W(T ), S) spanned by functors
that are local with respect to the morphisms

jT,!( colim
I∈(IX/)op

y(I))→ jT,!y(X)

for X ∈ U(T ). In particular AlgT (S)I is an accessible localization of Fun(W(T ), S) and so a
presentable ∞-category. �

We now want to show that the ∞-categories U(T ) and W(T ) are compatible with morphisms of
polynomial monads.

Proposition 11.17. Let T be a polynomial monad on SI and S a polynomial monad on SJ, and
suppose we have a commutative square

AlgS(SJ) AlgT (SI)

SJ SI,

Φ

US UT

f∗

such that the mate transformation FT f
∗ → ΦFS is cartesian.

(i) If X → TY is T -generic, then the composite f!X → f!TY → Sf!Y is S-generic, where f! : S
I →

SJ is the left adjoint to f∗, given by left Kan extension along f , and the natural transformation
f!T → Sf! is obtained from the mate by applying UT and moving adjoints around.

(ii) The functor f! restricts to a functor U(T )op → U(S)op.
(iii) The functor Φ: AlgT (SI)→ AlgS(SJ) has a left adjoint Ψ.
(iv) The functor Ψ restricts to a functor W(S)op →W(T )op, and we have a commutative square

U(T ) U(S)

W(T ) W(S).

fop
!

F op
T F op

S

Ψop

Proof. We first prove (i). Let u denote the map T∗ ' Tf∗∗ → f∗S∗. Since the transformation
T/∗f∗ ' Tf∗ → f∗S is cartesian, the functor (Tf∗)/∗ : SJ → SI/T∗ is equivalent to the composite

SJ
S/∗−−→ SJ/S∗

f∗−→ SJ/f∗S∗
u∗−→ SI/T∗.

This means we have a corresponding equivalence of left adjoints

f!L
T
∗ ' LS∗ f!u!,

Since X → TY is T -generic, the adjoint map LT∗X → Y is an equivalence, hence so is f!L
T
∗X → f!Y .

But under the equivalence of left adjoints this map LS∗ f!u!X
∼−→ f!Y is adjoint to f!X → f!TY →

Sf!Y , as required.
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To prove (ii), we must show that if X is in U(T )op, so that there is a generic morphism I → TX
with I ∈ Iop, then f!X is in U(S)op. By (i), the composite f(I) ' f!I → f!TX → Sf!X is T -generic.
Since f(I) is in J, this implies that f!X is in U(T )op.

To show part (iii), note that by Corollary 11.16 the ∞-categories AlgT (SI) and AlgS(SJ) are
presentable. Since US detects equivalences, preserves limits, and is accessible, and f∗ preserves
both limits and colimits, it follows that Φ is accessible and preserves limits. By the adjoint functor
theorem this implies that Φ has a left adjoint Ψ, as required.

From our commutative square of right adjoints we now get an equivalence ΨFT ' FSf!. By
definition the ∞-categories W(T )op and W(S)op consist of free algebras on objects of U(T )op and
U(S)op, respectively, so it follows from (ii) that Ψ takes W(T )op to W(S)op, and gives the required
commutative square. �

Lemma 11.18. The functor Ψ: W(T )op →W(S)op of the previous proposition preserves free maps
and takes morphisms which are adjoint to T -generic maps to morphisms which are adjoint to S-
generic maps.

Proof. The commutativity of the square of Proposition 11.17.(iv) shows that Ψ preserves free maps.
Suppose α : FTX → FTY is a morphism in W(T )op which is adjoint to a T -generic map X → TY ,
we want to see that Ψα is adjoint to an S-generic morphism. By the equivalence ΨFT ' FSf! of
Proposition 11.17 and the construction of the generic–free factorization the map Ψα is adjoint to
the composite

f!X
ηSf!−−−→ Sf!X → Sf!Y,

where ηS is the unit of the monad S. We claim that there is a commutative diagram

f!TX f!TY

f!X Sf!X Sf!Y

f!η
T

ηSf!

where ηT is the unit of T , the right horizontal maps are induced by α and the vertical maps are
induced by the equivalence Sf! ' USΨFT together with the natural transformation τ : f!UT → USΨ
adjoint to the unit ηSf!

: f! → Sf!. The square in the diagram commutes by naturality. To see that
the triangle commutes we first observe that τ is also adjoint to the counit map εΨ : FSUSΨ → Ψ.
Using this it is easy to see that left triangle is adjoint to a triangle

FSf!X FSf!TX

FSf!X
id

which is equivalent to the commutative triangle

ΨFTX ΨFTUTFTX

ΨFTX
id

ΨεFTX

obtained from the adjunction identities. This shows that the diagram above commutes, and hence
Ψα is adjoint to the composite f!X → f!TX → f!TY → Sf!Y , which is S-generic by Proposi-
tion 11.17(i). �

Combining the preceding results, we get the following:
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Corollary 11.19. In the situation of Proposition 11.17, we have a commutative cube

AlgS(SJ) Fun(W(S), S)

AlgT (SI) Fun(W(T ), S)

SJ Fun(U(S), S)

SI Fun(U(T ), S),

which exhibits the morphism of polynomial monads T → S as arising from the commutative square
in Proposition 11.17(iv). �
Proof. Taking left adjoints, the morphism of polynomial monads T → S gives a commutative square

SI SJ

AlgT (SI) AlgS(SJ),

f!

FT FS

Ψ

and we have shown that this restricts to a commutative square

U(T )op U(S)op

W(T )op W(S)op

relating these full subcategories. Thus we have a commutative cube

U(T )op SI

U(S)op SJ

W(T )op AlgT (SI)

W(S)op AlgS(SJ).

The right-hand square consists of cocomplete ∞-categories and colimit-preserving functors, so this
canonically extends to presheaves on the left-hand square, giving a commutative cube

Fun(U(T ), S) SI

Fun(U(S), S) SJ

Fun(W(T ), S) AlgT (SI)

Fun(W(S), S) AlgS(SJ)

This consists entirely of left adjoints, and passing to right adjoints we get the cube we want. �

12. Factorization Systems from Polynomial Monads

Suppose T is a polynomial monad on SI. Then a morphism FTX → FTY in the Kleisli ∞-
category K(T ) has a canonical factorization of the form

FTX → FTL∗X → FTY
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adjoint to the generic-free factorization of X → TY as X → TL∗X → TY through the unit of the
local left adjoint L∗. Our first goal in this section is to show that this canonical factorization is
well-defined, in the sense that if we have equivalences FTX ' FTX ′, FTY ' FTY ′ in K(T ) (which
need not come from morphisms in SI), then there is a commutative diagram

FTX FTL∗X FTY

FTX
′ FTL∗X ′ FTY

′

o o o

where the middle vertical map is again an equivalence. We can then say that a morphism φ : FTX →
FTY is

• inert if the map FTX → FTL∗X in the canonical factorization is an equivalence,
• active if the map FTL∗X → FTY in the canonical factorization is an equivalence,

as this does not depend on the choice of the objects X and Y . We will see that the inert morphisms
are obtained by closing the free morphisms under equivalences (which need not all be free), while
the active morphisms are precisely those that are adjoint to generic morphisms. Our main goal in
this section is to prove that these classes give a factorization system:

Theorem 12.1. Let T be a polynomial monad on SI. Then the active and inert morphisms give a
factorization system on K(T ), whereby every morphism factors as an active morphism followed by
an inert morphism; this factorization is precisely the canonical factorization, up to equivalence.

This factorization system restricts to the full subcategory W(T )op, which induces a canonical
pattern structure on W(T ); in the next section we will discuss how this relates to the original
monad T .

We start with some observations relating the local left adjoint of T to the Kleisli ∞-category:

Notation 12.2. For X ∈ SI, we write LX : SI/T (X) → SI/X for the left adjoint of the functor

TX : SI/X → SI/T (X) induced by T .

Proposition 12.3. Let K(T ) denote the Kleisli category of T , i.e. the full subcategory of AlgT (SI)
spanned by the free algebras. For φ : FY → FX in K(T ), the ∞-category

(SI/X)φ/ := SI/X ×K(T )/FX (K(T )/FX)φ/

has an initial object.

Proof. An object in this∞-category is a morphism f : Z → X together with a commutative triangle

FY FZ

FX.
φ F (f)

This corresponds to a commutative triangle

Y TZ

TX,
φ′ T (f)

which in turn corresponds to

LXY Z

X.
φ′′ f

Thus LXY
φ′′−−→ X gives an initial object, as required. �
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Corollary 12.4. The functor FX : SI/X → K(T )/FX given by F has a left adjoint LX , which takes

φ : FY → FX to the corresponding map φ′′ : LXY → X.

Proof. By a standard argument the functor FX is a right adjoint if and only if (SI/X)φ/ has an initial

object, which is the statement of Proposition 12.3. �

Remark 12.5. For f : Y → X, the counit map LXFX(f)→ f is given by the commutative triangle

LXY Y

X,

∼

f

where the map LXY → Y is the map adjoint to the unit Y → TY which is an equivalence by
Lemma 11.9. It follows that FX is fully faithful, and so LX exhibits SI/X as a localization of

K(T )/FX .

Remark 12.6. The functor FX : SI/X → K(T )/FX also has a right adjoint UX , which takes

φ : FY → FX to the morphism obtained as the pullback of Uφ : TY → TX along the unit map
εX : X → TX. Note that the unit id→ UXFX is an equivalence since ε is a cartesian transformation,
which also implies that FX is fully faithful.

Remark 12.7. For φ : FY → FX, the unit map φ→ FXLX(φ) is the commutative triangle

FY FLXY

FX,

φ

i.e. the canonical factorization of φ. By naturality, this means we can extend any commutative
triangle

FY FY ′

FX

ψ

to a commutative diagram

FY FY ′

FLXY FLXY
′

FX

ψ

FXLXψ

relating the canonical factorizations of the two maps to FX. The next observations will allow us to
prove that the canonical factorization is also natural when we vary FX.

Proposition 12.8. For every object C ∈ SI we have a commutative diagram

SI/T 2C SI/TC

SI/TC SI/C ,

µC,!

LTC LC

LC

where the top horizontal map is given by composition with the component at C of the multiplication
µ : T 2 → T at C.
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Proof. It suffices to show that the diagram

SI/T 2C SI/TC

SI/TC SI/C

µ∗C

TTC

TC

TC

of the corresponding right adjoints commutes. Given an object α : B → C in SI/C , its image under

the composite of the right vertical and the upper horizontal map is the left vertical map of the
pullback square

A TB

T 2C TC.

Tα

µC

Since the multiplication µ of the polynomial monad T is a cartesian natural transformation, the
map A→ T 2C can be identified with T 2α : T 2B → T 2C which is the same as the image of α under
the composite of TC and TTC . �

Corollary 12.9. Given morphisms α : A → TB and β : B → TC, we have adjoint morphisms

LBA → B and LCB → C; we also have the composites A
α−→ TB

Tβ−−→ T 2C
µ−→ TC and LBA →

B → TC with adjoints LCA→ C and LCLBA→ C. These are equivalent, i.e. LCA ' LCLBA.

Proof. Consider the diagram

SI/TB SI/T 2C SI/TC

SI/B SI/TC SI/C .

(Tβ)!

LB

µC,!

LTC LC

β! LC

Here the left square commutes since it is the square of left adjoints corresponding to the square

SI/TC SI/B

SI/T 2C SI/TB ,

β∗

TTC TB

(Tβ)∗

which commutes since T preserves pullbacks, and the right square commutes by Proposition 12.8.
By construction the morphisms LCA → C and LCLBA → C are given by LCµC,!Tβ!(α) and
LCβ!LB(α), and so are equivalent by the commutativity of the outer square. �

Proposition 12.10. Given a commutative square

FTA FTB

FTC FTD,

in K(T ), there exists a canonical commutative diagram

FTA FTLBA FTB

FTC FTLDC FTD.
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Here the diagram associated to the degenerate square

FTA FTB

FTA FTB

is the degenerate diagram

FTA FTLBA FTB

FTA FTLBA FTB.

Moreover, we have compatibility with composition, in the sense that if we have a commutative
diagram

FTA FTB

FTC FTD

FTX FTY,

then the vertical composite of the associated diagrams

FTA FTLBA FTB

FTC FTLDC FTD

FTX FTLYX FTY,

is the diagram associated to the composite square

FTA FTB

FTX FTY.

Proof. We can view the original square as a pair of morphisms

FTC FTA FTB

in K(T )/FTD. Adding the canonical factorization of the arrow FTA → FTB, the naturality of the
unit for the adjunction LD a FD gives a commutative diagram

FTC FTA FTLBA FTB

FTLDC FTLDA FTLDLBA FTLDB
∼

over FTD, where the second arrow in the bottom row is an equivalence by Corollary 12.9. If we
invert this equivalence we can contract the diagram to

FTA FTLBA FTB

FTC FTLDC

over FTD; adding FTD back in now gives the desired diagram.
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From the degenerate square we can make the extended diagram

FTA FTA FTLBA FTB

FTLBA FTLBA FTLBLBA FTLBB

FTLBA FTB,

ηFTA

ηFTA ηFT LBA

FBLBηFTA

∼
FT εLBA FT εLB

all over FTB. Here the adjunction identities for LB a FB imply that the two composites FTLBA→
FTLBA are identities, as indicated; this means the general definition indeed specializes to give the
degenerate diagram in this case.

To see we have compatibility with composition, consider the diagram

FTA FTLBA FTB

FTC FTLDC FTD

FTX

in K(T )/FTY . Using the unit for the adjunction LY a FY this extends to a commutative diagram

FTA FTLBA FTB

FTC FTLDC FTD

FTX

FTLYA FTLY LBA FTLYB

FTLY C FTLY LDC FTLYD

FTLYX

∼

∼

over FTY , where the two indicated morphisms are equivalences by Corollary 12.9. Inverting these,
we can contract the diagram to

FTA FTLBA FTB

FTC FTLDC FTD

FTLYA FTLY C

FTX FTLYX FTY

where we see both the composite of the diagrams for the two squares and the diagram for the
composite square, as required. �
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Corollary 12.11. A commutative square

FTA FTB

FTC FTD

o o

in K(T ), where the vertical morphisms are equivalences, can be extended to a commutative diagram

FTA FTLBA FTB

FTC FTLDC FTD

o o o

where the middle vertical map is also an equivalence.

Proof. This follows immediately from the compatibility of the diagrams in Proposition 12.10 with
composition and identities. �

In other words, the canonical factorizations in K(T ) are invariant under equivalences. This means
the following conditions on morphisms are well-defined:

Definition 12.12. We say a morphism φ : FTA→ FTB in K(T ) with canonical factorization

FTA→ FTLBA→ FTB

is inert if the morphism FTA→ FTLBA in the canonical factorization is an equivalence, and active
if the morphism FTLBA→ FTB in the canonical factorization is an equivalence.

Our goal in the rest of this section is to show that the active and inert morphisms form a
factorization system on K(T ). We start with some observations about equivalences in K(T ) that
will lead to a simpler characterization of the active maps.

Lemma 12.13. If T is a polynomial monad then the free functor FT is conservative: if FT (φ) is
an equivalence for some φ : X → Y in SI then φ is an equivalence.

Proof. The functor FY : SI/Y → K(T )/FTY is fully faithful by Remark 12.5. The inverse of FTφ

gives a morphism

FTY FTX

FTY

(FTφ)−1

FTφ

in K(T )/FTY between objects in the image of FY , hence it is also in the image of FY and lifts to an

equivalence in SI/Y by faithfulness. �

Lemma 12.14. Given a commutative triangle

FA FB

FC,

φ

α β

and morphisms a : A → C and b : B → C with equivalences α ' F (a) and β ' F (b), then the
triangle lifts to a unique commutative triangle

A B

C.

f

a b



48 HONGYI CHU AND RUNE HAUGSENG

Proof. The functor FC : SI/C → K(T )/FTC is fully faithful by Remark 12.5. This immediately implies

the result, since the first triangle is precisely a morphism in K(T )/FTC between objects in the image
of FC . �

Lemma 12.15. Every equivalence φ : FTX
∼−→ FTY is adjoint to a generic map.

Proof. Regarding φ as a morphism in K(T )/FTY , we apply LY to get a commutative triangle

LYX LY Y

Y,

LY φ

∼

∼

where the right diagonal map is an equivalence by Lemma 11.9(i) and the horizontal map is an
equivalence by the functoriality of LY . Hence the left diagonal map is also an equivalence, which is
precisely the condition for the map X → TY adjoint to φ to be generic. �

Lemma 12.16. A morphism φ : FTX → FTY is active if and only if the adjoint morphism φ′ : X →
TY is generic.

Proof. Let φ′′ : LYX → Y be the map adjoint to φ′. By definition, φ is active if and only if in the
canonical factorization

FTX
φa−→ FTLYX

φi−→ FTY,

the map φi = FT (φ′′) is an equivalence. By Lemma 12.13 this happens if and only if φ′′ is an
equivalence, which is precisely the condition for φ′ to be generic. �

Lemma 12.17. For any morphism φ : X → Y in SI, the free morphism FT (φ) : FTX → FTY is
inert.

Proof. The commutative triangle

FTX

FTX FTY

FTφ

FTφ

is adjoint to

X

TX TY

ηX

Tφ

which is in turn adjoint to

L∗X

X Y,

λ o
φ

where λ is an equivalence since the unit map ηX is generic by Lemma 11.9(i). By adjointness we
see that FT takes the last triangle to the right triangle in the commutative diagram

FTX FTL∗X

FTX FTY,

FTλ o
FTφ

where the upper horizontal map is adjoint to the unit X → TL∗X; this is an equivalence as FTλ
is one. By definition the upper horizontal map and the right diagonal map give the canonical
factorization of FTφ, hence FTφ is inert. �



HOMOTOPY-COHERENT ALGEBRA VIA SEGAL CONDITIONS 49

Warning 12.18. Note, however, that it is not necessarily true that every inert map is of the form
FT (φ) for φ a morphism in SI: The equivalences in AlgT (SI) need not all be in the image of SI.

Remark 12.19. By Lemmas 12.16 and 12.17, the canonical factorization of a morphism φ : FTA→
FTB as FTA→ FTL∗A→ FTB is a factorization of φ as an active morphism followed by an inert
morphism.

Lemma 12.20. Given a commutative square

FTA FTB

FTC FTD

φ

ψ FT β

FT γ

where ψ is active, there exists a unique diagonal filler, which is of the form FT (α) for a unique
commutative triangle

C B

D.

α

γ β

Proof. As in Lemma 11.3, the square is adjoint to

A TB

TC TD,

φ′

ψ′ Tβ

Tγ

which in turn is adjoint to

L∗A B

C D,

φ′′

o β

γ

where the left vertical morphism is an equivalence since ψ is active and this implies that ψ′ is generic
by Lemma 12.16. This square has a unique filler, which in turn corresponds to a unique filler in the
original square, since we saw in Lemma 12.14 that all fillers are uniquely of this form. �

Proof of Theorem 12.1. We check the requirements of [Lur09, Definition 5.2.8.8] (which are equiva-
lent to our previous definition of a factorization system by [Lur09, Proposition 5.2.8.17]). We must
thus check:

(1) The classes of inert and active maps are closed under retracts.
(2) The active maps are left orthogonal to the inert maps, i.e. for every commutative square

FTA FTB

FTC FTD

α

β γ

δ

where β is active and γ is inert, there exists a unique filler.
(3) Every morphism can be factored as an active map followed by an inert map.
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Condition (3) is by now clear, since by Remark 12.19 the canonical factorization gives an active-inert
factorization. For condition (1), suppose we have a retract diagram

FTA FTA
′ FTA

FTB FTB
′ FTB.

φ ψ φ

By applying Proposition 12.10 to the two squares, we obtain a commutative diagram

FTA FTA
′ FTA

FTL∗A FTL∗A′ FTL∗A

FTB FTB
′ FTB,

φa ψa φa

f

φi

g

ψi φi

relating the canonical factorizations of φ and ψ, where the compatibility with composition and
identities in Proposition 12.10 implies that gf ' id. If ψ is active then by definition the map labelled
ψi is an equivalence, and so φi is a retract of an equivalence; hence φi is also an equivalence, which
means φ is active. The same argument shows that inert morphisms are also closed under retracts.

It remains to prove (2). Consider a commutative square

FTA FTB

FTC FTD

α

β γ

δ

with β active and γ inert. Including the canonical factorizations of γ and δ, we get a diagram

FTA FTB

FTL∗B

FTC FTL∗C FTD,

α

β

o

and since the map FTB → FTL∗B is an equivalence (since γ is inert), a lift in the original square
corresponds to a lift FTC → FTL∗B here. Applying Lemma 12.20 to the square

FTA FTL∗B

FTL∗C FTD,
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we see that there is a unique diagonal filler FTL∗C → FTL∗B, which comes from a unique commu-
tative triangle

L∗C L∗B

D.

This gives in particular a lift in the original square, but now applying Lemma 12.20 to a square

FTC FTL∗B

FTL∗C FTD,

we see that any lift FTC → FTL∗B must factor through FTL∗C and so must be the lift we just
constructed. �

Let us say that a morphism in W(T ) is inert or active if it corresponds to an inert or active mor-
phisms in K(T ) under the inclusion W(T )op ↪→ K(T ). Then the factorization system we constructed
restricts to one on W(T ):

Corollary 12.21. The inert and active morphisms restrict to a factorization system on W(T ).

Proof. It is enough to show that for a morphism FT I → FTJ in W(T )op, if FT I → FTX → FTJ is its
active-inert factorization in K(T ), then FTX also lies in W(T )op. Since the canonical factorization
is an active-inert factorization, this follows from Proposition 11.10(ii). �

13. Patterns from Polynomial Monads

Suppose T is a polynomial monad on SI. In the previous section we saw that the ∞-category
W(T ) has a canonical inert–active factorization system. Using this we can define a natural algebraic
pattern structure on W(T ) by taking the elementary objects to be those of the form FT (I) with
I ∈ SI in the image of Iop under the Yoneda embedding.

In this section we will study these algebraic patterns. We will see that W(T ) is always an
extendable pattern, and that the free Segal W(T )-space monad is closely related to the original
monad T : there is a canonical morphism T → TW(T ) in PolyMnd, which induces an equivalence
on ∞-categories of algebras. Moreover, the patterns W(T ) are natural in T , and so determine a
functor

P : PolyMnd→ AlgPattSeg
ext ;

the morphisms T → TW(T ) then give a natural transformation id→MP.

Notation 13.1. In the first part of this section we fix a polynomial monad T on SI. From our
work in the previous two sections we then have the following commutative diagram, where it will
be convenient to name the various functors as indicated:

I W(T )el

U(T ) W(T )int

W(T ).

e

i i′

u

j
j′

Proposition 13.2. Let K(T )int denote the subcategory of K(T ) containing only the inert mor-
phisms. Then the slice K(T )int

/FTX
is equivalent to the full subcategory of K(T )/FTX spanned by the

inert morphisms to FX. The functor FX : SI/X → K(T )/FTX restricts to an equivalence

SI/X
∼−→ K(T )int

/FTX
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with inverse LX .

Proof. It follows from the existence of the active–inert factorization system on K(T ) that if we have
a commutative triangle

FTA FTB

FTX

where the two diagonal morphisms are inert, then the horizontal morphism is also inert. This implies
that K(T )int

/FTX
is the full subcategory of K(T )/FTX spanned by the inert morphisms. Moreover,

every inert morphism to FTX is equivalent to a free morphism in K(T )/FTX , so this full subcategory
consists precisely of the objects in the image of FX . Since FX is fully faithful by Remark 12.5, it
follows that the adjunction LX a FX restricts to an equivalence between SI/X and K(T )int

/FTX
. �

Restricting this equivalence, we get the following:

Corollary 13.3. The functor F op
X restricts to an equivalence

IX/
∼−→W(T )el

FTX/

for every X ∈ U(T ). �

Corollary 13.4. The top commutative square in Notation 13.1 induces a commutative square of
functors to S. Taking the mate of this square gives a commutative square

Fun(W(T )el, S) Fun(W(T )int, S)

Fun(I, S) Fun(U(T ), S),

i′∗

e∗ u∗

i∗

and this is moreover cartesian.

Proof. To see that there is such a commutative square amounts to checking that the mate transfor-
mation

u∗i′∗Φ→ i∗e
∗Φ

is an equivalence for Φ: W(T )el → S. Evaluated at X ∈ U(T ), this is the map on limits

lim
W(T )el

FTX/

Φ→ lim
IX/

Φe,

induced by the functor IX/ → W(T )el
FTX/

. Since this functor is an equivalence by Corollary 13.3,

the mate transformation is indeed an equivalence. The functors i∗ and i′∗ are fully faithful, since
they are given by right Kan extensions along the fully faithful functors i and i′. To see that the
square is cartesian it therefore suffices to check that an object Φ ∈ Fun(W(T )int, S) is in the image
of i′∗ if and only if u∗Φ is in the image of i∗. Here Φ is in the image of i′∗ if and only if the unit map
Φ→ i′∗i

′∗Φ is an equivalence. The functor u∗ is conservative, because u is essentially surjective, and
so this holds if and only if u∗Φ→ u∗i′∗i

′∗Φ is an equivalence. We can identify the composite

u∗Φ→ u∗i′∗i
′∗Φ

∼−→ i∗e
∗i′∗Φ ' i∗i∗u∗Φ

with the unit map for i∗ a i∗, and since the mate transformation is an equivalence this means that
the latter is an equivalence if and only if Φ is in the image of i′∗. As i∗ is also fully faithful, this
condition holds precisely when u∗Φ is in the image of i∗, as required. �



HOMOTOPY-COHERENT ALGEBRA VIA SEGAL CONDITIONS 53

Corollary 13.5. We have a commutative diagram

AlgT (SI) Fun(W(T ), S)

Fun(W(T )el, S) Fun(W(T )int, S)

Fun(I, S) Fun(U(T ), S),

νW(T )

UT

j′∗

j∗

e∗

i′∗

u∗

i∗

where both squares are cartesian.

Proof. By the Nerve Theorem 11.15, we have a cartesian square

AlgT (SI) Fun(W(T ), S)

Fun(I, S) Fun(U(T ), S).

νW(T )

UT j∗

i∗

Here the right vertical functor j∗ factors as Fun(W(T ), S)
j′∗−−→ Fun(W(T )int, S)

u∗−→ Fun(U(T ), S).
The left vertical functor therefore factors uniquely through the pullback of i∗ along u∗, which we
can identify with Fun(W(T )el, S) by Corollary 13.4. This gives the desired commutative diagram.
Here the bottom and outer squares are cartesian, and so the top square is also cartesian. �

Corollary 13.6. We have a commutative square

AlgT (SI) SegW(T )(S)

Fun(W(T )el, S) SegW(T )int(S)

∼

∼

where the horizontal functors are equivalences.

Proof. By definition, SegW(T )int(S) is the essential image of the fully faithful functor i′∗ in Fun(W(T )int, S),

and SegW(T )(S) is the full subcategory of Fun(W(T ), S) spanned by the functors whose restriction

along j′ lies in this full subcategory; we thus have a pullback square

SegW(T )(S) Fun(W(T ), S)

SegW(T )int(S) Fun(W(T )int, S).

j′∗

The top cartesian square in the diagram of Corollary 13.5 factors through this, giving a commutative
diagram

AlgT (SI) SegW(T )(S) Fun(W(T ), S)

Fun(W(T )el, S) SegW(T )int(S) Fun(W(T )int, S).

j′∗

∼
i∗

Here the left-hand square is cartesian, since the outer and right-hand squares are cartesian, and so
the induced functor AlgT (SI)→ SegW(T )(S) is indeed an equivalence. �

Proposition 13.7. For X ∈ U(T ), the functor

U(T )X/ → U(T )FTX/ := U(T )×W(T )int W(T )int
FTX/

is coinitial.
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Proof. By [Lur09, Theorem 4.1.3.1] it suffices to check that for Y, φ : FY → FX, the slice ∞-
category (U(T )X/)/φ is weakly contractible. Here the canonical factorization of φ determines a
terminal object, as in the proof of Proposition 12.3. �

Corollary 13.8. There are natural equivalences of functors

id
∼−→ u∗u

∗,

u!u
∗ ∼−→ id,

j!u
∗ ∼−→ j′! .

Proof. For Φ: W(T )int → S the unit map Φ→ u∗u∗Φ evaluates at FTX ∈W(T )int as

Φ(FTX)→ lim
U(T )FTX/

Φ ◦ u,

which is an equivalence by Corollary 13.7. This gives the first equivalence, which implies the second
by passing to left adjoints. Applying j′! this gives the third equivalence, since j′!u! ' (j′u)! ' j!. �

Corollary 13.9. The algebraic pattern W(T ) is extendable.

Proof. We must show that j′! restricts to a functor SegW(T )int(S) → SegW(T )(S). Thus for Φ ∈
SegW(T )int(S) we must show that j′!Φ is a Segal object. By Corollary 13.8 the functor j′!Φ is equivalent

to j!u
∗Φ. But since Φ is by assumption in SegW(T )int(S), we know by Corollary 13.4 that u∗Φ is right

Kan extended from I. Hence j!u
∗Φ is in AlgT (SI) ' SegW(T )(S) by Theorem 11.15, as required. �

Corollary 13.10. Inverting the equivalence of Corollary 13.6, we have a commutative square

SegW(T )(S) AlgT (SI)

SW(T )el

SI.

UW(T )

∼
φ

UT

e∗

This square is a morphism of polynomial monads T → TW(T ).

Proof. Since W(T ) is extendable, we know that the free Segal W(T )-space monad TW(T ) is polyno-
mial by Proposition 10.6. For the square to be a morphism of polynomial monads, it remains to show
that the mate transformation FT e

∗ → φFW(T ) is cartesian. The equivalence UTφ ' e∗UW(T ) gives

an equivalence of left adjoints φ−1FT ' FW(T )e! under which the mate transformation corresponds
to the transformation

φFW(T )e!e
∗ → φFW(T )

induced by the counit e!e
∗ → id. This counit is easily seen to be cartesian (as in [GHK17, Lemma

2.1.5]), and since UW(T ) is conservative and preserves limits, it suffices to check this implies the
transformation

TW(T )e!e
∗ → TW(T )

is cartesian, which is true since TW(T ) preserves pullbacks. �

We now show that the pattern W(T ) is natural with respect to morphisms of polynomial monads:

Theorem 13.11. There is a functor

P : PolyMnd→ AlgPattSeg
ext

that takes a polynomial monad T on SI to the algebraic pattern W(T ), and a natural transformation

τ : id→MP,

given by the morphism T → M(W(T )) from Corollary 13.10, where M is the functor from Corol-
lary 10.12 that takes an extendable pattern O to the free Segal O-space monad.
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Proof. Suppose we have a morphism of polynomial monads T → S, given by a functor f : I → J

and a commutative square

AlgS(SJ) AlgT (SI)

SJ SI.

Φ

US UT

f∗

By Proposition 11.17, the functor Φ has a left adjoint Ψ which restricts to a functor Ψop : W(T )→
W(S). Lemma 11.18 implies that this functor preserves active and inert morphisms, since the active
morphisms are precisely those that are adjoint to generic morphisms by Lemma 12.16, while the
inert morphisms are the composites of free morphisms and equivalences. The commutative square
from Proposition 11.17(iv) restricts to a commutative square

I J

W(T ) W(S),

f

Ψop

and so Ψop also preserves elementary objects. Thus Ψop is a morphism of algebraic patterns.
It follows from Corollary 13.6 and Corollary 11.19 that Φ: AlgS(SJ)→ AlgT (SI) can be identified

with the restriction of (Ψop)∗ to Segal objects, thus Ψop is a Segal morphism by Lemma 4.5.
Since this construction is obviously compatible with composition we obtain a functor

P : PolyMnd→ AlgPattSeg
ext .

Using Corollary 13.4 the commutative cube in Corollary 11.19 extends to a commutative diagram

AlgS(SJ) Fun(W(S), S)

AlgT (SI) Fun(W(T ), S)

Fun(W(S)el, S) Fun(W(S)int, S)

Fun(W(T )el, S) Fun(W(T )int, S)

SJ Fun(U(S), S)

SI Fun(U(T ), S),

where the left side gives the naturality square

S TW(S)

T TW(T ).

Since this construction is again compatible with composition, it gives a natural transformation
id→MP. �

Variant 13.12. Let us say that a flagged algebraic pattern is a pair (O, I→ Oel) where O is an alge-
braic pattern and I → Oel is an essentially surjective functor of ∞-categories. We write FlAlgPatt
for the full subcategory of AlgPatt×Cat∞ Fun(∆1,Cat∞) spanned by the flagged algebraic patterns,

and FlAlgPattSeg
ext for the subcategory consisting of flagged algebraic patterns whose underlying pat-

terns are extendable, with morphisms those such that the underlying morphisms of patterns are
Segal morphisms. As a variant of the construction of P above, we can define a functor

P′ : PolyMnd→ FlAlgPattSeg
ext



56 HONGYI CHU AND RUNE HAUGSENG

that takes a polynomial monad T on SI to the flagged algebraic pattern (W(T ), I
e−→W(T )el). Note

that we can recover the monad T from this flagged pattern, since UT is equivalent to the composite

SegW(T )(S)
UW(T )−−−−→ Fun(W(T )el, S)

e∗−→ Fun(I, S).

For any flagged extendable pattern (O, f : I→ Oel) the composite

SegO(S)
UO−−→ Fun(Oel, S)

f∗−→ Fun(I, S)

is a monadic right adjoint (since f∗ preserves all limits and colimits and is conservative when f is
essentially surjective), but we do not know under what conditions on f the corresponding monad
is polynomial. This means that we do not have a satisfactory flagged version of the functor M in
general. However, if we restrict to patterns O such that Oel is an∞-groupoid, then this construction
does give a polynomial monad for any essentially surjective morphism f of ∞-groupoids, since in
this case the left adjoint f! preserves weakly contractible limits by [GHK17, Lemma 2.2.10] and the
unit and counit for the adjunction f! a f∗ are cartesian transformations by [GHK17, Lemma 2.1.5].

14. Saturation and Canonical Patterns

Suppose O is an extendable algebraic pattern. Then the free Segal O-space monad TO is polyno-
mial, and our results in the previous section associate to this another algebraic pattern O := W(TO)
such that there is an equivalence9

SegO(S) ' SegO(S).

In this section we will explore the relationship between the patterns O and O. We will show that
under a mild hypothesis on O (which can always be enforced by passing to a full subcategory

without changing the monad) there is a canonical morphism of patterns O → O, which gives a
natural transformation

id→ PM.

We will also give an explicit necessary and sufficient condition on O for the map O → O to be an
equivalence, and discuss some examples where this holds.

Notation 14.1. In the first part of this section we fix an extendable pattern O, and use the notations

Oel i−→ Oint j−→ O

for the standard inclusions.

We begin by studying the localized Yoneda embedding

Oop → Fun(O, S)→ SegO(S)

for a pattern O, which will give the canonical map to O.

Notation 14.2. Let Λ
(int)
O : O(int),op → SegO(int)(S) denote the composite of the Yoneda embedding

y
(int)
O : O(int),op → Fun(O(int), S) with the localization Fun(O(int), S)→ SegO(int)(S).

Lemma 14.3. For X ∈ O, there is an equivalence

ΛOX ' FOΛint
O X

in SegO(S). This equivalence is natural with respect to inert morphisms, i.e. we have a commutative
square

Oop SegO(S)

Oint,op SegOint(S).

ΛO

jop

Λint
O

FO

9In the next section, we will see that furthermore the patterns O and O determine the same polynomial monad.
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Proof. For Φ ∈ SegO(S), we have natural equivalences

MapSegO(S)(ΛOX,Φ) ' MapFun(O,S)(yOX,Φ)

' Φ(X),

MapSegO(S)(FOΛint
O X,Φ) ' MapSeg

Oint (S)(Λ
int
O X,UOΦ)

' MapFun(Oint,S)(y
int
O X,UOΦ)

' UOΦ(X)

' Φ(X).

The objects ΛOX and FOΛint
O X therefore corepresent the same copresheaf on SegO(S) and hence

are equivalent. Moreover, this equivalence is by construction natural in Oint. �

Lemma 14.4. The map

MapO(X,Y )→ MapSegO(S)(ΛOY,ΛOX)

given by the functor ΛO fits in a commutative square

colimO→Y ∈ActO(Y ) MapOint(X,O) colimO→Y ∈ActO(Y ) MapSeg
Oint (S)(Λ

int
O O,Λint

O X)

MapO(X,Y ) MapSegO(S)(ΛOY,ΛOX),

o o

where the vertical maps are equivalences and the top horizontal map comes from the functor Λint
O .

Proof. From the commutative square of functors in Lemma 14.3 we get for all O ∈ O a commutative
square

MapOint(X,O) MapSeg
Oint (S)(Λ

int
O O,Λint

O X)

MapO(X,O) MapSegO(S)(ΛOO,ΛOX),

where the right-hand map can be identified with Λint
O X(O) → colimO′∈ActO(O) Λint

O X(O′) which is
the canonical map to the colimit from the component at idO. On the other hand, for any active
morphism O → Y we have a natural commutative diagram

MapO(X,O) MapSegO(S)(ΛOO,ΛOX) TOΛint
O X(O) colimO′∈ActO(O) Λint

O X(O′)

MapO(X,Y ) MapSegO(S)(ΛOX,ΛOY ) TOΛint
O X(Y ) colimO′′∈ActO(Y ) Λint

O X(O′′),

∼ ∼

∼ ∼

where the description of FOΛint
O X as a left Kan extension implies that the right-hand map is given on

the component Λint
O X(O′) forO′ → O by the canonical map Λint

O X(O′)→ colimO′′∈ActO(Y ) Λint
O X(O′′)

for the component at O′ → O → Y . Putting these two diagrams together we therefore obtain natural
commutative squares

MapOint(X,O) Λint
O X(O)

MapO(X,Y ) colimO′∈ActO(Y ) Λint
O X(O′),
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for every active morphism φ : O → Y , where the right vertical map is the canonical one from the
component of the colimit at φ. Taking colimits over ActO(Y ) we therefore get a commutative square

colimO∈ActO(Y ) MapOint(X,O) colimO∈ActO(Y ) Λint
O X(O)

MapO(X,Y ) colimO∈ActO(Y ) Λint
O X(O).

Here the inert–active factorization system on O implies that the left vertical map is an equivalence,
since its fibre at a morphism ψ : X → Y can be identified with the space of inert–active factorizations
of ψ, and this completes the proof. �
Remark 14.5. For Y ∈ O, we have a natural equivalence

MapSeg
Oint (S)(Λ

int
O Y,Φ) ' MapFun(Oint,S)(y

int
O Y,Φ) ' Φ(Y ).

In particular,
MapSeg

Oint (S)(Λ
int
O Y, TO∗) ' ActO(Y ),

and so a morphism Λint
O Y → TO∗ corresponds to an active morphism X → Y in O.

We will now show that this equivalence identifies active morphisms in O with generic morphisms
in SegOint(S):

Proposition 14.6. Suppose Λint
O Y

η−→ TO∗ corresponds to the active morphism X
φ Y in ActO(Y )

under the equivalence of Remark 14.5. Then the generic–free factorization of η is

Λint
O Y

φ̂−→ TOΛint
O X → TO∗,

where the first morphism is adjoint to ΛO(φ) : ΛOY → ΛOX.

Proof. We first check that this factorization exists. By Lemma 14.4 the morphism φ̂ adjoint to Λ(φ)
corresponds to the point in TOΛint

O X(Y ) ' colimO∈ActO(Y ) Λint
O X(O) given by the composite

{idX} → MapOint(X,X)→ colim
O∈ActO(Y )

MapOint(X,O)→ colim
O∈ActO(Y )

Λint
O X(O),

where the second morphism is the canonical one from the component of the colimit at φ. We
therefore have a commutative diagram

∗

colimO∈ActO(Y ) MapOint(X,O)

colimO∈ActO(Y ) Λint
O X(O) ActO(Y ),

where the outer triangle corresponds to the desired factorization

Λint
O Y

TOΛint
O X TO(∗).

ηφ̂

Now we must show that φ̂ is generic, so suppose we have a commutative square

ΛintY TOΦ

TOΛintX TO∗,

θ

φ̂
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where the top horizontal map corresponds to a point p in the fibre Φ(X) of TOΦ(Y ) ' colimO∈ActO(Y ) Φ(O)
at φ. Suppose we have a commutative triangle of the form

Λint
O Y

TOΛintX TOΦ.

φ̂ θ

Tψ

This amounts to an equivalence between p and the image

∗ idX−−→ MapOint(X,X)→ colim
O∈ActO(Y )

MapOint(X,O)→ colim
O∈ActO(Y )

Λint
O X(O)→ colim

O∈ActO(Y )
Φ(O).

But since the last map arises from Tψ, there is a commutative diagram

MapOint(X,X) Λint
O X(X) Φ(X)

colimO∈ActO(Y ) MapOint(X,O) colimO∈ActO(Y ) Λint
O X(O) colimO∈ActO(Y ) Φ(O),

which tells us that ψ must be the morphism Λint
O X → Φ obtained by localizing the unique natural

transformation yint
O X → Φ that takes idX to the point p. Thus φ̂ satisfies the universal property of

generic morphisms described in Remark 11.2. By the uniqueness of generic–free factorizations, this
completes the proof. �

This proposition allows us to identify the objects of U(TO):

Definition 14.7. We say an object O ∈ O is necessary if it admits an active morphism O → E for
some E ∈ Oel, and denote by O◦ the full subcategory of O spanned by the necessary objects. We say

the pattern O is slim if all objects are necessary, and write AlgPattSeg
slim,ext for the full subcategory

of AlgPattSeg
ext spanned by the slim extendable patterns.

Corollary 14.8. Let O be an extendable algebraic pattern, and let O := W(TO) denote the corre-
sponding canonical pattern. Then:

(i) The objects of U(TO) are the objects of SegOint(S) of the form Λint
O X with X ∈ O◦. Thus Λint

O

induces an essentially surjective functor O◦,int → U(TO).

(ii) The objects of O are the objects of SegO(S) of the form ΛOX with X ∈ O◦. Thus ΛO induces

an essentially surjective functor O◦ → O.
(iii) A morphism ΛOX → ΛOY is active if and only if it is a composite of an equivalence and the

image of an active morphism X → Y in O◦. In particular, the functor O◦ → O preserves inert
and active morphisms.

Proof. By definition, the objects of U(TO) are the objects Φ of SegOint(S) that admit a generic
morphism Λint

O E → TOΦ with E ∈ Oel. Such a generic morphism is determined by a morphism
Λint
O E → TO∗, and from Proposition 14.6 we see that the generic–free factorizations of such mor-

phisms yield precisely the objects of O◦. This proves (i), from which (ii) follows using Lemma 14.3.

Finally, as active morphisms in O are those morphisms which are adjoint to generic maps by
Lemma 12.16, the first part of (iii) follows from the identification of such generic morphisms with ac-
tive morphisms in O in Proposition 14.6. This shows that ΛO preserves active morphisms, while the
commutative square of Lemma 14.3 implies that it preserves inert morphisms, since free morphisms
in O are in particular inert. �

Remark 14.9. If O is a slim extendable pattern, then Corollary 14.8 says that O has the same
objects as O, and the active morphisms are obtained by combining active morphisms from O with
equivalences (which may not all come from O).
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Remark 14.10. If O is necessary and O′ → O is an active morphism, then O′ is also necessary. This
implies that the inert–active factorization system in O restricts to O◦, and that ActO(O) ' ActO◦(O)
for O ∈ O◦. It follows that O◦ is extendable when O is. In this case we therefore have a commutative
diagram

SegO(S) SegO◦(S)

SegOint(S) SegO◦,int(S)

Fun(Oel, S),

∼ ∼

where the vertical maps are monadic right adjoints. The lower horizontal map is an equivalence
since the diagonal maps are equivalences. Since the two monads on Fun(Oel, S) are the same (by
definition ActO(E) ' ActO◦(E) for E ∈ Oel), the top horizontal morphism is also an equivalence.
Thus the patterns O and O◦ describe the same monad, and so the objects of O that do not lie in O◦

are in this sense unnecessary.

Examples 14.11. The examples of patterns discussed in §3 are all slim, with the exception of

the pattern ∆op,\
Φ of Example 3.8. The corresponding slim pattern ∆op,\,◦

Φ is the full subcategory
spanned by objects ([m], f) such that f(m) ∼= ∗. Another non-slim example is the extension of the

dendroidal category Ωop,\ to a category of forests considered in [HHM16], which has Ωop,\ as its
slim subpattern.

Remark 14.12. If T is a polynomial monad on SI then the algebraic pattern W(T ) is slim. This
follows from the fact that objects in W(T ) can be identified with objects in U(T ), i.e. objects X
admitting a generic map I → TX with I ∈ I. Since I has the same objects as W(T )el and every
generic map is adjoint to an active morphism in W(T ), the algebraic pattern W(T ) is indeed slim.
We can thus regard P as a functor

PolyMnd→ AlgPattSeg
slim,ext.

Remark 14.13. Suppose f : O→ P is a Segal morphism between slim extendable patterns. Then
we have a commutative diagram

Oop Pop

Fun(O, S) Fun(P, S)

SegO(S) SegP(S).

fop

f!

In other words, we have a commutative square

O(int),op P(int),op

SegO(S) SegP(S),

f(int),op

ΛO ΛP

which restricts to a commutative square

O P

O P,

f

where all the morphisms are Segal morphism of algebraic patterns. Thus we have proved:
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Proposition 14.14. There is a natural transformation σ : id→ PM of functors AlgPattSeg
slim,ext →

AlgPattSeg
slim,ext.

Our next goal is to identify when the map σO is an equivalence, which turns out to correspond
to the following condition:

Definition 14.15. If O is a slim extendable pattern, we say that O is saturated if for every object
O ∈ O the copresheaf

MapO(O, –) : O→ S

is a Segal O-space. We write AlgPattSeg
sat for the full subcategory of AlgPattSeg

slim,ext spanned by the
saturated patterns.

Proposition 14.16. The following conditions are equivalent for a slim extendable pattern O:

(1) O is saturated.

(2) For every X ∈ O, the canonical functor O
int,/
X/ → O is a limit diagram.

(3) The Yoneda embedding Oop → Fun(O, S) factors through SegO(S).
(4) The functor ΛO : Oop → SegO(S) is fully faithful.

Proof. The equivalence of (1), (2), and (3) is clear, and it is also clear that (3) implies (4). We
prove the remaining implication from (4) to (3) by showing that (4) implies that for every X ∈ O

there is an equivalence yOX ' ΛOX in Fun(O, S). We have

MapO(X,Y )
∼−→ MapFun(O,S)(yOY, yOX)→ MapSegO(S)(ΛOY,ΛOX)→ MapFun(O,S)(yOY,ΛOX),

where the first map is the Yoneda embedding. Since the composition of the first two morphisms is
an equivalence by (4), the second map is an equivalence. The last map is an equivalence because
ΛOX is a local object and yOY → ΛOY is a local equivalence. Hence, we have

MapFun(O,S)(yOY, yOX)
∼−→ MapFun(O,S)(yOY,ΛOX)

for every object Y ∈ O, which then implies that yOX ' ΛOX in Fun(O, S) by the Yoneda Lemma.
�

Lemma 14.17. Suppose T is a polynomial monad. Then the pattern W(T ) is saturated.

Proof. We already know the pattern W(T ) is extendable (by Corollary 13.9) and slim (by Re-
mark 14.12). By definition, W(T )op is a full subcategory of AlgT (SI), and the Nerve Theorem 11.15
implies that the restricted Yoneda functor AlgT (SI) → Fun(W(T ), S) is fully faithful with image
SegW(T )(S). This implies in particular that the Yoneda embedding of W(T ) takes values in Segal

W(T )-spaces, which implies that W(T ) is saturated by Proposition 14.16. �

Lemma 14.17 implies in particular that the pattern O is always saturated, which gives the fol-
lowing:

Corollary 14.18. The morphism σO : O→ O is an equivalence if and only if O is saturated. �
Corollary 14.19. The natural transformation σ exhibits the full subcategory AlgPattSeg

sat as a local-

ization of AlgPattSeg
slim,ext.

Proof. Let L := PM; then the essential image of L is precisely AlgPattSeg
sat : by Corollary 14.18 the

image of L contains all saturated patterns, while all patterns in the image of L are saturated by

Lemma 14.17. To see that L and σ exhibit AlgPattSeg
sat as a localization, we apply [Lur09, Proposition

5.2.7.4]. It suffices to verify condition (3) of this result, namely that the two morphisms

σLO, L(σO) : LO→ LLO

are both equivalences for all O in AlgPattSeg
slim,ext. For σLO this holds by Corollary 14.18, since LO

is saturated, and for L(σO) it holds since σO induces an equivalence

σ∗O : SegLO(S)
∼−→ SegO(S),
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and LσO is obtained by restricting the inverse of this equivalence. �

The following proposition shows that we can equivalently characterize saturated patterns in terms
of their subcategories of inert morphisms:

Proposition 14.20. The following conditions are equivalent for a slim extendable pattern O:

(1) O is saturated.
(2) For every X ∈ O, the functor

MapOint(X, –) : Oint → S

is a Segal Oint-space.

(3) For every X in O, the diagram O
el,/
X/ → Oint is a limit diagram.

(4) The Yoneda embedding Oint,op → Fun(Oint, S) factors through SegOint(S).
(5) The functor Λint

O : Oint,op → SegOint(S) is fully faithful.

Proof. The equivalence of conditions (2)–(5) follows exactly as in the proof of Proposition 14.16. It
remains to show that these conditions are equivalent to O being saturated.

Since O is by assumption extendable, by Proposition 8.8 we have a commutative square

SegO(S) Fun(O, S)

SegOint(S) Fun(Oint, S).

FO jO,!

Omitting notation for the horizontal inclusions, we have equivalences

ΛOX ' FOΛint
O X ' jO,!Λint

O X.

If condition (4) holds, then Λint
O X is the representable presheaf yint

O X, hence

jO,!Λ
int
O X ' jO,!yint

O X ' yOjO(X).

In other words, ΛOX is precisely the presheaf represented by X ∈ O, which implies that O is
saturated by Proposition 14.16.

Conversely, suppose O is saturated. By Proposition 14.16 this means that for every X ∈ O,

the diagram O
el,/
X/ → O is a limit diagram. To show that this diagram is then also a limit in the

subcategory Oint (and hence verify condition (3)), it is enough to show that a morphism φ : Y → X
is inert if the composites Y → X � E are all inert. Using the inert–active factorization system, we
see that it suffices to consider the case where φ is active and prove that it is an equivalence. Recall
that we have a morphism

ActO(X)→ lim
E∈Oel

X/

ActO(E),

which takes φ : Y  X to the active parts of the inert–active decompositions of the composites
Y  X � E. Since these composites are inert, the image of φ is given by idE for all E ∈ Oel

X/,

so that φ has the same image as idX . But since O is extendable, this map of ∞-groupoids is an
equivalence, and hence φ is equivalent to idX in ActO(X), which means precisely that φ is an
equivalence. �

We end this section by looking at some examples of saturated and non-saturated patterns.

Examples 14.21. The patterns ∆n,op,\, Θop,\
n , and Ωop,\ (described in Examples 3.3, 3.5, and 3.7,

respectively) are all saturated. In the case of ∆op,\, for example, this amounts to the observation

that the object [n] ∈∆int is a colimit,

[1]q[0] · · · q[0] [1] ' [n],

while for Ωop,\ the required colimit in Ωint amounts to a decomposition of a tree as a colimit of its
nodes and edges, and follows from [Koc11, Proposition 1.1.19].
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Example 14.22. The pattern F[∗ from Example 3.1 is not saturated: The functor Λint
F[∗

: F[,int,op
∗ → S

takes 〈n〉 to a finite set n with n elements, and an inert morphism 〈n〉 → 〈m〉 to the map m → n
that takes i ∈ m to its unique preimage φ−1(i) ∈ n. Thus inert morphisms correspond bijectively
to injective morphisms of finite sets, and the functor is not fully faithful. The canonical pattern

F[∗ ⊆ SegF[∗(S)op consists of the free commutative monoids on finite sets. By work of Cranch [Cra11]

this can be identified with the (2,1)-category Span(F) whose objects are finite sets and whose
morphisms are spans of finite sets, with F∗ → F∗ identifying F∗ with the subcategory where the
morphisms from I to J are spans I ← K → J with the backward map injective.

Example 14.23. More generally, for any∞-operad O (in the sense of [Lur17]) the canonical pattern

O can be identified with the opposite of the ∞-category of finitely generated free O-monoids in S,
i.e. the Lawvere theory for O-monoids.

Remark 14.24. See [GGN15, Ber20] for more on Lawvere theories in the ∞-categorical context.
Note that the monads corresponding to Lawvere theories always preserve sifted colimits, so the
(coloured) Lawvere theories that fit into our theory are precisely the monads on SX for an ∞-
groupoid X that preserve both sifted colimits and weakly contractible limits. These are precisely
the analytic monads studied in [GHK17], where they are identified with ∞-operads in the sense of
dendroidal Segal spaces.

Example 14.25. The pattern Γop,\ of Example 3.9 is not saturated. We expect that its saturation
is the (2, 1)-category of graphs implicitly defined by Kock in [Koc16, §3.3].

15. Completion of Polynomial Monads

In this section we will study a class of polynomial monads that is particularly closely related to
algebraic patterns, namely the complete ones in the following sense:

Definition 15.1. Let T be a polynomial monad on SI. We say that T is complete if the functor I→
W(T )el underlying τT : T → MPT is an equivalence. We write cPolyMnd for the full subcategory
of PolyMnd spanned by the complete polynomial monads.

We will see that the polynomial monad corresponding to an extendable pattern is always com-
plete, so that the functor M takes values in cPolyMnd. Moreover, we will show that the transfor-
mation τ : id → MP exhibits cPolyMnd as a localization of PolyMnd, and the functors M and P
restrict to an equivalence

cPolyMnd ' AlgPattSeg
sat

between complete polynomial monads and saturated patterns.

Remark 15.2. The term complete is inspired by the equivalence of [GHK17] between dendroidal
Segal spaces and analytic monads, which are the polynomial monads on presheaves over∞-groupoids
that preserve sifted colimits. Under this equivalence, the complete dendroidal Segal spaces (meaning
those whose underlying Segal spaces are complete in the sense of Rezk [Rez01]) are precisely those
analytic monads that are complete in our sense.

We begin by giving some alternative descriptions of the complete polynomial monads:

Proposition 15.3. Let T be a polynomial monad on SI. The following are equivalent:

(1) T is complete.
(2) The morphism τT : T →MPT is an equivalence.
(3) The functor u : U(T )→W(T )int is an equivalence.
(4) The functor j : U(T ) → W(T ) is a subcategory inclusion, i.e. it is faithful and induces an

equivalence U(T )'
∼−→W(T )' on underlying ∞-groupoids.

(5) The functor j is faithful and every equivalence is in its image.
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Proof. To see that (1) is equivalent to (2), observe that the morphism τT in PolyMnd is given by
the morphism e : I→W(T )el together with the commutative square

SegW(T )(S) AlgT (SI)

Fun(W(T )el, S) Fun(I, S),

∼

e∗

and so τT is an equivalence if and only if e is an equivalence.
It is clear that (3) implies (1), since e is obtained from u by restricting to a full subcategory.

Conversely, if e is an equivalence, then the commutative square of Corollary 13.4 gives a commutative
square

Fun(W(T )el, S) SegW(T )int(S)

Fun(I, S) SegU(T )(S),

o

∼

u∗

∼

where SegU(T )(S) denotes the full subcategory of Fun(U(T ), S) of functors right Kan extended from
I; the functor

u∗ : SegW(T )int(S)→ SegU(T )(S)

is therefore an equivalence. Here W(T )int,op is a full subcategory of SegW(T )int(S) via the Yoneda

embedding by Proposition 14.20, since W(T ) is saturated by Lemma 14.17. Moreover, U(T )op is a
full subcategory of SegU(T )(S) by Proposition 11.13. The inverse of u∗ is given by left Kan extension

u! followed by localization from Fun(W(T )int, S) to SegU(T )(S), which restricts to just u on U(T )op

since W(T )int,op is already in SegW(T )int(S). Hence u is the restriction of the equivalence (u∗)−1 to
a full subcategory, which implies that u is indeed an equivalence.

Since W(T )int is by definition a subcategory of W(T ), (3) immediately implies (4). On the other
hand, (4) implies (3) since the inert morphisms in W(T ) are precisely those that are composites of
morphisms in the image of u and equivalences in W(T ).

Finally, (4) trivially implies (5), while given (5) we know that

MapU(T )(X,Y )→ MapW(T )(jX, jY )

is a monomorphism whose image contains the components that correspond to equivalences in W(T ).
Since j is conservative by Lemma 12.13, the components that map to these are precisely those that
correspond to equivalences in U(T ), so that j restricts to an equivalence U(T )' →W(T )'. �

Proposition 15.4. Suppose O is a slim extendable pattern. Then TO is a complete polynomial
monad.

For the proof we need the following observation:

Lemma 15.5. Suppose φ : X → Y is an active morphism such that ΛOφ is an equivalence in
SegO(S). Then φ is an equivalence in O.

Proof. Suppose α : ΛOX → ΛOY is the inverse of ΛOφ. By Proposition 14.6 we can factor α

as ΛOX
ΛOψ−−−→ ΛOY

′ α′−→ ΛOY where α′ is free and ψ is an active morphism determined up to
equivalence in O (and both ΛOψ and α′ are equivalences since this is an active–inert factorization).
Now the composite αΛOφ is the identity, so by Proposition 14.6 the composite φψ lies in the same
component of ActO(Y ) as idY , i.e. φψ must be an equivalence. Applying the same argument to
ψ, we see that ψ has inverses on both sides in O and so is an equivalence, hence φ is also an
equivalence. �

Proof of Proposition 15.4. By Proposition 15.3 the polynomial monad TO is complete if and only if
j : U(TO)→W(TO) is faithful and all equivalences are in its image.
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Since O is slim, the objects of U(TO) are precisely the objects Λint
O X for X ∈ Oint, by Corol-

lary 14.8. To show that j is faithful, we must check that for all X,Y ∈ Oint, the map

MapSeg
Oint (S)(Λ

int
O X,Λint

O Y )→ MapSegO(S)(ΛOX,ΛOY )

is a monomorphism. Lemma 14.4 and Remark 14.5 imply that this map can be identified with the
map

(Λint
O X)(Y )→ colim

O∈ActO(Y )
(Λint

O X)(O),

given by taking (Λint
O X)(Y ) to the component in the colimit corresponding to idY ∈ ActO(Y ). This

component is of the form (O')/Y and so is contractible, which means that the colimit decomposes

as a disjoint union of (Λint
O X)(Y ) and the colimit over the other components of ActO(Y ). This

means j is indeed faithful.
Now suppose α : ΛOX → ΛOX

′ is an equivalence in W(TO). Then by Proposition 14.6 we can
factor α as

ΛOX
ΛOφ−−−→ ΛOY

jψ−−→ ΛOX
′,

where φ is active and both ΛOφ and jψ are equivalences (since this is in particular an active–inert
factorization). Then Lemma 15.5 implies that φ is an equivalence in O; but then φ is also inert, and
so the commutative square in Lemma 14.3 implies that ΛOφ is j(Λint

O φ). Thus α is in the image of
j, as required. �

Remark 15.6. It follows from Proposition 15.3 that for any slim extendable pattern O, the mor-
phism τTO

: TO → TO is an equivalence, i.e. the extendable patterns O and O correspond to the same

monad. The saturated pattern O is thus a canonical pattern associated to the free Segal O-space
monad TO.

Corollary 15.7. The natural transformation τ : id→MP exhibits the full subcategory cPolyMnd
as a localization of PolyMnd.

Proof. Let L := MP; then the essential image of L is precisely cPolyMnd: by Proposition 15.3
the image of L contains all complete polynomial monads, while all monads in the image of L are
complete by Proposition 15.4.

To see that L and τ exhibit cPolyMnd as a localization, we again apply the criterion of [Lur09,
Proposition 5.2.7.4](3). We must thus show that the two morphisms

τLT , L(τT ) : LT → LLT

are both equivalences for all T in PolyMnd. For τLT this holds by Proposition 15.3, since LT is
complete, while for L(τT ) it holds since P(τT ) is an equivalence (given by restricting the equivalence

AlgT (SI)
∼−→ SegW(T )(S) to a full subcategory). �

Theorem 15.8. The functors M and P restrict to give an equivalence

cPolyMnd ' AlgPattSeg
sat .

Proof. We have shown that MO is always complete and PT is always saturated, so the functors do
restrict to these full subcategories. Moreover, we know that σO is an equivalence if and only if O
is saturated, and τT is an equivalence if and only if T is complete. These natural transformations
therefore restrict to natural equivalences on the full subcategories of saturated patterns and complete
polynomial monads, and hence exhibit the restrictions of P and M as inverse equivalences. �
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ENVELOPES FOR ALGEBRAIC PATTERNS

SHAUL BARKAN, RUNE HAUGSENG, AND JAN STEINEBRUNNER

ABSTRACT. We generalize Lurie’s construction of the symmetric monoidal envelope of
an ∞-operad to the setting of algebraic patterns. This envelope becomes fully faithful
when sliced over the envelope of the terminal object, and we characterize its essential
image. Using this, we prove a comparison result that allows us to compare analogues
of ∞-operads over various algebraic patterns. In particular, we show that the �-∞-
operads of Nardin-Shah are equivalent to “fibrous patterns” over the (2, 1)-categorySpan(F� ) of spans of finite�-sets. When� is trivial this means that Lurie’s∞-operads
can equivalently be defined over Span(F ) instead of F∗.

CONTENTS

1. Introduction 1
2. Envelopes for factorization systems 5

2.1. Adding cocartesian morphisms over a subcategory 6
2.2. Free fibrations for factorization systems 8
2.3. Full faithfulness on slices 11

3. Algebraic patterns 16
3.1. Algebraic patterns and Segal objects 17
3.2. Examples of algebraic patterns 20
3.3. Sound patterns 22

4. Fibrous patterns and Segal envelopes 28
4.1. Fibrous patterns 28
4.2. Segal envelopes 35
4.3. Examples of Segal envelopes 39

5. The comparison theorem 41
5.1. Comparing fibrous patterns 41
5.2. �-equivariant ∞-operads 45
5.3. Upgrading to (∞, 2)-categories 49

References 56

1. INTRODUCTION

In Lurie’s seminal work on homotopy-coherent algebra [HA], the main objects used
to encode algebraic structures are (symmetric)∞-operads, which are defined as a certain
type of functor of∞-categories O → F∗, where F∗ is the category of finite pointed sets.
However, as illustrated already in [HA], it can sometimes be useful to consider variants
of this notion, for instance because they give a combinatorially simpler description
of some structure. For example, Lurie also considers planar (or non-symmetric) ∞-
operads, where the category F∗ is replaced by the simplex category �op. As a special
case of a general comparison theorem [HA, Theorem 2.3.3.26] using the theory of
approximations to∞-operads, Lurie proves that there is an equivalence of∞-categories

Date: August 16, 2022.
1



2 SHAUL BARKAN, RUNE HAUGSENG, AND JAN STEINEBRUNNER

between planar∞-operads and∞-operads over the (symmetric) associative operad Ass,
given by pulling back along an explicit map �op → Ass.

Our main goal in this paper is to prove a more general version of such comparisons.
Before we explain this result in more detail, let us motivate it by (informally) stating
the two main new comparisons we will apply it to:
• In the definition of symmetric ∞-operads, we can equivalently replace the cate-
gory F∗ of finite pointed sets by the (2,1)-category Span(F ) of spans of finite sets.
• For � a finite group, the �-equivariant ∞-operads of Nardin and Shah [NS22]
can equivalently be described as ∞-operads over the (2,1)-category Span(F� ) of
spans of finite �-sets.

Fibrous patterns. The general version of our main result is in the setting of algebraic pat-
terns in the sense of Chu and Haugseng [CH21], which is a general framework for
algebraic structures described by “Segal conditions”. More precisely, an algebraic pat-
tern is an ∞-category O equipped with a factorization system (Oint,Oact) of “inert”
and “active” morphisms and a full subcategory Oel ⊂ Oint of “elementary” objects. This
data lets one define Segal O-objects in a complete ∞-category C as functors � : O → C
such that for any object $ ∈ O the natural map

� ($) −→ lim�∈Oel
$/
� (�)

is an equivalence, where Oel
$/ := Oel ×Oint Oint

$/ consists of inert morphisms from $ to
elementary objects. We can then consider a version of ∞-operads where the category
F∗ is replaced by an arbitrary algebraic pattern O; we will refer to them as fibrous O-
patterns1. Such a fibrous O-pattern can be defined as a functor c : P → O such that:
(1) P has all c-cocartesian lifts of inert morphisms in O.
(2) For all $ ∈ O, the commutative square of ∞-categories

P ×O Oact
/$ lim�∈Oel

$/
P ×O Oact

/�

Oact
/$ lim�∈Oel

$/
Oact
/�

is cartesian. This square is constructed in Definition 4.1.2 using the factorization
system and the cocartesian lifts from (1).2

The ∞-category Fbrs(O) of fibrous O-patterns is then defined as the subcategory ofCat∞/O whose objects are the fibrous O-patterns and whose morphisms are required to
preserve cocartesian morphisms over inert maps in O.

Let us mention a few examples of algebraic patterns where the corresponding notion
of fibrous pattern has already been studied:
• If we take F∗ with the classes of inert and active maps defined as in [HA] (see
Example 3.1.3) and 〈1〉 := ({0, 1}, 0) as the only elementary object, then a fibrous
F∗-pattern is a functor c : P → F∗ that has cocartesian lifts for inerts and for which

1Under the mild technical assumption that O is sound, our definition of fibrous O-patterns agrees with
the definition of weak Segal O-fibrations studied in [CH21]; see Proposition 4.1.7. However, we prove some
results beyond this case, and here the notion of fibrous O-pattern we introduce is better behaved for our
purposes.

2The bottom horizontal functor is induced by the functors U! : Oact/$ → Oact/� that are defined for an inert
map U : $  � by sending l : - → $ to the active part of the factorization U ◦ l : -  U!-  �. The
top horizontal functor is defined similarly, by using the cocartesian lifts for inerts.
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the functor

Pact ×F F/〈=〉 ≃ P ×F∗ (F∗)act/〈=〉 −→
∏
〈=〉〈1〉

P ×F∗ F ≃ (Pact)=,

is an equivalence. Wewill show in Proposition 4.1.7 that this is precisely equivalent
to P being a (symmetric) ∞-operad in the sense of Lurie.
• If O → F∗ is an ∞-operad in the sense of Lurie, then it has a canonical pattern
structure for which a fibrous O-pattern c : P → O is simply an∞-operad over O:

Fbrs(O) ≃ Fbrs(F∗)/O = (Opd∞)/O .
• Let F ♮

∗ denote the algebraic pattern with underlying category F∗ and the same
factorization system as before, but with both 〈0〉 and 〈1〉 as elementary objects.
Then a fibrous F ♮

∗ -pattern is a generalized ∞-operad in the sense of [HA].
• If we equip �op with the usual inert–active factorization system (see Example 3.1.4)
and take [1] as the only elementary object, then a fibrous �op-pattern is precisely
a planar or non-symmetric ∞-operad as in [HA]. If we instead take both [0] and
[1] as elementary we get generalized non-symmetric ∞-operads as in [GH15].

• For a finite group� , the�-∞-operads of [NS22] are precisely fibrous F�,∗-patterns
for a certain pattern F�,∗ (see §5.2).

Comparing fibrous patterns. Our first main theorem allows us to compare fibrous patterns
over various bases:

TheoremA. Let 5 : O → P be a morphism of algebraic patterns (i.e. a functor that preserves
active and inert morphisms and elementary objects). Suppose furthermore that:
(i) The induced functors Oel

$/ → Pel
5 ($)/ are coinitial for all $ ∈ O.

(ii) The pattern P is sound in the sense of Definition 3.3.4.
(iii) The pattern P is extendable: for all % ∈ P the canonical functor

Pact
/% −→ lim�∈Pel

%/
Pact
/� ,

is an equivalence.
(iv) The restriction 5 el : Oel → Pel of 5 is an equivalence of ∞-categories,
(v) The functor (Oact

/$ )≃ → (Pact
/5 ($) )≃ induced by 5 is an equivalence for all $ ∈ O.

Then pullback along 5 gives an equivalence

5 ∗ : Fbrs(P) ∼−−→ Fbrs(O).
Here the condition of soundness is a mild but rather technical assumption, which is

satisfied in almost all examples of algebraic patterns we are aware of. We can now state
the applications of Theorem A that we mentioned above more precisely:

Corollary B. Let � be a finite group and Span(F� ) the (2, 1)-category of spans of finite
�-sets; we regard this as an algebraic pattern where the inert and active maps are the backwards
and forwards maps, respectively, and the elementary objects are the orbits �/� for � a subgroup
of � . There is a functor F�,∗ → Span(F� ) such that pullback along it gives an equivalence

Fbrs(Span(F� )) ≃−→ Fbrs(F�∗) = Opd�,∞.
In the case of the trivial group � = {4}, Corollary B yields an equivalence

Fbrs(Span(F )) ∼−−→ Fbrs(F∗) = Opd∞
between fibrous Span(F )-patterns and∞-operads in the sense of Lurie, given by pulling
back along the inclusion of F∗ in Span(F ) as the wide subcategory containing the spans
whose backwards map is injective.
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Segal envelopes. The crux of our strategy for proving Theorem A is a reduction to a
comparison between Segal objects in Cat∞ for the two patterns. For this purpose we
need to develop an analogue of Lurie’s symmetric monoidal envelope for ∞-operads over
a general algebraic pattern.

A symmetric monoidal ∞-category can be viewed both as a commutative monoid
in Cat∞ (i.e. a Segal object for F∗) and as an∞-operad that is a cocartesian fibration; we
thus have a (non-full) subcategory inclusion CMon(Cat∞) → Opd∞. In [HA, §2.2.4],
Lurie shows that this functor has a left adjoint, the symmetricmonoidal envelope, which
admits a very explicit description as a cocartesian fibration: the envelope of an∞-operad
O is simply the fiber product O ×F∗ Aract(F∗) where Aract(F∗) is the full subcategory
of the arrow category of F∗ on the active morphisms and the fiber product is over the
source functor F ∐ := Aract(F∗) → F∗, while the projection to F∗ giving the symmetric
monoidal ∞-category is by the target functor. Moreover, it was observed in [HK21]
that if we instead regard the envelope as a functor to symmetric monoidal∞-categories
over (F ,∐) (that is, finite sets with the disjoint union as symmetric monoidal structure)
then it is fully faithful. We want to generalize these results to fibrous O-patterns for a
general algebraic patternO. To simplify expositionwe assume here that O is both sound
and extendable. For such O, unstraightening restricts to give a functor SegO (Cat∞) →Fbrs(O) analogous to the inclusion CMon(Cat∞) → Opd∞. Our second main result is a
description of the left adjoint of this functor.

Theorem C. Let O be a sound and extendable pattern. Then:
(1) The unstraightening functor SegO (Cat∞) → Fbrs(O) has a left adjoint EnvO whose value

on a fibrous O-pattern P is given by the functor $ ↦−→ P ×O Oact
/$ .

(2) Slicing EnvO over AO := EnvO (O) yields a fully faithful embedding
Env/AOO : Fbrs(O) ↩→ SegO (Cat∞)/AO

which admits both a left and a right adjoint.
(3) An object C → AO in SegO (Cat∞)/AO lies in the essential image of Env/AOO if and only

if it is Aract(O)-equifibered, i.e. for every active map $  $ ′ in O, the square

C($) C($ ′)

Oact
/$ Oact

/$′

C(l)

l∗

is cartesian.

In §4.2 we actually prove more general (but weaker) versions of this statement that
do not require O to be sound or extendable. The comparison of Theorem A can now
be shown by recalling a (simpler) comparison theorem for Segal objects from [Bar22],
passing to slices and then showing that the equivalence restricts to the essential image
of the envelope.

In §4.3 we spell out Theorem C in several examples. In particular, for O = F∗,
Theorem C recovers a result of [HK21], though with an alternative characterization of
the image:3

Corollary D. The left adjoint to the forgetful functor CMon(Cat∞) → Opd∞ lifts to a fully
faithful functor:

Env : Opd∞ ↩→ CMon(Cat∞)/(F ,∐)
3See Observation 4.3.2 for a comparison.
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This functor has adjoints on both sides. A symmetric monoidal functor c : (C,⊗) → (F ,∐) is
in the essential image of Env if and only if the square

C × C C

F × F F

⊗

c×c c

∐

is a pullback square in Cat∞.
In §5.2 we also give a similar characterisation of the essential image of the envelope

for �-∞-operads, though in that case one has to require additional pullback squares
involving the norm maps Nm�

 : C → C� .
Organization. In §2 we prove a key part of Theorem C, which only depends on the
factorization system on an algebraic pattern:

Theorem E. Let B be an ∞-category with a factorization system (B!,B') .
(1) The forgetful functor Catcocart∞/B → Cat!-cocart∞/B has a left adjoint, which takes E → B to
E ×B Ar' (B), where Ar' (B) is the full subcategory of Ar(B) := Fun( [1],B) spanned
by the morphisms in B' , the fiber product is over evaluation at 0 ∈ [1] , and the projection
to B uses evaluation at 1.

(2) The induced functor Cat!-cocart∞/B → (Catcocart∞/B )/Ar' (B) is fully faithful, and a morphism
E → Ar' (B) in Catcocart∞/B lies in the image of Cat!-cocart∞/B if and only if it is equifibered,
meaning that for every i : 0 → 1 in Ar' (B) the commutative square

E0 E1

(B')/0 (B')/1

i!

i!

is cartesian.

We emphasize that only the second point here is actually new — the first point
has already been proved by both Ayala, Mazel-Gee, and Rozenblyum [AMGR17] and
Shah [Sha21].

We then review algebraic patterns in §3, where we also introduce the condition
of soundness for patterns. In §4 we define fibrous patterns, specialize Theorem E to
this context to prove Theorem C, and explore several examples. We are then ready to
proveTheoremA in §5, wherewe also discuss the applications and an (∞, 2)-categorical
version of Theorem A.

Acknowledgments. SB: I would like to thank Lior Yanovski for helpful conversations.
RH: Substantial parts of this paper were written during visits to the University of Re-
gensburg in December 2021 and the Centre de Recerca Matemàtica at the Universitat
Autònoma de Barcelona in May–June 2022, and I thank both for providing a very
pleasant working environment. JS: I would like to thank Clark Barwick and Jay Shah
for helpful conversations during theMathematical Sciences Research Institute program
(supported by NSF grant no. DMS-1928930) at the Universidad Nacional Autónoma
de México (Cuernavaca campus) in June 2022.

2. ENVELOPES FOR FACTORIZATION SYSTEMS

Our goal in this section is to prove Theorem E. We begin in §2.1 by explicitly
describing the general procedure of freely adding cocartesian morphisms over a wide
subcategory B0 of B to a functor ? : E → B, and then in §2.2 we specialize this to
the situation where B0 is the right class of a factorization system and E already has
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?-cocartesian morphisms over the left class. As already mentioned, these results are not
new, but we include complete proofs to make the paper more self-contained. In §2.3
we then prove the new part of Theorem E: we observe that for the induced adjunction
on slices the left adjoint is fully faithful, and identify its image.

2.1. Adding cocartesian morphisms over a subcategory. Let B be an ∞-category
equipped with a wide subcategory B0, and write CatB0−cocart∞/B for the subcategory of
Cat∞/B whose objects have all cocartesian lifts of morphisms in B0 and whose mor-
phisms preserve these. The aim of this subsection is to show that the forgetful functor

CatB0−cocart∞/B −→ Cat∞/B
admits an (explicitly defined) left adjoint. Before explaining the construction of the left
adjoint, let us first fix some notation: We let Ar(B) := Fun( [1],B) denote the arrow
∞-category of B, and write Ar0(B) for the full subcategory of Ar(B) spanned by
morphisms in B0. The left adjoint of the forgetful functor above is then given by

(E −→ B) ↦−→ (E ×B Ar0(B) −→ B) .
where the fiber product is over ev0 : Ar0(B) → B, and the map E ×B Ar0(B) → B
is given by ev1. We will prove this by showing that for any E ∈ Cat∞/B and F ∈
CatB0−cocart∞/B , restriction yields a natural equivalence:

FunB0−cocart/B (E ×B Ar0(B), F ) ∼−−→ Fun/B (E,F ),
where the left-hand side consists of functors that preserve cocartesian morphisms over
B0. This result is by nomeans new, and has already appeared in [AMGR17] and [Sha21],
but we include a proof for completeness, as this is the key input needed for our work
in this paper.

Notation 2.1.1. Since B0 is a wide subcategory, the degeneracy map B∗0 : B → Ar(B)
restricts to a functor 8 : B → Ar0(B), taking an object of B to its identity map. We also
have evaluation maps ev0, ev1 : Ar0 (B) → B, and natural transformations f : 8 ◦ ev0 →
id and g : id→ 8 ◦ ev1, given for an object G

i−→ ~ by the squares

G G

G ~,

i

i

G ~

~ ~,

i

i

respectively. For any functor ? : E → B, the functor 8 induces a section 8E : E →
E ×B Ar0 (B) of the projection prE : E ×B Ar0(B) → E, and f induces a natural trans-
formation fE : 8EprE → id.

Observation 2.1.2. Suppose ? : E → B is cocartesian over B0. Then 8E : E → E ×B
Ar0 (B) has a left adjoint cE : Such an adjoint exists if and only if, given an object
(G,i : ?G → 1), there is an initial object in the ∞-category

E (G,i)/ := E ×E×BAr0 (B) (E ×B Ar0(B)) (G,i)/ ≃ EG/ ×B?G/ B1/
with the functor B1/ → B?G/ given by composition with i. A cocartesian morphism
G → i!G is precisely an initial object in the right-hand side that maps to the identity in
B1/. Thus cE takes (G,i : ?G → 1) to the target i!G of the cocartesian morphism over
i. Note that we have cE8E ≃ id, and the unit transformation id → 8EcE is given at
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(G,i) by
G ?G 1

i!G, 1 1.

i

i

Observation 2.1.3. Given ? : E → B, observe that E ×B Ar0(B) is cocartesian over
B0, with cocartesian morphisms given by composition in Ar0(B). (For instance, we
can write E ×B Ar0(B) as a pullback (E × B) ×(B×B) Ar0(B) over B, where all three
∞-categories appearing are cocartesian over B0.)
Proposition 2.1.4. If @ : F → B is cocartesian over B0, composition with 8E gives a functor

FunB0−cocart/B (E ×B Ar0(B), F ) −→ Fun/B (E,F ).
This is an equivalence, with inverse given by taking � : E → F to the composite

E ×B Ar0(B)
�×BAr0 (B)−−−−−−−−−→ F ×B Ar0 (B)

cF−−→ F .
Proof. Given � : E → F , the definition of the sections 8E and 8F give

(� ×B Ar0 (B)) ◦ 8E ≃ 8F ◦�,
and so we have

cF ◦ (� ×B Ar0(B)) ◦ 8E ≃ cF ◦ 8F ◦� ≃ �.
In the other direction, given � : E ×B Ar0(B) → F that preserves cocartesian mor-
phisms over B0, we have to show that � is naturally equivalent to cF ◦ (�8E ×BAr0(B)).
Here we can write prF ◦ (�8E ×B Ar0(B)) as the composite

E ×B Ar0(B)
prE−−−→ E 8E−−→ E ×B Ar0(B) �−−→ F ,

so that fE induces a natural transformation

U : prF ◦ (�8E ×B Ar0(B)) −→ � .

Note that this is given at (4, i : ? (4) → 1) by the image � (4, id? (4) ) → � (4, i) of a
cocartesian morphism in E ×B Ar0(B), and so is cocartesian in F since by assumption
� preserves cocartesian morphisms over B0. Projecting to B, we see that @U factors as
the projection to Ar0 (B) followed by the evaluation map Ar0(B) × [1] → B. We can
therefore define a natural transformation

V : E ×B Ar0 (B) × [1] −→ F ×B Ar0(B)
via the commutative diagram

E ×B Ar0(B) × [1] F

Ar0 (B) × [1]

Ar0 (B) B.

U

@

g ev

B

Here V is a natural transformation (�8E×BAr0(B)) → 8F� , and takes (4, i : ? (4) → 1) to
(� (4, id? (4)), i) → (� (4, i), id2 ). Composing with cF we get a natural transformation
cFV : cF ◦ (�8E ×B Ar0(B)) → cF8F� ≃ � . This is given at (4, i) by the canonical
morphism i!� (4, id) → � (4, i). Since � preserves cocartesian morphisms over B0, this
is an equivalence, and so we have obtained the natural equivalence we required. �
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Corollary 2.1.5. The forgetful functor

CatB0-cocart∞/B −→ Cat∞/B
has a left adjoint given by

(E −→ B) ↦→ E ×B Ar0 (B) = B∗E −→ Ar0(B) C−−→ B,
and unit given by 8E : E → E ×B Ar0(B).

Proof. By Proposition 2.1.4, for E ∈ Cat∞/B and F ∈ CatB0−cocart∞/B the composite

MapCatB0−cocart∞/B
(E ×B Ar0(B), F ) −→ MapCat∞/B (E ×B Ar0(B),F ) 8∗E−−→ MapCat∞/B (E,F )

is an equivalence, hence this natural transformation is indeed the unit of an adjunction.
�

Observation 2.1.6. The forgetful functors CatB0-cocart∞/B → Cat∞/B → Cat∞ detect pull-
backs; in particular, the ∞-category CatB0-cocart∞/B has all pullbacks. Indeed, given mor-
phisms E1 → E0 ← E2 in CatB0-cocart∞/B , it is easy to see that a morphism in the fiber
product E1 ×E0 E2 is cocartesian over B0 if and only if its images in E1 and E2 are
cocartesian.

Observation 2.1.7. Suppose A and B are ∞-categories equipped with wide subcate-
gories A0 and B0, respectively, and that 5 : A → B is a functor that takes A0 into B0.
Pullback along 5 clearly gives a commutative diagram

CatB0-cocart∞/B CatA0-cocart
∞/A

Cat∞/B Cat∞/A .

5 ∗

5 ∗

We then have an induced Beck–Chevalley transformation between the left adjoints of
the vertical maps, given for ? : E → B by the natural map

(E ×B A) ×A Ar0(A) −→ (E ×B Ar0 (B)) ×B A,
which takes (4 ∈ E, 0 ∈ A, ? (4) ≃ 5 (0), i : 0 → 0′ ∈ Ar0(A)) to (4, 5 (0), 5 (i), 0).
Note, however, that this is typically not an equivalence.

2.2. Free fibrations for factorization systems. In this subsection we specialize our
previous results to the case of an∞-category equipped with a factorization system. We
again emphasize that this result already appears in [AMGR17] and [Sha21].

Notation 2.2.1. In this section we fix an ∞-category B with a factorization system
(B!,B'); we write Ar! (B) and Ar' (B) for the full subcategories of Ar(B) spanned by
the morphisms in B! and B' , respectively. We also abbreviate

Cat!-cocart∞/B := CatB!-cocart∞/B

Proposition 2.2.2 ([CH21, Proposition 7.3]). Let (@ : C → B) ∈ Cat!-cocart∞/B . Then:

(1) The functor @′ : C ×B Ar' (B) → B given by evaluation at the target is a cocartesian
fibration.
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(2) A morphism (U, V) : (20, i0) → (21, i1) in C ×B Ar' (B) represented by the following
diagram

©
«

20

21

U ,

@(20) 10

@(21) 11

i0

@ (U ) V

i1

ª®®®®¬
,

is a @′-cocartesian lift of V : 10 → 11 if and only if @(U) is in B! and U is @-cocartesian.

Proof. We first show that @′ is a locally cocartesian fibration. A locally @′-cocartesian
morphism over V : 10 → 11 with source (20, i0 : @(20) → 10) is an initial object in the
∞-category (C ×B Ar' (B)) (20,i0)/ ×B10/ {V}. We can identify this ∞-category as the
fiber product

C20/ ×B@20/
(
B'/11 ×B/11 (B/11)Vi0/

)
,

where B'/11 denotes the full subcategory of B/11 spanned by morphisms in B' .
We first observe that here B'/11 ×B/11 (B/11)Vi0/ has an initial object, given by

@20 1 ′

11,

_

Vi0
d

where (_, d) is the (!, ')-factorization of Vi0 — this follows from [HTT, Lemma
5.2.8.19].

The projectionB'/11×B/11 (B/11)Vi0/ → B
'
/11 is a left fibration, since it is a base change

of the left fibration (B/11)Vi0/ → B/11 . The initial object of B'/11×B/11 (B/11)Vi0/, which
maps to d in B'/11 , therefore gives an equivalence

B'/11 ×B/11 (B/11)Vi0/ ≃ (B
'
/11)d/

by [Ker, Tag 0199]. We can therefore rewrite our expression for the∞-category (C×B
Ar' (B)) (20,i0)/ ×B10/ {V} as(

C20/ ×B@20/ B1′/
)
×B1′/ (B'/11)d/.

A @-cocartesian morphism over _ with source 20, which exists by assumption since _
is in B! , is precisely an initial object of C20/ ×B@20/ B1′/ that maps to the initial object
in B1′/. We thus have initial objects in C20/ ×B@20/ B1′/ and (B'/11)d/ that both map
to the initial object in B1′/, and these thus give an initial object in the fiber product
(C ×B Ar' (B)) (20,i0)/. This shows that if U : 20 → 21 is a @-cocartesian lift of _, then

©
«

20

21

U ,

@(20) 10

1 ′ 11

i0

_ V

d

ª®®®®¬
is a locally @-cocartesian lift of V with source (20, i0).

We have thus shown that @′ is a locally cocartesian fibration, and the locally @′-
cocartesian morphisms are precisely those in (2). To see that @′ is a cocartesian fibration
it then suffices by [HTT, Proposition 2.4.2.8] to check that the locally @′-cocartesian
morphisms are closed under composition, which in our case is clear. �



10 SHAUL BARKAN, RUNE HAUGSENG, AND JAN STEINEBRUNNER

Notation 2.2.3. It follows from Proposition 2.2.2 that the construction E ↦→ E ×B
Ar' (B) restricts to a well-defined functor

E: Cat!-cocart∞/B −→ Catcocart∞/B , (E −→ B) ↦→ (E ×B Ar' (B) −→ B).

Proposition 2.2.4. Let ? : E → B be functor admitting cocartesian lifts for all arrows in B!
and let @ : F → B be a cocartesian fibration. Then the equivalence of Proposition 2.1.4 restricts
to an equivalence

Funcocart/B (E(E),F ) ∼−−→ Fun!-cocart/B (E,F ).

Proof. We must show that these full subcategories are identified under the equivalence

Fun'−cocart/B (E ×B Ar' (B), F ) ∼−−→ Fun/B (E,F )
of Proposition 2.1.4. Given a functor � : E ×B Ar' (B) → F that preserves cocartesian
morphisms over B' , we must thus check that � preserves all cocartesian morphisms
if and only if � ◦ 8E preserves cocartesian morphisms over B! . We write ? ′ : E ×C
Ar' (B) → B for the map induced by ev1.

First, assume that � : E ×B Ar' (B) → F preserves all cocartesian edges. For a ?-
cocartesian lift U : 20 → 21 of an edge V : 10 → 11 in B!, its image under 8E is the
edge

©«

20

21

U ,

10 10

11 11

=

V V

=

ª®®®®
¬

in E×BAr' (B), which is ? ′-cocartesian by Proposition 2.2.2. In other words, 8E : E →
E ×B Ar' (B) preserves cocartesian lifts over B! , and hence so does � ◦ 8E .

For the converse assume that � preserves cocartesian lifts of edges in B' and � ◦ 8E
preserves cocartesian lifts of edges in B! . We would like to show that a general ? ′-
cocartesian morphism (U, V) : (20, i0) → (21, i1) is sent to a @-cocartesian morphism in
F . According to Proposition 2.2.2, the morphism ? (U) is in B! and U is ?-cocartesian.
We can fit this morphism into the following diagram by applying the natural transfor-
mation fE : 8EprE → id:

(20, id) (20, i0)

(21, id) (21, i1)

(id,i0)=(fE ) (20,i0 )

(U,@ (U ))

(id,i1)=(fE ) (21,i1 )

(U,V)

Both horizontal morphisms are cocartesian edges over B' (by Proposition 2.2.2) and
the left-hand vertical morphism is the image under 8E of a ?-cocartesian morphism
over B! . Hence � sends three of the morphisms in the above square to cocartesian
edges in F and it follows by composition and right-cancellation for cocartesian edges
that � (U, V) is cocartesian too. �

Corollary 2.2.5. The adjunction of Corollary 2.1.5 restricts to an adjunction

E: Cat!-cocart∞/B ⇄ Catcocart∞/B : forget.

Observation 2.2.6. Suppose (A,A!,A') and (B,B!,B') are ∞-categories equipped
with factorization systems, and that 5 : A → B is a functor that preserves both classes
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of maps in these. Pullback along 5 then gives a commutative diagram

Cat!-cocart∞/B Cat!-cocart∞/A

Catcocart∞/B Catcocart∞/A .

5 ∗

5 ∗

As in Observation 2.1.7, this induces a Beck–Chevalley transformation, but this is typ-
ically not an equivalence.

2.3. Full faithfulness on slices. In this subsection we prove the main new result of
this section: We observe that the adjunction of Corollary 2.2.5 induces an adjunction

Cat!-cocart∞/B ⇄ (Catcocart∞/B )/Ar' (B)
where the left adjoint is fully faithful, and characterize its image as in Theorem E.

To construct this adjunction, we recall the general construction of adjunctions on
slices:

Observation 2.3.1. Given an adjunction

! : C ⇄ D :'

where C admits pullbacks, we have (by [HTT, Proposition 5.2.5.1]) for any 2 in C an
induced adjunction

!2 : C/2 ⇄ D/!2 :'2
where !2 is simply given by applying !, while '2 is defined at 5 : 3 → !2 by the natural
pullback square

'23 '3

2 '!2

'5

[2

over the unit map [2 . The unit for the new adjunction is then given at 2 ′ → 2 by the
canonical map 2 ′ → '2!22

′ obtained by factoring the square

2 ′ '!2 ′

2 '!2

[2′

[2

through the pullback, while the counit !2'23 → 3 is given by the outer square in the
diagram

!'23 !'3 3

!2 !'!2 !2,

n3

![2 n!2

where n is the counit of the original adjunction.

Proposition 2.3.2. By applying the construction of Observation 2.3.1 to the adjunction of
Corollary 2.2.5 at the terminal object (B =−→ B) ∈ Cat!-cocart∞/B we obtain an adjunction

(1) E: Cat!-cocart∞/B ⇄
(Catcocart∞/B

)
/Ar' (B)

:Q.

The left adjoint in this adjunction is fully faithful.
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Proof. Here E sends E → B to the cocartesian fibration E ×B Ar' (B) → B, equipped
with the canonical projection to Ar' (B) → B. The right adjoint Q is given by

E −→ Ar' (B) ↦−→ 8∗E = B ×Ar' (B) E −→ B
where the pullback is taken along the inclusion of the identities 8 : B → Ar' (B). The
unit of this adjunction is then the map E → Q(E(E)) obtained from the commutative
square of units for the adjunction E ⊣ forget (from Corollary 2.2.5) as the canonical map
from E to the pullback. This square of units is the left hand square in the following
commutative diagram:

E E(forget(E)) E

B Ar' (B) B,

8E

8 ev0

where the right-hand square is cartesian by construction of E(E) in Notation 2.2.3.
Hence the left-hand square is also cartesian and thus the unit E → Q(E(E)) is an
equivalence, and so E is indeed fully faithful. �

Now that we have the fully faithful envelope functor all that is left to do to prove
Theorem E is to characterize its essential image:

Proposition 2.3.3. A morphism D → Ar' (B) of cocartesian fibrations over B is in the
essential image of the left adjoint E from Proposition 2.3.2 if and only if it is equifibered,
meaning that for every object i : 0 → 1 in Ar' (B), the natural square

D0 D1

Ar' (B)0 Ar' (B)1i◦(–)

i!

is cartesian.

Proof. We begin with the “only if” direction for (E → B) ∈ Cat!-cocart∞/B and (i : 0 →
1) ∈ Ar' (B). We need to show that the left square of the following diagram is cartesian:

(E ×B Ar' (B))0 (E ×B Ar' (B))1 E

Ar' (B)0 Ar' (B)1 B,

prE

B

i◦(–)

i! prE

B

where the identification of the composite in the top row uses the description of co-
cartesian morphisms in (E ×B Ar' (B)) from Proposition 2.2.2. This follows since the
right-hand square and the outer rectangle are both cartesian.

For the “if” directionwemust show that the counit E(Q(D)) → D is an equivalence
if D is equifibered. By Observation 2.3.1 this counit can be factored as the composite
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of the top horizontal maps in the following diagram:

(★)
E(Q(D)) E(D) D

Ar' (B) E(Ar' (B)) Ar' (B)
Here the right-hand horizontal maps come from the counit of the adjunction from
Corollary 2.2.5. The bottom horizontal composite is an equivalence, so it will suffice
to show that the composite rectangle is cartesian. Since the left-hand square is given
by E applied to the cartesian square defining Q (as Ar' (B) is E(B)), and E preserves
weakly contractible limits, it suffices to show that the right-hand square is cartesian.

By assumption, the functor D → B is a cocartesian fibration, and so the projection
E(D) ≃ D ×B Ar' (B) → Ar' (B) is also a cocartesian fibration, with cocartesian
morphisms exactly those that project to cocartesian morphisms in D. Consider now
the following square

E(D) D

Ar' (B) B,
c

C

in which the top map is the counit for the adjunction of Corollary 2.2.5. The top map
in the square takes cocartesian morphisms over Ar' (B) to c-cocartesian morphisms in
D. To see this, note that a cocartesian morphism in E(D) over Ar' (B) is of the form

©«

3 c (3) 1

i!3, 0 1 ′
i

U

V

W

ª®®®®
¬
,

and this is by construction sent to the canonical map U!3 → W!i!3 , which is indeed
cocartesian over V.

Consequently the top right square of (★) sits as the top face in the following cube

E(D) D

E(Ar' (B)) Ar' (B)

Ar' (B) B

Ar' (B) B,
in which the vertical maps are cocartesian fibrations and the maps in the top square
preserve cocartesian morphisms. Since the bottom square is obviously cartesian, to
show that the top square is cartesian it suffices to check that taking fibers over any
i ∈ Ar' (B) yields a cartesian square. We thus want to show that the following square
is cartesian:

E(D)i D1

E(Ar' (B))i Ar' (B)1 .
Here there is a canonical equivalence E(D)i ≃ (D ×B Ar' (B)i ) ≃ D0 and similarly
E(Ar' (B))i ≃ (Ar' (B))0. Via these equivalences the horizontal maps are identified
with the cocartesian pushforward along i. The resulting square is then precisely one
of the squares that are cartesian by the assumption that D is equifibered. �
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In §4.2 it will be notationally convenient to use a “straightened” version of the ad-
junction (1); to state this we first introduce some notation:

Notation 2.3.4. LetB be an∞-category equippedwith a factorization system (B!,B'),
and let R : B → Cat∞ be the straightening of the cocartesian fibration Ar' (B) → B.
We define the functor

St!B : Cat!-cocart∞/B −→ Fun(B, Cat∞)/R,
which we think of as a form of “straightening relative to the factorization system”, as
the composite

Cat!-cocart∞/B
E−−→

(Catcocart∞/B
)
/Ar' (B)

StB−−−→ Fun(B, Cat∞)/R,
sending (? : E → B) to the straightening of E ×B Ar' (B) → B. Dually, we define

Un!B : Fun(B,Cat∞)/R −→ Cat!-cocart∞/B

as the composite

Fun(B, Cat∞)/R UnB−−−→
(Catcocart∞/B

)
/Ar' (B)

Q−−→ Cat!-cocart∞/B .

For a functor � : B → Cat together with natural transformation U : � → R we then
have that Un!B (U) is the pullback

Un!B (U) UnB (� )

B Ar' (B).

y
UnB (U )

This yields the following reformulation of Theorem E:

Theorem 2.3.5. The functors St!B and Un!B give an adjunction

St!B : Cat!-cocart∞/B ⇄ Fun(B, Cat∞)/R :Un!B .

The functor St!B is fully faithful and a natural transformation � → R is in the essential image
of St!B if and only if it is equifibered, meaning that for every object 0

i−→ 1 in Ar' (B), the
natural square

� (0) � (1)

R(0) R(1)

� (i)

R (i)

is cartesian. �

A pleasant consequence of Theorem 2.3.5 is that Un!B also has a left adjoint and thatCat!-cocart∞/B is presentable. To see this, we use the following observation:

Observation 2.3.6. Let C be a presentable ∞-category, and ( a set of morphisms in
C. Recall that a morphism i : - → . in C is right orthogonal to ( if there exists a unique
filler in every commutative square

� -

� .

5 i
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where 5 is in ( . Equivalently, i is right orthogonal to ( if and only if the commutative
square

MapC (�,- ) MapC (�,- )

MapC (�,. ) MapC (�,. )

5 ∗

i∗ i∗
5 ∗

is cartesian for all 5 : � → � in ( . This square is in turn cartesian if and only if for all
maps � → . , the map on fibers

Map/. (�, - ) −→ Map/. (�,- )
is an equivalence. Thus the map i is right orthogonal to ( if and only if as an object of
C/. it is local with respect to the set of maps



� �

.

5

: 5 ∈ (



.

In particular, the full subcategory of C/. spanned by the objects that are right orthog-
onal to ( is an accessible localization of C/. , and so is also presentable.

Proposition 2.3.7. Let (B,B!,B') be a small ∞-category equipped with a factorization
system. The functor Un!B has a left adjoint, which exhibits Cat!-cocart∞/B as an accessible local-
ization of Fun(B, Cat∞)/R . In particular, Cat!-cocart∞/B is a presentable ∞-category.
Proof. The ∞-category Fun(B,Cat∞)/R is clearly presentable, and we know that the
functor St!B is fully faithful, with its essential image given by functors equifibered
over R. It therefore suffices to show that this is the full subcategory of objects inFun(B,Cat∞)/R that are local with respect to a set of morphisms.

Let ( be the collection of morphisms of the form

(~(i) × id) : ~(1) × [n] −→ ~(0) × [n]
for n ∈ {0, 1} and (i : 0 → 1) ∈ Ar' (B), where ~(0) (–) := MapB (0, –) is the Yoneda
embedding of Bop; this is a set since B is by assumption a small∞-category. An object
W : � → R in Fun(B,Cat∞)/R is then equifibered if and only if it is right orthogonal to
( : The latter means that the commutative squares

Map(~(0) × [n], � ) Map(~(1) × [n], � )

Map(~(0) × [n],R) Map(~(1) × [n],R)
are cartesian; by the Yoneda lemma this square can be identified with

Map( [n], � (0)) Map( [n], � (1))

Map( [n],R(0)) Map( [n],R(1)),
which is cartesian for n = 0, 1 if and only if the square

� (0) � (1)

R(0) R(1)
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is cartesian, since the objects [0], [1] generate Cat∞ under colimits. The result then
follows from Observation 2.3.6. �

Observation 2.3.8. It is easy to see (using the mapping space criterion for cocartesian
morphisms) that the forgetful functor Cat!-cocart∞/B → Cat∞/B preserves limits and filtered
colimits. Since both ∞-categories are presentable by Proposition 2.3.7, it follows by
the adjoint functor theorem that this functor has a left adjoint.

Observation 2.3.9. Let (A,A! ,A') and (B,B!,B') be ∞-categories equipped with
factorization systems, and let 5 : A → B be a functor that preserves both classes of
maps in these.

The functor 5 then induces a commutative diagram

A Ar' (A) A

5 ∗Ar' (B) A

B Ar' (B) B.

8A

5

@

ev1

ev1

y 5

8B ev1

From this we get the following commutative diagram of ∞-categories:
(2)

(Catcocart∞/B )/Ar' (B) (Catcocart∞/A )/5 ∗ Ar' (B) (Catcocart∞/A )/Ar' (A)

(Cat!-cocart∞/B )/Ar' (B) (Cat!-cocart∞/A )/5 ∗ Ar' (B) (Cat!-cocart∞/A )/Ar' (A)

Cat!-cocart∞/B Cat!-cocart∞/A .

5 ∗

QB

@∗

QA

5 ∗

]∗B

@∗

]∗A
5 ∗

Let us write 5 ⊛ for the composite in the top row, which takes E → Ar' (B) to the fiber
product E ×Ar' (B) Ar' (A) → Ar' (A). Passing to vertical left adjoints now yields a
Beck–Chevalley transformation

EA 5 ∗ −→ 5 ⊛EB ;

Unwinding the definitions, this is given at E → B in Cat!-cocart∞/B by the natural map

(E ×B A) ×A Ar' (A) −→ (E ×B Ar' (B)) ×Ar' (B) Ar' (A).
This is an equivalence, so that we also have a commutative square

(3)

Cat!-cocart∞/B Cat!-cocart∞/A

(Catcocart∞/B )/Ar' (B) (Catcocart∞/A )/Ar' (A) .
EB

5 ∗

EA
5 ⊛

3. ALGEBRAIC PATTERNS

In this section we will first review the basic definitions related to algebraic patterns
and Segal objects in §3.1, and then look at some examples thereof in §3.2. We then
introduce the condition of soundness for algebraic patterns in §3.3; this is somewhat
technical, but turns out to be the key property needed for some of our results in the
next section.
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3.1. Algebraic patterns and Segal objects. In this subsection we review the defini-
tions of algebraic patterns and Segal objects, and some related basic notions introduced
in [CH21]. We also introduce a relative version of Segal objects, which will show up
later.
Definition 3.1.1. An algebraic pattern is an ∞-category O equipped with a factoriza-
tion system, whereby every morphism factors (uniquely up to equivalence) as an inert
morphism followed by an active morphism, as well as a collection of elementary objects.
We write Oint and Oact for the subcategories of O containing only the inert and active
morphisms, respectively, and Oel for the full subcategory of Oint containing elementary
objects and inert morphisms among them. For - ∈ O, we also write

Oel
-/ := Oel ×Oint Oint

-/

for the ∞-category of inert maps - → � with � ∈ Oel.
Notation 3.1.2. We often indicate inert maps as -  . and active maps as -  . .
These arrows are not meant to indicate any particular intuition about inert or active
morphisms.
Example 3.1.3. We write F∗ for a skeleton of the category of pointed finite sets, with
objects 〈=〉 := ({0, 1, . . . , =}, 0), and say a morphism i : 〈=〉 → 〈<〉 is inert if i restricts
to an isomorphism 〈=〉 \i−1(0) → 〈<〉 \ {0}, and active if i−1 (0) = {0}. Then the inert
and active morphisms form a factorization system on F∗, and we make this an algebraic
pattern4 by taking 〈1〉 to be the single elementary object.
Example 3.1.4. Another basic example is �op, where � is the simplex category. Recall
that �op admits an inert-active factorization system where inert maps are opposite to
interval inclusions and active maps are opposite to maps preserving the maximal and
minimal elements. To make �op an algebraic pattern, we can take the elementary
objects to be [0] and [1], in which case we denote the pattern by �op,♮ , or alternatively
just [1], in which case the pattern is denoted �op,♭.

The main reason for introducing algebraic patterns is that they describe algebraic
structures via Segal conditions:
Definition 3.1.5. A functor � : O → C is a Segal O-object in the ∞-category C if for
every object - ∈ O the induced functor

(Oel
-/)⊳ −→ O

�−−→ C
is a limit diagram. If C has limits for diagrams indexed by Oel

-/ for all - ∈ O, in which
case we say that C is O-complete, then this condition is equivalent to the canonical maps

� (- ) −→ lim�∈Oel
- /
� (�)

being equivalences. We refer to Segal O-objects in the∞-category S of spaces as Segal
O-spaces and Segal O-objects in the ∞-category Cat∞ of ∞-categories as Segal O-∞-
categories.

Example 3.1.6. We can identify (F∗)el〈=〉/ with the set {d8 : 8 = 1, . . . , =}, where d8 is the
inert morphism 〈=〉 → 〈1〉 given by

d8 ( 9 ) =
{
0, 9 ≠ 8,

1, 9 = 8 .

4In [CH21] this pattern was denoted F ♭∗ to distinguish it from the pattern F
♮
∗ , where the elementary

objects are 〈0〉 and 〈1〉. However, in this paper F∗ = F ♭∗ is the key example, so we use a simplified notation
for it.
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A functor � : F∗ → C is then a Segal F∗-object if for every = the map

� (〈=〉) −→
=∏
8=1

� (〈1〉),

induced by the maps d8 , is an equivalence. Thus Segal F∗-objects are precisely com-
mutative monoids in the sense of [HA, §2.4.2]. For C = S, this gives the∞-categorical
analogue of special Γ-spaces in the sense of Segal [Seg74].

Example 3.1.7. Segal �op,♮-spaces are precisely Segal spaces in the sense of [Rez01],
while Segal �op,♭-objects in C are associative monoids (or �1-algebras).

Later on, we will also need to consider a relative version of Segal objects:

Definition 3.1.8. Let O be an algebraic pattern and C an O-complete ∞-category. A
relative Segal O-object of C is a morphism c : . → - in Fun(O, C) such that for every
$ ∈ O the natural commutative square

. ($) lim�∈Oel
$/
. (�)

- ($) lim�∈Oel
$/
- (�)

c ($) lim
�∈Oel

$/
c (�)

is cartesian. We denote by Seg/-O (C) ⊆ Fun(O, C)/- the full subcategory whose objects
are the --relative Segal O-objects.
Observation 3.1.9. If . → - is a relative Segal O-object of C, then the pasting lemma
for cartesian squares implies that a morphism / → . is a relative Segal O-object if and
only if the composite / → - is one. Moreover, a morphism - → ∗ to the terminal
object is a relative Segal O-object if and only if - is a Segal O-object in C. Combining
these two observations, we see that if - is a Segal O-object of C then an --relative
Segal O-object is just a Segal O-object with a map to - , i.e. we have

Seg/-O (C) = SegO (C)/-
as full subcategories of Fun(C,O)/- .
Lemma 3.1.10. Suppose - → . is a relative Segal O-object in C. Then for any map
[ : . ′ → . , the pullback - ′ := - ×. . ′ → . ′ is also a relative Segal O-object. In other words,
pullback along [ gives a functor [∗ : Seg/.O (C) → Seg/. ′O (C) .
Proof. For $ ∈ O, consider the commutative cube

- ′($) lim�∈Oel
$/
- ′(�)

- ($) lim�∈Oel
$/
- (�)

. ′($) lim�∈Oel
$/
. ′(�)

. ($) lim�∈Oel
$/
. (�).

Here the left, right, and front faces are all cartesian, hence so is the back face. �

Lemma 3.1.11. For every presentable ∞-category C the full subcategory

Seg/-O (C) ⊆ Fun(O, C)/-
is an accessible localization. In particular, it is a presentable ∞-category.
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Proof. Consider the following collection of morphisms in Fun(O, C):{
colim�∈Oel

- /
~(�) ⊗ � −→ ~(- ) ⊗ �

}
- ∈O,�∈ 

where  is a set of compact generators for C, ~ is the Yoneda embedding for Oop, and
) ⊗ � for ) ∈ S, � ∈ C, is the canonical tensoring of C with S, given by the colimit
over ) of the constant diagram with value �. A morphism - → . in Fun(O, C) is a
relative Segal O-object if and only if it is right orthogonal to this set of morphisms,
hence the claim follows from Observation 2.3.6. �

Next, we take a brief look at morphisms between patterns:

Definition 3.1.12. If O and P are algebraic patterns, a morphism of algebraic patterns is
a functor 5 : O → P that preserves inert and active morphisms as well as elementary
objects. We say that such a morphism is a Segal morphism if for every Segal P-space �
and every - ∈ O the functor 5 el

-/ : Oel
-/ → Pel

5 (- )/ arising from 5 induces an equivalence

limPel
5 (- )/

�
∼−−→ limOel

- /
� ◦ 5 ;

by [CH21, Lemma 4.5] this is equivalent to composition with 5 giving a functor

5 ∗ : SegP (C) −→ SegO (C)
for any O-complete ∞-category C. The Segal morphisms that occur in practice are
those where the functor 5 el

-/ is coinitial for all - ∈ O; if this is the case we say that 5 is
a strong Segal morphism. In the special case where 5 el

-/ is an equivalence for every - , we
say that 5 is an iso-Segal morphism.

Example 3.1.13. There is a morphism of algebraic patterns c : �op,♭ → F∗, given on
objects by c( [=]) = 〈=〉, and with c(i) : 〈=〉 → 〈<〉 for a morphism i : [<] → [=] in �
given by

c(i) (8) =
{
9 , if i ( 9 − 1) < 8 ≤ i ( 9 ),
0, otherwise.

It is straightforward to check that this is an iso-Segal morphism.

Notation 3.1.14. We write AlgPatt for the ∞-category of algebraic patterns together
with all morphisms of algebraic patterns.

Observation 3.1.15. Composition with a strong Segal morphism 5 : O → P also pre-
serves relative Segal objects: If - → . is a relative Segal P-object in C, then for $ ∈ O
we have a commutative diagram

- (5 ($)) lim�∈Pel
5 ($ )/

- (�) lim�′∈Oel
$/
- (5 (� ′))

. (5 ($)) lim�∈Pel
5 ($ )/

. (�) lim�′∈Oel
$/
. (5 (� ′));

∼

∼

here both the left and right squares are cartesian, and hence so is the outer composite
square. Composition with 5 thus gives a functor 5 ∗ : Seg/.P (C) → Seg/5 ∗.O (C).

We now recall a simple criterion for a Segal morphism to give an equivalence on
Segal objects:

Proposition 3.1.16 ([Bar22, Corollary 2.64]). Suppose O and P are algebraic patterns, and
5 : O → P is a strong Segal morphism such that
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(1) 5 el : Oel → Pel is an equivalence of ∞-categories,
(2) for every $ ∈ O, the functor (Oact

/$ )≃ → (Pact
/5 ($) )≃ is an equivalence of ∞-groupoids.

Then for any complete∞-category C the functor 5 ∗ : SegP (C) → SegO (C) is an equivalence,
with inverse given by right Kan extension along 5 .

Remark 3.1.17. If (Oact
/$ )≃ is a Segal O-space and (Pact

/5 ($) )≃ is a Segal P-space in Propo-
sition 3.1.16, then it suffices to check condition (2) for elementary objects in O. This
holds, for instance, if O and P are extendable (see Definition 3.3.16).

3.2. Examples of algebraic patterns. We now look at some examples of algebraic
patterns. Our focus here will be on examples that will be relevant in the next sections;
we refer the reader to [CH21, §3] for many other examples.

Example 3.2.1. We have patterns �=,op,♮ and �=,op,♭ with underlying category �=,op :=
(�op)×=, equipped with the factorization system where the inert and active maps are
those that are inert or active in�op in each component. Here (�=,op,♭)el = {([1], . . . , [1])}
while (�=,op,♮)el consists of all objects whose components are all either [0] or [1]. Then
Segal �=,op,♮-spaces are =-uple Segal spaces, which model =-fold ∞-categories, while
Segal �=,op,♭-objects are E=-algebras (by the Dunn–Lurie additivity theorem).

Example 3.2.2. Let �= be the inductively defined wreath product � ≀ �=−1, starting
with �0 = [0]; see for example [Ber07,Hau18] for more details. This has a factorization
systemwhere the active/inert maps are thosewhose components in � and�=−1 are both
active or inert. There are two interesting pattern structures on �

op
= : if we define the

objects �8 in �= by �0 := [0] () and �8 := [1] (�8−1) for 8 = 1, . . . , =, then for �
op,♭
=

we take �= to be the only elementary object, while for �op,♮
= we take all of �0, . . . ,�=.

Then Segal �op,♮
= -spaces are Rezk’s model for (∞, =)-categories [Rez10], while Segal

�
op,♭
= -object are again E=-algebras (see [Bar18]).

Example 3.2.3. Let F ≤:∗ ⊆ F∗ denote the full subcategory containing pointed finite
sets of cardinality ≤ : (excluding the basepoint). Consider F ≤:∗ as an algebraic pattern
by restricting the inert-active factorization system on F∗ and choosing 〈1〉 to be the
only elementary object. Segal objects for F ≤:∗ are arity :-restricted commutative monoids
— a variant of commutative monoids in which the homotopy coherence data is only
supplied up to arity :. More generally, if O is an ∞-operad then O≤: := F ≤:∗ ×F∗ O
has a natural structure of an algebraic pattern whose Segal objects are arity :-restricted
O-monoids. For more details see [Bar22].

The remaining examples we want to discuss are all instances of a general class of
algebraic patterns on∞-categories of spans. For this purpose we briefly recall the con-
struction of such ∞-categories — this is originally due to Barwick [Bar17]; see also
[HHLN22] for a more “model-independent” version.

Construction 3.2.4. Let X be an ∞-category equipped with a pair of wide subcate-
goriesX1 andX5 (where “1” stands for backwards and “5 ” stands for forwards. Following
Barwick, we say that the triple (X,X1 ,X5 ) is adequate if for every pair of morphisms
V : G → ~ in X1 and i : ~′ → ~ in X5 , we have:
(1) the pullback G ′ := G ×~ ~′ exists in X,
(2) the projection G ′→ ~′ lies in X1 .
(3) the projection G ′→ G lies in X5 .
Given an adequate triple (X,X1 ,X5 ) Barwick defines an ∞-category Span1,5 (X) (de-
noted Aeff (X,X1 ,X5 ) in [Bar17]) such that the objects of Span1,5 (X) are the objects of
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X and the morphisms from G to ~ are spans (or correspondences)

F

G ~

V i

where the arrow V lies in X1 and the arrow i lies in X5 . The assumption that the
triple is adequate allows for a composition law defined by taking pullbacks. If X is an
∞-category with pullbacks, then we can take X1 = X5 = X, in which case we just
write Span(X) for the corresponding ∞-category of spans.

Observation 3.2.5. By the first part of [HHLN22, Proposition 4.9] the ∞-categorySpan1,5 (X) always has a factorization system given by the classes of maps as above
with i or V required to be an equivalence (which we might call the “backwards” and
“forwards” maps) and the subcategories of these maps are equivalent to X1,op and X5 ,
respectively.

Definition 3.2.6. Given an adequate triple (X,X1 ,X5 ) and a full subcategory X0 ⊆
X, we denote by Span1,5 (X;X0) the algebraic pattern given by Span1,5 (X) with the
factorization system whose inert and active maps are the backwards and forward maps,
respectively, and with the objects of X0 as the elementary objects.

Remark 3.2.7. The Segal condition for Span1,5 (X;X0) takes the following form for a
functor � :

� (G) ≃ lim4→G ∈(X10/G )op � (4),
where Span1,5 (X)elG/ ≃ (X1

0/G )op withX1
0/G := X1

0 ×X1 X1
/G andX1

0 is the full subcategory
of X1 containing the objects of X0.

Example 3.2.8. Let F denote the category of finite sets. Since this has pullbacks, Con-
struction 3.2.4 produces an∞-category (in fact a (2,1)-category) Span(F ) whose objects
are finite sets, and whose morphisms are spans of the form

m

n n′

U V

for finite sets n, m, and n′, with composition given by taking pullbacks. We considerSpan(F ) = Span(F ; {1}) as an algebraic pattern by taking the backward maps as inerts,
forward maps as actives and 1 ∈ Span(F ) as the only elementary object.

Observation 3.2.9. The category F∗ may be thought of as the wide subcategorySpaninj,all (F ) of Span(F ) containing only those morphisms where the backwards map
is injective. The inert-active factorization system on F∗ then coincides with the one
obtained by restriction from Span(F ), and the inclusion F∗ → Span(F ) is an iso-Segal
morphism.

Example 3.2.10. Let � be a finite group and F� the category of finite �-sets. Denote
by Orb� ⊆ F� the collection of �-orbits (i.e. transitive �-sets). Since F� has pullbacks
we have an ∞-category (really a (2,1)-category) Span(F� ). Abusing notation slightly,
we also denote the span pattern with the orbits as elementary objects by Span(F� ) :=Span(F� ; Orb� ). Segal objects for this pattern are precisely �-commutative monoids
in the sense of [Nar16]; they also appear in [CMNN20] where they are called semi-
Mackey functors. More generally, for any full subcategory F ⊆ Orb� we have a
span pattern Span(F� ;F ) whose Segal objects may be thought of as �-commutative
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monoids that are Borel-F -complete. Segal objects for Span(F� ; {�/4}) appear implic-
itly in [CMNN20], where they are called Borel-equivariant.

Example 3.2.11. As a variant of the previous example, we can consider subcategories F 5�
of F� that are closed under base change; if F 5� is moreover closed under finite coprod-
ucts, this data is equivalent to an indexing system in the sense of [BH18]. We can then
define the span pattern Spanall,5 (F� ) := Spanall,5 (F� ; Orb� ), whose Segal objects we
can think of as�-commutative monoids where only transfers that lie in F

5
� are allowed.

As an illustrative example wemay consider the extreme case where all forward maps are
isomorphisms, i.e. F 5� := F ≃� . The corresponding span pattern Spanall,≃ (F� ; Orb� ) has
an underlying ∞-category equivalent to F

op
� with all the maps inert and withOrbop� as

the subcategory of elementary objects. Segal objects for this pattern are thus equivalent
to presheaves onOrb� , and by Elemendorf’s theorem this ∞-category is equivalent to
that of �-spaces.

Example 3.2.12. A space - ∈ S is called <-finite if it is <-truncated and all of its
homotopy groups are finite; we let S< ⊆ S denote the full subcategory of <-finite
spaces. Since <-finite spaces are closed under finite limits we may consider the span
pattern Span(S<) := Span(S< ; ∗). If we write S=-tr< for the wide subcategory of S<
whose maps are =-truncated, then (S<,S=-tr< ,S<) is also an adequate triple, and we can
likewise consider the pattern

Span=-tr,all (S<) := Span=-tr,all (S< ; ∗)
for any =. For = = < − 1, the Segal objects for Span(<−1)-tr,all (S<) are precisely the
<-commutative monoids of Harpaz [Har20]. It also follows from [Har20, Proposition
5.14] that these are equivalent to Segal objects for Span(S<).
3.3. Sound patterns. In this subsection we define the notion of a sound pattern — a
technical condition satisfied in almost all the usual examples. This requires first intro-
ducing some notation:

Notation 3.3.1. Fix a morphism l : - → . in an algebraic pattern O. For every
elementary object (U : .  �) ∈ Oel

./ we denote the inert-active factorization of U ◦ l
as follows:

- lU !-

. �

l

lU

(U◦l)act
U

Factorization defines a functor l (−) : Oel
./ → Oint

-/ by sending U to lU .

Definition 3.3.2. For l : -  . we define Oel (l) as the pullback

Oel (l) Ar(Oint
-/)

Oel
./ × Oel

-/ Oint
-/ × Oint

-/ .

(B,C)
(l (−) ,id)

An object in Oel (l) can thus be represented by a diagram in O of the following shape:

- lU !- � ′

. �,

l

lU

U
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where the arrows labeled by and are required to be inert and active, respectively,
� and � ′ are elementary, and l is fixed. Morphisms in Oel (l) are natural transforma-
tions of such diagrams that are constant at l : -  . and inert at all other objects.

Remark 3.3.3. By construction Oel(l) → Oel
./ × Oel

-/ is the bifibration (see [HTT,
Definition 2.4.7.2]) corresponding to the functor

(Oel
./)op × Oel

-/ −→ S, (U : .  �, V : -  � ′) ↦→ MapOint
- /
(lU , V).

Definition 3.3.4. We say that a pattern O is sound if for every activemorphisml : -  
. the functor Oel (l) → Oel

-/ is coinitial.

The point of introducing the condition of soundness is that it allows us to rewrite
certain double limits, as described below in Lemma 3.3.7. Before we state this property
we look at a first example, namely F∗, where soundness is particularly easy to check;
further examples will be given below.

Example 3.3.5. In the pattern F∗ an active morphism l : -+  .+ is simply a map
l : - → . in F . The inert undercategory (F∗)int.+/ may be identified with the poset
(Sub(. ),⊇) of subsets of . , by assigning to each W : .+  /+ the subset W−1(/ ) ⊂ . .
The category of elementary objects under .+ is given by the one-element subsets, and
we may hence identify it with . itself. For an elementary U : .+  � corresponding
to 4 ∈ . , the pushforward lU !-+ can be identified with l−1(4)+ ⊂ -+. Hence we have
a cartesian square:

F el
∗ (l) Ar(Sub(- ))

- × . Sub(- ) × Sub(- ).
(C,B)

(id,l−1)

and so F el
∗ (l) is the poset of pairs (G,~) ∈ - ×. such that {G} ⊂ l−1(~). In other words,

~ = l (G) and hence the map F el∗ (l) → (F∗)el/-∗ ≃ - is an equivalence. In particular it is
coinitial and thus F∗ is sound.

Observation 3.3.6. The composite Oel (l) → Oel
-/ × Oel

./ → Oel
./ is by construction a

cartesian fibration. Its straightening is the functor

(Oel
./)op

l (−)−−−→ (Oint
-/)op

Oel
−/−−−→ Cat

that sends U : .  � to the ∞-category Oel
lU !-/ of elementaries under lU !- . Our def-

inition of Oel (l) therefore matches that given in [CH21, Remark 7.6]. Moreover, a
limit over Oel (l) can be rewritten as a double limit, that is for � : Oel (l) → C we have

limOel (l) � ≃ limU ∈Oel
. /
limOel

lU !- /
� .

If O is sound, then we can use this to rewrite a limit over Oel
-/ as a double limit.

The crucial application of soundness for us will be through the following lemma: this
will be used in the proof of Lemma 4.2.4, which is how the assumption of soundness
enters our main theorem.
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Lemma 3.3.7. Let O be a sound pattern and C a sufficiently complete ∞-category. Consider
a natural transformation ([ : � ⇒ �) : Oint

-/ → C such that for all -  - ′ ∈ Oint
-/ the square

� (- ′) lim- ′�∈Oel
- ′/
� (�)

� (- ′) lim- ′�∈Oel
- ′/
� (�)

[- ′ lim[�

is cartesian. Then for every active morphism l : -  . the square

� (- ) limU : .�∈Oel
. /
� (lU !- )

� (- ) limU : .�∈Oel
. /
� (lU !- )

[- lim[�

is cartesian.

Proof. Consider the commutative cube

� (- ) limU : .�′ ∈Oel
. /
� (lU !- )

limV : -�∈Oel
- /
� (�) lim(U : .�′,W : lU !-�) ∈Oel (l) � (�)

� (- ) limU : .�′ ∈Oel
. /
� (lU !- )

limV : -�∈Oel
- /
� (�) lim(U : .�′,W : lU !-�) ∈Oel (l) � (�).

∼

∼

∼

The front horizontal maps are equivalences because O is assumed to be sound and hence
Oel (l) → Oel

-/ is coinitial. The left square is cartesian by applying the assumption. We
would like to show that the back square is cartesian and by pullback pasting it will
suffice to show that the right square is cartesian. We may write the limit over Oel (l) as
a double limit, by first right Kan extending along the cartesian fibration Oel (l) → Oel

./,
which is computed by taking limits over the fibers Oel

lU !./, and then taking the limit
over Oel

./. Using this reformulation the right square can be written as a Oel
./-limit of

diagrams of the form

� (lU !- ) limlU !-�∈Oel
- ′/

� (�)

� (lU !- ) limlU !-�∈Oel
- ′/
� (�).

[lU !- lim[�

Each of these diagrams is cartesian by assumption, and hence so is their limit. �

We will now check explicitly that the examples of patterns we discussed above are
indeed sound. To do so, the following observation will be useful:

Lemma 3.3.8. For an algebraic pattern O the following conditions are equivalent:
(1) O is sound.
(2) For every active morphism l : -  . and V : -  � ′ ∈ Oel

./ , the ∞-category
Oel
V (l) := Oel

./ ×Oint
- /
(Oint

-/)/V
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is weakly contractible.
(3) For every l and V as in (2) we have colimU ∈(Oel

. /)op
MapOint

- /
(lU , V) ≃ ∗.

Proof. (1 ⇔ 2) The functor Oel (l) → Oel
-/ is a cocartesian fibration. By the dual of

[HTT, Theorem 4.1.3.2.] it is coinitial if and only if its fibers are weakly contractible.
Unwinding definitions yields the following description of the straightening:

Oel
-/ −→ Cat, (V : - −→ � ′) ↦−→ Oel

./ ×Oint
- /
(Oint

-/)/V .

(2⇔ 3) Since Oel (l) → Oel
./×Oel

-/ is a bifibration, passing to the fiber over V ∈ Oel
-/ and

taking opposites yields a left fibration @ : Oel
V
(l)op → (Oel

./)op. By [HTT, Corollary
3.3.4.6], the ∞-groupoid |Oel

V
(l) | ≃ |Oel

V
(l)op | can be computed as the colimit of the

straightening St(@), which is given by

St (@) : (Oel
./)op −→ S, (U : . −→ �) ↦−→ MapOint

- /
(lU , V). �

Observation 3.3.9. Suppose that O is a pattern such that for all - ∈ O the inert under-
category Oint

-/ is a poset. In this case, spelling out the definition as in Example 3.3.5 we
may identify Oel

V
(l) with the following sub-poset of Oel

./:

Oel
V (l) ≃ {(U : .  �) ∈ Oel

./ | V = W ◦ lU }.
Example 3.3.10. For the pattern �op the inert under-category (�op)int[= ]/ is equivalent
to the poset of pairs (00 ≤ 01) ∈ [=]. This is elementary in �op,♭ iff 01 − 00 = 1 and it is
elementary in �op,♮ iff 01 − 00 ≤ 1. To check soundness we consider, for a morphism
l : [<] → [=] in � and elementary (10 ≤ 11) ∈ [=], the poset

(�op)elV (l) ≃ {(00 ≤ 01) ∈ (�op)el[<]/ | l (00) ≤ 10 ≤ 11 ≤ l (01)}.
In the case of �op,♭ this poset has a single element, namely that given by 00 = max{0 ∈
[<] | l (0) ≤ 10} and 01 = 00 + 1, which satisfies l (01) > 10 and hence l (01) ≥ 11 =
10 +1. For the pattern �op,♮ the poset still has a single element if 11 = 10 +1 or if 11 = 10
with 18 ∉ l ( [<]). But if 11 = 10 = l (0) for some 0 ∈ [<], then the poset is the category

(0 − 1 ≤ 0) −→ (0 ≤ 0) ←− (0 ≤ 0 + 1),
which is not trivial, but still weakly contractible. This shows that �op,♭ and �op,♮ are
both sound.

Example 3.3.11. The pattern F
♮
∗ is sound. The inert under-category (F ♮

∗ )�+/ is the poset
of subsets * ⊂ �. Given an active morphism l : �+ → �+ and an elementary � ⊂ �
(i.e. |� | ≤ 1), we need to check that the poset of � ′ ⊂ . with |� ′| ≤ 1 and � ⊂ l−1(� ′)
is contractible. If � = {0} ≠ ∅, then this poset has exactly one element � ′ = {l (0)}, and
if � = ∅, then this poset has an initial element � ′ = ∅. So the poset is contractible in
both cases, which proves that F ♮

∗ is sound.

Lemma 3.3.12. Products of sound patterns are sound: if O1 and O2 are sound patterns, then
O1 × O2 is also a sound pattern.
Proof. Let l = (l1, l2) : (-1, -2)  (.1, .2) be an active morphism in O1 × O2. The
projection (O1 × O2)el(l) −→ (O1 × O2)el(-1,-2)/ can be identified with the product of
the projections Oel

1 (l1) × Oel
2 (l2) −→ (O1)el-1/ × (O2)

el
-2/ which, by assumption, is a

product of coinitial functors and hence again coinitial. �

Example 3.3.13. Applying Lemma 3.3.12 to Example 3.3.10, we see that the patterns
�=,op,♭ and �=,op,♮ are both sound.
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Observation 3.3.14. Let O be a sound algebraic pattern and suppose P ↩→ O is a fully
faithful inclusion of algebraic patterns. Then Pel

V (l) ↩→ Oel
V (l) is fully faithful for

all l : -  . and V : .  �. Now assume further that P satisfies that for any inert
morphism -  / in O with - ∈ P the object / is also in P. Then Pel

V
(l) ≃ Oel

V
(l) is

an equivalence and hence P is also sound.

Next, we introduce a further condition for sound patterns; for this we first need
some notation:

Notation 3.3.15. By Proposition 2.2.2, evaluation at the target ev1 : Aract(O) → O
is a cocartesian fibration. Its straightening, denoted by AO : O → Cat∞, takes - ∈ O
to the ∞-category AO (- ) ≃ Oact

/- of active morphisms to - . (Compare with [CH21,
Corollary 7.4 and Remark 7.5].)

Definition 3.3.16. We say an algebraic pattern O is soundly extendable if it is sound and
in addition the functor AO is a Segal O-∞-category, i.e. for every - ∈ O, the functor

Oact
/- −→ lim�∈Oel

- /
Oact
/�

is an equivalence.

Remark 3.3.17. The notion of a soundly extendable pattern is a mild strengthening
of the notion of extendable pattern from [CH21, Definition 8.5] (which uses a slightly
weaker, but more complicated condition than what we are here calling “soundness”).
It was shown in [CH21, Lemma 9.14] that every extendable pattern O satisfies the con-
dition in Definition 3.3.16, so in particular a sound pattern is extendable if and only if
it is soundly extendable. In principle, there could exist extendable patterns that are not
sound, but we are not aware of any examples.

Example 3.3.18. The patterns F∗, �op,♮ , and�op,♭ are soundly extendable. Their sound-
ness was verified in Example 3.3.5 and Example 3.3.10. For extendability see [CH21, Ex-
ample 8.13 and 8.14]. The pattern�op,♮

= is soundly extendable for all= (by [Hau18, Propo-
sition 2.7] and [Hau18, Lemma 3.5]), but note that �op,♭

= fails to be extendable for = > 1.
(See [CH21, Example 8.15].)

Example 3.3.19. Let O → F∗ be an∞-operad. Then O is a soundly extendable pattern.
This will follow by Example 4.1.5 and Lemma 4.1.15 in the next section.

Example 3.3.20. The patterns F ≤:∗ are sound by Observation 3.3.14, but not soundly
extendable. Indeed, AF ≤:∗

: F ≤:∗ −→ Cat∞ does not satisfy the Segal condition: for any
= ≤ : the Segal map may be identified with the inclusion

(F ×=)≤: ≃ AF ≤:∗
(=) −→ AF ≤:∗

(1)×= ≃ (F ≤: )×=

where (F ≤: )×= is the category of =-tuples of sets such that each set has size ≤ :, and
(F ×=)≤: denotes the full subcategory on those =-tuples of total size ≤ :.
Lemma 3.3.21. Let O and P be soundly extendable patterns such that Oel

$/ and Pel
%/ are

weakly contractible for all $ ∈ O and % ∈ P . Then O × P is a soundly extendable pattern.

Proof. Soundness follows from Lemma 3.3.12. For extendability we have:

lim(U,V) :($,% )(�,�′ ) ∈(O×P)el($,% )/ (O × P)
act
/(�,�′) ≃ lim(U :$�,V :%�′ ) ∈Oel

$/×Pel
%/
Oact
/� × Pact

/�′

≃ limU :$�∈Oel
$/
Oact
/� × limV :%�′∈Pel

%/
Pact
/�′

≃ Oact
/$ × Pact

/%
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where in the second line we used that in any ∞-category, products distribute over
weakly contractible limits. �

Example 3.3.22. The pattern �=,op,♮ is soundly extendable. Indeed the case = = 1
appears in Example 3.3.18, and for = > 1 this follows from Lemma 3.3.21 by observing
that (�op,♮)el[: ]/ is weakly contractible for all :. (Note that this argument fails for �=,op,♭

since (�op,♭)el[0]/ = ∅, and indeed this pattern is not extendable for = > 1.)

Proposition 3.3.23. The pattern Span1,5 (X;X0), as defined in Definition 3.2.6, is
(1) sound if X1

/~ → X/~ is fully faithful and the inclusion X1
0/~ ↩→ X0/~ is cofinal for every

~ ∈ X.
(2) soundly extendable if and only if it is sound and the functor X5

/− : X
1,op → Cat∞ (defined

on morphisms by pullback) is right Kan extended from X
1,op
0 ⊆ X1,op.

Proof. (1) By Lemma 3.3.8.(3) the pattern Span1,5 (X;X0) is sound if and only if for every
V : 4 ′ → G inX1 and l : G → ~ inX5 the following colimit indexed by U : 4 → ~ ∈ X1

0/~
is contractible:

colimU ∈X10/~ MapX1/G (V : 4 ′ → G, l∗U : G ×~ 4 → G)
≃ colimU ∈X10/~ MapX/G (V : 4 ′ → G, l∗U : G ×~ 4 → G) (X1

/G ⊂ X/G full)
≃ colimU ∈X10/~ MapX/~ (l ◦ V : 4 ′ → ~, U : 4 → G) (l! ⊣ l∗)
≃ colimU ∈X10/~ MapX0/~ (l ◦ V : 4 ′ → ~, U : 4 → G) (X0/~ ⊂ X/~ full)
≃ |X1

0/~ ×X0/~ (X0/~ )l◦V/ |
By [HTT, Theorem 4.1.3.1] this category is weakly contractible if X1

0/~ → X0/~ is
cofinal, so the claim follows.

(2) Since Span1,5 (X;X0)act/− ≃ X
5
/−, this is a consequence of the fact that a functor is

Segal if and only if its restriction to the inert category is right Kan extended from the
elementaries by [CH21, Lemma 2.9]. �

As an important special case, we have:

Corollary 3.3.24. If X1 = X then Spanall,5 (X;X0) is sound.
Example 3.3.25. The pattern Span(F ) is soundly extendable.

Example 3.3.26. Let F 5� ⊂ F� be closed under base-change and coproduct as in Ex-
ample 3.2.11. The patterns Spanall,5 (F� ) and Spaninj,5 (F� ) are soundly extendable. The
slice (F� ) 5/� decomposes as a product

∏
* ∈�/� (F� ) 5/* since the morphisms of F 5� are

closed under base-change. This implies that (F� ) 5/− is a Spaninj,5 (F� )-Segal category
since the elementary slice category Spaninj,5 (F� )el�/ ≃ (Orb� )inj/� is equivalent to the

discrete set �/� over which we are taking the product. It also follows that (F� ) 5/− is
a Segal Spanall,5 (F� )-category since (Orb� )inj/� ≃ Spaninj,5 (F� )el�/ ↩→ Spanall,5 (F� )el�/ is
coinitial.

Example 3.3.27. The pattern Span(S<) is soundly extendable. Soundness follows from
Corollary 3.3.24. For extendability we need to show that the functor

(S<)/− : Sop< −→ Cat∞
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is right Kan extended from its value at ∗ ∈ Sop< . Since being <-truncated can be
checked fiberwise over . ∈ S< , this functor is equivalent to Fun(−,S<) by straighten-
ing. This is now right Kan extended because Fun(-,S<) ≃ lim- S< . One can show
that Span(<−1)-tr,all (S<) is also soundly extendable; we will not need this, however.

Finally, we give an example of a pattern that is not sound:

Example 3.3.28. We expect that the pattern Uop of undirected graphs of Hackney,
Robertson, and Yau [RY20] is sound. However, this pattern does not include the node-
less loop (1. In [Hac21], Hackney gives a simpler description of Uop and also defines
a variant Ũop that does include the nodeless loop. We will now show that this is an
example of a non-sound pattern O = Ũop. For the sake of brevity we shall not recall
the definition, but rather the following facts:
• The category of elementaries under (1 is trivial Oel

(1/ ≃ ∗.
• There is an active morphisml : (1 (1= to the =-vertex loop (1= (= ≥ 2), for which
Oel
(1=/

is the poset of simplices of (1=, which is weakly equivalent to (1.

We can now use the characterisation of soundness from Lemma 3.3.8.(3) in the case
of the active morphism l : (1  (1= described above. Since Oel

(1/ is trivial (and in this
case lU !(1 is always elementary), the colimit runs over the constant diagram on the
point and hence evaluates to the classifying space of Oel

(1=/
, which is not contractible.

Note that this could be resolved by introducing a variant of Ũop whereMapO ((1, (1) ≃MapO ((1, 4) ≃ $ (2), in which case Oel
(1/ is equivalent to the ∞-groupoid (1.

4. FIBROUS PATTERNS AND SEGAL ENVELOPES

We begin this section by introducing the notion of fibrous O-patterns as a general-
ization of∞-operads over an arbitrary base pattern O in §4.1. We then apply the results
of §2 to fibrous patterns in §4.2, where we prove Theorem C. Finally, in §4.3 we give
some examples of Segal envelopes.

4.1. Fibrous patterns. In this subsection we introduce the notion of a fibrous O-pattern
over a base algebraic pattern O. (We borrow the adjective “fibrous” from [HA, §2.3.3],
where it is used for a somewhat related concept.) Fibrous patterns specialize to give,
for example, Lurie’s ∞-operads and generalized ∞-operads if we take the base pattern
to be F∗ or F ♮

∗ . The concept is also a variant of the definition of weak Segal fibrations
given in [CH21]; as we will see in Proposition 4.1.7 the two notions coincide if the base
pattern is sound, i.e. for almost all interesting examples of patterns, but the definition of
fibrous patterns seems to be simpler and better behaved if we do not assume soundness.

Observation 4.1.1. Let O be an algebraic pattern. If c : P → O has cocartesian lifts
of inert morphisms, then applying Proposition 2.2.2 to the inert–active factorization
system on O furnishes a cocartesian fibration P ×O Aract(O) → O (where this functor
is given as (%, c (%)  $) ↦→ $). For a morphism l : $1 → $2 in O the cocartesian
transport functor l! : P ×O Oact

/$1
→ P ×O Oact

/$2
is given by

(%, i : c (%)  $1) ↦→ (U!%, V : $ ′ $2),
where

c (%) U
 $ ′

V
 $2

is the inert–active factorization of the composite

c (%) i
 $1

l−−→ $2

and % → U!% is a cocartesian lift of U .
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Definition 4.1.2. Let O be an algebraic pattern. Then a fibrous O-pattern is a functor
c : P → O such that:
(1) P has all c-cocartesian lifts of inert morphisms in O.
(2) For all $ ∈ O, the commutative square of ∞-categories

P ×O Oact
/$ lim�∈Oel

$/
P ×O Oact

/�

Oact
/$ lim�∈Oel

$/
Oact
/�

is cartesian. Here the horizontal functors are induced by cocartesian transport
along the maps$  � in Oel

$/ for the cocartesian fibrations fromObservation 4.1.1,
applied to c and idO .

Observation 4.1.3. Condition (2) in Definition 4.1.2 says precisely that the straighten-
ing of the projection P×O Aract(O) → Aract(O) over O, i.e. the natural transformation
StintO (P) : StO (P ×O Aract(O)) → AO , is a relative Segal O-∞-category.
Remark 4.1.4. For many patterns O, the functor Oact

/– is a Segal O-∞-category; this
is the case, for instance, if O is extendable in the sense of [CH21] by [CH21, Lemma
9.14]. In this case, Observation 3.1.9 implies that condition (2) is satisfied if and only if
the functor StintO (P) is a Segal O-∞-category, i.e. the functor

P ×O Oact
/$ −→ lim�∈Oel

$/
P ×O Oact

/�

is an equivalence for all $ ∈ O.
Example 4.1.5. Since F∗ is extendable, a fibrous F∗-pattern is a functor c : P → F∗
such that P has c-cocartesian lifts for inerts, and for all = the functor

Pact ×F F/〈=〉 ≃ P ×F∗ (F∗)act/〈=〉 −→
∏
〈=〉〈1〉

P ×F∗ F ≃ (Pact)=,

is an equivalence. This functor takes an object % ∈ Pact over 〈<〉 in F∗ together with
an active map l : 〈<〉  〈=〉 to the list of objects (%1, . . . , %=) where %  % 9 is the
cocartesian lift of the inert map l 9 := (d 9 ◦ l)int : 〈<〉 〈<〉9 where d 9 : 〈=〉 〈1〉 is
as in Example 3.1.6. We will see later (Proposition 4.1.7) that this condition is equivalent
to P → F∗ being an ∞-operad in the sense of Lurie.

We can rewrite the second condition in Definition 4.1.2 to obtain the following
equivalent characterization of fibrous patterns:

Proposition 4.1.6. For any algebraic pattern O, a functor c : P → O is a fibrous O-pattern
if and only if:
(1) P has c-cocartesian morphisms over inert morphisms in O.
(2) For every active morphism l : $1  $2 in O, and all objects -0 ∈ P$0 , -1 ∈ P$1 , the

commutative square

(4)

MapP (-0, -1) limU : $2�∈Oel
$2/

MapP (-0, lU,!-1)

MapO ($0,$1) limU : $2�∈Oel
$2/

MapO ($0, lU,!$1)

is cartesian. Here the horizontal maps are defined using the functor l (−) : Oel
$2/ → O

int
$1/

from Notation 3.3.1.
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(3) For every active morphism l : $1 $2 in O, the functor
P≃$1
−→ limU : $2−→�∈Oel

$2/
P≃lU !$1

,

induced by cocartesian transport along the inert morphisms lU : $1  lU !$1 in Oint
$1/, is

an equivalence.

Proof. A square of ∞-categories is cartesian if and only if the underlying square of ∞-
groupoids as well as all induced squares of mapping spaces are cartesian. For the square
in the definition of a fibrous pattern the underlying square of ∞-groupoids is

P≃ ×O≃ (O/$ )≃ lim�∈Oel
$/
P≃ ×O≃ (O/� )≃

(O/$ )≃ lim�∈Oel
$/
(O/� )≃;

this is cartesian if and only if the map on fibers over each l : $ ′ $ is an equivalence.
This map takes the form

(5) P≃$′ −→ limU : $�∈Oel
$/
P≃lU,!$′ .

and is induced by the cocartesian transport along the inert morphisms lU : $ ′ lU !$
′

as in Notation 3.3.1. This is exactly the map from condition (3), so the square of ∞-
groupoids is cartesian if and only if condition (3) holds.

Now consider the square of mapping spaces for two objects (%, i : c (%)  $) and
(% ′, i ′ : c (% ′) $) ∈ P ×O Oact

/$ :
(6)
MapP×OOact

/$
((%, i), (% ′, i ′)) limU : $�∈Oel

$/
MapP×OOact

/�
((%, i), (i ′

U,!%
′, (U ◦ i ′)act))

MapOact
/$
(i, i ′) limU : $�∈Oel

$/
MapOact

/�
(i, (U ◦ i ′)act).

A point in MapOact
/$
(i, i ′) is a (necessarily active) morphism 5 : c (%)  c (% ′) together

with a homotopy i ≃ i ′ ◦ 5 . To compute the fiber of the vertical maps at this point,
note that the mapping space in P ×O Oact

/$ can be computed as:

MapP×OOact
/$
((%, i), (% ′, i ′)) ≃ MapP (%, % ′) ×MapO (c (% ),c (% ′)) MapOact

/$
(i, i ′),

Hence the map on the vertical fibers of the square is given by

(7) Map5P (%, % ′) −→ limU : $�∈Oel
$/
Mapi′U ◦5P (%, i ′U,!% ′),

where the superscripts indicate fibers over maps in O. This agrees with the map on
fibers over 5 of the square in condition (2). Therefore condition (2) implies that the
square of mapping spaces is a pullback.

However, we have not shown the converse yet, because we have only considered
the fibers in (4) over morphisms 5 ∈ MapO ($0,$1) that are active. Let us now assume
that the square of mapping spaces (6) is cartesian. For a general morphism $0 → $1

we can find an inert-active factorization $0
9
 &

6
 $1. Since 9 is inert we can find

a cocartesian lift 9̃ : %0 → 9!%0 and by virtue of this being cocartesian, pre-composition
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with 9̃ induces the vertical equivalences in the following diagram:

Map6P ( 9!%, % ′) limU : $�∈Oel
$/
Mapi′U ◦6P ( 9!%, i ′U,!% ′)

Map6◦9P (%, % ′) limU : $�∈Oel
$/
Mapi′U ◦6◦9P (%, i ′

U,!%
′).

≃(−)◦ 9̃ ≃ (−)◦ 9̃

Since 6 is active, the previous argument shows that the top map is an equivalence.
Hence the bottom map is an equivalence and as 5 = 6 ◦ 9 was arbitrary this shows that
condition (2) is implied. �

The conditions in Proposition 4.1.6 are reminiscent of Lurie’s definition of an ∞-
operad [HA]. Note, however, that in conditions (2) and (3) we need to consider all
active maps in O, while Lurie’s definition of∞-operads, or the definition of weak Segal
fibrations in [CH21], only involve the conditions corresponding to identity maps. If the
base pattern is sound, however, the conditions for all active maps are implied by this
special case:

Proposition 4.1.7. Suppose O is a sound pattern. Then a functor c : P → O is a fibrous
O-pattern if and only if it is a weak Segal O-fibration in the sense of [CH21, Definition 9.6],
i.e. the conditions of Proposition 4.1.6 hold whenever l is an identity morphism. Concretely:
(1) P has all c-cocartesian lifts of inert morphisms in O.
(2) For all $0,$1 ∈ O, and all objects -0 ∈ P$0 , -1 ∈ P$1 , the commutative square

MapP (-0, -1) limU : $1�∈Oel
$1 /

MapP (-0, U!-1)

MapO ($0,$1) limU : $1�∈Oel
$1 /

MapO ($0, �)

is cartesian.
(3) For every $1 ∈ O, the functor

P≃$1
−→ limU : $1−→�∈Oel

$1/
P≃� ,

induced by cocartesian transport along U : $1  � is an equivalence.

Remark 4.1.8. In [CH21] (and [HA]), the analogue of condition (3) says that the func-
tor

P$1 −→ limU : $1−→�∈Oel
$1/
PU !$′2

is an equivalence, rather than that the underlyingmap of∞-groupoids is one. However,
it follows from (2) that this functor gives an equivalence on mapping spaces, i.e. it is
already fully faithful, and so it is an equivalence if and only if it is an equivalence on
underlying∞-groupoids. In fact, it would suffice in (3) to assume that the map is merely
surjective on c0.

Proof of Proposition 4.1.7. Suppose c : P → O is a weak Segal fibration. Consider the
functor � : Oint

$1/ → Oint → S defined by � ($2) := P≃$2
and cocartesian transport

along inerts. The natural transformation [ : � ⇒ ∗ to the terminal functor satisfies the
conditions of Lemma 3.3.7. The conclusion of the lemma tells us that (2) holds for all
l : $1  $2.

For property (3), fix -0, -1 ∈ P with c (-0) = $0 and c (-1) = $1. Then cocartesian
transport along inerts defines a functor

� : Oint
$1/ −→ S, (i : $1 $2) ↦→ Map(-0, i!-1)
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and this admits a canonical natural transformation to the functor � (i : $1  $2) :=Map($0,$2). Applying lemma 3.3.7 to [ : � ⇒ � shows that (3) holds for all l : $1  
$2. �

Example 4.1.9. Fibrous F∗-patterns are precisely (symmetric)∞-operads as defined in
[HA], while fibrous F ♮

∗ - patterns are generalized (symmetric) ∞-operads. Similarly,
fibrous �op,♭- and �op,♮-patterns are non-symmetric (or planar)∞-operads and gener-
alized non-symmetric ∞-operads, respectively.
Observation 4.1.10. For a sound pattern O we can also describe the fibrous O-patterns
that are cocartesian fibrations as the unstraightenings of Segal O-∞-categories, i.e. as
the Segal O-fibrations of [CH21, Definition 9.1]. This is easy to check directly, but it is
also a special case of Lemma 4.2.4 (taking . = ∗), which we will prove below.

Fibrous O-patterns admit a canonical pattern structure, which we now introduce:

Definition 4.1.11. Suppose c : P → O is a fibrous O-pattern. We say a morphism
in P is inert if it is c-cocartesian and lies over an inert morphism in O, and active if
it just lies over an active morphism in O. The inert and active morphisms then form
a factorization system on P by [HA, Proposition 2.1.2.5], and we give P an algebraic
pattern structure with this factorization system by taking the elementary objects to be
all those that lie over elementary objects in O.
Definition 4.1.12. A morphism of fibrous O-patterns is a commutative triangle

P P ′

O,

5

c c′

where c and c ′ are fibrous O-patterns and 5 is a morphism of algebraic patterns. It
is immediate from the definition of the pattern structures that for this it suffices to re-
quire that 5 preserves inert morphisms. We write Fbrs(O) for the full subcategory ofAlgPatt/O whose objects are the fibrous O-patterns; this is equivalently a full subcate-
gory of Catint-cocart∞/O .

Lemma 4.1.13. The inclusion Fbrs(O) ↩→ Catint-cocart∞/O preserves limits and ^-filtered colimits
where ^ is a regular cardinal such that Oel

$/ is ^-small for all $ ∈ O. Limits and ^-filtered
colimits of O-fibrous patterns can therefore be computed in Cat∞.
Proof. By Observation 2.3.8 the forgetful functor Catint-cocart∞/O → Cat∞/O → Cat∞ pre-
serve limits and ^-filtered colimits, and are also conservative. It therefore suffices to
observe that the commutative square that is required to be cartesian for an object ofCatint-cocart∞/O to be a fibrous O-pattern commutes with limits and ^-filtered colimits of
∞-categories. Since a limit or filtered colimit of cartesian squares in Cat∞ is again
cartesian, this implies the result. �

Observation 4.1.14. If c : P → O is a fibrous O-pattern, then for every object - ∈ P
over - in O, the functor

Pel
-/ −→ O

el
-/

is an equivalence. Indeed, since P int → Oint is a cocartesian fibration the functor
P int
-/ → O

int
-/ is an equivalence, and the above functor is obtained by restricting to the

full subcategories of elementary objects. In particular, c is an iso-Segal morphism.
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More generally, if 5 : P → Q is a morphism of fibrous O-patterns, then 5 induces an
equivalence

Pel
-/

∼−−→ Qel
5 (- )/

for the same reason, so that 5 is also an iso-Segal morphism.
Lemma 4.1.15. Suppose O is a sound pattern and c : P → O is O-fibrous. Then P is also
a sound pattern. Moreover, if O is soundly extendable, then so is P .
Proof. It follows from Observation 4.1.14 that c induces an equivalence

c : Pel
V (l) = Pel

./ ×P int
- /
(P int

-/)/V −→ Oel
c (. )/ ×Oint

c (- )/
(Oint

c (- )/)/c (V) = Oel
c (V) (c (l))

for all active l : -  . and V : .  � ′ ∈ Pel
./. Hence P is sound by Lemma 3.3.8.(2).

Now assume O is soundly extendable. Then, by Remark 4.1.4, the functor

P ×O Oact
/. −→ lim�′∈Oel

. /
P ×O Oact

/�′

is an equivalence. Since any morphism in P that is mapped to an active morphism
in O is active by definition and active morphisms satisfy cancellation, we have that
P ×O Oact

/. = Pact ×Oact Oact
/. . Consider the case where . = c (- ) for - ∈ P. Since

P → O is an equivalence on elementary slices, we can rewrite the limit on the right-
hand side as a limit over � ∈ Pel

-/ and set � ′ := c (�):

Pact ×Oact Oact
/c (- )

≃−→ lim�∈Pel
- /
Pact ×Oact Oact

/c (�) .

Now, passing to the over-category of (-, idc (- ) ) we obtain an equivalence:

Pact
/- ≃ (Pact×OactOact

/c (- ) )/(-,idc (- ) )
≃−→ lim�∈Pel

- /
(Pact×OactOact

/c (�) )/(�,idc (�) ) ≃ lim�∈Pel
- /
Pact
/� ,

which shows that P is soundly extendable. �

Proposition 4.1.16. Suppose we have a commutative triangle of algebraic patterns

Q P

O,

�

@ ?

where P is O-fibrous. Then Q is O-fibrous if and only if it is P-fibrous.
Proof. Any inert morphism c : % → % ′ in P is cocartesian over an inert morphism
l : $ → $ ′ in O; if i : & → & ′ is an inert morphism over l in Q such that � (&) ≃ % ,
then we have � (i) ≃ c since � preserves inert morphisms and c is the unique inert
morphism over l with source % . It now follows from [HTT, Proposition 2.4.1.3] that
i : & → & ′ is �-cocartesian if and only if it is @-cocartesian. Thus condition (1) in
Definition 4.1.2 holds for � if and only if it holds for @.

Assuming this holds, then for % ∈ P$ , % ′ ∈ P$′,& ∈ Q% , & ′ ∈ Q% ′ and l : $ ′ → $ ′′,
we have a commutative diagram

MapQ (&,& ′) limU ∈Oel
$′/

MapQ (&,lU,!& ′)

MapP (%, % ′) limU ∈Oel
$′/

MapP (%, lU,!% ′)

MapO ($,$ ′) limU ∈Oel
$′/

MapO ($,lU,!$ ′).
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Here the bottom square is cartesian since P is O-fibrous, so the top square is cartesian
if and only if the outer square is cartesian. But since ? is an iso-Segal morphism we can
rewrite the top square as

MapQ (&,& ′) limU ∈Pel
%′/
MapQ (&,lU,!& ′)

MapP (%, % ′) limU ∈Pel
%′/
MapP (%, lU,!% ′),

and so we have that (2) holds for � if and only if it holds for @. The proof for (3) is
similar. �

Corollary 4.1.17. If c : P → O exhibits P as an O-fibrous pattern, then composition with
c gives a functor

c! : Fbrs(P) −→ Fbrs(O),
and this induces an equivalence

Fbrs(P) ∼−−→ Fbrs(O)/P .
Example 4.1.18. Let (c : O → F∗) ∈ Opd∞ be an ∞-operad in the sense of Lurie, i.e. a
fibrous F∗-pattern. Applying Corollary 4.1.17 we obtain an equivalence:

Fbrs(O) ∼−−→ Fbrs(F∗)/O = Opd∞/O
so fibrous O-patterns are simply ∞-operads over O.
Lemma 4.1.19. Suppose 5 : O → P is a strong Segal morphism. Then pullback along 5
restricts to a functor

5 ∗ : Fbrs(P) −→ Fbrs(O), (c : F −→ P) ↦→ (5 ∗c : F ×P O −→ O).
Proof. Suppose c : F → P is a P-fibrous pattern. Condition (1) in Definition 4.1.2
for 5 ∗F follows from the usual description of cocartesian morphisms in a pullback,
since 5 preserves inert morphisms. To prove (2), we observe that 5 ∗F ×O Aract(O) ≃
F ×P Aract(O), so that we have a cartesian square

5 ∗F ×O Aract(O) F ×P Aract(P) ×P O

Aract(O) Aract(P) ×P O
of cocartesian fibrations over O. Straightening yields the cartesian square:

StintO (5 ∗F ) StintP (F ) ◦ 5

AO AP ◦ 5
of functors O → Cat∞. ByObservation 4.1.3 the natural transformation StintP (F ) → AP
is a relative P-Segal ∞-category. This remains true after precomposing with 5 (by
Observation 3.1.15, since 5 is strong Segal) . Hence the right vertical map in the square
is a relative O-Segal∞-categoryand by Lemma 3.1.10 so is the left vertical arrow. Using
Observation 4.1.3 again we see that 5 ∗F is fibrous. �

Example 4.1.20. The morphism c : �op,♭ → F∗ from Example 3.1.13 is iso-Segal and
hence Lemma 4.1.19 shows that pulling back along it defines a functor:

c∗ : Fbrs(F∗) −→ Fbrs(�op,♭).
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Under the identifications of Example 4.1.9 this is exactly the forgetful functor from
(symmetric) ∞-operads to non-symmetric ∞-operads.

Finally, let us note that we can lift the comparison of Proposition 3.1.16 to fibrous
patterns:

Proposition 4.1.21. Suppose 5 : O → P is a strong Segal morphism that satisfies the condi-
tions of Proposition 3.1.16 and let c : Q → P be a fibrous pattern. Then 5 : 5 ∗Q → Q is also
a strong Segal morphism that satisfies the conditions of Proposition 3.1.16 and thus induces an
equivalence

5
∗
: SegQ (S) ∼−−→ Seg5 ∗Q (S).

Proof. Denote by c ′ : Q′ := 5 ∗Q → O the projection map. Since Q is fibrous and 5 is
strong Segal, it follows from Lemma 4.1.19 that Q′ is also fibrous. By Observation 4.1.14
we have Qel

&/ ≃ Pel
c (&)/ and similarly for Q′ and O. The map (Q′)el

&/ → Qel
5 (&)/ thus

identifies with Oel
c′ (&)/ → Pel

5 (c′ (&))/ which is coinitial by the assumption that 5 is strong

Segal. We conclude that 5 is strong Segal. We proceed by verifying the conditions.
Condition (1) of Proposition 3.1.16 is visibly stable under basechange so it remains to
check (2). Observe that for every object & ∈ Q′ that lies over $ ∈ O we have by
[HTT, Lemma 5.4.5.4] a pullback square of slice ∞-categories

Q′/& Q/5 (&)

O/$ P/5 ($) .

y

By assumption the bottom map induces an equivalence on the underlying spaces of
active maps and since the square is cartesian the same holds for the top map. �

4.2. Segal envelopes. In this section we will specialize our results from Section 2 to
fibrous O-patterns over an algebraic pattern O. Recall that we have shown that from
the inert–active factorization system on O we obtain an adjunction

(–) ×O Aract(O) : Catint-cocart∞/O ⇄ (Catcocart∞/O )/Aract (O) ,

where the right adjoint is given by pulling back along the map O → Aract(O) given by
the degeneracy [1] → [0]. This can equivalently be interpreted as a “straightening–
unstraightening” adjunction

StintO : Catint-cocart∞/O ⇄ Fun(O, Cat∞)/AO :UnintO

in which the left adjoint is fully faithful with image the AO-equifibered functors.
We can immediately identify the image of the full subcategory Fbrs(O) under this

fully faithful functor:

Proposition 4.2.1. For any algebraic pattern O, the fully faithful functor StintO identifiesFbrs(O) with the full subcategory of Fun(O, Cat∞)/AO spanned by the equifibered maps that
are also relative Segal objects. In other words, the functor StintO restricts to a fully faithful functor

Env/AOO := StintO |Fbrs(O) : Fbrs(O) ↩→ Seg/AOO (Cat∞)
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with image the equifibered objects. Moreover, for any strong Segal morphism 5 : O → P , we
have a commutative square

(8)

Fbrs(P) Fbrs(O)

Seg/APP (Cat∞) Seg/AOO (Cat∞)
Env/APP

5 ∗

Env/AOO
5 ⊛

where the functor 5 ⊛ is given by the composite

Seg/APP (Cat∞) 5 ∗−−→ Seg/5 ∗APO (Cat∞) −→ Seg/AOO (Cat∞)
of restriction along 5 and pullback along the natural map 5 ∗AP → AO (cf. Observation 3.1.15
and Lemma 3.1.10).

Proof. From Observation 4.1.3 we know that an object P of Catint-cocart∞/O is a fibrous O-
pattern if and only if StintO (P) is a relative Segal O-object in Cat∞. The commutative
square (8) likewise follows by restricting the square (3) in Observation 2.3.9 to full
subcategories. �

From this observation we can deduce some pleasant properties of the ∞-categories
of fibrous patterns:

Corollary 4.2.2. For any algebraic pattern O, the ∞-category Fbrs(O) is presentable, and
fits in a cartesian square of fully faithful right adjoints

Fbrs(O) Seg/AOO (Cat∞)

Catint-cocart∞/O Fun(Oop,Cat∞)/AO .

Env/AOO

StintO

Proof. We know from Proposition 4.2.1 that we have the given cartesian square of fully
faithful functors; it remains to show that this is a square in Pr' . For the bottom horizon-
tal and right vertical functor we have shown this in Proposition 2.3.7 and Lemma 3.1.11,
respectively. It now follows that the rest of the diagram also lies in Pr' , since the
diagram is cartesian and by [HTT, Theorem 5.5.3.18] Pr' admits pullbacks and the
inclusion Pr' ⊂ Cat∞ preserves them. �

Corollary 4.2.3.
(1) For any algebraic pattern O, the following fully faithful inclusions admit left adjoints:

Fbrs(O) ↩→ Catint-cocart∞/O ↩→ Cat∞/O .
(2) For any strong Segal morphism 5 : O → P , the functor 5 ∗ : Fbrs(P) → Fbrs(O) admits

a left adjoint.

Proof. The first claim was shown in Corollary 4.2.2 and Proposition 2.3.7. In particular
limits and ^-filtered colimits in Fbrs(O) for appropriate ^ are computed in Cat∞/O (or
equivalently in Cat∞). This implies that 5 ∗ : Fbrs(P) → Fbrs(P) preserves limits and ^-
filtered colimits, since we know pullback along 5 preserves limits and filtered colimits
as a functor Cat∞/P → Cat∞/O . Hence the claim follows from the adjoint functor
theorem. �

Note that in Proposition 4.2.1 we only showed that the left adjoint StintO restricts to
a functor from fibrous patterns to relative Segal objects — in general the right adjoint
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UnintO does not necessarily take relative Segal O-∞-categories over AO to fibrous O-
patterns. However, this is the case if O is sound; to see this, we first need a technical
lemma:

Lemma 4.2.4. Let O be a sound algebraic pattern and let W : - → . be a morphism inFun(O, Cat∞), with Γ : X → Y denoting its unstraightening. Then the following are equiva-
lent:
(1) W : - → . is a relative Segal object.
(2) StintO (Γ) : StintO (X) → StintO (Y) is a relative Segal object, i.e. the commutative square

X ×O Oact
/$ lim�∈Oel

$/
X ×O Oact

/�

Y ×O Oact
/$ lim�∈Oel

$/
Y ×O Oact

/�

is cartesian for all $ ∈ O.
Proof. For $ ∈ O, we consider the following commutative diagram:

X ×O Oact
/$ lim�∈Oel

$/
X ×O Oact

/�

Y ×O Oact
/$ lim�∈Oel

$/
Y ×O Oact

/�

Oact
/$ lim�∈Oel

$/
Oact
/� .

Here all four functors to the bottom row are cocartesian fibrations, and the morphisms
in the top square preserve cocartesian morphisms. We therefore see that condition (2),
which asks for the top square to be cartesian, is equivalent to all squares of fibers over
l : $ ′ $ in Oact

/$ being cartesian. The relevant square of fibers is

- ($ ′) lim(U : $�) ∈Oel
$/
- (lU !$ ′)

. ($ ′) lim(U : $�) ∈Oel
$/
. (lU !$ ′).

Considering the special case l = id$ we see that (2) implies (1), while to see that the
converse holds when O is sound we apply Lemma 3.3.7 with � = - and � = . . �

Proposition 4.2.5. If the pattern O is sound, then the adjunction of Notation 2.3.4 restricts
to an adjunction

Env/AOO : Fbrs(O) ⇄ Seg/AOO (Cat∞) :UnintO .

Moreover, if 5 : O → P is a strong Segal morphism between sound patterns, then in addition
to the square (8) we also have a commutative square

(9)
Seg/APP (Cat∞) Seg/AOO (Cat∞)

Fbrs(P) Fbrs(O).

5 ⊛

UnintP UnintO
5 ∗
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Proof. Weneed to show thatUnintO : Fun(Oop,Cat∞)/AO → Catint-cocart∞/O sendsAO-relative
Segal objects to fibrous O-patterns. Since we know an object of Catint-cocart∞/O is fibrous
if and only if its image under StintO is a relative Segal object, it suffices to show that
StintO ◦UnintO preserves relative Segal objects.

Let - → AO be a relative Segal object; then StintO (UnintO (- )) fits into a cartesian
square

StintO (UnintO (- )) StintO (UnO (- ))

AO StintO (UnO (AO ))

obtained from applying StintO to the cartesian square defining UnintO (- ). Since relative
Segal objects are stable under base change by 3.1.10, it suffices to show the right vertical
map is a relative Segal object, which follows from Lemma 4.2.4. The commutative
square (9) follows by restricting the square (2) in Observation 2.3.9 to full subcategories.

�

For soundly extendable patterns O we can furthermore think of this adjunction as
being induced by one between fibrous patterns and Segal O-∞-categories:
Theorem 4.2.6. Let O be a soundly extendable pattern. Then there is an adjunction

EnvO : Fbrs(O) ⇄ SegO (Cat∞),
where EnvO (P)(- ) := P ×O Oact

/- and the right adjoint is given by unstraightening. This
induces an adjunction

Env/AOO : Fbrs(O) ⇄ SegO (Cat∞)/AO
where the left adjoint is fully faithful and the image consists of the Segal O-∞-categories that
are equifibered over AO .
Proof. It remains to show that the adjunction

(–) ×O Aract(O) : Catint-cocart∞/O ⇄ Catcocart∞/O ≃ Fun(O, Cat∞)
from Corollary 2.2.5 restricts to an adjunction between Fbrs(O) and SegO (Cat∞). Since
AO is a Segal O-∞-category, we have by Observation 3.1.9 and Proposition 4.2.1 that
the left adjoint takes fibrous patterns to Segal O-∞-categories. On the other hand, the
right adjoint takes the latter to fibrous patterns by Observation 4.1.10. �

Remark 4.2.7. Note that in the context of Theorem 4.2.6 the right adjoint of EnvO
is faithful and replete. It induces an equivalence between SegO (Cat∞) and the subcat-
egory of Fbrs(O) whose objects are cocartesian fibrous patterns and whose morphisms
preserve all cocartesian edges.

Remark 4.2.8. If 5 : O → P is a strong Segal morphism between soundly extendable
patterns, then pullback/restriction along 5 gives a commutative square

SegP (Cat∞) SegO (Cat∞)

Fbrs(P) Fbrs(O).

5 ∗

5 ∗
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Note, however, that the corresponding Beck–Chevalley transformation is usually not
invertible, sowe have to slice overAP andAO to get a commutative square of envelopes

(10)
Fbrs(P) Fbrs(O)

SegP (Cat∞)/AP SegO (Cat∞)/AO
Env/APP

5 ∗

Env/AOO
5 ⊛

as a special case of (8).

4.3. Examples of Segal envelopes.

Example 4.3.1. For the soundly extendable pattern F∗, we know that fibrous pat-
terns are exactly ∞-operads, while Segal F∗-∞-categories are symmetric monoidal∞-
categories; hereAF∗ is the symmetric monoidal category F ∐ of finite sets under disjoint
union. Hence Theorem 4.2.6 yields an adjunction

Env/F∐
F∗

: Opd∞ = Fbrs(F∗) ⇄ SegF∗ (Cat∞)/AF∗ = CMon(Cat∞)/(F ,∐) .
The left adjoint is fully faithful and a symmetric monoidal functor c : (C,⊗) → (F ,∐)
lies in the essential image if and only if it is equifibered. This means that the following
square is cartesian for all maps l : - → . in F :

C- C.

F- F. .

l⊗

c- c.

l∐

Here the horizontal functors tensor over fibers of l . In fact, it follows by taking prod-
ucts and pasting pullback diagrams5 that it suffices to check the case of l : {1, 2} → {1}.

Observation 4.3.2. The essential image of the sliced envelope functor Env/F∐
F∗ : Opd∞ ↩→

CMon(Cat∞)/(F ,∐) was first described in [HK21], but the characterization there looks at
first glance quite different from ours. Let us therefore compare these two descriptions:

For a symmetric monoidal functor c : C → F , let us write C(1) ⊂ C for the full
subcategory of those G ∈ C with |c (G) | = 1. Then the characterization of [HK21] is
that the essential image consists of those c that satisfy the following pair of conditions:
(1) Every object G ∈ C is equivalent to G1 ⊗ · · · ⊗ G= for some G8 ∈ C(1) .
(2) For every =,< ≥ 0 and any two tuples G1, . . . , G< ∈ C(1) and ~1, . . . ,~= ∈ C(1) , the

canonical map

∐
i : <→=

=∏
8=1

MapC ©«
⊗

9 ∈i−1 (8)
G 9 ,~8

ª®
¬
−→ Map(⊗<9=1G 9 , ⊗=8=1~8 )

is an equivalence.
These conditions must be equivalent to our equifiberedness condition since they de-
scribe the same full subcategory. To check this more explicitly, we consider the functor

�= : C= −→ F= ×F C,
which is an equivalence for all = if and only if ? : C → F is equifibered. The functor �=
is essentially surjective if and only if for any G ∈ C and a decomposition c (G) = �1 ∐
· · ·∐�= there is a decomposition G = G1⊗ · · · ⊗G= such that c (G8 ) � �8 compatibly with
the decomposition. By choosing the trivial decomposition with |�8 | = 1 this recovers

5See Lemma 5.2.16 for an elaboration of this argument.
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condition (1). Conversely, given condition (1) we can decompose G as ⊗0∈c (G)~0 and
then find the desired G8 as G8 = ⊗0∈�8~0 .

To see that the full faithfulness of the �= ’s corresponds to condition (2), we first
observe that in the presence of condition (1) we can replace condition (2) with the
following:
(2′) For every = ≥ 0 and any two tuples I1, . . . , I= ∈ C and ~1, . . . , ~= ∈ C, the canonical

map
=∏
8=1

MapC (I8 ,~8 ) −→ ∐
i8 : c (I8 )→c (~8 )

Map∐=
8=1 i8 (⊗=8=1I8 ,⊗<8=1~8 )

is an equivalence. Here we write MapiC (0, 1) for the fiber of MapC (0, 1) over some
i : c (0) → c (1).

To relate this to condition (2), first decompose~8 using condition (1) and use 2-out-of-3
to reduce to the case where |c (~8 ) | = 1. Then write I8 = ⊗9 ∈i−1 (8)G 9 and argue as in
[HK21, Remark 2.4.8].

Now we can observe that �= is fully faithful if and only if condition (2′) holds:
indeed, the mapping space in F= ×F C can be described as

MapF=×F C ((G, c (G) = �1 ∐ · · · ∐ �=), (~, c (~) = �1 ∐ · · · ∐ �=))
≃ MapF= ((�8 ), (�8 )) ×MapF (c (G),c (~)) MapC (G,~)
≃

∐
(i8 : �8−→�8 )

Map∐i8 (G,~).

Applying this to the images of (G1, . . . , G=) and (~1, . . . ,~=) under C= → F= ×F C yields
the desired form.

It is interesting to note that while in condition (2) we need to quantify over all
=,< ≥ 0, in condition (2′) it suffices to consider only the case = = 2 as all other cases
can be obtained inductively. This works because the objects I8 and ~8 in condition (2′)
are themselves allowed to be composite.

Example 4.3.3. For the soundly extendable pattern �op,♭ fibrous patterns are non-
symmetric∞-operads, while Segal �op,♭-∞-categories are monoidal∞-categories. We
therefore denote Opdns∞ := Fbrs(�op,♭) and Mon(Cat∞) := Seg�op,♭ (Cat∞). The Segal
�op,♭-category A�op,♭ is equivalent to the category �+ of finite (possibly empty) lin-
early ordered sets, with the monoidal structure given by concatenation. The envelope
functor Env/�+

�op,♭ can then be interpreted as a fully faithful embedding:

Env/�+
�op,♭ : Opdns∞ ↩→ Mon(Cat∞)/�+

Similarly to Example 4.3.1 we can describe the essential image as those monoidal func-
tors c : V → �+ for which the following natural square is cartesian:

V ×V V

�+ × �+ �+ .
⊗

cc

⊗

Example 4.3.4. For the soundly extendable pattern �op,♮ , fibrous patterns are general-
ized non-symmetric ∞-operads as defined in [GH15], while Segal �op,♮-∞-categories
are category objects in Cat∞, i.e. double ∞-categories. We thus write Opdgen,ns∞ :=Fbrs(�op,♮) and DblCat∞ := Seg�op,♮ (Cat∞). We may regard (∞,2)-categories (in the
form of complete 2-fold Segal spaces) as those double ∞-categories X• such that X0 is
an ∞-groupoid and which satisfy a completeness condition. In particular, the Segal
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�op,♮-∞-category A�op,♮ ≃ A�op,♭ may be thought of as the one-object (∞,2)-category
B�+where the endomorphisms of the single object are �+, with themonoidal structure
corresponding to composition. The envelope functor Env/B�+

�op,♮ can then be interpreted
as giving fully faithful embedding:

Env/B�+
�op,♮ : Opdgen,ns∞ ↩→ DblCat∞/B�+

The essential image is characterized by a pullback square analogous to the one from
Example 4.3.3. Note that the morphisms in Opdgen,ns∞ among the cocartesian fibrations
that correspond to (∞,2)-categories are precisely lax functors as defined for instance in
[GR17], so we obtain a description of these in terms of DblCat∞/B�+ . (More generally,
we can also consider the envelope for �=,op,♮ , which was briefly discussed in [Hau17].)

Example 4.3.5. Let O → F∗ be an ∞-operad. Fibrous O-patterns are, by Exam-
ple 4.1.18, exactly ∞-operads over O, while Segal O-∞-categories are precisely O-
monoidal ∞-categories which we denote by MonO (Cat∞) := SegO (Cat∞). By Ex-
ample 3.3.19, O is soundly extendable and our construction recovers the O-monoidal
envelope of [HA, §2.2.4]. In particular, we see that this gives a fully faithful embedding

Env/AOO : Opd∞/O −→ MonO (Cat∞)/AO .
In the case O = E=, the ∞-category AE= admits an alternative description as the E=-
monoidal ∞-category of embedded =-disks in R=.

5. THE COMPARISON THEOREM

In §5.1 we use the Segal envelopes to prove the comparison result, Theorem A. We
then discuss the application of this to equivariant ∞-operads, Corollary B, in §5.2. Fi-
nally, we explain how to upgrade the envelope and comparison equivalences to equiv-
alences of (∞,2)-categories in §5.3.

5.1. Comparing fibrous patterns. In this subsection we will use Segal envelopes to
obtain a criterion for a morphism of patterns 5 : O → P to induce via pullback an
equivalence

5 ∗ : Fbrs(P) ∼−−→ Fbrs(O)
between the corresponding ∞-categories of fibrous patterns. We specialize this to
recover some comparison results from [HA] without using the technical results on
approximations to ∞-operads from [HA, §2.3.3]. As new applications, we show that
(symmetric)∞-operads can also be described as fibrous patterns over Span(F ), and that
fibrous patterns over Span(S<) and Span(<−1)-tr,all (S<) are equivalent.
Theorem 5.1.1. Suppose O is a pattern, P is a soundly extendable pattern, and 5 : O → P
is a strong Segal morphism such that the following conditions hold:
(i) 5 el : Oel → Pel is an equivalence of ∞-categories,
(ii) (Oact

/- )≃ → (Pact
/5 (- ) )≃ is an equivalence for all - ∈ O.

Then pullback along 5 gives an equivalence

5 ∗ : Fbrs(P) ∼−−→ Fbrs(O).
Remark 5.1.2. If we also assume thatA≃O = (Oact

/− )≃ is an O-Segal space, for example if
O is soundly extendable, then it suffices to check condition (ii) when - is elementary.

Example 5.1.3. Let P be a soundly extendable pattern, and define O ⊂ P as the full
subpattern on the “necessary objects” in the sense of [CH21, Definition 14.7]. This
means that O contains those - ∈ P for which there exists an active morphism -  �



42 SHAUL BARKAN, RUNE HAUGSENG, AND JAN STEINEBRUNNER

with � elementary. Then Theorem 5.1.1 applies to the full inclusion O ⊂ P and hence
restriction yields an equivalence Fbrs(P) ≃ Fbrs(O).

First we show that condition (ii) can always be strengthened as follows.

Lemma 5.1.4. In the situation of Theorem 5.1.1 the induced natural transformation
U : AO −→ 5 ∗AP

of functors O → Cat∞ is an equivalence. In particular AO is O-Segal.
Proof. By assumption, the functor AO ($) → AP (5 ($)) is an equivalence on underly-
ing∞-groupoids, so it remains to show that it is fully faithful. To see this, observe that
given active maps i : $  - and i ′ : $ ′ - , the mapping space MapOact

/-
(i ′, i) is the

fiber at i ′ of the map (i ◦ −) : A≃O ($) → A≃O (- ). This map fits into a square

A≃O ($) A≃P (5 $)

A≃O (- ) A≃P (5 - )

∼

∼

where the horizontal maps are equivalences. Then we also have equivalences on fibers,
which gives the desired full faithfulness. Finally we note that AO ≃ 5 ∗AP implies that
AO is Segal since AP was assumed to be Segal and 5 ∗ preserves Segal objects. �

The following lemma tells us that for sound patterns it suffices to check Aract(O)-
equifiberedness on active morphisms that end in elementary objects.

Lemma 5.1.5. Let O be a sound pattern and let ([ : � ⇒ �) be a relative Segal object over
O in a sufficiently complete ∞-category C. Suppose that the naturality squares

� (- ) � (. )

� (- ) � (. )

� (l)

[- [.

� (l)

are cartesian for active morphisms l : -  . where . is elementary. Then they are also
cartesian for arbitrary . , i.e. [ is Aract(O)-equifibered.
Proof. For an arbitrary active morphism l : -  . consider the commutative cube

limU : .�∈Oel
. /
� (lU !- ) limU : .�∈Oel

. /
� (�)

� (- ) � (. )

limU : .�∈Oel
. /
� (lU !- ) limU : .�∈Oel

. /
� (�)

� (- ) � (. ).

lim � (lU )

lim[lU !-

lim[�
� (l)

[-
lim� (lU )

� (l)

[.

The back square is cartesian as it is a limit over squares that we have assumed to be
cartesian. (Note that lU : lU !-  � is an active morphism with elementary target.)
The right face is cartesian because [ is a relative Segal object, and so is the left face
from this and Lemma 3.3.7. Therefore the front face is cartesian by the pullback pasting
lemma. �
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Proof of Theorem 5.1.1. It follows from Proposition 3.1.16 that the functor
5 ∗ : SegP (Cat∞) −→ SegO (Cat∞)

is an equivalence. From Lemma 5.1.4 we haveAO ≃ 5 ∗AP and thatAO is Segal. Hence
the induced functor

5 ⊛ : SegP (Cat∞)/AP −→ SegO (Cat∞)/AO
is also an equivalence. This means in the commutative square

Fbrs(P) Fbrs(O)

SegP (Cat∞)/AP SegO (Cat∞)/AO

5 ∗

Env/APP Env/AOO
5 ⊛

from Proposition 4.2.1, the bottom horizontal functor 5 ⊛ is an equivalence, while the
vertical functors are fully faithful. It follows that the top horizontal functor 5 ∗ is also
fully faithful. To prove that it is also essentially surjective, it suffices to show that an
object of SegP (Cat∞)/AP is in the image of Env/APP if its image under the equivalence
5 ⊛ is in the image of Env/AOO .

Suppose we are given some ([ : � ⇒ AP ) ∈ SegP (Cat∞)/AP such that 5 ⊛� ⇒ AO
is equifibered. Equivalently, [◦5 : (� ◦ 5 ) ⇒ (AP ◦ 5 ) is equifibered. By Lemma 5.1.5 it
suffices to check that the naturality squares are cartesian for active morphisms l : -  
� ∈ P ending in an elementary. Since 5 : Oel → Pel is an equivalence, we may write
� ≃ 5 (� ′) for � ′ ∈ O. Moreover, since 5 : Oact

/�′ → Pact
/5 (�′) is an equivalence, we can

find d : .  � ′ ∈ O such that 5 (d) ≃ l as objects of Aract(P). Now it follows that
the naturality square of [ at l is cartesian since we assumed that the naturality square
of [◦5 at d is equifibered. This shows that [ is Aract(P)-equifibered, and hence that
5 ∗ : Fbrs(P) → Fbrs(O) is essentially surjective. �

Example 5.1.6. Let Ass be the (symmetric) associative ∞-operad as defined in [HA,
Definition 4.1.1.1.], and let Cut : �op → Ass denote the functor defined in [HA, Con-
struction 4.1.2.9.]. Then pullback along Cut gives an equivalence

Fbrs(�op,♭) ∼←− Fbrs(Ass) ∼−−→ Fbrs(F∗)/Ass
between non-symmetric ∞-operads and symmetric ∞-operads over Ass, where the
second equivalence is that of Corollary 4.1.17. In other words, non-symmetric ∞-
operads are equivalent to symmetric ∞-operads over the associative ∞-operad.

The equivalence of Example 5.1.6 is also proved by Lurie as [HA, Theorem 4.1.3.14],
which is a special case of [HA, Theorem 2.3.3.26]. This more general statement can
also be proved by our methods; to see this, we first need to recall some definitions:

Definition 5.1.7. Let c : O → F∗ be an ∞-operad. We say a functor 5 : C → O is an
approximation if the following conditions hold:
(1) For� ∈ C over 〈=〉 in F∗, there exists for 8 = 1, . . . , = a locally cocartesian morphism

d�8 : � → �8 in C over d8 : 〈=〉 → 〈1〉. Moreover, the image of d�8 in O is inert.
(2) C has all 5 -cartesian lifts of active morphisms in O.
Following [Hin20], we say that 5 is a strong approximation if we additionally have:
(3) The functor C〈1〉 → O〈1〉 is an equivalence.

Remark 5.1.8. Suppose O is an∞-operad and 5 : C → O is an approximation. We say
a morphism in C is inert if its image in O is inert, and active if it is 5 -cartesian and its
image in O is active. Then the inert and active morphisms in C give a factorization
system. We think of C as an algebraic pattern using this factorization system, with the
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elementary objects being those that map to 〈1〉 in F∗; then 5 is a morphism of algebraic
patterns.

Proposition 5.1.9. Suppose O is an ∞-operad and 5 : C → O is a strong approximation.
Then
(i) Cel → Oel is an equivalence.
(ii) Cel

�/ → Oel
5 (�)/ is an equivalence for all � ∈ C, i.e. 5 is an iso-Segal morphism.

(iii) Cact/� → Oact
/5 (�) is an equivalence for all � ∈ C.

Proof. For (i), observe that from the equivalence C〈1〉 ∼−→ O〈1〉 it follows that a morphism
in C over 〈1〉 is inert if and only if it is an equivalence (since the equivalences are
precisely the inert morphisms in O〈1〉). Hence Cel = C≃〈1〉, so the functor Cel → Oel is
just the underlying morphism of ∞-groupoids of the functor between fibers over 〈1〉
that is an equivalence by assumption.

To show (ii), we first observe that Cel
�/ is an∞-groupoid, since morphisms are given

by inert maps over 〈1〉 and these are invertible. Moreover, if � lies over 〈=〉 then the
fiber of Cel

�/ over d8 is contractible, since there by assumption exists a locally cocartesian
morphism over d8 — this is then initial in the ∞-category (C�/)d8 and so in particular
has no automorphisms.

We thus have a commutative triangle

Cel�/ Oel
5 (�)/

(F el
∗ ) 〈=〉

∼ ∼

where both maps to (F el∗ ) 〈=〉 are equivalences, hence so is the top horizontal map.
To prove (iii), observe that by assumption Cact → Oact is the underlying right fibra-

tion of the cartesian fibration C ×O Oact → Oact. This gives the required equivalence
of slices by [Ker, Tag 00TE].

�

Corollary 5.1.10. Suppose 5 : C → O is a strong approximation to an ∞-operad O.
(1) If X is an ∞-category with finite products, then restriction along 5 gives an equivalence

5 ∗ : SegO (X) ∼−−→ SegC (X).
(2) Pullback along 5 gives an equivalence

5 ∗ : Fbrs(O) ∼−−→ Fbrs(C).
Proof. Combine Proposition 5.1.9 with Proposition 3.1.16 and Theorem 5.1.1. �

Remark 5.1.11. Lurie’s proof of [HA, Theorem 2.3.3.26] uses envelopes for approxi-
mations to∞-operads, just as our proof of Theorem 5.1.1, and we do not claim that our
proof is different in any essential way.

We end this section with a couple of examples that do not follow from Corol-
lary 5.1.10 or [HA, Theorem 2.3.3.26]. These involve patterns defined using spans,
so we start with a general observation about comparisons of these:

Observation 5.1.12. Consider two adequate triples (X,X1 ,X5 ) and (Y,Y1 ,Y5 ) and a
functor � : X→ Y that preserves the two subcategories and also preserves pullbacks of
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backwards maps along forwards maps. Suppose further that we have full subcategories
X0 ⊂ X and Y0 ⊂ Y such that � (X0) ⊂ Y0. Then � induces a morphism of patterns:

� : Span1,5 (X;X0) −→ Span1,5 (Y;Y0).
We may apply Theorem 5.1.1 to this if the following conditions hold:
(1) Span1,5 (Y;Y0) is soundly extendable. (See Proposition 3.3.23.)
(2) For all G ∈ X, the map X1

0 ×X1 X1
/G → Y10 ×Y1 Y1/� (G) is cofinal.

(3) � : X1
0 → Y10 is an equivalence of ∞-categories.

(4) � : X5
/G → Y

5
/� (G) induces an equivalence on maximal subgroupoids for all G ∈ X.

Note that point (2) ensures that � is a strong Segal morphism since Span1,5 (X;X0)int ≃
(X1)op with the elemetaries being (X1

0 )op.
Corollary 5.1.13. Pullback along the inclusion i : F∗ ≃ Spaninj,all (F ) → Span(F ) gives an
equivalence

i∗ : Fbrs(Span(F )) ∼−−→ Fbrs(F∗) ≃ Opd∞.
Proof. Wecheck the conditions of Theorem 5.1.1 in the form stated inObservation 5.1.12:
(1) The pattern is soundly extendable by Example 3.3.25.
(2) For � ∈ F the relevant functor is the restriction of F inj

/� → F/� to elementaries. But
every map out of a one-point set is injective, so this is an equivalence.

(3) Similarly, the functor on backwards morphisms F inj → F restricts to an equivalence
on elementaries.

(4) Both categories have the same forward morphisms. �

More generally, we have:

Corollary 5.1.14. Pullback along the inclusion i< : Span(<−1)-tr,all (S<) → Span(S<) in-
duces an equivalence

i∗< : Fbrs(Span(S<)) −→ Fbrs(Span(<−1)-tr,all (S<)).
Proof. Wecan apply Theorem 5.1.1: The target pattern Span(S<)) is soundly extendable
by Example 3.3.27 and in this example we also note that i< is an iso-Segal morphism.
Condition (i) of Theorem 5.1.1 holds because in both cases the elementary∞-category
is the terminal ∞-category. Condition (ii) holds because both span ∞-categories have
the same forward morphisms. �

5.2. �-equivariant∞-operads. In this sectionwe apply the theory of fibrous patterns
and envelopes in the setting of �-equivariant ∞-operads developed in [NS22]. While
their paper works in the generality of ) -parametrized ∞-operads, we will restrict to
the special case of the orbit category ) = Orb� for simplicity. Our main result is that
the �-∞-operads of [NS22] are equivalent to fibrous Span(F� )-patterns; we will also
show that the sliced envelope for �-∞-operads is fully faithful and characterize the
image, giving a third description of these objects.

First, we recall some constructions in equivariant higher algebra, which were pio-
neered in [Bar17] and further developed in [Nar16] and [NS22]. Fix a finite group �
throughout.

Definition 5.2.1. Let F� be the category of finite �-sets, F�,∗ the category of finite
pointed �-sets, and Orb� ⊂ F� the full subcategory of �-orbits.

Definition 5.2.2. A �-∞-category is a functor Orbop� → Cat∞ and a �-symmetric
monoidal ∞-category is a Span(F� )-Segal object in Cat∞. We write

Cat�,∞ := Fun(Orbop� ,Cat∞) and Cat⊗�,∞ := SegSpan(F� ) (Cat∞)
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and define the forgetful functor Cat⊗�,∞ → Cat�,∞ by restricting to the elementaries
Orbop� → Span(F� ).
Notation 5.2.3. For a�-∞-category C : Orbop� → Cat∞ we denote its value at�/� by
C� an refer to it as the �-fixed point category of C. There are restriction maps C� →
C for  ⊂ � ⊂ � . Given a �-symmetric monoidal ∞-category D : Span(F� ) →Cat∞ we further have tensor products ⊗ : D� × D� → D� and so-called norm maps
Nm�

 : D → D� for all  ⊂ � ⊂ � coming from the span (�/ =←− �/ → �/� ).
Example 5.2.4. Since Span(F� ) is an extendable pattern (Example 3.3.26) ASpan(F� ) is
a Segal object in Cat∞. We denote this �-symmetric monoidal ∞-category by

F� := ASpan(F� ) (−) = Span(F� )act/− : Span(F� ) −→ Cat∞.
The �-fixed point category is the category of finite �-sets:

(F� )� = Span(F� )act/(�/� ) ≃ (F� )/(�/� ) ≃ F� .

The restriction maps are given by restriction, the tensor product by disjoint union,
and the norm maps are (− × � )/ : F → F� . In summary, F� is F� with its natural
structure as a �-symmetric monoidal∞-category.

Below we will see that fibrous Span(F� )-patterns model �-∞-operads. We now
explain how N∞-operads fit into this framework:

Example 5.2.5. Let F 5� ⊂ F� be a wide subcategory closed under base-change and
disjoint union. Then the inclusion functor Spanall,5 (F� ) → Span(F� ) defines a fibrousSpan(F� )-pattern. To see that it has cocartesian lifts for inerts, note that any functor of
the form Span1,5 (C) → Span1,all (C) has cocartesian lifts for backwards maps. For the
second condition we need to show that

(F 5� )/� −→ lim* ∈(Orb� )/� (F
5
� )/*

is an equivalence. The limit may be rewritten as a product over the set of orbits of �
and then the equivalence follows because F 5� is closed under base-change and disjoint
union.

Categories F 5� that in addition to the above also contain all fold maps ∇ : �/� ∐
�/� → �/� , are in bijection with the indexing systems of [BH18], see [NS22, Remark
2.4.12]. Under the equivalence Fbrs(Span(F� )) ≃ Opd�,∞ proved below the fibrousSpan(F� )-patters described above are the “commutative �-∞-operads” from [NS22,
Definition 2.4.10], which correspond to theN∞-operads of [BH18] by [NS22, Remark
2.4.12].

We now quickly recall the necessary notation from [NS22] to state their definition
of �-∞-operads, but we refer the reader there for details.
Definition 5.2.6. Define F E� ⊂ Ar(F� ) as the full subcategory of those morphisms
(5 : * → + ) where + is an orbit: F E� := Ar(F� ) ×F� Orb� . We say that a morphism
5 → 6 given by

* -

+ .

ℎ

5 6

:

• lies in (F E� )si if * → - ×. + is a injective,
• lies in (F E� )tdeg if : : + → . is an equivalence.
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Definition 5.2.7. Define F�,∗ as the algebraic pattern

F�,∗ := Spansi,tdeg(F E� ; Orb� ),

where the elementary objects are those in the essential image of the identity inclusion
Orb� → Ar(Orb� ) ⊂ F E� .

Remark 5.2.8. The functor ev1 : F E� → Orb� induces a cocartesian fibration

F�,∗ = Spansi,tdeg(F E� ) ev1−−→ Spanall,iso(Orb� ) ≃ Orbop� .

Straightening this yields a �-∞-category whose �-fixed point category is (F�,∗)� ≃
F�,∗, similarly to Example 5.2.4.

Observation 5.2.9. For (* → + ) ∈ F�,∗ the category of elementaries under (* → + )
is equivalent to the opposite of the category of orbits over * (as in Remark 3.2.7):

(F�,∗)el(*−→+ )/ ≃ (Orb� ×(F E� ) (F
E,B8
� )/(*−→+ ) )op ≃ (Orb� ×F� (F� )/* )op.

Here we used that any morphism (& =−→ &) → (* → + ) (where & is an orbit) is auto-
matically in (F E� )si since & → & ×+ * is injective. Now consider the full subcategory
on those (& → * ) that are injective. This subcategory is equivalent to the discrete set
of orbits * /� and moreover the inclusion of the subcategory is a left adjoint:

* /� ↩→ (Orb� ×F� (F� )/* )op ≃ (F�,∗)el(*−→+ )/,
with right adjoint given by sending (5 : & → * ) to (5 (&) ↩→ * ). In particular, the
inclusion of * /� is a coinitial functor. This means that for any kind of (weak) Segal
condition over F�,∗ the limit involved can be rewritten as a product indexed by the
finite set * /� .
Corollary 5.2.10. The pattern F�,∗ is sound.

6

Proof. We check the conditions of Proposition 3.3.23. First we show that the backwards
maps satisfy cancellation. Consider two morphisms in F E� :

� * -

� + .

0

4

ℎ

5 6

1 :

such that�→ �×. - is injective. We can write this map as a composite�→ �×+ * →
� ×. - , the first map of which then has to be injective. In other words (0, 1) : 4 → 5 is
in F E,si� as claimed.

We also need to show that the inclusion X1
0/~ ↩→ X0/~ is cofinal. In the case at

hand this inclusion is Orb� ×F E� (F
E,si
� )/(*→+ ) → Orb� ×F E� (F E� )/(*→+ ) , which is an

equivalence by the argument from Observation 5.2.9. �

Definition 5.2.11 ([NS22]). A �-∞-operad is a weak Segal fibration over F�,∗ in the
sense of [CH21, Definition 9.6], see also Proposition 4.1.7. Let Opd�,∞ denote the full
subcategory of Catint-cocart∞/F�,∗ on the �-∞-operads.

6In fact this pattern is soundly extendable. This follows because the functor F�,∗ → Span(F� ) discussed
in Proposition 5.2.14 is iso-Segal and induces an equivalence on forward maps. However, the extendability
of F�,∗ will not be needed here.
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Observation 5.2.12. This agrees with the definition of [NS22]. First we note that
given ? : P → F�,∗ with cocartesian lifts for inerts, the composite ev1 ◦ ? : P → Orbop�
exhibits P as a cocartesian fibration overOrbop� , i.e. anOrb�-∞-category, and ? as an
Orb�-functor. This holds because the inert morphisms in F�,∗ contain all the cocarte-
sian lifts of ev1 : F�,∗ → Orbop� . We hence have an identification:

Catint-cocart∞/F�,∗ = (Cat�,∞)int-cocart/F�,∗ .

It remains to see that their conditions (2) and (3) exactly amount to the weak Segal
conditions (2) and (3) in [CH21, Definition 9.6]. Indeed, this follows by inspection
using Observation 5.2.9 and [CH21, Remark 9.7].

Corollary 5.2.13. We have Opd�,∞ = Fbrs(F�,∗) .
Proof. The pattern F�,∗ is sound by Corollary 5.2.10 and hence weak Segal fibrations
and fibrous patterns are the same by Proposition 4.1.7. �

Proposition 5.2.14. Restriction along the morphism of patterns F�,∗
B−→ Span(F� ) induced

by the functor F E� → F� given by evaluation at 0 yields an equivalence

B∗ : Fbrs(Span(F� )) ≃−→ Fbrs(F�,∗) = Opd�,∞.
Proof. We need to show that the morphism of patterns

B : F�,∗ = Spansi,tdeg(F E� ; Orb� ) −→ Span(F� ; Orb� )
satisfies the conditions of Theorem 5.1.1. Since this comes from a morphism of ade-
quate triples, we can use the formulation in Observation 5.1.12. We check each of the
conditions there in turn:
(1) It was checked in Example 3.3.25 that Span(F� ) is soundly extendable.
(2) We need to show that

(Orb� ×(F E� ) (F
E,si
� )/(*−→+ ) )op −→ (Orb� ×F� (F� )/* )op

is cofinal. But we have already noted in Observation 5.2.9 that it is an equivalence.
(3) This holds since the functor induces the identity on Orb� .
(4) For all * ∈ F� the functor

(F E,tdeg� )/(*−→+ ) −→ (F� )/*
is an equivalence by inspection of the definition of (F E� )tdeg. �

As a consequence we obtain a fully faithful envelope into the ∞-category of �-
symmetric monoidal ∞-categories over F� and a characterization of the image.

Corollary 5.2.15. There is an adjunction
Env� : Opd�,∞ ⇄ Cat⊗�,∞ : forget

where the left adjoint may be lifted to a fully faithful functor
Env� : Opd�,∞ ↩→ (Cat⊗�,∞)/F� .

This functor has both adjoints and its essential image consists of those �-symmetric monoidal
functors ? : C → F� that are Aract(Span(F� ))-equifibered.
Proof. Using that Opd�,∞ ≃ Fbrs(Span(F� )) by Proposition 5.2.14, this is an instance of
Theorem 4.2.6. Note that the envelope of the terminal�-∞-operad is EnvSpan(F� ) (∗) =
ASpan(F� ) = F� by Example 5.2.4. �

We elaborate further on the characterization of the image:
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Lemma5.2.16. A�-symmetric monoidal functor � : C → D isAract(Span(F� ))-equifibered
if and only if

C� × C� C�

D� × D� D�

⊗

⊗

and
C C�

D D�

Nm� 

Nm� 

are pullback squares of ∞-categories for all subgroups  ⊂ � ⊂ � .
Proof. � induces a natural transformation of functors F� → Cat, defined by restricting to
forwards maps in Span(F� ). LetK ⊂ F� denote the maximal subcategory such that the
restriction of � to K is a cartesian natural transformation. Then � is Aract(Span(F� ))-
equifibered if and only if K = F� . Note that K is closed under composition and right-
cancellation, since pullback squares are, and contains all equivalences. Moreover, K is
closed under disjoint union since both functors C,D : F� → Cat send disjoint unions
to products. Using this one can see that to show K = F� , it suffices to check that K
contains the morphisms

∇ : �/� ∐�/� −→ �/�, and �/ −→ �/�
for all subgroups  ⊂ � ⊂ � . This is exactly the condition stated in the lemma. �

Remark 5.2.17. One might hope that�-∞-operads are also equivalent to fibrous F�,∗-
patterns, in analogy with what we showed in Corollary 5.1.13 for � = {4}, but this is
false for non-trivial groups. Note that the orbit functor (−)� : F�,∗ → F∗ exhibits
F�,∗ as a fibrous F∗-pattern, i.e. an ∞-operad in the sense of Lurie. Therefore there is
an equivalence Fbrs(F�,∗) ≃ (Opd∞)/F�,∗ . We refer to this as the ∞-category of naive
�-∞-operads. There is an inclusion of patterns F�,∗ → Span(F� ) similar to the one
used in Corollary 5.1.13, and this is a strong Segal morphism by an argument as in
Observation 5.2.9. Therefore there is a restriction functor:

Opd�,∞ ≃ Fbrs(Span(F� )) −→ Fbrs(F�,∗) ≃ (Opd∞)/F�,∗
which forgets from (genuine) �-∞-operads to naive�-∞-operads. However, we can-
not apply the comparison theorem 5.1.1 since (Orbop� )≃ ≃ F el

�,∗ → Span(F� )el ≃ Orbop�
is not an equivalence.

5.3. Upgrading to (∞, 2)-categories. In this subsection we will upgrade our main
results from ∞-categories to (∞,2)-categories: we will see that the comparison equiv-
alence of Theorem 5.1.1 is an equivalence of (∞,2)-categories and the fully faithful en-
velope functor of Proposition 4.2.1 is a fully faithful functor of (∞,2)-categories. More
precisely, we will show that these functors are compatible with natural Cat∞-module
structures on the∞-categories involved. It then follows from results of Hinich [Hin20]
andHeine [Hei20] that these∞-categories can be upgraded to (∞,2)-categories and the
functors to functors of (∞,2)-categories. We will not comment further on this, how-
ever, as our primary interest is in showing that our equivalences are compatible with
the natural∞-categories of maps, which is an immediate consequence of compatibility
with the Cat∞-module structures. We begin by defining such module structures on the
∞-categories and functors we studied in §2:

Construction 5.3.1. Let B be an ∞-category equipped with a wide subcategory B0.
The forgetful functor Cat∞/B → Cat∞ has a right adjoint, taking C ∈ Cat∞ to the
projection C ×B → B; this factors through the subcategory CatB0-cocart∞/B and thus gives
symmetric monoidal functors

Cat∞ −→ CatB0-cocart∞/B −→ Cat∞/B
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with respect to the cartesian products. It follows that both Cat∞/B and CatB0-cocart∞/B are
Cat∞-modules, with the tensoring in both cases simply given by cartesian product, i.e.

(C, E −→ B) ↦→ E × C −→ B,
and that the forgetful functor CatB0-cocart∞/B → Cat∞/B is a Cat∞-module functor. More-
over, both Cat∞-module structures are adjoint to an enrichment in Cat∞, given respec-
tively by FunB0-cocart/B (–, –) and Fun/B (–, –). Similarly, if (B,B!,B') is an ∞-category
equipped with a factorization system, then the∞-categories Cat!-cocart∞/B and Catcocart∞/B are
Cat∞-modules, with the tensoring given by the cartesian product, and the forgetful
functor Catcocart∞/B → Cat!-cocart∞/B is a Cat∞-module functor; it is easy to see that this Cat∞-
module structure on Catcocart∞/B corresponds under the equivalence with Fun(B, Cat∞) to
that given by taking products with constant functors.

Proposition 5.3.2.
(i) For any ∞-category B, the tensoring of Cat∞/B over Cat∞ from Construction 5.3.1 is

adjoint to a cotensoring, with the cotensor of C ∈ Cat∞ and E → B given by the
pullback

EC/B := Fun(C, E) ×Fun(C,B) B
along the constant diagram functor B → Fun(C,B) .

(ii) If B0 is a wide subcategory of B, then CatB0-cocart∞/B is also cotensored over Cat∞, with the
cotensor of C ∈ Cat∞ and E → B again given by EC/B . In particular, the forgetful functorCatB0-cocart∞/B → Cat∞/B preserves the cotensoring.

Proof. Part (i) follows from the natural equivalences

MapCat∞/B (C×F , E) ≃



C × F E

C × B Bproj



≃




F Fun(C, E)

B Fun(C,B)const



≃ MapCat∞/B (F , EC/B).

To prove (ii), we observe that if E → B is in CatB0-cocart∞/B , then so is EC/B by [HTT,
Proposition 3.1.2.3], and a morphism [1] → EC/B is cocartesian if and only if the cor-
responding map [1] × C → E has cocartesian components at every 2 ∈ C. Thus a
morphism F → EC/B over B preserves cocartesian morphisms over B0 if and only if the
corresponding map F × C → E preserves cocartesian morphisms over B0, so that the
previous equivalence of mapping spaces restricts on subspaces to an equivalence

MapCatB0-cocart∞/B
(C × F , E) ≃ MapCatB0-cocart∞/B

(F , EC/B),

as required. �

Observation 5.3.3. If (B,B!,B') is an∞-category equipped with a factorization sys-
tem, then the ∞-categories Cat!-cocart∞/B and Catcocart∞/B are similarly cotensored over Cat∞,
with the same cotensors as in Proposition 5.3.2, and the forgetful functor Catcocart∞/B →Cat!-cocart∞/B preserves the cotensoring.

Proposition 5.3.4.
(i) Let B be an ∞-category with a wide subcategory B0. Then the left adjoint

(–) ×B Ar0 (B) : Cat∞/B −→ CatB0-cocart∞/B
of the forgetful functor from Corollary 2.1.5 is a Cat∞-module functor, with the adjunction
being an adjunction of Cat∞-modules.
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(ii) If (B,B!,B') is an∞-category equipped with a factorization system, then the left adjoint
(–) ×B Ar' (B) : Cat!-cocart∞/B −→ Catcocart∞/B

of the forgetful functor from Corollary 2.2.5 is a Cat∞-module functor, with the adjunction
being an adjunction of Cat∞-modules.

Proof. The forgetful functor CatB0-cocart∞/B → Cat∞/B is a Cat∞-module functor by Con-
struction 5.3.1. By [HHLN21, Theorem 3.4.7], the left adjoint then has a canonical
oplax Cat∞-module structure, given for C ∈ Cat∞ and E → B in CatB0-cocart∞/B by the
natural map

(C × B) ×B Ar0 (B) −→ C × (B ×B Ar0(B));
this is clearly an equivalence, so the adjunction of Corollary 2.1.5 lifts to an adjunction
of Cat∞-modules. This proves (i), and the proof of (ii) is the same. �

Remark 5.3.5. The Cat∞-module structures on CatB0-cocart∞/B and Cat∞/B are adjoint to
enrichments in Cat∞, given respectively by FunB0-cocart/B (–, –) and Fun/B (–, –); the equiv-
alence of Proposition 2.1.4 is then precisely that induced by the Cat∞-module adjunc-
tion from Proposition 5.3.4. Similarly, if (B,B!,B') is an ∞-category equipped with
a factorization system, then the equivalence of Proposition 2.2.4 is also induced by theCat∞-module adjunction above.

Lemma 5.3.6.
(i) For any functor of ∞-categories 5 : A → B the functor 5 ∗ : Cat∞/B → Cat∞/A given

by pullback along 5 is a Cat∞-module functor and also preserves the cotensoring withCat∞.
(ii) Suppose A and B are ∞-categories equipped with wide subcategories A0 and B0, re-

spectively, and that 5 : A → B is a functor that takes A0 into B0. Then the functor
5 ∗ : CatB0-cocart∞/B → CatA0-cocart

∞/A given by pullback along 5 is a Cat∞-module functor
and also preserves the cotensoring with Cat∞.

Proof. We prove (i); the proof of (ii) is the same. The functor 5 ∗ fits in a commutative
triangle

Cat
Cat∞/B Cat∞/A5 ∗

where all three functors preserve finite products, and so are symmetric monoidal with
respect to the cartesian products. Hence 5 ∗ : Cat∞/B → Cat∞/A is a Cat∞-module func-
tor. To see that 5 ∗ also preserves the cotensoring, observe that for E → B in CatB0-cocart∞/B
or Cat∞/B and C ∈ Cat∞ we have a natural commutative cube

(5 ∗E)C/A Fun(C, 5 ∗E)
EC/B Fun(C, E)

A Fun(C,A)
B Fun(C,B)

where the front, back and right faces are cartesian. The left vertical square is therefore
also cartesian, giving an equivalence

(5 ∗E)C/A
∼−−→ 5 ∗ (EC/B),
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as required. �

Observation 5.3.7. For 5 : A → B a functor that preserves wide subcategories A0
and B0, we have a commutative diagram

Cat∞

CatB0-cocart∞/B CatA0-cocart
∞/A

Cat∞/B Cat∞/A,

5 ∗

5 ∗

of symmetric monoidal functors (with the cartesian monoidal structures). It follows
that the commutative square on the bottom right (as in Observation 2.1.7) is a square
of Cat∞-modules. Similarly, if 5 is compatible with factorization systems (A,A! ,A')
and (B,B!,B'), then the commutative square

Catcocart∞/B Catcocart∞/A

Cat!-cocart∞/B Cat!-cocart∞/A ,

5 ∗

5 ∗

is a square of Cat∞-modules. It follows that for both squares the Beck–Chevalley map
is a natural transformation of Cat∞-modules.

Proposition 5.3.8. Let (B,B!,B') be a factorization system. Then there is a natural Cat∞-
module structure on the ∞-category (Catcocart∞/B )/Ar' (B) , with the tensoring given by cartesian
products, and the adjunction

E: Cat!-cocart∞/B ⇄ (Catcocart∞/B )/Ar' (B) :Q
is compatible with the Cat∞-module structures. Moreover, (Catcocart∞/B )/Ar' (B) is also cotensored
over Cat∞, with the cotensor of C ∈ Cat∞ and E → Ar' (B) in (Catcocart∞/B )/Ar' (B) being
EC/Ar' (B) .
Proof. The forgetful functor (Catcocart∞/B )/Ar' (B) → Catcocart∞/B has a right adjoint, which
takes a cocartesian fibration E → B to the projection E ×B Ar' (B) → Ar' (B). We
thus have a commutative diagram

Catcocart∞/B

Cat∞ Cat!-cocart∞/B

(Catcocart∞/B )/Ar' (B)

(–)×BAr' (B)

forget(–)×B

(–)×Ar' (B)
Q

of right adjoints, which are then symmetric monoidal functors with respect to cartesian
products. This in particular shows that (Catcocart∞/B )/Ar' (B) is a Cat∞-module, with the
tensoring given by taking cartesian products, and the functorQ is compatible with theCat∞-module structures. As in Construction 5.3.1, it follows that the left adjoint E is an
oplax Cat∞-module functor, and that the oplax structure maps are equivalences; thus
we have a Cat∞-module adjunction.
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To identify the cotensor, we first observe that (Catcocart∞/B )/Ar' (B) can be described as
a subcategory of Cat∞/Ar' (B) ; the Cat∞-module structures on both are clearly compati-
ble, and the latter has a cotensoring given by (C, E) ↦→ EC/Ar' (B) by Proposition 5.3.2. It
thus suffices to show that EC/Ar' (B) is an object of (Catcocart∞/B )/Ar' (B) , i.e. that the compos-
ite to B is a cocartesian fibration, that the morphism to Ar' (B) preserves cocartesian
morphisms over B, and that a morphism F → EC/Ar' (B) preserves cocartesian mor-
phisms over B if and only if the adjoint map F × C → E does so. To see this, consider
the commutative cube

(11)

EC/Ar' (B) EC

Ar' (B) Ar' (B)C

B BC

B BC .
Here the top and bottom squares are cartesian, the vertical maps are cocartesian fi-
brations, and both maps to Ar' (B)C preserve cocartesian morphisms. It follows that
EC/Ar' (B) → B is a cocartesian fibration, and a morphism here is cocartesian if and
only if its images in Ar' (B) and EC are both cocartesian. Combining this with the
description of cocartesian morphisms in EC from [HTT, Proposition 3.1.2.1] gives the
required description of cocartesian morphisms in EC/Ar' (B) . �

Observation 5.3.9. Let us write FunB-cocart/Ar' (B) (–, –) for
the enrichment adjoint to the Cat∞-module structure on (Catcocart∞/B )/Ar' (B) ; this sat-

isfies
MapCat∞ (C, FunB-cocart/Ar' (B) (–, –)) ≃ Map(Catcocart∞/B )/Ar' (B) (C × –, –);

identifying the right-hand side as a fiber productwe see that forU : E → Ar' (B), V : F →
Ar' (B) we have a natural cartesian square

FunB-cocart/Ar' (B) ((E, U), (F , V)) Funcocart/B (E,F )

{U} Funcocart/B (E,Ar' (B)).

Since the functor E is fully faithful and compatible with the Cat∞-module structures
we conclude that it gives a natural equivalence

Fun!-cocart/B (–, –) ∼−−→ FunB-cocart/Ar' (B) (E(–),E(–)).

Observation 5.3.10. Suppose 5 : A → B is a functor compatible with specified fac-
torization systems. Passing to vertical left adjoints in the commutative square Obser-
vation 2.3.9 yields a Beck–Chevalley transformation

EA 5 ∗ −→ 5 ⊛EB ;

Unwinding the definitions, this is given at E → B in Cat!-cocart∞/B by the natural map

(E ×B A) ×A Ar' (A) −→ (E ×B Ar' (B)) ×Ar' (B) Ar' (A),
which is an equivalence. The functors and transformations here are also compatible
with the Cat∞-module structures, by the same argument as in Observation 5.3.7 , so for
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E,F → Ar' (B) we have a natural commutative square in which the vertical maps are
equivalences:

(12)

Fun!-cocart/B (E,F ) Fun!-cocart/A (5 ∗E, 5 ∗E)

FunB-cocart/Ar' (B) (EBE,EBF ) FunA-cocart
/Ar' (A) (EA 5

∗E,EA 5 ∗F ).
∼ ∼

After these preliminaries we are finally ready to consider fibrous patterns and their
envelopes. First, we want to show that the ∞-categories Fbrs(O) and Seg/AOO (Cat∞)
have Cat∞-module structures inherited from those we have already considered. This
is slightly complicated by the fact that Fbrs(O) may not be closed under tensors inCatint-cocart∞/O , and similarly for the relative Segal objects. (For example, for O ∈ Fbrs(F∗)
and C ∈ Cat∞, the∞-category C ×O is not an object of Fbrs(F∗) since its fiber over 〈0〉
is C, not ∗; on the other hand, Fbrs(F ♮

∗ ) is closed under tensoring with Cat∞.) Luckily,
cotensors are better behaved:

Proposition 5.3.11. Let O be an algebraic pattern.
(i) For P ∈ Fbrs(O) and C ∈ Cat, the cotensor PC/O in Catint-cocart∞/O is again fibrous.
(ii) For - ∈ Seg/AOO (Cat∞) corresponding to X ∈ (Catcocart∞/O )/Aract (O) and C ∈ Cat, the

cotensor XC/Aract (O) in (Catcocart∞/O )/Aract (O) again straightens to a relative Segal object.

Proof. To prove (i), first observe that we can identify PC/O ×O Oact
/$ as the fiber product

Fun(C,P ×O Oact
/$ ) ×Fun(C,Oact

/$ ) O
act
/$ , so that we have a commutative cube

PC/O ×O Oact
/$ Fun(C,P ×O Oact

/$ )

lim�∈Oel
$/
PC/O ×O Oact

/� Fun(C, lim�∈Oel
$/
P ×O Oact

/� )

Oact
/$ Fun(C,Oact

/$ )

lim�∈Oel
$/
Oact
/� Fun(C, lim�∈Oel

$/
Oact
/� ).

where the front and back faces are cartesian. Here the right vertical face is also cartesian
since P is O-fibrous. It then follows that the left vertical face is also cartesian, i.e. PC/O
is also O-fibrous.

For (ii), we extract the following commutative diagram from the cube (11) that de-
scribes XC/Aract (O) :

(XC/Aract (O) )$ (XC)$

lim�∈Oel
$/
(XC/Aract (O) )� lim�∈Oel

$/
(XC)�

Aract (O)$ (Aract(O)C)$

lim�∈Oel
$/
Aract(O)� lim�∈Oel

$/
(Aract(O)C)� .

(Here we have also used $ for the constant functor C → O with this value.) The front
and back vertical faces in this cube are cartesian by the definition of XC/Aract (O) , while
the right vertical face is cartesian since X by assumption straightens to a relative Segal



ENVELOPES FOR ALGEBRAIC PATTERNS 55

object (and we can identify (XC$ as Fun(C,X$ ) etc.). Hence the left vertical face is also
cartesian, and this is precisely the relative Segal condition for XC/Aract (O) . �

Corollary 5.3.12. Let O be an algebraic pattern.
(i) The localization !fbrs : Catint-cocart∞/O → Fbrs(O) is a localization of Cat∞-modules.
(ii) The localization !rseg : (Catcocart∞/O )/Aract (O) → Seg/AOO (Cat∞) is a localization of Cat∞-

modules.

Proof. We prove the first claim; the proof of the second is the same — in particular,
both follow from [HA, Proposition 2.2.1.9]. In order to apply this to !fbrs, we must
verify the required hypothesis, which amounts to checking that for C ∈ Cat∞ and
E ∈ Catint-cocart∞/O , the canonical map C × E → C × !fbrs (E) is taken to an equivalence by
!fbrs. Equivalently, we must show that for P ∈ Fbrs(O), the induced map

MapCatint-cocart∞/O
(C × !fbrs (E),P) −→ MapCatint-cocart∞/O

(C × E,P)

is an equivalence. Using the cotensoring, this is the same as the map

MapCatint-cocart∞/O
(!fbrs (E),PC/O) −→ MapCatint-cocart∞/O

(E,PC/O)

given by composition with the localization map E → !fbrs (E). This map is indeed an
equivalence, since PC/O is fibrous by Proposition 5.3.11. �

Corollary 5.3.13. Let O be a sound pattern. Then we have a commutative square

Catint-cocart∞/O Fbrs(O)

(Catcocart∞/O )/Aract (O) Seg/AOO (Cat∞)

!fbrs

E Env/AOO
!rseg

of Cat∞-module functors. Moreover, the adjunction

Env/AOO : Fbrs(O) ⇄ Seg/AOO (Cat∞) :UnintO
of Proposition 4.2.5 is an adjunction of Cat∞-modules, with the right adjoint being a lax Cat∞-
module functor.

Proof. Let us use the universal property of Fbrs(O) as a Cat∞-module localization to
verify that the composite

Catint-cocart∞/O
E−−→ (Catcocart∞/O )/Aract (O)

!rseg−−−→ Seg/AOO (Cat∞)
factors through !fbrs, as a functor of Cat∞-modules. Thus we need to verify that if a
morphism E → F in Catint-cocart∞/O is taken to an equivalence by !fbrs, then EE → EF
is taken to an equivalence by !rseg. The latter condition is equivalent to the induced
morphism Map(EF ,X) −→ Map(EE,X)
being an equivalence provided X is the unstraightening of an object in Seg/AOO (Cat∞).
By adjunction this holds if and only if the map

Map(F ,QX) −→ Map(E,QX)
is an equivalence for all such X, but since O is sound the object QX is fibrous, and
hence this is indeed an equivalence as by assumption E → F is taken to an equivalence
by !fbrs. It follows that the right adjoint inherits a lax Cat∞-module structure. �
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Remark 5.3.14. For any pattern O the Segal envelope

Env/AOO : Fbrs(O) −→ Seg/AOO (Cat∞)
is a lax Cat∞-module functor, since it can be defined by restricting StintO to these full sub-
categories, the inclusions of which are lax Cat∞-module functors. This suffices to up-
grade the envelope to a functor of (∞,2)-categories, and we can see that it is fully faith-
ful since it is obtained by restricting the functor StintO : Catint-cocart∞/O → Fun(O, Cat∞)/AO ,
which is a fully faithful functor of (∞,2)-categories by Observation 5.3.9.

Proposition 5.3.15. Let O and P be algebraic patterns and 5 : O → P a strong Segal
morphism.
(i) The functor 5 ∗ : Fbrs(P) → Fbrs(O) is a lax Cat∞-module functor and its left adjoint

5! is a Cat∞-module functor.
(ii) The functor 5 ⊛ : Seg/APP (Cat∞) → Seg/AOO (Cat∞) is a lax Cat∞-module functor and

its left adjoint 5! is a Cat∞-module functor.
Proof. To prove (i), we observe that 5 ∗ is obtained by restricting 5 ∗ : Catint-cocart∞/O →
Catint-cocart∞/P , which is a Cat∞-module functor by Observation 5.3.10, to full subcate-
gories; it is therefore a lax Cat∞-module functor. The left adjoint 5! is then automatically
an oplax Cat∞-module functor, and the oplax structure map is an equivalence if and only
if the right adjoint 5 ∗ preserves Cat∞-cotensors, which we know from Lemma 5.3.6 and
Proposition 5.3.11. The proof of (ii) is the same. �

Remark 5.3.16. It follows that for Q ∈ Fbrs(O) and R ∈ Fbrs(P) we have a natural
equivalence

Funint-cocart/O (5!Q,R) ≃ Funint-cocart/P (Q, 5 ∗R).

Corollary 5.3.17. Let 5 : O → P be a strong Segal morphism between soundly extend-
able patterns that satisfies the hypotheses of Theorem 5.1.1. Then pullback along 5 gives an
equivalence

5 ∗ : Fbrs(P) ∼−−→ Fbrs(O)
of Cat∞-modules. In particular, for any Q,Q′ in Fbrs(P), the induced functor

Funint-cocart/O (Q, Q′) −→ Funint-cocart/P (5 ∗Q, 5 ∗Q′)
is an equivalence. �
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Abstract

We construct a genuine G-equivariant extension of factorization homology for G a fi-
nite group, assigning a genuine G-spectrum to a manifold with G-action. We show that G-
factorization homology is compatible with Hill-Hopkins-Ravenel norms and satisfies equivari-
ant ⊗-excision. Following Ayala-Francis we prove an axiomatic characterization of genuine
G-factorization homology. Applications include a description of real topological Hochschild
homology and relative topological Hochschild homology of Cn-rings using genuineG-factorization
homology.
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1 Introduction

Factorization homology, introduced by Lurie under the name topological chiral homology ([Lur09b],
[Lur]), is an invariant of an En-algebra and a framed n-dimensional manifold. The factorization
homology of a framed n-dimensional manifold M with coefficients in an En-ring spectrum A is a
spectrum denoted

∫
M A. IfM admits an action of a finite group G then

∫
M A admits an G-action

by functoriality. However, this action is defined only up to coherent homotopy, as
∫
M
A is defined

by an ∞-categorical colimit. A fundamental observation of equivariant homotopy theory is that
such a “naive” action does not determine the homotopy type of the fixed points. In particular
the action of G on

∫
M
A does not define a genuine G-spectrum structure on

∫
M
A.

The first goal of this paper is to construct and study such a genuine equivariant extension
of factorization homology for a fixed finite group G. We draw on two points of view in order to
explain the expected properties of genuine equivariant factorization homology.

Factorization homology as a tensor product First, according to [Lur09b, rem. 4.1.19]
one can intuitively think of

∫
M
A as a continuous tensor product ⊗x∈MA indexed by the points

of M . One should have this intuition in mind when considering the behavior of factorization
homology with respect to disjoint unions1, namely

∫

M1⊔M2

A ≃
∫

M1

A⊗
∫

M2

A. (1)

In order to generalize this behavior to genuine G-spectra we now recall the interaction of the
smash product with the group action. If X is a genuine H-spectrum for H < G a subgroup then
the smash product ⊗|G/H|X of G/H copies of X has a naive G-action, induced by the combining
the action of H on X with the action of G on the indexing set G/H . Hill-Hopkins-Ravenel
[HHR16] extended this naive G-action to a genuine G-spectrum, NG

H (X), the Hill-Hopkins-
Ravenel norm of X . More generally they define smash products indexed by finite G-sets as the
smash product of Hill-Hopkins-Ravenel norms (see [HHR16, app. A.3]). Let U be a finite G-set,
given by a coproduct of orbits U =

∐
i∈I

G/Hi with stabilizers Hi < G. The U -indexed smash

product of a family X• = {Xi}i∈I , where each Xi is a genuine Hi-spectrum, is the genuine G-
spectrum given by the smash product of the norms ⊗UX• = ⊗i∈ING

Hi
(Xi). The indexed smash

product interacts with smash products and norms as follows.

1We distinguish between disjoint unions and coproducts since disjoint union is not the categorical coproduct
in the category of n-dimensional manifolds and open embeddings which we consider below.
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• The indexed smash product takes disjoint unions to smash products: if U ′, U ′′ are of finite
G-sets then the indexed smash product along U ′∐U ′′ is equivalent to smash product of
the indexed products, ⊗U ′ ∐U ′′X• ≃ (⊗U ′X•)⊗ (⊗U ′′X•).

• The indexed smash product takes topological inductions to norms: given a subgroupH < G
and a finite H-set U , denote the quotient G ×H U by

∐
G/H U . The left action of G on

the first coordinate makes
∐
G/H U a G-set which we call the topological induction of U

from H to G. The norm of an indexed product is given by an indexed product along the
topological induction, ⊗∐

G/H U
X• ≃ NG

H(⊗UX•).

Note that stating the second property required us to consider tensor products indexed by finite
H-sets for all H < G.

Interpreting genuine equivariant factorization homology as a tensor product indexed by a
G-manifold M , one would expect a similar behavior. To state it, we consider the genuine fac-
torization homology of H-manifolds for all subgroups H < G. Namely, for any subgroup H < G
and H-manifold M we expect genuine equivariant factorization homology to assign a genuine
H-spectrum

∫
M
A ∈ SpH , which interacts with smash products and norms as follows.

• Genuine equivariant factorization homology takes disjoint unions to smash products: if
M ′,M ′′ are n-dimensional G-manifolds then the genuine equivariant factorization homol-
ogy along M ′ ⊔M ′′ is equivalent to the smash products of the genuine equivariant factor-
ization homologies along M ′ and M ′′,

∫

M ′⊔M ′′
A ≃ (

∫

M ′
A)⊗ (

∫

M ′′
A),

as genuine G-spectra.

• Genuine equivariant factorization homology takes topological inductions to norms: given
a subgroup H < G and an n-dimensional H-manifold M , denote the topological induction
G×HM by ⊔G/HM , with left G-action induced by acting on the first coordinate. The norm
of genuine equivariant factorization homology along M is equivalent to genuine equivalent
factorization homology along the topological induction ⊔G/HM ,

∫

⊔G/HM
A ≃ NG

H (

∫

M

A), (2)

as genuine G-spectra.

Factorization homology as a homology theory A second point of view on factorization
homology is given by Ayala-Francis [AF15], where factorization homology is considered as a
homology theory of n-dimensional manifolds. Ayala-Francis start from the observation that fac-
torization homology is functorial with respect to open embeddings of framed n-dimensional
manifolds. Let Mfldfrn be the ∞-category of framed n-dimensional manifolds and framed
open embeddings, and let C be a cocomplete symmetric monoidal ∞-category. Fixing an En-
algebra A in C, Ayala-Francis consider factorization homology M 7→

∫
M A as a functor of ∞-

categories
∫
−A : Mfldfrn → C. Factorization homology extends to a symmetric monoidal functor∫

−A : Mfldfr,⊔n → C⊗ with respect to disjoint union of manifolds (a functorial version of eq. (1))

under mild conditions2 on C.
2Namely that the tensor product in C distributes over sifted colimits.
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Taking the view that excision is the characterizing property of a homology theory, Ayala-
Francis define a homology theory for manifolds as a symmetric monoidal functor Mfldfr,⊔n → C⊗
satisfying ⊗-excision, and show that

∫
−A is indeed such a homology theory for manifolds.

Furthermore, they show that the Eilenberg-Steenrod characterization of generalized homology
theories admits the following generalization. Let H(Mfldfrn , C) ⊆ Fun⊗(Mfldfrn , C) be the full
subcategory of symmetric monoidal functors satisfying ⊗-excision.
Theorem 1.0.1 (Ayala-Francis). There is an equivalence of ∞-categories

∫
: AlgEn(C)

∼−→ H(Mfldfrn , C), A 7→ (

∫

−
A : Mfldfrn → C)

sending an En-algebra A to factorization homology with coefficients in A.

In fact, this theorem holds in greater generality, replacing framed manifolds with B-framed
manifolds and En-algebras with B-framed n-disk-algebras. The second goal of this paper is to
provide such an axiomatic characterization of genuine equivariant factorization homology (see
theorem 6.0.2).

Framed G-manifolds We now describe V -framed G-manifolds, which serve as the geometric
inputs of genuine G-factorization homology theories. The notion of V -framed G-manifolds has
already been studied by [Wee18], though our construction differs from his.

Fix a finite group G and n ∈ N. In what follows a G-manifold is an n-dimensional smooth
manifold M with a smooth action of G. We organize G-manifolds and G-equivariant smooth
open embeddings using a topological category MfldG, which we consider as an ∞-category by
taking its coherent nerve.

Recall that a framing ofM is trivialization of its tangent bundle, i.e an isomorphism of tangent
bundles TM ∼=M×Rn. In order to define a framing of G-manifolds we consider TM as G-vector
bundle, with G-action induced from the smooth action of G on M by taking differentials. Fix
a real n-dimensional G-representation V . A V -framing of M as an isomorphism of G-vector
bundles TM ∼= M × V over M . The ∞-category of MfldG can be enhanced to an ∞-category
MfldG,V−fr of V -framed G-manifolds.

In fact, we consider genuine equivariant factorization homology theories of G-manifolds with
more general tangential structures (see definition 4.1.2). These tangential structures include
unframed G-manifolds, equivariant orientations in the sense of [CMW01] and manifolds with a
free G-action (see section 3.3).

We plan to compare this notion of an equivariant tangential structure with the one introduced
by [Wee18, sec. 2.2] in future work.

Equivariant factorization homology as a single functor of ∞-categories Viewing fac-
torization homology as a homology theory suggests a natural generalization to G-manifolds.
Namely, define a G-factorization homology theory as a symmetric monoidal functor

MfldG,V−fr → C

satisfying ⊗-excision. This is essentially the approach taken by Weelinck in [Wee18], which leads
to a natural generalization of the axiomatic characterization of factorization homology discussed
above. In particular, taking C = SpG to be the ∞-category of genuine G-spectra produces
invariants of G-manifolds valued in genuine G-spectra.

However, this is not the approach we take in this paper, for two reasons. First, we are
looking for an extension of factorization homology to genuine G-spectra. If M is a G-manifold
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and F : MfldG,V−fr → SpG is a G-factorization homology theory in the sense of [Wee18] then
the underlying spectrum of F (M) ∈ SpG need not agree with the factorization homology of M .
Second, using a single functor MfldG,V−fr → C to encode a G-factorization homology theory
prevents us from expressing its expected compatibility with norms described in eq. (2).

Our emphasis on the compatibly of equivariant factorization homology with norms implies
that our notion an equivariant disk algebra, serving as a coefficient system for equivariant factor-
ization homology, is different from the one introduced in [Wee18]. For a specific example, compare
[Wee18, ex. 1.3] with the description of Eσ-algebras in section 7.1. A detailed comparison of
these two notions will appear in future work.

Parametrized∞-categories. In order to express both the functoriality of genuine equivariant
factorization homology with respect to equivariant embeddings and the compatibilities of eq. (2)
we view genuine factorization homology as a collection of symmetric monoidal functors

∀H < G :

∫

−
A : MfldH,V−fr → SpH

from the∞-category of V -framed H-manifolds3 to the category of genuine H-spectra, coherently
compatible with restrictions and topological inductions. 4

To make this coherent compatibilities precise we use the theory of parametrized∞-categories,
developed by Barwick-Dotto-Glasman-Nardin-Shah in [BDG+16b, Sha18, Nar17, BDG+, Nar16].
Informally, a G-∞-category is a diagram of ∞-categories OopG → Cat∞ indexed contravariantly
by the orbits of G. A G-symmetric monoidal structure encodes a symmetric monoidal structure
on each of the ∞-categories in the diagram together with norm functors and all their expected
compatibilities. In section 2 we review parametrized ∞-category theory in more detail.

In particular, we use the G-∞-category SpG of genuine G-spectra constructed in [Nar17].

As a G-∞-category SpG encodes the ∞-categories SpH for all subgroups H < G and the

restriction functors relating them. The G-symmetric monoidal structure on SpG encodes smash
products and Hill-Hopkins-Ravenel norms. Nardin gives an axiomatic characterization of this
G-symmetric monoidal, see [Nar17, cor. 3.28]. This characterization allows us to work with
the Hill-Hopkins-Ravenel norms at a formal level, avoiding the original point set definition of
[HHR16].

EV -algebras and V -framed disks. Genuine equivariant factorization homology is an invari-
ant of a geometric input, a V -framed G-manifold (described above), and of an algebraic input,
an EV -algebra. We now briefly describe this algebraic structure.

Conceptually, factorization homology is constructed by gluing local data, given by a coefficient
system. Such a coefficient system is an algebraic structure indexed by the local geometry of
manifolds: an n-disk algebra in the case of factorization homology of n-dimensional manifolds
and an En-algebra in the case of factorization homology of framed n-dimensional manifolds.

Similarly, the structure of an EV -algebra is determined by the local structure of V -framed
G-manifolds. Let M be a V -framed G-manifold and x ∈ M a point with stabilizer H < G,
then H acts linearly on the tangent space TxM , and the H-representation TxM is isomorphic
to V (with the action restricted to H < G). 5 It follows that x ∈ M has an H-equivariant

3Here we consider V as an H-representation by restricting the G-action to H < G.
4In particular,

∫
− A defines a natural transformation between two functors from Oop

G to symmetric monoidal
∞-categories. However, such natural transformation does not capture the compatibility of norms with topological
inductions.

5To see this, pull the V -framing TM ∼= M × V along {x} → M .
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neighborhood isomorphic to an open disk in V . 6 Therefore the orbit of x (considered as a
G-submanifold of codimension 0) has a G-tubular neighborhood isomorphic to the topological
induction

∐
G/H V = G×H V .

Let DV be the G-operad of little V -disks, and EV its genuine operadic nerve (see [Bon19]).
We define EV -algebras in SpG as maps of G-∞-operads

EV → SpG.

Informally, an EV -algebra A in SpG assigns to V a genuine G-spectrum A (the “underlying

G-spectrum” of A). The algebraic structure on A is indexed by H-equivariant embeddings7 for
H < G. To an H-embedding V ⊔ V →֒ V the algebra A assigns a map of genuine H-spectra
A ⊗ A → A (a “multiplication map”), and to a H-embedding ⊔H/KV →֒ V the algebra A
assigns a map NH

K (A)→ A (a “multiplicative norm map”) from the Hill-Hopkins-Ravenel norm
of A. All of these maps are coherently compatible with smash products, restrictions of the group
action and with each other. We use G-∞-category theory, and specifically G-symmetric monoidal
structures, to handle these coherent compatibilities.

The G-∞-operad EV is closely related to MfldG,V−fr, as we now explain. Let DiskG,V−fr

be the full G-∞-subcategory of MfldG,V−fr generated from the G-manifold V by restricting
the group action, disjoint unions and topological induction (see section 3 for details). By con-
struction, the G-symmetric monoidal structure of MfldG,V−fr induces a G-symmetric monoidal
structure on DiskG,V−fr. In section 3.9 we show that DiskG,V−fr is equivalent to the G-
symmetric monoidal envelope of EV . In particular, an EV -algebra in SpG corresponds to an
essentially unique G-symmetric monoidal functor

DiskG,V−fr → SpG.

We call such functors V -framed G-disk algebras in SpG.

Genuine equivariant factorization homology We encode the functors
∫
−A : MfldH,V−fr →

SpH as a single G-symmetric monoidal G-functor MfldG,V−fr → SpG from the G-∞-category
of V -framed G-manifolds to the G-∞-category of genuine G-spectra. Given an EV -algebra A
in SpG, let A : DiskG,V−fr → SpG denote the corresponding V -framed G-disk algebra. We
construct genuine G-factorization homology

∫

−
A : MfldG,V−fr → SpG

as the G-left Kan extension of A along the inclusion DiskG,V−fr →֒ MfldG,V−fr. By work of
Shah [Sha18] the genuine G-spectrum

∫
M
A has an explicit description as a G-colimit indexed

by “little disks in M”, see definition 4.1.2 and proposition 4.1.4. This construction is indeed
a homology theory of G-manifolds, as it extends to a G-symmetric monoidal functor satisfying
G-⊗-excision.

Genuine equivariant factorization homology satisfies the following extension of the Ayala-
Francis axiomatic characterization.

6Choose a G-equivariant Riemannian metric on M use the fact that the exponential map TxM 99K M is
H-invariant.

7compatible with the G-framing
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Theorem 1.0.2. Let H(MfldG,V−fr,SpG) ⊂ Fun⊗G(MfldG,V−fr,SpG) be the full subcategory

of the ∞-category of G-symmetric monoidal G-functors MfldG,V−fr → SpG which satisfy G-⊗-
excision and respect sequential unions. Then there is an equivalence of ∞-categories

∫
: AlgEV (Sp

G)
∼−→ H(MfldG,V−fr,SpG), A 7→ (

∫

−
A : MfldG,V−fr → SpG) (3)

sending an EV -algebra A to G-equivariant factorization homology with coefficients in A.

The above result holds in greater generality. First, V -framed G-manifolds can be replaced
with G-manifolds with more general equivariant tangential structures8. Second, the G-∞-
category of genuine G-spectra can be replaced with any presentable G-symmetric monoidal
G-∞-category C9. The general statement is given in theorem 6.0.2, which is the main result
of this paper.

Applications As an application of theorem 6.0.2, we describe two variants of topological
Hochschild homology using genuine G-factorization homology.

In section 7.1 we show that the real topological Hochschild homology spectrum of Hesselholt-
Madsen [HM13] is equivalent to genuine C2-factorization homology over S1.

Proposition 1.0.3 (proposition 7.1.1). For A an Eσ-algebra in SpC2 there is an equivalence of
genuine C2-spectra

∫

S1

A ≃ A⊗
N
C2
e A

A.

where C2 acts on S1 by reflection.

By a theorem of ([DMPR17]) it follows that for A a flat ring spectrum with anti-involution
there is as an equivalence of genuine C2-spectra

∫

S1

A ≃ THR(A),

where THR(A) is the real topological Hochschild homology of A, see remark 7.1.2.
In section 7.2 we show that the “twisted” topological Hochschild homology of a genuine Cn-

ring spectrum of [ABG+14, sec. 8] is equivalent to the geometric fixed points of Cn-factorization
homology over S1.

Proposition 1.0.4 (proposition 7.2.2). Let A be an E1-ring spectrum in SpCn , and Cn y S1

be the standard action. Then there exists an equivalence of spectra

(∫

S1

A

)ΦCn

≃ THH(A;Aτ ).

In particular, THH(A;Aτ) admits a natural circle action.

This circle action is equivalent to the circle action on the nerve of the “twisted cyclic bar
construction” of [ABG+14, sec. 8], which gives an alternative description of the relative norm of
[ABG+14, def. 8.2].

8This requires replacing V -framed G-disk algebras with more general G-disk algebras.
9Conjecturally, this condition can be weakened to distributivity of the tensor product over parametrized sifted

colimits
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Construction of V -framed G-disk algebras. Above we gave a rough description of a V -
framed G-disk algebra as encoding multiplication maps, multiplicative norm maps and their
coherent compatibilities. Unwinding these compatibilities implied by definition 3.6.11 is usually
a non-trivial task (especially when dim V ≥ 2), and so it is inadvisable to construct a V -framed
G-disk algebra by specifying multiplication maps, multiplicative normmaps and associated coher-
ence data. It is therefore desirable to have some general mechanisms for constructing V -framed
G-disk algebras.

For example, one would expect to be able to construct a V -framed G-disk algebra from an
algebra over the G-operad DV . Such a construction would provide many examples of coefficients
for genuine equivalent factorization homology of V -framed G-manifolds. More generally, it would
be reassuring to have a “rectification” result showing that classical algebras overDV form a model
for the ∞-category of V -framed G-disk algebras, in the style of [PS14, thm. 7.10].

We leave such constructions for future work.

What about compact Lie groups? It is natural to want to extend genuine equivariant
factorization homology from finite groups to compact Lie groups. There are two different points
in which one encounters complications.

First, we prove theorem 6.0.2 (the axiomatic characterization of genuine G-factorization ho-
mology) inductively using equivariant handle bundle decompositions (see [Was69]). We produce
these decompositions using equivariant Morse theory, which is more complicated over a compact
Lie group. Choosing an invariant Morse function gives rise to a handle bundle decomposition,
where each handle bundle is an equivariant disk bundle over a critical orbit. However, for a
compact Lie group of positive dimension these handle bundles can be non trivial, since critical
orbits are submanifolds of possibly positive dimension.

Second, and more fundamental, is the lack of good G-∞-category theory for a compact Lie
group G. The source of the problem is the lack of multiplicative norms for subgroups H < G of
non-finite index. In order to understand the significance of this fact for genuine G-factorization
homology, consider M = C the complex plane with the standard action of the circle group
S1 = C×. The unit circle is an S1-orbit in C, with S1-tubular neighborhood given by the open
annulus. The embedding of the open annulus in C should induce a “multiplication norm map”
⊗S1A → A of genuine S1-spectra, where the tensor product is indexed over the free orbit S1.
However, we do not have a good definition for the domain of this map as a genuine S1-spectrum.

Organization We start by reviewing some parts of parametrized ∞-category theory in sec-
tion 2. We hope this short exposition will assist the reader unfamiliar with the theory of G-∞-
categories.

In section 3 we construct the G-∞-categories of G-manifolds and G-disks with equivariant
tangential structures, and their G-symmetric monoidal structure which encodes disjoint unions
and topological induction. These constructions provide a bridge between the geometry of G-
manifolds and parametrized ∞-category theory, and enables the construction of genuine G-
factorization homology in section 4.2.

Our definition of equivariant tangential structures in section 3.3 uses an equivariant version of
the tangent classifier of [AF15] which may be of independent interest, see section 3.2. While we
focus on framed G-manifolds, our definition is flexible enough to consider more general tangential
structures such as equivariant orientations, as well as allowing us to restrict our attention to
manifolds with a free G-action.

We finish section 3 by studying some aspects of these constructions. In section 3.8 we study
the relation between embedding spaces of G-disks and G-configuration spaces. In section 3.9 use
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the work of [Bon19] to show that the G-∞-operad encoding V -framed G-disk algebras is closely
related to the G-operad of little disks in a representation V .

The technical results and constructions of section 3 provide a solid foundation for the use of
abstract theory of parametrized ∞-categories in the following sections.

In section 4 we define framed G-disk algebras and construct G-factorization homology, first
as a G-functor (by G-left Kan extension, see section 4.1) and then as a G-symmetric monoidal
G-functor (section 4.2).

In section 5 we study the properties of G-factorization homology. In section 5.1 we define
G-collar decompositions and construct an “inverse image” functor. We use these in section 5.2,
where we define G-⊗-excision for a general G-symmetric monoidal functor MfldG → C, and
show that G-factorization homology satisfies G-tensor excision. In section 5.3 we show that
G-factorization homology respects sequential unions.

In section 6 we prove our main result, giving an axiomatic characterization of G-factorization
homology using equivariant Morse theory.

In section 7 we describe real topological Hochschild homology using G-factorization homology
(section 7.1), and the relative norm of a genuine Cn-ring spectrum as the geometric fixed points
of G-factorization homology (section 7.2).

In appendix A we show how to model ∞-slice categories in the framework of topological
categories. For the convenience of the reader we recall the definition of G-symmetric monoidal
categories in appendix B. We collect some Some general statements about mapping spaces in
over categories in appendix C.

Notation. In this work we use the quasi-categories as a model∞-categories (with the exception
of remark 2.1.4). We assume the reader is familiar with the theory of∞-categories, as developed
in [Lur09a] and [Lur]. Explicitly, an ∞-category is a simplicial set C satisfying the left lifting
property with respect to inner horns: for every 0 < i < n, any map Λni → C admits an extension
to ∆n → C.

All of the manifolds we consider are smooth and n-dimensional for a fixed n ∈ N. We fix a
finite group G, and only consider manifolds with actions of subgroups H < G.

We frequently construct ∞-categories from topological categories by taking their coherent
nerve (which is called the topological nerve in [Lur09a, def. 1.1.5.5]). We emphasize that the
coherent nerve of a topological category C is a two step construction. First, taking the singular
nerve of each mapping space, produces a simplicial category Sing(C). Second, applying the
simplicial nerve functor of [Lur09a, def. 1.1.5.5] to Sing(C) produces an ∞-category. We denote
the resulting ∞-category by N(C).

We denote parametrized ∞-categories with an underline, for example C. In general, if C
is parametrized over an ∞-category S we refer to C as an S-∞-category. We say that C is a
G-category (see definition 2.1.3) if it is parametrized over OopG , where OG is the orbit category
of G. No other notion of G-categories is used; a G-category is by definition an OopG -∞-category.
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2 Background on parametrized ∞-category theory

In this section we review parametrized∞-category theory of Barwick, Dotto, Glassman, Nardin
and Shah, developed in [BDG+16b, Sha18, Nar16, Nar17, BDG+]. We recall the notions of G-
∞-category theory employed below and fix our notation. We restrict our discussion to the case
of G-∞-categories, though nothing substantial would change when working over an arbitrary
indexing category.

This section contains no original results, all the results of this section are entirely due to
Barwick, Dotto, Glassman, Nardin and Shah.

2.1 From Elmendorf-McClure’s theorem to G-categories

A good starting point to a discussion of G-categories is the Elmendorf-McClure theorem, which
recasts the equivariant homotopy theory of G-spaces as a presheaf category. Throughout we fix
a finite group G.

Definition 2.1.1. The orbit category OG is the full subcategory of G-sets supported by transitive
G-sets.

Note that every orbit in OG is isomorphic to a quotient of G by some subgroup H < G. This
isomorphism depends only on the choice of a base point of the orbit, with H the stabilizer of
the chosen basepoint. We denote the objects of OG either by O by G/H . Despite the suggestive
notation, we try to refrain from a choice of basepoint when possible.

Define the ∞-category of G-spaces TopG as the coherent nerve of the topological category
of G-CW spaces and G-maps.

Theorem 2.1.2 (Elmendorf-McClure, [Elm83]). There is an equivalence of ∞-categories

TopG
∼−→ Fun(OopG ,S),

sending a G-space X to its diagram of fixed points, G/H 7→ XH .

Using straightening/unstraightening ([Lur09a, thm. 2.2.1.2]) we get a third description of a
G-space X as the left fibration over OopG classifying the diagram of fixed points of X .

Definition 2.1.3. A G-∞-category is a coCartesian fibration C ։ OopG .

For sake of readability we refer to G-∞-categories simply as G-categories. Other notions of
G-categories present in the literature are not present in this paper.

A G-category C is classified by a diagram of ∞-categories C• : OopG → Cat∞ sending G/H ∈
OopG to the fiber C[G/H] of C ։ OopG over G/H . We systematically use the subscript-square
bracket notation C[G/H] for the fiber∞-category in order to avoid confusion with other subscript
notations. As above, straightening/unstraightening ([Lur09a, sec. 3.2]) ensures that this is an
equivalent description of the G-∞-category C.

Remark 2.1.4. Describing Cat∞ as a complete Segal object in the ∞-category of spaces, we
can use the Elmendorf-McClure theorem to get a third equivalent description of a G-category
as a complete Segal object in TopG. This follows from following the Segal conditions and
completeness conditions along the equivalences

Fun(∆op,TopG) ≃ Fun(∆op,Fun(OopG ,S)) ≃ Fun(OopG ,Fun(∆op,S)),

where the first equivalence is induced by the Elmendorf-McClure theorem.
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In particular, categories internal to G-spaces (and to G-sets) are examples of G-categories.
Note that [GM17] defines G-categories as categories internal to G-spaces, making them examples
of G-(∞-)categories in the sense of [BDG+16b], used here.

While these equivalent descriptions of a G-category are good to have in mind, we stick to the
definition of a G-category as a coCartesian fibration for its explicit nature.

When we need more general parametrized ∞-categories we use the following definition (and
the notation of [Sha18]).

Definition 2.1.5. Let S be an ∞-category. An S-∞-category is a coCartesian fibration C ։ S.
We denote the fiber of C over s ∈ S by C[s].

We refer to S-∞-categories as S-categories.

Remark 2.1.6. Most results recalled in this section hold for general S-categories. One notable
exception is the description of SpS , the S-stabilization of the S-category of S-spaces, using spec-
tral Mackey functors. Another exception is the uniqueness of S-symmetric monoidal structure
on SpS . However, these results hold under mild conditions on S. 10

Handling H-categories as G-categories Occasionally we have to consider H-categories for
some subgroup H < G. When doing so we use the slice category G/H := (OopG )(G/H)/, the
opposite of the category of G-orbits over G/H . The category G/H is equivalent to the category

of H-orbits. Moreover, the forgetful functor G/H → OopG is left fibration classified by the

representable functor Map(−, G/H) : OopG → S. In particular a G/H-category C ։ G/H is a G-

category by postcomposition with the forgetful functor, G/H ։ OopG . Note that this construction
also avoid a choice of basepoint to G/H . When referring to the fibers of C ։ G/H we adopt the
notation C[ϕ] for the fiber over ϕ : G/K → G/H as an object in the slice category G/H.

The G-category G/H has a second role for us, since a G-functor G/H → C corresponds to an

object in the fiber of C ։ OopG overG/H , as we now explain. Under straightening/unstraightening
the left fibration G/H ։ OopG corresponds to the representable functor of the orbit G/H , given

by HomOG(−, G/H) : OopG → S, and therefore by the Yoneda lemma ([Lur09a, lem. 5.1.5.2])
corresponds to an object of C[G/H]

11. We denote the G-functor corresponding to x ∈ C[G/H] by
σx : G/H → C. A more explicit construction is given by choosing a section of the trivial fibration

ArrcoCart
x→ (C) ∼։ G/H of [Sha18, not. 2.28] and composing with ev1 : ArrcoCart

x→ (C)→ C.

The G-category of G-spaces The ∞-categories Fun(G/H,S) assemble as the fibers of a G-

category TopG, the G-category of G-spaces ([BDG+16b, ex. 7.5]). By the Elmendorf-McClure

theorem the fiber over G/H is equivalent to TopG
[G/H]

∼= Fun(G/H,S) ≃ Fun(OopH ,S) ≃ TopH ,

the ∞-category of H-spaces. By an H-space we always mean an H-CW space. The G-category
of G-spaces is characterized by the following universal property (see [BDG+16b, thm. 7.8]).

For any G-category C we have an equivalence of ∞-categories FunG(C,TopG) ≃ Fun(C,S),
i.e TopG is the cofree G-category co-generated by the ∞-category of spaces.

Taking our cue from the Elmendorf-McClure theorem, we think of a G-category as capturing
the notion of a G-action on an ∞-category. With this intuition in mind one may think of TopG

10Specifically, they hold for S an atomic orbital ∞-category. See [BDG+16a] for examples and [BDG+16b],
[Sha18], [Nar17] for the general theory.

11To make this argument precise we need to replace C with a presheaf of spaces. To achieve that we straighten
C≃ ⊆ C, the maximal G-subgroupoid of C, given as a left fibration by the full maximal sub-simplicial set supported
on the coCartesian edges of C.
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as follows. Imagine that the ∞-category of spaces admits a non-trivial G-action, whose H-fixed
points is the ∞-category of H-spaces for all H < G. Think of TopG as capturing this imagined
G-action.

Remark 2.1.7. In section 3.2 we use the following explicit model for TopG. Construct an
auxiliary topological category OG-Top as follows. An object of OG-Top is G-map X → O where
the domain X is a G-CW complex and codomain O ∈ OG is a G-orbit. We refer to an object of
OG-Top as OG-space, though it should rightfully be called a “G-space over an orbit”. A map
of OG-spaces is given by a (strictly) commuting squares of G-spaces

X1

��

// X2

��
O1

// O2.

(4)

The mapping spaces of OG-Top are given by

MapOG-Top(X1 → O1, X2 → O2) = MapG(X1, X2)×MapG(X1,O2) MapG(O1, O2),

where MapG(X,Y ) is the space of G-maps X → Y with the compact-open topology.
We think of an OG-space X → G/H as representing the H-space given by the fiber X |H of

X → G/H over the coset H . On the other hand, given an H-space X0 we can use topological
induction to construct a OG-space G×H X0 whose fiber over H is X0. Note that the OG-space
X → O does not represent the G-space X (in fact, choosing an isomorphism O ∼= G/H for
some H < G exhibits the G-space X as the topological induction of the H-space represented by
X → G/H).

Applying topological nerve construction of [Lur09a, def. 1.1.5.5] produces an ∞-category
N(OG-Top). The forgetful N(OG-Top) → OG, (X → O) 7→ O is a Cartesian fibration, and a
commuting square (4) describes a coCartesian edge in N(OG-Top) if it is a pullback square. To
see this use [Lur09a, prop. 2.4.1.1 (2)] as in the proof of proposition 3.1.14. The dual coCartesian
fibration N(OG-Top)∧ → OopG , described in [BGN14], is a G-category equivalent to TopG. We

can explicitly describe an object of TopG
[G/H]

in this model as a G-map X → G/H , which we

interpret as the H-space X |eH given by the fiber over the coset eH . A map in TopG is given by
a (strictly) commutative diagram of G-spaces

X1

��

X ′oo
✤❴

��

// Y

��
O1 O2
oo = // O2

in which the left square is a pullback square. It is a coCartesian edge if and only of the G-map
X ′ → Y is a G-homotopy equivalence over O2 (see [BGN14]). Equivalently, if O2 = G/H then
the above edge is coCartesian precisely when the map of fibers X ′|eH → Y |eH is an H-homotopy
equivalence.

By definition maps in fiber TopG
[O]

are commutative diagrams as above, with row given by

O
=←− O

=−→ O. Unwinding the definitions we see that TopG
[O]

is equivalent to N(TopG/O), the

coherent nerve of the topological category of G-CW-spaces over O. If O = G/H then restriction
to the fiber over eH defines an equivalence of topological categories TopG/G/H

∼−→ TopH to the
topological category of H-CW-spaces.
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Finally, we note that N(TopG/O) ≃ N(TopG)/O are equivalent ∞-categories . We use the

Moore over-category of appendix A to see this. By corollary A.0.5 we have N(TopG)/O ≃
N
(
(TopG)Moore

/O

)
. However, since the orbit O is a discrete G-space we see that for every X ∈

TopG the only Moore paths in MapTopG(X,O) are constant, so TopG/O → (TopG)Moore
/O is an

equivalence of topological categories. Therefore the fiberTopG
[O]

is equivalent to the slice category

N(TopG)/O. The mapping spaces of TopG
[O]
≃ N(TopG/O) will be denoted by MapGO(X,Y ).

The G-category of G-spectra A more interesting example is given by SpG, the G-category

of G-spectra, with fiber over G/H is equivalent to SpG
[G/H]

≃ SpH , the ∞-category genuine

orthogonal H-spectra (see [Nar17, thm. 2.40], with origins in [GM11]). For a construction of
SpG as the G-stabilization of TopG see [Nar17, def. 2.35 and thm. 2.36].

2.2 Constructing G-categories

We frequently use the following constructions of G-categories.

Construction 2.2.1. Given two S-categories C,D, the fiber product C ×S D is an S-category,
the fiberwise product of C and D. If C,D are G-categories, we denote the fiberwise product
C ×OopG D by C×D. In particular, we use the fiberwise product to restrict a G-category C ։ OopG
to a G/H-category C×G/H ։ G/H (“forgetting the G-action on C to get an H-action”).

Construction 2.2.2. Given a G-category C define the fiberwise arrow category ArrG(C) as
the fiber product OopG ×Fun(∆1,OopG ) Fun(∆

1, C) (see [Sha18, not. 4.29]). Note that ArrG(C) is

equivalent to the functor G-category FunG(OopG ×∆1, C), where the G-category OopG ×∆1 is the
constant G-category on ∆1. More generally, for any S-category C ։ S define the fiberwise arrow
S-category ArrS(C) as the fiber product S ×Fun(∆1,S) Fun(∆

1, C).

Construction 2.2.3. Let C be a G-category and x ∈ C[G/H] an object over G/H , corresponding
to the G-functor σx : G/H → C. Following [Sha18, not. 4.29], we define the parametrized slice-
category C/x ։ G/H by pulling back the coCartsian fibration ev1 : ArrG(C) ։ C along σx, i.e.
C/x := ArrG(C)×C G/H. We will also consider C/x ։ G/H as a G/H-category.

Note that the fiber of C/x ։ G/H over ϕ : G/K → G/H is equivalent to the∞-over-category
(C[G/K])/ϕ∗x, where ϕ

∗x ∈ C[G/K] is determined by choosing a coCartesian lift x→ ϕ∗x of ϕ.

Construction 2.2.4. For C ։ S an S-category, the fiberwise cone S-category of C is defined as
the parametrized join C ⋆S S (see [Sha18, not. 4.2] or appendix B).

Parametrized functors and parametrized functor categories

Definition 2.2.5. Let C,D be S-categories, i.e. coCartesian fibrations C ։ S,D ։ S. An
S-functor is a functor C → D over S which preserves coCartesian edges. Let FunS(C,D) ⊆
Fun/S(C,D) be the full subcategory of functors C → D over S which preserve coCartesian edges.
When S = OopG we refer to a OopG -functor as a G-functor, and denote the ∞-category of G-
functors by FunG(C,D).

Remark 2.2.6. An S-functor C → D encodes the data of a coherent natural transformation
C• ⇒ D• between the S-diagrams C•,D• : S → Cat∞ classified by the coCartesian fibrations
C ։ S and D ։ S.

13



Remark 2.2.7. Since the left fibration G/H → OopG is corepresentable by construction, we have
C[G/H] ≃ FunG(G/H, C).

The ∞-category of G-categories admits an internal hom, a G-category denoted FunG(C,D)
see [BDG+16b, thm. 9.7] and [BDG+16b, def. 9.2] for an explicit construction. The fiber of
FunG(C,D) ։ OopG over G/H admits the following description. Forget the G-action on C,D
to an H-action by taking the fiber products C×G/H, D×G/H . The fiber FunG(C,D)[G/H] is
equivalent to the∞-category FunG/H(C×G/H,D×G/H) of G/H-functors C×G/H → D×G/H,

(which we think of as modeling “H-equivariant functors from C to D”).
More generally, for any two S-categories C ։ S,D ։ S there is an S-category of functors

FunS(C,D) with fibers FunS(C,D)[s] ≃ Funs(C ×S s,D ×S s) where s = Ss/. The S-category of
functors possesses the universal property of internal hom, from [BDG+16b, thm. 9.7].

Theorem 2.2.8 (Barwick-Dotto-Glasman-Nardin-Shah). Let C,D, E be S-categories. Then
there are natural equivalences

FunS(C,FunS(D, E))
∼−→ FunS(C ×S D, E), FunS(C,FunS(D, E))

∼−→ FunS(C ×S D, E).

Note that if C,D, E are G-categories, then the second equivalence follows from the first by
restricting to the fiber over the orbit [G/G], the terminal object of OG.

2.3 Parametrized adjoints, colimits, left Kan extensions

We follow [Nar17], defining parametrized colimits and parametrized left Kan extensions using
parametrized adjoints.

Parametrized adjoints Let C,D be S-categories. An S-adjunction ([Sha18, def. 8.1]) is a
relative adjunction L : C ⇆ D :R over S ([Lur, def. 7.3.2]) where both L and R are S-functors.
In particular, for each s ∈ S we have an adjunction L[s] : C[s] ⇆ D[s] :R[s] between the fibers

over s. When S = OopG we will refer to an OopG -adjunction as a G-adjunction.

Parametrized colimits Let p : I → C be an S-functor, which we think of as an S-diagram
in C. The S-colimit of p is an S-object of C, i.e a coCartesian section S − colim−−−→(p) : S → C of

the structure fibration C ։ S. For a general definition of colim−−−→(p) as the S-initial S-cone under

p see [Sha18, def. 5.2]. We define I-shaped S-colimits as the S-left adjoint to the “constant
I-diagram” S-functor, following [Nar16, def. 2.1]. This definition is justified by [Sha18, 10.4],
since we only take S-colimits in S-cocomplete S-categories.

Explicitly, precomposition with the coCartesian fibration I ։ S induces an S-functor ∆I : C ≃
FunS(S, C) → FunS(I, C), where S is the terminal S-category (given by id : S → S). If ∆I ad-
mits an S-left adjoint we say that C admits I-indexed S-colimits, and denote the S-left adjoint
by S − colim−−−→ : FunS(I, C) → C. Note that for every index s ∈ S we have an adjunction of
∞-categories

S − colim−−−→ : Funs(I ×S s, C ×S s) ⇆ Funs(S ×S s, C ×S s) ≃ C[s] :∆I .

Particularly, we will use the following type of G/H-colimit.

Example 2.3.1. Let C be a G-category, I ։ G/H a G/H-category and p : I → C a G-functor.

Since G/H ։ OopG is a left fibration we have FunG(I, C) ≃ FunG/H(I, C×G/H), under which
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p corresponds to a G/H-functor p : I → C×G/H , or in other words p ∈ FunG/H(I, C×G/H).

Then G/H − colim−−−→(p) ∈ C[G/H] is given by applying the left adjoint of

G/H − colim−−−→ : FunG/H(I, C×G/H) ⇆ FunG/H(G/H, C×G/H) ≃ C[G/H] :∆I .

We say that an S-category C is S-cocomplete if for every s ∈ S the s-category C×s admits
I-indexed s-colimits for any s-category I.

Parametrized left Kan extensions We follow [Nar17, def. 2.12] and define S-left Kan exten-
sion using the give a global characterization as a left adjoint. For a general definition of pointwise
parametrized left Kan extensions see [Sha18, def. 10.1], which satisfies the global characteriza-
tion by [Sha18, 10.4]. We only use the pointwise definition in the proof of proposition 4.2.4, a
G-categorical statement independent from the rest of the paper.

Let ι : D →M be an S-functor and C an S-category. Restriction along ι induces an S-functor
ι∗ : FunS(M, C)→ FunS(D, C). The S-left Kan extension along ι is the S-left adjoint to ι∗ and
denoted by φ!.

We will use the following propositions from [Sha18].

Proposition 2.3.2. [Sha18, thm. 10.3] Let A : D → C and ι : D → M be S-categories, and
suppose that for every x ∈M over s ∈ S the s-colimit

s− colim−−−→
(
D/x → D ×S s

A×Ss−−−−→ C ×S s
)

exists. Then the S-left Kan extension of A along ι exists (and is essentially unique), and acts
on x ∈ D by sending it to the s-colimit above, considered as an object in the fiber C[s].

Proposition 2.3.3. [Sha18, cor. 10.6] Let C be a S-cocomplete S-category and ι : D → M a
fully faithful S-functor (i.e fiberwise fully faithful, see [BDG+16b, def. 1.6]). Then the S-left
Kan extension ι! :M→ C exists and is S-fully faithful.

When S = OopG we refer to S-left Kan extensions as G-left Kan extensions, which we use to
define G-factorization homology as a G-functor (see proposition 4.1.4).

Parametrized Yoneda embedding Another useful tool available to us is the parametrized
Yoneda embedding of [BDG+16b, sec. 10], which we use in the construction of theG-tangent clas-
sifier (see construction 3.2.8). Let C be a G-category, and Cvop the fiberwise opposite G-category
(with fibers (Cvop)[G/H]

∼= (C[G/H])
op, see [BDG+16b, def. 3.1]). According to [BDG+16b, def.

10.2] there exists a G-functor j : C → FunG(Cvop,TopG), the parametrized Yoneda embedding,
which can be informally described as follows. The G-functor j takes x ∈ C[G/H] the G/H-functor

Map(−, x) : Cvop×G/H → TopG×G/H sending an object y ∈ ((Cvop)×G/H)[ϕ] ∼= (C[G/K])
op in

the fiber over ϕ : G/K → G/H to the mapping space Map(y, ϕ∗x) of the ∞-category C[G/K].

2.4 G-symmetric monoidal structures

The notion of a G-symmetric monoidal structure plays a central role in our presentation of G-
factorization homology. In this subsection we give some intuition for G-symmetric monoidal
structure, hopefully making it more approachable. This subsection is expository in nature, the
formal definition of a G-symmetric monoidal G-category can be found in [Nar17, sec. 3.1], or in
appendix B.
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Informally, the data of a G-symmetric monoidal structure on a G-category C is given by col-
lection of symmetric monoidal structures on the fibers C[G/H], together with symmetric monoidal
functors C[G/K] → C[G/H], called norm functors, for each map of orbits G/K → G/H . We have
the following examples in mind.

• The coCartesian G-symmetric monoidal structure on TopG, which is given by disjoint

unions in TopG
[G/H]

≃ TopH and norm functors

∀K < H < G :
∐

H/K

: TopK → TopH ,
∐

H/K

X = H ×K X,

where H ×K X is the quotient of G×X by the diagonal action of K.

• The Cartesian G-symmetric monoidal structure on TopG, which is given by products of
H-spaces and norm functors

∀K < H < G :
∏

H/K

: TopK → TopH ,
∏

H/K

X = MapK(H,X),

where MapK(H,X) is the space of K-equivariant maps H → X with K acting on H by
multiplication from the right.

• The G-category SpG of G-spectra has a G-symmetric monoidal which is given by smash

products in SpG
[G/H]

≃ SpH and the Hill-Hopkins-Ravenel norm functors, informally given

by taking X ∈ SpH to the smash product of |G/H | copies of X with induced G-action.
Nardin gave a universal property characterizing this G-symmetric monoidal structure by
proving that SpG admits an essentially unique G-symmetric monoidal structure for which
the sphere spectrum is the unit, see [Nar17, cor. 3.28].

The data of a G-symmetric monoidal structure, along with its coherent compatibility, is
encoded by a single coCartesian fibration over the indexing category FinG∗ , satisfying certain
Segal conditions. In what follows, we try to explain how this technical description is related to
the intuition presented above.

We regard the symmetric monoidal structure on each fiber and the norm functors on equal
footing. To that end, consider the G-symmetric monoidal structure as acting on a U -family
of objects, where we index our family be a finite G-set. The members of a U -family x• in a
G-category C correspond to the orbits of U , with xW ∈ C[W ] for each orbitW ∈ Orbit(U). Given
a G-map I : U → G/H , we can use the G-symmetric monoidal structure to construct an element
⊗Ix• ∈ C[G/H]. Using the operations ⊗I we can encapsulate the data G-symmetric monoidal
structure on C.

The various operations ⊗I are subject to certain compatibility conditions, which hold upto
coherent homotopy. In order to encapsulate the compatibility of ⊗I for various I it is convenient
to extend ⊗I from I : U → G/H to general G-maps of finite G-sets ϕ : U → V . The generalized
operation ⊗ϕ takes a U -family to a V -family by acting on the fibers of ϕ, i.e

∀W ′ ∈ Orbit(V ) : (⊗ϕx•)W ′ = ⊗ϕ−1(W ′)

(
x•|ϕ−1(W ′)

)
∈ C[W ′].

Note that we also need to keep track of restrictions taking a U -family x• to a U ′-family x•|U ′

for each inclusion of G-sets U ′ →֒ U .
All these operations are encoded by a coCartesian fibration over FinG∗ , the G-category of

finite pointed G-sets (see appendix B), which we think of as our indexing category. Note that
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the fiber of FinG∗ over G/H is the given by the category of spans of finite G-sets U ←֓ U ′ → V
over G/H , where the wrong way map U ←֓ U ′ is an inclusion. Restriction to the fiber over eH
defines an equivalence (FinG∗ )[G/H]

∼−→ FinH∗ to the category of finite pointed H-sets, described

here as partly defined H-maps given by spans of finite H-sets Ũ ←֓ Ũ ′ → Ṽ , where the wrong
way map is an inclusion of finite H-sets.

We end this subsection by briefly sketching how to extract the tensor products and norms
from a coCartesian fibration p : C⊗ ։ FinG∗ describing a G-symmetric monoidal structure on a
G-category C.

First we describe the tensor product of two objects x1, x2 ∈ C[G/H]. The ∞-category C[G/H]

is given as the fiber of p over G/H
=−→ G/H . Let U = G/H

∐
G/H and I ∈ FinG∗ given by the

fold map I : U → G/H . By the Segal conditions we have an equivalence C⊗I
∼−→ C[G/H]×C[G/H]

from the fiber of p over I. Through this equivalence we identify the ordered pair (x1, x2) ∈
C[G/H] ×C[G/H] with an object x• ∈ C⊗I (a U -family). Choose a p-coCartesian lift x• → y of the

span U
=←− U I−→ G/H over G/H . The tensor product x1 ⊗ x2 is given by y ∈ C[G/H].

Next we describe the norm of an object x ∈ C[G/K] along ϕ : G/K → G/H . As before, the

∞-category C[G/K] is the fiber of p over G/K
=−→ G/K. Consider the map ϕ : G/K → G/H as

an object of FinG∗ . By the Segal conditions we have an equivalence C⊗ϕ
∼−→ C[G/K] from the fiber

of p over ϕ. Through this equivalence we identify x ∈ C[G/K] × C[G/H] with an object x• ∈ C⊗ϕ
(a ϕ-family). Choose a p-coCartesian lift x• → y of the span G/K

=←− G/K ϕ−→ G/H over G/H .
The norm ⊗ϕx is given by y ∈ C[G/H].

3 G-manifolds and G-disks

GenuineG-factorization homology will be constructed in section 4 using parametrized∞-category
theory. Our goal in this section is to construct and study the G-∞-categories needed there. Most
of this section is devoted to the construction of these G-∞-categories and their G-symmetric
monoidal structures. These constructions may be of independent interest, as they provide a
bridge between geometry of manifolds with a finite group action and the theory of parametrized
∞-categories.

In section 3.1 we construct MfldG, the G-category of G-manifolds. The construction is
inspired by the model of TopG described in remark 2.1.7. We then turn to study its relation to
G-vector bundles, and construct an equivariant version of the tangent classifier functor of [AF15].
This G-tangent classifier is used in section 3.3 to construct framed variants of MfldG.

Next, we turn our attention to G-disjoint unions. In section 3.4 we define a G-symmetric
monoidal structure on MfldG encoding disjoint unions and topological inductions. The construc-
tion is quite explicit, and relies on the unfurling construction Barwick, introduced in [Bar14]. In
section 3.4 we lift G-disjoint unions to a G-symmetric monoidal structures on the framed variants
of MfldG. Our main tool will be the G-coCartesian structures constructed in [BDG+].

The G-symmetric monoidal structure of G-disjoint unions will be used in section 4 when
defining factorization homology in two ways. First, the expected interaction of genuine G-
factorization homology with disjoint unions and topological inductions is expressed by being a
G-symmetric monoidal functor from MfldG. Second, the definition of G-disk algebras relies on
the definition of the G-symmetric monoidal G-∞-category of G-disks, defined in section 3.6.

Next, we turn to study our constructions. In section 3.7 we show that G-disks are exactly
the G-manifolds generated from linear representations of subgroups H < G by taking disjoint
unions and topological inductions. In section 3.8 we compare equivariant embeddings of G-disks
with equivariant configurations spaces. The results of this comparison will be used in section 5.2
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to show that genuine G-factorization homology satisfies ⊗-excision. In section 3.9 we define the
G-∞-operad EV of little V -disks, and use the results of section 3.8 to relate EV to V -framed
G-disks.

3.1 The G-category of G-manifolds

The goal of this subsection is to give an explicit model for the G-∞-category MfldG of n-
dimensional G-manifolds.

Before going into the details of the construction, let us first recall the construction of the
∞-category MfldG of G-manifolds, achieved by a standard procedure. LetM1,M2 be smooth n-
dimensional manifolds equipped with a smooth action of a finite groupG. The setEmbG(M1,M2)
of smooth G-equivariant open embeddingsM1 →֒M2 comes with a natural topology, making the
category MfldG of n-dimensional G-manifolds into a topological category. We consider MfldG

as an ∞-category by taking its coherent nerve ([Lur09a, def. 1.1.5.5]).
We can extend the construction of MfldG to construct the G-∞-category MfldG as follows.

Consider the ∞-categories MfldH of n-dimensional H-manifolds and H-embeddings for all sub-
groups H < G. The ∞-categories MfldH form a diagram of ∞-categories, by related by two
types of functors:

1. First, ifM is a G-manifold and H < G we can considerM as an H-manifold, which defines
a functor of topological categories MfldG →MfldH . Similarly we have MfldH →MfldK

for K < H < G.

2. Second, suppose K,H < G are conjugate subgroups, i.e H = gKg−1 for some g ∈ G, and
M is an H-manifold. We can consider M as a K-manifold by twisting the H-action by
conjugation, defining an isomorphism of topological categories conjHK : MfldH →MfldK .

A standard verification shows that the topological categoriesMfldH define a diagram of topolog-
ical categories indexed by subgroups H < G, with functors indexed contravariantly by G-maps
G/K → G/H . Note that this indexing category is equivalent to the orbit category OG (see
definition 2.1.1). Composing with the topological nerve we get a diagram of ∞-categories

Mfld• : OopG → Cat∞, G/H 7→ N(MfldH),

which we can unstraighten to a coCartesian fibration UnSt(Mfld•) ։ OopG (see [Lur09a, sec.
3.2]). The casual reader can use UnSt(Mfld•) as the definition of the G-category of G-manifolds,
and skip the rest of this subsection.

The construction of UnSt(Mfld•) is unsatisfying to us in two respects. First, it depends on
an implicit choice of an inverse to the inclusion of the full subcategory {G/H}H<G ⊂ OG into
the category of G-orbits (which is equivalent to choosing a basepoint for every transitive G-set).
Second, manipulating UnSt(Mfld•) as a simplicial set is inconvenient, as unstraightening is a
right adjoint functor. Instead of working with UnSt(Mfld•) we construct an equivalent G-∞-
category MfldG (definition 3.1.16) which admits a more accessible description as a simplicial
set. This is the main construction of this subsection.

Let us briefly describe our strategy for constructing MfldG, inspired by the model of TopG

described in remark 2.1.7. First we construct a topological category OG-Mfld equipped with
functor to the orbit category, and show that the topological nerve defines a Cartesian fibration
N(OG-Mfld) → OG of simplicial sets, which classifies a diagram of ∞-categories equivalent
to N(Mfld•). We then define MfldG (definition 3.1.16) as the coCartesian fibration dual to
N(OG-Mfld)→ OG, which classifies the same diagram N(Mfld•). The dual coCartesian fibra-
tion admits an explicit construction span categories (see [BGN14]) which we use to describe the
objects and morphisms of MfldG and the coCartesian morphisms of MfldG ։ OopG .
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Remark 3.1.1. In this section we denote objects of the orbit category by O ∈ OopG , as opposed
to G/H elsewhere. This is merely for notational convenience.

OG-manifolds and their spaces of smooth equivariant embeddings. We start by defin-
ing OG-manifolds and spaces of smooth equivariant embeddings which will serve as objects and
mapping spaces of the topological category OG-Mfld, see definition 3.1.8.

Definition 3.1.2. An OG-manifold M → O is a smooth n-dimensional manifold M with an
action of G on M by smooth maps, together with a G-map M → O from the underlying G-space
of the manifold M to a G-orbit O ∈ OG.

We always think of an OG-manifoldM → G/H as encoding a smooth n-dimensional manifold
with an action of H , given by the fiber M |H of the G-map M → G/H over the coset H . Note

that a choice of a basepoint o ∈ O induces an isomorphism G/H
∼=→ O, gH 7→ g ·o, where H < G

is the stabilizer of o. We therefore think of an OG-manifold M → O as encoding the smooth
action of H = Stab(o) on the fiber M |H .
Notation 3.1.3. Suppose M,N are smooth n-dimensional manifolds. Denote by C∞(M,N)
the space of smooth maps M → N with the compact-open topology.

Definition 3.1.4. Let M1 → O1,M2 → O2 be OG-manifolds. For ϕ : O1 → O2 a map in OG,
define EmbOGϕ (M1,M2) ⊂ C∞(M1,M2) as the subspace of smooth maps f : M1 →M2 such that

1. f is a G-map

2. f is over ϕ, i.e

M1

��

f // M2

��
O1

ϕ // O2

(5)

is a commutative square of G-spaces.

3. the induced map M1 → O1 ×O2 M2 is an embedding.

Define the topological space EmbOG(M1,M2) as the coproduct

EmbOG(M1,M2) :=
∐

ϕ

EmbOGϕ (M1,M2), (6)

where the coproduct is indexed by the set HomOG(O1, O2).

Notation 3.1.5. When the orbit map ϕ is an identity G/H
=−→ G/H we use the notation

EmbGG/H(M1,M2) for the space EmbOGϕ (M1,M2) of G-equivariant embeddings M1 → M2 over

G/H
=−→ G/H . Restriction to the fiber overH defines a homeomorphism from EmbGG/H(M1,M2)

with the space of H-equivariant embeddings M1|H →M2|H between the fibers over H .

Definition 3.1.6. Let M1 → O1,M2 → O2 be OG-manifolds. A G-isotopy over ϕ : O1 → O2 is
a path in EmbOGϕ (M1,M2). When M1 → O,M2 → O are over the same orbit we call a path in

EmbOGO (M1,M2) a G-isotopy over O.

Note that a G-isotopy over G/H is equivalent to an H-equivariant isotopy between two
H-equivariant embeddings M1|H →M2|H .
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The topological category of OG-manifolds. We now turn to the definition of the topolog-
ical category of OG-manifolds. Note that the pullback of smooth embeddings of n-dimensional
manifolds is a smooth embedding, therefore we have

Lemma 3.1.7. LetM1 → O1,M2 → O2,M3 → O3 be OG-manifolds. The composition of smooth
functions defines a continuous map

EmbOG(M2,M3)× EmbOG(M1,M2)→ EmbOG(M1,M3), (g, f) 7→ g ◦ f.

Definition 3.1.8. The category of OG-manifolds OG-Mfld is the topological category whose
objects are a OG-manifolds. The morphism space from M1 → O1 to M2 → O2 is given by
MapOG-Mfld(M1,M2) := EmbOG(M1,M2).

Define a forgetful functor q : OG-Mfld → OG by sending M → O to the orbit O, and the
subspace EmbOGϕ (M1,M2) ⊂ EmbOG(M1,M2) to ϕ ∈ HomOG(O1, O2).

By [Lur09a, ex. 1.1.5.12] the topological nerve N(OG-Mfld) is an ∞-category, and by
[Lur09a, ex. 1.1.5.8] the topological nerve of OG can be identified with its ordinary nerve, which
we identify with OG by standard abuse of notation.

Applying the topological nerve functor of [Lur09a, 1.1.5.5] to q produces a functor of ∞-
categories N(q) : N(OG-Mfld)→ OG.

In particular, an object of the∞-categoryN(OG-Mfld) is an OG-manifoldM → O, a map is
given by a commutative square eq. (5) satisfying the conditions of definition 3.1.4, and by [Lur09a,
thm. 1.1.5.13] the mapping spaces of N(OG-Mfld) are weakly equivalent to the mapping spaces
of OG-Mfld.

Remark 3.1.9. The fiber of OG-Mfld → OG over an orbit G/H is the topological nerve of
the topological category whose objects are OG-manifolds M → G/H and morphism spaces are
EmbGG/H(M1,M2). This topological category is equivalent to the categoryMfldH ofH-manifolds
and H-equivariant embeddings by restriction to the fibers over H .

Remark 3.1.10. We caution the reader not to pass to ∞-categories prematurely. One can
construct the topological category OG-Mfld as a subcategory of the topological arrow category
MfldG ↓ OG. However, the ∞-category N(OG-Mfld) is not a subcategory of the topological
nerve N(MfldG ↓ OG) in the sense of [Lur09a, sec. 1.2.11]. To see this note that a subcategory
of N(MfldG ↓ OG) is specified by a subcategory of its homotopy category hoN(MfldG ↓ OG),
and therefore given by a choosing connected components of each mapping space of MfldG ↓ OG.
On the other hand condition (3) of definition 3.1.8 is not preserved by G-homotopy equivalence,
so the subspace

EmbGG/H(M1 → O1,M2 → O2) ⊂MapMfldG↓OG(M1 → O1,M2 → O2)

is not given by a set of connected components. The same phenomenon exists in the non-
equivariant setting.

Equivalences of OG-manifolds. Unwinding the definition of equivalence in a nerve of a topo-
logical category, we see that a map f : M1 →M2 in OG-Mfld is an equivalence in N(OG-Mfld)
if it has a G-isotopy inverse: a map g : M2 → M1 in OG-Mfld, together with a G-isotopy over
idq(M1) from g ◦ f to idM1 and a G-isotopy over idq(M2) from f ◦ g to idM2 .

Definition 3.1.11. We say that a map f : M1 →M2 of OG-manifolds is a G-isotopy equivalence
if it is an equivalence in the ∞-category N(OG-Mfld).
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Note that an equivalence f always lies over an isomorphism of orbits q(f) : O1 → O2.
Using the homeomorphism between the mapping space EmbGG/H(M1,M2) over an orbit G/H

and the space of H-equivariant embeddings M1|H → M2|H we see that a map f : M1 → M2

over an orbit G/H is an equivalence in N(OG-Mfld) if and only if its restriction to the fibers
f |H : M1|H →M2|H is invertible upto H-isotopy. In particular, f need not induce an equivariant
diffeomorphism. Nonetheless, its existence is enough to ensure that there exists an equivariant
diffeomorphism between underlying manifolds. We learned the following argument from an an-
swer of Ian Agol on MathOverflow [ha], which we reproduce here (with addition of a G-action).

Proposition 3.1.12. Let M1 → G/H and M2 → G/H be two OG-manifolds over G/H. If
f ∈ EmbGG/H(M1,M2) and g ∈ EmbGG/H(M2,M1) are G-isotopy inverses over G/H then there

exists a G-equivariant diffeomorphism M1
∼=M2 over G/H.

Proof. We prove the statement by reduction. Since EmbGG/H(M1,M2) is homeomorphic to the

space ofH-invariant embeddings betweenM1|H →M2|H it is enough to consider the caseG = H .
Suppose M,N are n-dimensional manifolds with smooth actions of G, and we are given

G-equivariant embeddings f : M → N, g : N →M . Consider the direct limit

X = colim−−−→(M
f−→ N

g−→M
f−→ N

g−→ · · · ),

given by the explicit model M ×N ⊔N ×N/ ∼ with equivalence relation generated by (m, k) ≃
(f(m), k) and (n, k) ≃ (g(n), k + 1). Then X is a smooth manifold with an action of G, as a
sequential union of nested open submanifolds.

Since X is G-diffeomorphic to Y = colim−−−→(N
g−→ M

f−→ N
g−→ · · · ) (removing the first term of

the sequence does not change the colimit), it is enough to show that X is G-diffeomorphic to M .

Note that X is G-diffeomorphic to colim−−−→(M
F1−→ M

F1−→ M
F1−→ · · · ) for F1 = g ◦ f , and F1

is G-isotopic to idM . Let Ft : M →M, t ∈ [0, 1] be the G-isotopy from F0 = idM to F1 = g ◦ f ,
and define Xt = colim−−−→(M

Ft−→M
Ft−→ · · · ), so that X1 = X and X0 =M .

Choose a sequence of compact G-submanifolds with boundary K1 ⊂ K2 ⊂ K3 ⊂ · · ·M such
that M = ∪iKi and F (Ki × [0, 1]) ⊂ int(Ki+1). Such a sequence can be chosen inductively
using a G-invariant Morse function on M (which exists by [Was69, cor. 4.10]). Define Yt =

colim−−−→(K1
Ft−→ K2

Ft−→ K3
Ft−→ · · · ) using the restrictions of the Ft to the subsets Ki. We claim

that Yt = Xt, using the standard model for direct limits. WriteXt =M×N/(x, i) ∼ (Ft(x), i+1),
and note that Yt ⊆ Xt as the points (x, i) with x ∈ Ki. We claim that each point x ∈ Xt is in Yt.
Represent x by (x, i) ∈M×N, then sinceM = ∪Ki we have x ∈ Kj for some j ∈ N. If j ≤ i then
Kj ⊂ Ki, so x ∈ Ki, hence (x, i) represents an point in Yt. Otherwise (x, i) ∼ (F j−it (x), j) in

represents the same point in Xt, and since F j−it (Ki) ⊂ Kj we get F j−it (x) ∈ Kj, so (F j−it (x), j)
represents an element of Yt.

We showed that Yt = Xt, so it is enough to prove that Y0 ∼=M is G-diffeomorphic to Y1 ∼= X .

By definition we have Y0 = colim−−−→(K1 →֒ K2 →֒ K3 →֒ · · · ) and Y1 = colim−−−→(K1
F1−→ K2

F1−→
K3

F1−→ · · · ), hence it is enough to construct compatible G-diffeomorphims φi : Ki →֒ Ki, i.e
satisfying φi+1|Ki = F1 ◦ φi.

We now inductively construct G-equivariant maps Gi : Ki× [0, 1]→ Ki such that G0 = IdKi ,
∀t ∈ [0, 1] : Gt : Ki → Ki is a diffeomorphism and ∀x ∈ Ki, t ∈ [0, 1] : Ft ◦Git(x) = Gi+1

t (x), i.e

21



the diagram

Ki × [0, 1]
� � //

Gi×Id
��

Ki+1 × [0, 1]

Gi+1

��
Ki × [0, 1]

F |Ki×[0,1] // Ki+1

commutes. 12

We start with setting G1
t = IdK1 . Assume that a Gi has been constructed. Consider the

isotopy Ki× [0, 1]
Gi×Id−−−−→ Ki× [0, 1]

F |Ki×[0,1]−−−−−−→ Ki+1. Since Ki ⊂ Ki+1 is a compact submanifold
and F (Ki) ⊂ Int(Ki+1) the conditions of the isotopy extension theorem [Hir12, ch. 8 thm. 1.3]
are satisfied. Therefore there exists a diffeotopy G̃i+1 : Ki+1 × [0, 1] → Ki+1 which extends the

isotopy Ki × [0, 1]
Gi×Id−−−−→ Ki × [0, 1]

F |Ki×[0,1]−−−−−−→ Ki+1 and satisfies G̃i+1
0 = IdKi+1 , but might not

be G-equivariant. Since Ki+1 is compact we can apply [Bre72, thm 3.1], and get a G-equivariant
diffeotopy Gi+1 : Ki+1 × [0, 1]→ Ki+1 with Gi+1

0 = G̃i+1
0 = IdKi+1 and which agrees with G̃i+1

on the subset
{
x ∈ Ki+1 | ∀g ∈ G, t ∈ [0, 1] : G̃i+1

t (gx) = gG̃i+1
t (x)

}
. In particular, for x ∈ Ki

we have G̃i+1
t (x) = FtG

i
t(x), so the G-equivariant diffeotopy Gi+1 agrees with G̃i+1 on Ki× [0, 1].

Setting φi = Gi1 gives the compatible G-diffeomorphisms proving that Y0 ∼= M is indeed
G-diffeomorphic to Y1 ∼= X .

Cartesian edges in OG-Mfld. We now identify the Cartesian edges of the forgetful functor
N(OG-Mfld)→ OG, as well as the coCartesian edges over isomorphisms. We start with

Lemma 3.1.13. The forgetful functor N(q) : N(OG-Mfld)→ OG is an inner fibration.

Proof. For every pair M1 → O1,M2 → O2 of OG-manifolds, q induces a Kan fibration

MapSing(OG-Mfld)(M1,M2)→ MapSing(OG)(O1, O2) = HomOG(O1, O2),

because its a map from a Kan simplicial complex and to discrete simplicial set. Therefore by
[Lur09a, prop. 2.4.1.10(1)] the functor N(q) is an inner fibration.

Note that a map M → O from an n-dimensional manifold to a finite set is always a submer-
sion, so its pullback along any map of finite sets is an n-dimensional manifold.

Proposition 3.1.14. Suppose that ϕ : O1 → O2 be a map of orbits, andM → O2 a OG-manifold.
Then the pullback square of topological G-spaces

O1 ×O2 M

��

f //
❴✤

M

��
O1

// O2

defines a N(q)-Cartesian morphism f in OG-Mfld. In particular, N(q) is a Cartesian fibration.

12The map Gi is an equivariant diffeotopy in terminology of [Hir12] and an equivariant isotopy starting from
the identity in the terminology of [Bre72].
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Proof. Checking that f satisfies the conditions of definition 3.1.8 is immediate.
By [Lur09a, prop. 2.4.1.1 (2)] the morphism f is N(q)-Cartesian if and only if, for every

OG-manifold T → O, the square of spaces

MapSing(Mfld)(T,O1 ×O2 M)

����

f∗ // MapSing(OG-Mfld)(T,M)

����
HomOG(O,O1)

q(f)∗ // HomOG(O,O2)

is a homotopy pullback square. Since the vertical maps are Kan fibrations, this square is a
homotopy pullback if and only if the horizontal map

Map(T,O1 ×O2 M)

(( ((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘
// Hom(O,O1)×Hom(O,O2) Map(T,M)

tttt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐

Hom(O,O1)

is a homotopy equivalence, or equivalently, if f∗ induces an equivalence between the fiber over
every τ ∈ Hom(O,O1).

Let τ : O → O1. Then f∗ induces a map of fibers over τ

EmbOGτ (T,O1 ×O2 M)→ {τ} ×Hom(O,O2) Map(T,M) = EmbOGq(f)◦τ (T,M),



T

��

g // O1 ×O2 M

��
O

τ // O1


 7→




T

��

g // O1 ×O2 M

��

f //
❴✤

M

��
O

τ // O1
q(f) // O2




This continuous map is a bijection by the universal property of the pullback. We leave to it to
the reader to verify it is an open map using the definition of the compact-open topology.

This gives the following complete description of the Cartesian edges in OG-Mfld.

Corollary 3.1.15. A morphism (5) is N(q)-Cartesian if and only if it is equivalent to a pullback,
i.e. the morphism

M1

��

// O1 ×O2 M2

��
O1

= // O1

(7)

is a G-isotopy equivalence.

Proof. Factor the morphism (5) as the composition of (7) and a pullback square. Combining
proposition 3.1.14 and [Lur09a, prop. 2.4.1.7] we see that the morphism (5) is N(q)-Cartesian if
and only if the map above is N(q)-Cartesian. Since the morphism (7) lies over an equivalence it
is N(q)-Cartesian if and only if it is an equivalence, by [Lur09a, prop. 2.4.1.5].
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Construction of the G-category of G-manifolds. The construction of the G-category
MfldG now follows easily from the description of the Cartesian fibration N(q) and the explicit
construction of [BGN14].

Definition 3.1.16. Let p : MfldG → OopG be the dual of the Cartesian fibration OG-Mfld→ OG
in the sense of [BGN14, def. 3.5]. Explicitly, MfldG is the pullback of the effective Burnside
category

Aeff (OG-Mfld, OG-Mfld×OG O
∼=
G , q-Cart(OG-Mfld))

along the equivalence OopG
∼→֒ Aeff (OG,O∼=

G,OG), where O
∼=
G is the maximal subgroupoid of OG

and q-Cart(OG-Mfld) ⊂ OG-Mfld is the subcategory spanned by all objects and morphisms
which are q-Cartesian.

By [BGN14, prop. 3.4] the map p : MfldG → OopG is a coCartesian fibration, and we have an

explicit description of the objects and morphisms of MfldG. The objects of the total∞-category
MfldG are OG-manifolds M → O. A morphism in MfldG from M1 → O1 to M2 → O2 is a
diagram of the form

M1

��

Moo

��

// M2

��
O1 O2
oo = // O2

(8)

where the left square is a coCartesian edge in OG-Mfld (in other words, it is equivalent to a
pullback square, see corollary 3.1.15). This arrow is p-coCartesian exactly when the right square
is a G-isotopy equivalence.

Without loss of generality we will represent a morphism in MfldG by a span (8) where the
left square is a pullback square.

Remark 3.1.17. Let H < G be a subgroup. Topological induction defines a functor

G×H (−) : MfldH →MfldG[G/H], G×H M = ((G×M)/G→ (G× pt)/H = G/H)

where we quotient by the H-action h · (g, x) = (gh−1, gx). Topological induction if a functor of
topological categories, and in fact an equivalence of topological categoriesMfldH

∼−→MfldG[G/H],
with inverse (M → G/H) 7→M |eH given by restriction to the fiber over eH .

Informally, the coCartesian fibrationMfldG → OopG classifies the functorOopG → Cat∞ sending

G/H to MfldH .

Notation 3.1.18. We will refer to MfldG as the G-category of G-manifolds, to stress its con-
ceptual role and not its technical construction. We urge the reader to regards the objects of
MfldG not as OG-manifolds (which they are), but as a technical means of encoding manifolds
with an action of a subgroup of G. This naming convention is also compatible with [BDG+16b,
ex. 7.5], where Top

T
is referred to as the T -∞-category of T -spaces.

By construction, we have a simple description of the fiberwise opposite13 category (MfldG)vop,
introduced in [BDG+16b, sec. 3]. It is helpful to keep this description in mind when we use
the parametrized Yoneda embedding to construct the equivariant tangent classifier in construc-
tion 3.2.8.

13The superscript “vop” stands for taking “vertical opposites”.
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Proposition 3.1.19. Applying the opposite ∞-category functor (−)op to the Cartesian fibration
OG-Mfld→ OG produces a G-category (OG-Mfld)op ։ OopG equivalent to (MfldG)vop ։ OopG .

Proof. By [BDG+16b, def. 3.1] the opposite G-category (MfldG)vop ։ OopG is given by taking

the opposite of the dual Cartesian fibration (MfldG)∧ ։ OG. The result follows, since taking
the dual coCartesian fibration is homotopy inverse to taking the dual Cartesian fibration (see
[BGN14, thm. 1.7]).

3.2 Representations, G-vector bundles and the G-tangent classifier

In this subsection we study the relation between G-vector bundles, H-representations of sub-
groups H < G and the G-category of G-manifolds, MfldG, constructed in section 3.1. We do
this by identifying H-representations with G-vector bundles over G/H , which in turn span a full
G-subcategory RepG

n
⊂ MfldG. An equivariant version of “smooth Kister’s theorem” implies

that RepG
n

is in fact a G-∞-groupoid, which can be identified with the G-space classifying n-

dimensional G-vector bundles, BOn(G). We use RepG
n

to construct an equivariant version of
the tangent classifier of [AF15, sec 2.1] (see construction 3.2.8), which will be used in section 3.3
to define equivariant tangential structures on G-manifolds. It is worth noting that parametrized
∞-category theory is essential for construction 3.2.8, which relies on the identification of the
G-space BOn(G) with a full G-subcategory of MfldG.

We start by recalling the standard definition of G-vector bundles.

Definition 3.2.1 (see [Bre72, sect. VI.2], [tD87, ch. I, def. 9.1]). Let X be a G-space. A
G-vector bundle over X is a (real) vector bundle p : E → X together with a G-action on E by
bundle maps (i.e linear action on each fiber) such that p is a G-map. We say p : E → X is
smooth if E,X are (smooth) G-manifolds and p is a smooth map. Let G −Vect/X denote the
category of G-vector bundles over X.

Note that G-vector bundles are stable under pullback along G-maps, and that a G-vector
bundle over a point is the same as a G-representation. It is useful to keep in mind the corre-
spondence between representations of subgroups H < G and G-vector bundles over the orbit
G/H :

Proposition 3.2.2. [tD87, special case of prop. I.9.2] Let H < G be a subgroup. Restriction
to the fiber over [eH ] gives an equivalence G − Vect/(G/H)

∼−→ H − Vect/pt ∼= RepH from
the category of G-vector bundles over the orbit G/H to the category of H-representations. An
inverse is given by sending a representation of H on Rn to its topological induction G×H Rn.

The subject of this subsection is the following G-subcategory.

Definition 3.2.3. Let RepG
n
⊂ MfldG be the full G-subcategory spanned by G-vector bundles

(E → G/H), i.e OG-manifolds E → G/H such that E can be endowed with a structure of a
G-vector bundle over G/H.

Remark 3.2.4. We will use G-vector bundles as a model for “G-disks”. Specifically, an em-
bedding of a G-disk in an OG-manifold M ∈ MfldG is just a map in MfldG with target is M
and domain in RepG

n
. Genuine G-factorization homology is defined as a parametrized colimit

over finite disjoint unions of G-disks in M (see definition 4.1.2). In section 3.6 we organize these
disjoint unions into a G-∞-category DiskG.

In order to see the close relation of RepG
n

with representation theory we use the following
equivariant version of the “smooth Kister-Mazur” theorem (see [Kup]).
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Proposition 3.2.5. Let V be a finite dimensional real representation of H < G. Let AutRepH (V )
be the automorphism group of V as an H-representation, i.e linear H-equivariant isomorphisms.
Let EmbH0 (V, V ) denote the subspace of smooth H-equivariant embedding fixing the origin, and
AutH0 (V ) ⊂ EmbH0 (V, V ) the subspace of H-equivariant diffeomorphisms. Then the inclusions

AutRepH (V ) →֒ AutH0 (V ) →֒ EmbH0 (V, V )

are homotopy equivalences.

Proof. The proof of [Kup, thm. 2.4] applies verbatim when restricting to subspaces of H-

equivariant maps after checking that the formulas for G
(1)
s , G

(2)
s produce H-equivariant homo-

topies.

The central role played by RepG
n
in what follows stems from the following characterization.

Proposition 3.2.6. The G-category RepG
n

is a G-∞-groupoid, with fibers (RepH
n
)[G/H] equiv-

alent to the topological groupoid RepHn of n-dimensional real representations of H and (lin-
ear, H-equivalent) isomorphisms, where the mapping space IsoRepH (V0, V1) is endowed with the
compact-open topology.

Proof. In order to show that RepG
n

is a G-∞-groupoid we have to prove that the coCartesian

fibration RepG
n

։ OopG is a left fibration. By [Lur09a, prop. 2.4.2.4] it is enough to show that

the fibers (RepG
n
)[G/H] are∞-groupoids. The equivalence MfldG[G/H]

∼= MfldH of remark 3.1.17
takes a G-vector bundle E → G/H to an H-vector bundle E|eH → pt, i.e. an n-dimensional
real H-representation V = (H y Rn), so we have to show that for every V0, V1 ∈ RepHn the
inclusion AutH(V0, V1) ⊂ EmbH(V0, V1) is a weak equivalence.

Let EmbH0 (V0, V1) ⊂ EmbH(V0, V1) denote the subspace of origin fixing maps. Clearly the
inclusion EmbH0 (V0, V1) →֒ EmbH(V0, V1) is a homotopy equivalence. By proposition 3.2.5

the inclusion IsoRepH (V0, V1) →֒ EmbH0 (V0, V1) is a weak equivalence, so IsoRepH (V0, V1)
∼→֒

EmbH(V0, V1) is a weak equivalence.
In other words, the functor RepHn → (RepG

n
)[G/H] is fully faithful. Since by definition it is

essentially surjective it is an equivalence of∞-categories. In particular (RepG
n
)[G/H] is equivalent

to the (coherent nerve of) the topological groupoid RepHn , hence an ∞-groupoid.

By construction of the classifying space of G-vector bundles (see [LR78, Wan80]) we have the
following statement.

Corollary 3.2.7. The G-∞-groupoid RepG
n

corresponds to BOn(G) ∈ TopG, the classifying
G-space of rank n real G-vector bundles.

We can now construct an equivariant version of the tangent classifier of Ayala-Francis (see
[AF15, sec. 2.1]).

Construction 3.2.8 (G-tangent classifier). Let j : MfldG → FunG((MfldG)vop,TopG) be the
parametrized Yoneda embedding G-functor of [BDG+16b] (see proposition 3.1.19 for a descrip-
tion of the fiberwise opposite (MfldG)vop). Define a G-tangent classifier by the composition of
G-functors

τ : MfldG
j−→ FunG((MfldG)vop,TopG)→ FunG((RepG

n
)vop,TopG) ≃ TopG

/BOn(G)

where the last equivalence is given by parametrized straightening/unstraightening.

26



In order to show that the G-tangent classifier sends a G-manifoldM to the G-map classifying
its tangent bundle we will use the following description of the G-slice category TopG

/B
.

Remark 3.2.9. A G-space B defines a G-object B : OopG → TopG (i.e. a coCartesian section, see

[BDG+16b, def. 7.1]). Using the explicit model of TopG given in remark 2.1.7 we can describe
B as

B : OopG → TopG, [G/H ] 7→ (B ×G/H → G/H).

By [AF15, lem] and remark 2.1.7 it follows that the fibers of the parametrized slice category
TopG

/B
are given by

(
TopG

/B

)
[G/H]

≃
(
TopG

[G/H]

)
/B(G/H)

≃
(
TopG/G/H

)
/(B×G/H→G/H)

∼−→ TopG/B×G/H .

In particular an object of
(
TopG

/B

)
[G/H]

is given by a G-space over B×G/H , which we consider

as an object (Y → G/H) ∈ TopG/G/H ≃ TopG
[G/H]

, together with a G-map f : Y → B. We write

f̄ : Y → B ×G/H for the G-map corresponding to the pair (Y → G/H, Y
f−→ B).

The mapping spaces of the slice category
(
TopG

[G/H]

)
/B(G/H)

≃ TopG/B×G/H will be denoted

by MapG/B(G/H)(X,Y ). An explicit description of these mapping spaces is given by the Moore
over category, see appendix A.

Proposition 3.2.10. Let (M → G/H) be an OG-manifold, and consider the tangent bundle

TM → M as a G-vector bundle. Then τM ∈
(
TopG

/BOn(G)

)

[G/H]

is given by (M → G/H) ∈

TopG
[G/H]

together with the G-map τM : M → BOn(G) classifying the tangent bundle of M .

Proof. Recall that an OG-manifold M → G/H has an open cover by G-embeddings Eα →֒
M over G/H , where the patches (Eα → G/H) are G-vector bundles. The mapping space
MapG(M,BOn(G)) is the homotopy limit of MapG(Eα, BOn(G)), so by the functionality of τ
in M we are reduced to verifying the statement for E → G/H a G-vector bundle.

By construction the restriction of τ to RepG
n
is given by straightening the functor associated

to the Yoneda embedding RepG
n
→֒ FunG((RepG

n
)vop,TopG). Recalling the construction of the

parametrized Yoneda embedding ([BDG+16b, sec. 10]) we see that τ |RepG
n
is associated to the

left fibration of the parametrized twisted arrow category Õ(RepG
n
/OopG ) ։ (RepG

n
)vop×RepG

n
,

end τE is associated to its pullback

PE

����

//
❴✤

Õ(RepG
n
/OopG )

����
(RepG

n
)vop×G/H

id×E
// (RepG

n
)vop×RepG

n
.

By proposition 3.2.6 this is a pullback square of G-∞-groupoids, and using corollary 3.2.7 we
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can identify it a homotopy pullback of G-spaces given by the top square of the following diagram

G/H
≃ //

=

,,

Pe

����

//
❴✤

Map(∆1, BOn(G))

����
BOn(G) ×G/H id×e//

proj

��

❴✤
BOn(G)×BOn(G)

proj

��
G/H

e // BOn(G).

Since the bottom square (given by projections to the second coordinate) is a homotopy pull-
back square it follows that the outer rectangle is a homotopy limit diagram. Observe that
the composition of the right vertical maps is an equivalence, and therefore the composition of
the left vertical maps is an equivalence as well. It follows that τE is equivalent to the G-map
(e, id) : G/H → BOn(G) × G/H), where e : G/H → BOn(G) classifies the G-vector bundle
E → G/H .

On the other hand the tangent bundle TE is given by fiber product TE ∼= E ×G/H E and
therefore classified by the composition of the bottom maps in

TE //

��

❴✤
E

��
E

≃ // G/H
e // BOn(G),

which is clearly equivalent to E
≃−→ G/H

(e,id)−−−→ BOn(G)×G/H proj−−−→ BOn(G).

3.3 The G-category of f-framed G-manifolds

We now turn to the definition of the G-∞-category of G-manifolds with additional tangential
structure. Our main interest is in the tangential structure defining V -framedG-manifolds, for V a
G-representation. However, the definition of equivariant framing on G-manifolds supports other
interesting tangential structures, including equivariant orientations in the sense of [CMW01],
and free G-manifolds (an example not a priori associated with tangential structures).

The specific type of G-tangential structure, such as equivariant framing or equivariant ori-
entation, is specified by a G-space B and a G-map f : B → BOn(G), in the following manner.
An f -framing on a G-manifold M is given by a G-map M → B such that the composition

M → B
f−→ BOn(G) classifies the tangent bundle of M . Similarly, if H < G is a subgroup and

M is an H-manifold, we say that M is f -framed its tangent bundle is classified by the H-map

M → B
f−→ BOn(G).

The ∞-categories of f -framed H-manifold for H < G can be arranged into an OopG -diagram,

encoded by a G-∞-category MfldG,f−fr. We start by giving a precise definition of MfldG,f−fr

and the G-functor MfldG,f−fr →MfldG that forgets the tangential structure.

Definition 3.3.1. Let B ∈ TopG be a G-space and f : B → BOn(G) be a G-map. Define the
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G-categories of f -framed G-manifolds as the pullback

MfldG,f−fr
❴✤

��

// TopG
/B

f∗

��
MfldG

τ // TopG
/BOn(G)

.

Remark 3.3.2. Unwinding the definition, an object of (MfldG,f−fr)[G/H] is given by (M →
G/H) ∈MfldG[G/H], a G-map fM : M and a G-homotopy between f ◦ fM exhibiting

B

f

��
M

τM //

fM

::✈✈✈✈✈✈✈✈✈✈
BOn(G)

as homotopy coherent diagram of G-spaces.
The mapping spaces of MfldG,f−fr[G/H] are given by homotopy pullbacks

EmbG,f−frG/H (M,N) MapG/B×G/H(M
¯fM−−→ B ×G/H,N f̄N−−→ B ×G/H)

EmbGG/H(M,N) MapG/BOn(G)×G/H(M
¯τM−−→ BOn(G)×G/H,N τ̄N−−→ BOn(G)×G/H).

p
(f×G/H)∗

τ

We finish this subsection with some examples of equivariant tangential structures on G-
manifolds. We are primarily interested in equivariantly framed G-manifolds, which is our first
example.

Example 3.3.3 (V -framed G-manifolds). Let B = pt. A G-map f : pt → BOn(G) factors
through the space of G-fixed points (BOn(G))

G =
∐
V BAutRepGn

(V ), so choosing f is equivalent
to choosing a connected component, i.e a real n-dimensional G-representation V . A V -framing
of an H-manifold M is therefore a homotopy lift

pt

V

��
M

τM //

::✉✉✉✉✉✉✉✉✉✉
BAut(V ),

which under proposition 3.2.10 and restriction to fibers over the coset eH is equivalent to a choice
of trivialization TM ∼=M × V as an H-vector bundle.

Example 3.3.4 (G-manifolds with no tangential structure). Apply definition 3.3.1 for the G-
space B = BOn(G) and id : BOn(G)→ BOn(G) constructs MfldG,id−fr ∼= MfldG.

Example 3.3.5 (G-orientated G-manifolds). Orientations of G-vector bundles were studied by
Costenoble, May and Waner in [CMW01]14, and used in [CW] to prove equivariant versions of
Poincaré duality.

14see [CMW01, def. 2.8] for a precise definition
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Let us recall the relevant results from [CMW01]. First, there exists a universal oriented G-
n-plane bundle, given by a G-map EOn(G,S)→ BOn(G,S), see [CMW01, thm. 22.4]. Second,
there is a G-map f : BOn(G,S) → BOn(G) representing the forgetful functor from oriented
n-plane bundles to G-n-plane bundles. Therefore an orientation on a G-vector bundle is given
by a G-homotopy lift of its classifying map along the G-map f .

Applying definition 3.3.1 to B = BOn(G,S) and f : BOn(G,S) → BOn(G) we get a G-∞-
category MfldG,or of oriented G-manifolds.

Remark 3.3.6. The notion of an oriented G-manifold seems not to agree with the notion of
oriented global orbifold (see, for example, [ALR07, p. 34]).

Finally, we can use equivariant tangential structures to restrict the class of G-manifolds we
consider, an idea introduced in [AFT17b, rem. 1.1.9].

Example 3.3.7. Applying definition 3.3.1 with B = BOn(G)× EG and a G-map given by the
projection pr : BOn(G) × EG → BOn(G) produces a G-∞-category MfldG,pr−fr. In this ex-
ample the forgetful G-functor MfldG,pr−fr →MfldG is fully faithful, and exhibits MfldG,pr−fr

as the full G-subcategory of MfldG spanned by OG-manifolds M → O where M is a free G-
manifold. We now give a quick sketch the argument.

We consider a manifoldM with an action of G, describing an object (M → G/G) ∈MfldG[G/G]

(the argument for an OG-manifoldM → G/H is similar). A homotopy lift of τM : M → BOn(G)
along the projection the same as a G-map M → EG. A G-map M → EG exists if and only if
the action of G on M is free, in which case the space of G-maps MapG(M,EG) is contractible.
This is easily seen by using the Elmendorf-McClure theorem; the presheaves that represents M
and EG send

M,EG : OopG → S, M : G/H 7→MH , EG : G/H 7→
{
pt, H = e,

∅ H 6= e,

and a map MH → ∅ exists if and only if MH is empty. It follows that a map of OG-presheaves
M → EG exists if and only if the action of G on M is free. Finally, if G acts freely on M then
MapFun(OopG ,S)(M,EG) ≃Map(M,pt) ≃ pt.

3.4 G-disjoint union of G-manifolds

The goal of this section is to endow the G-∞-category MfldG with a G-symmetric monoidal
structure associated to disjoint unions.

Recall that n-dimensional manifolds with G-action and G-equivariant embedding can be
organized into a topological category MfldG. Despite the fact that MfldG does not have
coproducts15, we can still endow MfldG with a symmetric monoidal structure by taking dis-
joint unions. Therefore the ∞-category N(MfldG) admits a symmetric monoidal structure
N⊗(MfldG) ։ Fin∗, given by applying the operadic nerve construction of [Lur, def. 2.1.1.23].

Similarly, disjoint unions endow the∞-categoryN(MfldH) with a symmetric monoidal struc-
ture, making the restriction and conjugation functors symmetric monoidal. We can therefore en-
hance Mfld• from a diagram of ∞-categories to a diagram of symmetric monoidal ∞-categories
N⊗(Mfld•). However, this construction does not encode the operation of topological induction
and its coherent compatibility with the symmetric monoidal structure and restriction and conju-
gation of the action. The main point of this subsection is that all of the structure we are interested
in can be encoded as a G-symmetric monoidal structure on the G-category of G-manifolds (see

15 Note that EmbG(M1 ⊔M2,M) 6≃ EmbG(M1,M)×EmbG(M2,M).
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definition 3.1.16). It would be preferable to define this G-symmetric monoidal structure by an
appropriate variant of the operadic nerve construction, however we are unaware of such con-
struction. We therefore define the G-symmetric monoidal structure by explicitly constructing a
coCartesian fibration MfldG,⊔ ։ FinG∗ (see definition 3.4.19).

Our construction can be briefly described as follows. The category FinG∗ is constructed as a
category of spans in the category of finite G-sets over an orbit, OG-Fin, (see lemma 3.4.2), so it
is natural to construct MfldG,⊔ as category of spans of an auxiliary ∞-category OG-Fin-Mfld,
defined over OG-Fin. In definition 3.4.5 we construct OG-Fin-Mfld as a topological category
over OG-Fin. We want to apply Barwick’s unfurling construction, see [Bar14], to the functor
N(OG-Fin-Mfld) → OG-Fin, in order to produce a coCartesian fibration MfldG,⊔ ։ FinG∗
between the respected ∞-categories of spans. There is a simple criterion, described in [Bar14],
that ensures that the unfurled functor is a coCartesian fibration:

1. Egressive arrows in OG-Fin, serving as the “wrong way arrows” in the span category FinG∗ ,
have Cartesian lifts (verified in lemma 3.4.9).

2. Ingressive arrows in OG-Fin, serving as the “right way arrows” in the span category FinG∗ ,
have coCartesian lifts (verified in lemma 3.4.13).

3. The pullback squares appearing in the definition of composition in the span category FinG∗
satisfies a “Beck-Chevalley condition” (verified in proposition 3.4.15).

The resulting “unfurled” ∞-category MfldG,⊔ (see definition 3.4.19) admits an explicit descrip-
tion as an ∞-category of spans. In particular we have a description of the objects, morphisms
and coCartesian morphisms of MfldG,⊔. Using the explicit description of MfldG,⊔ ։ FinG∗ we
show that it satisfies the G-Segal conditions and that its underlying G-∞-category is MfldG

(proposition 3.4.21).

Construction of the auxiliary category OG-Fin-Mfld

In this subsection we define a topological category OG-Fin-Mfld with a functor to the category
OG-Fin of finite G-sets over orbits. The topological categoryOG-Fin-Mfld serves as input to the
unfurling construction ([Bar14, sec. 11]), producing a coCartesian fibration MfldG,⊔ ։ FinG∗
that defines the G-symmetric monoidal structure of G-disjoint union on MfldG (see defini-
tion 3.4.19).

We start with a definition of the category OG-Fin, which serves as the base category of the
unfurling construction.

Definition 3.4.1. The category OG-Fin is the pullback OG-Fin := Fun(∆1, F inG)×Fun({1},F inG)

OG. The category OG-Fin is a full subcategory of the arrow category Fun(∆1, F inG), whose ob-
jects are arrows U → O in FinG such that O ∈ OG. A morphism in OG-Fin is a summand-
inclusion ([Nar16, def. 4.12]) if it factors as an inclusion over orbit-identity followed by a pullback
square

U1

��

� � // ϕ∗U2

��

//
❴✤

U2

��
O1

= // O1
ϕ // O2

. (9)

Note that we the inclusion of G-sets U1 →֒ ϕ∗U2 exhibits ϕ∗U2 as the coproduct of the G-sets U1

and U ′ = ϕ∗U2 \ U1. We can therefore identify ϕ∗U2
∼= U1

∐
U ′.

Let OG-Fin† ⊂ OG-Fin be the subcategory consisting of all objects while morphisms are
summand-inclusions.
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It is straightforward to see that the G-category FinG∗ of [Nar16, def. 4.12] can be defined by
the following unfurling construction.

Lemma 3.4.2. The triple (OG-Fin,OG-Fin ×OG O
∼=
G,OG-Fin†) is an adequate triple in the

sense of [Bar14, def. 5.2], and its effective Burnside category fits into a pullback square

FinG∗

��

� � //
❴✤

Aeff (OG-Fin,OG-Fin×OG O
∼=
G,OG-Fin†)

��
OG �
� // Aeff (OG,O∼=

G ,OG)

(10)

We now define a topological category of “parametrized OG-manifolds” over OG-Fin.

Definition 3.4.3. An OG-Fin-manifold M → U → O is

1. a smooth n-dimensional manifold M with an action of G on M by smooth maps,

2. together with a G-mapM → U from the underlying G-space of the manifold M to a G-finite
set U ∈ FinG,

3. and an arrow U → O in FinG such that O ∈ OG.

An morphism of OG-Fin-manifolds is given by a commuting square of G-spaces

M1

��

f // M2

��
U1

��

ϕ // U2

��
O1

ϕ // O2,

such that the induced map M1 → O1 ×O2 M2 is an embedding.

Definition 3.4.4. Let M1 → U1 → O1, M2 → U2 → O2 be OG-Fin-manifolds and ϕ : I1 → I2

a morphism in OG-Fin given by

U1

��

ϕ // U2

��
O1

ϕ // O2

. Define EmbOG-Fin
ϕ (M1,M2) ⊂ C∞(M1,M2) as

the subspace of smooth maps f : M1 →M2 such that (f, ϕ, ϕ) is a morphism of OG-Fin-manifolds
from M1 → U1 → O1 to M2 → U2 → O2.

Definition 3.4.5. The Category of OG-Fin-manifolds OG-Fin-Mfld is the topological category
whose objects are OG-Fin-manifolds. The morphism space from M1 to M2 is given by

MapOG-Fin-Mfld(M1,M2) :=
∐

ϕ

EmbOG-Fin
ϕ (M1,M2),

where the coproduct is indexed by HomOG-Fin(U1 → O1, U2 → O2).
Define a forgetful functor p : OG-Fin-Mfld → OG-Fin by sending M → U → O to U → O,

and the subspace EmbOG-Fin
ϕ (M1,M2) ⊂Map(M1,M2) to ϕ ∈ HomOG-Fin(U1 → O1, U2 → O2).
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From here on we will abuse notation, writing OG-Fin-Mfld for both the topological cate-
gory OG-Fin-Mfld, its incarnation as a fibrant simplicial category Sing(OG-Fin-Mfld) and its
incarnation as an ∞-category N(OG-Fin-Mfld), distinguishing between these incarnations by
context.

Remark 3.4.6. Note that an equivalence f : M → N in OG-Fin-Mfld is always an embedding
of smooth manifolds, since it lies over an isomorphism of orbits. Moreover, it is G-isotopic
to an identity-of-manifolds over the isomorphism p(f). On the other hand, if f is G-isotopic
to an identity-of-manifolds over an isomorphism of finite G-sets then f is an equivalence in
OG-Fin-Mfld, so we have a complete characterization of equivalences in OG-Fin-Mfld.

Some Cartesian and coCartesian edges of OG-Fin-Mfld→ OG-Fin
We characterize p-Cartesian edges of OG-Fin-Mfld over summand-inclusions and p-coCartesian
edges over isomorphisms of orbits. We summarize the results of this subsection as follows.

Proposition 3.4.7. A morphism f of OG-Fin-Mfld over OG-Fin† is p-Cartesian if and only
if it is equivalent to a pullback over a summand-inclusion. A morphism g of OG-Fin-Mfld over
OG-Fin×OG O

∼=
G is p-coCartesian if and only if it is G-isotopic to an identity-of-manifolds over

an orbit-isomorphism.

The characterization of p-Cartesian edges is given in corollary 3.4.12, and the characterization
of p-coCartesian edges is given in corollary 3.4.14.

Remark 3.4.8. By [Lur09a, prop. 2.4.1.10(1)] the map OG-Fin-Mfld → OG-Fin is an inner
fibration.

Lemma 3.4.9. Let ϕ ∈ HomOG-Fin(U1 → O1, U2 → O2) be a morphism in OG-Fin given by a

pullback square

U1

��

//
❴✤

U2

��
O1

// O2

, and N → U2 → O2 a OG-Fin-manifold over its target. Then the

pullback

M

��

f //
❴✤

N

��
U1

��

//
❴✤

U2

��
O1

// O2

defines a p-Cartesian morphism f in OG-Fin-Mfld lifting ϕ.

Proof. According to [Lur09a, prop. 2.4.1.10(2)] we have to show that for every OG-Fin-manifold
T → U → O the commutative square

Map(T,M)

����

f∗ // Map(T,N)

����
HomOG-Fin(p(T ), p(M))

p(f)∗ // HomOG-Fin(p(T ), p(N)
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is a homotopy pullback. Since the vertical maps are Kan fibrations, this square is a homotopy
pullback if and only if f∗ induces an equivalence between the fibers over every vertex of the base
HomOG-Fin(p(T ), p(M)).

Let τ ∈ HomOG-Fin(p(T ), p(M)). The functor f∗ induces a map of the fibers over τ

(f∗)|τ : EmbOG-Fin
τ (T,M)→ {τ} ×HomOG-Fin(p(T ),p(M) Map(T,N).

Unwinding the definition of the mapping space in OG-Fin-Mfld, we have

{τ} ×HomOG-Fin(p(T ),p(M) Map(T,N) = {τ} ×HomOG-Fin(p(T ),p(M)

(∐

ϕ

EmbOG-Fin
ϕ (T,N)

)

= EmbOG-Fin
p(f)◦τ (T,N),

where the last equality holds since pullback along a fixed map preserve coproducts.
Suppose that the OG-Fin-manifold T is given by T → U → O and τ : p(T )→ p(N) is given

by the square

U

��

// U1

��
O // O1

. Then the map (f∗)|τ : EmbOG-Fin
τ (T,M)→ EmbOG-Fin

p(f)◦τ (T,N) sends

h : T →M to f ◦ h:

(f∗)|τ : h =




T

��

h // M

��
U

��

// U1

��
O // O1




7→




T

��

h // M

��

f //
❴✤

N

��
U

��

// U1

��

//
❴✤

U2

��
O // O1

// O2




.

The universal property of the pullback M = N ×U2 U1 shows that (f∗)|τ is a continuous bi-
jection: injectivity follows from uniqueness of maps to the pullback. Surjectivity: suppose
g ∈ EmbOG-Fin

p(f)◦τ (T,N), by existence of a map to the pullback we have a candidate map h : T →M

over τ such that g = f ◦ g. We have to show that h ∈ EmbOG-Fin
τ . Clearly h is a smooth G-map,

so we only have to verify condition (3) of definition 3.4.4: h induces an embedding T → O×O1M .
To see that observe that g induces an embedding T →֒ O×O2N which factors as the map induced
by h followed by the isomorphism O ×O1 M = O ×O1 (O1 ×O2 N) ∼= O ×O2 N .

We leave it as an exercise to the reader to verify that (f∗)|τ is an open map, and therefore a
homeomorphism.

Note that every G-mapM → U1

∐
U2 from a manifold with G-action to a coproduct of G-sets

factors as coproduct of G-maps M =M1

∐
M2 → U1

∐
U2.

Lemma 3.4.10. Let ϕ be an inclusion of finite G-sets over idO in OG-Fin, given by the diagram

U1

��

� � // U1

∐
U2

��
O1

= // O1

, and M1

∐
M2 → U1

∐
U2 → O2 a OG-Fin-manifold over its target. Then
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the pullback

M1

��

� � i //
❴✤

M1

∐
M2

��
U1

��

� � // U1

∐
U2

��
O1

= // O1

defines a p-Cartesian morphism i in OG-Fin-Mfld lifting ϕ.

Proof. As in lemma 3.4.9, we have to show that for every OG-Fin-manifold T → U → O and
every τ : p(T )→ p(M1) the map i∗ induces equivalence of the fibers

EmbOG-Fin
τ (T,M1)→ EmbOG-Fin

p(i)◦τ (T,M1

∐
M2).

As above, we use the universal property of the pullback to show this map is a bijection, and
leave it to the reader to verify it is an open map.

The only part which is different is the verification of condition (3) of definition 3.4.4: g induces
an embedding T →֒ O ×O1 (M1

∐
M2), which factors as the composition of the map induced by

h, an inclusion and an isomorphism

T → O ×O1 M1 →֒ O ×O1 M1

∐
O ×O1 M2

∼= O ×O1 (M1

∐
M2).

Since the composition is an embedding, the map T → O×O1 M1 induced by h is an embedding.

Together, the lemmas above show the existence of p-Cartesian lifts over summand-inclusions
and characterizes them.

Corollary 3.4.11. Let ϕ ∈ HomOG-Fin(U1 → O1, U2 → O2) be a morphism in OG-Fin† and
N → U2 → O2 an OG-Fin-manifold over its target. Then the pullback

M

��

f //
❴✤

N

��
U1

��

// U2

��
O1

// O2

defines a p-Cartesian morphism f in OG-Fin-Mfld lifting ϕ.

Proof. Factor the summand-inclusion ϕ as in (9), apply lemma 3.4.9 and lemma 3.4.10.

By [Lur09a, prop. 2.4.1.7 and 2.4.1.5], we have
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Corollary 3.4.12. A morphism f of OG-Fin-Mfld over OG-Fin† is p-Cartesian if and only if
it is equivalent to a pullback over a summand-inclusion, i.e the left map in the factorization

f =




M1

��

� � // M2 ×U2 U1

��

//
❴✤

M2

��
U1

��

= // U1

��

// U2

��
O1

= // O1
// O2




is an equivalence in OG-Fin-Mfld (a G-isotopy equivalence over U1).

Next, we construct p-coCartsian lifts over isomorphism of orbits.

Lemma 3.4.13. Let ϕ =




U1

��

// U2

��
O1

∼= // O2


 be a morphism of OG-Fin×OGO

∼=
G and M → U1 →

O1 an OG-Fin-manifold. Then f =




M

��

= // M

��
U1

��

// U2

��
O1

∼= // O2




is a p-coCartesian lift of ϕ.

Proof. By the dual version of [Lur09a, prop. 2.4.1.10(2)] we have to show that for every OG-Fin-
manifold T → U → O the square

Map(M → U2 → O1, T → U → O)

����

f∗
// Map(M → U1 → O1, T → U → O)

����
HomOG-Fin(U2 → O1, U → O)

p(f)∗ // HomOG-Fin(U1 → O1, U → O)

is a homotopy pullback square. Since the vertical maps are Kan fibrations, this square is a homo-
topy pullback if and only if f∗ induces an equivalence between the fibers. Next, note that the map
f∗ is induced by composition with idM , and the fibers over τ ∈ HomOG-Fin (U2 → O1, U → O)
and τ ◦ p(f) ∈ HomOG-Fin (U1 → O1, U → O) are both subspaces of the space of smooth maps
C∞(M,T ):

EmbOG-Fin
τ (M,T ) ⊂ C∞(M,T ), EmbOG-Fin

τ◦p(f) (M,T ) ⊂ C∞(M,T ).

We finish the proof by observing that these subspaces are equal: conditions (1),(3) of defini-
tion 3.4.4 coincide, while the equivalence of condition (2) follows from the commutativity of the

square

M

��

= //M

��
U1

// U2

, the top square of f .
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We therefore have a characterisation of p-coCartesian edges over orbit isomorphisms.

Corollary 3.4.14. A morphism f of OG-Fin-Mfld over an orbit-isomorphism is p-Cartesian
if and only if it is equivalent to an identity-of-manifolds, i.e. the right map in the factorization

f =




M1

��

= // M1

��

� � //M2

��
U1

��

// U2

��

= // U2

��
O1

∼= // O2
= // O2




is an equivalence in OG-Fin-Mfld (a G-isotopy equivalence over U2).

Construction of the G-symmetric monoidal category MfldG,⊔

We now turn to the goal of this subsection, the construction of a G-symmetric monoidal structure
on theG-category ofG-manifolds. In definition 3.4.19 we use the unfurling construction of [Bar14,
sect. 11] to define a coCartesian fibration MfldG,⊔ ։ FinG∗ , and in proposition 3.4.21 we verify
the Segal conditions, showing that it defines a G-symmetric monoidal structure on MfldG.

We first make sure that the conditions for applying Barwick’s unfurling construction hold.
Since Cartesian lifts of egressive morphisms and coCartesian lifts of ingressive morphisms were
constructed in proposition 3.4.7 it remains to verify the Beck-Chevalley conditions.

Proposition 3.4.15. The inner fibration OG-Fin-Mfld → OG-Fin is adequate over the triple
(OG-Fin,OG-Fin×OG O

∼=
G ,OG-Fin†) ([Bar14, def. 10.3]).

Proof. Conditions [Bar14, cond. (10.3.1),(10.3.2)] follow from proposition 3.4.7. To verify con-
dition [Bar14, cond. (10.3.3)] construct the natural map i! ◦ q∗(Ñ) → q′∗ ◦ j!(Ñ) by choosing
appropriate p-Cartesian and p-coCartesian lifts, and show that map is the universal map between
two models of the same pullback, hence a diffeomorphism over an identity map.

Let

s

q

����

// i //
❴✤

s′

q′
����

t //
j // t′

be an ambigressive pullback square inOG-Fin, whose objects and morphisms

are given by

s =




Ũ

��
Õ1


 , s′ =




U

��
O1


 , t =




Ṽ

��
Õ2


 , t′ =




V

��
O2


 , i =




Ũ

��

// U

��
Õ1

∼= // O1


 ,

j =




Ṽ

��

// V

��
Õ2

∼= // O2


 , q =




Ũ

��

// Ṽ

��
Õ1

// Õ2


 , q′ =




U

��

// V

��
O1

// O2




And Ñ = (Ñ → Ṽ → Õ2) an object in the fiber of p over t. We compute i! ◦ q∗(Ñ), q′∗ ◦ j!(Ñ)
and the map i! ◦ q∗(Ñ) → q′∗ ◦ j!(Ñ) (natural in Ñ) by choosing appropriate p-Cartesian and
p-coCartesian lifts.
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Let M̃ := Ñ ×Ñ Ũ . Since q is a summand-inclusion by corollary 3.4.11 the map

M̃

��

//
❴✤

Ñ

��
Ũ

��

// Ṽ

��
Õ1

// Õ2

is p-Cartesian over q , so q∗(Ñ) := (M̃ → Ũ → Õ1).
Since i is over an isomorphism of orbits, by lemma 3.4.13 the map

M̃

��

= // M̃

��
Ũ

��

// U

��
Õ1

∼= // O1

is p-coCartesian over i, so i! ◦ q∗(Ñ) := (M̃ → U → O1).
Since j is over an isomorphism of orbits, by lemma 3.4.13 the map

Ñ

��

= // Ñ

��
Ṽ

��

// V

��
Õ2

∼= // O2

is p-coCartesian over j, so j!(Ñ) := (Ñ → V → O2).
Let M := Ñ ×V U . Since q′ is a summand-inclusion by corollary 3.4.11 the map

M

��

//
❴✤

Ñ

��
U

��

// V

��
O1

// O2

is p-Cartesian over q′, so q′∗ ◦ j!(Ñ) := (M → U → O1).
Next, we choose a map ξ : q∗(Ñ)→ q′∗ ◦ j!(Ñ) over i by composing the lifts of q and j above
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and using the universal property of the pullback M

M̃

��

//
❴✤

Ñ

��

= // Ñ

��
Ũ

��

// Ṽ

��

// V

��
Õ1

// Õ2

∼= // O2

⇒

M̃

��

∃!ξ //❴❴❴ M

��

//
❴✤

Ñ

��
Ũ

��

// U

��

// V

��
Õ1

∼= // O1
// O2

.

The map ξ induces the natural map ξ : i! ◦ q∗(Ñ)→ q′∗ ◦ j!(Ñ) over ids′ by

M̃

��

= // M̃

��

∃!ξ //❴❴❴ M

��
Ũ

��

// U

��

= // U

��
Õ1

∼= // O1
= // O1

.

In order to verify [Bar14, cond. (10.3.3)] we have to show that ξ is an equivalence in the fiber
over s′. We show that ξ is a diffeomorphism. Consider the diagram

M̃

��

//
❴✤

Ñ

��
Ũ

��

//
❴✤

Ṽ

��
U // V

the top square is a pullback square by definition of M̃ , and the bottom square is a pullback
square by assumption. Therefore the outer rectangle is a pullback square. By the universal
property of M = Ñ ×U V the induced map ξ is a diffeomorphism, as claimed.

This ends the proof of proposition 3.4.15.

We can now define MfldG,⊔ by applying the unfurling construction to OG-Fin-Mfld →
OG-Fin.

Definition 3.4.16. Define a subcategory (OG-Fin-Mfld)† ⊂ OG-Fin-Mfld with the same ob-
jects as OG-Fin-Mfld, and with morphisms the p-Cartesian edges over summand-inclusions (i.e
over edges over OG-Fin†). Define a subcategory (OG-Fin-Mfld)† ⊂ OG-Fin-Mfld by

(OG-Fin-Mfld)† := OG-Fin-Mfld×OG-Fin (OG-Fin×OG O
∼=
G)
∼= OG-Fin-Mfld×OG O

∼=
G.

Construction 3.4.17. By lemma 3.4.2, proposition 3.4.15 and [Bar14, prop. 11.2] the triple
(OG-Fin-Mfld, (OG-Fin-Mfld)†, (OG-Fin-Mfld)†) is adequate. This condition ensures we can
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form the ∞-category of spans Aeff (OG-Fin-Mfld, (OG-Fin-Mfld)†, (OG-Fin-Mfld)†). Apply-
ing the effective Burnside construction to p : OG-Fin-Mfld→ OG-Fin we get a functor

Aeff (OG-Fin-Mfld, (OG-Fin-Mfld)†, (OG-Fin-Mfld)†)

Aeff (OG-Fin,OG-Fin×OG O
∼=
G,OG-Fin†),

Υ(p)

called the unfurling of p in [Bar14, def. 11.3].

Lemma 3.4.18. The functor Υ(p) is a coCartesian fibration.

Proof. The functor Υ(p) is an inner fibration by [Bar14, lem. 11.4], and a coCartesian fibration
by [Bar14, lem. 11.5] and proposition 3.4.7.

Definition 3.4.19. Define a coCartesian fibration MfldG,⊔ ։ FinG∗ by pulling Υ(p) along the
inclusion FinG∗ →֒ Aeff (OG-Fin,OG-Fin×OG O

∼=
G ,OG-Fin†) of (10).

Remark 3.4.20. Unwinding the definition of the effective Burnside category, we see that the
objects of MfldG,⊔ are OG-Fin-manifolds, and a morphism f : M1 → M2 is represented by a
span

f =




M1

��

Moo

��

// M2

��
U1

��

Uoo

��

// U2

��
O1 O2
oo = // O2




,

where the ’backwards arrow’ is equivalent to a pullback over a summand-inclusion. The morphism
f is coCartsian exactly when the ’forward arrow’ is equivalent to an identity-of-manifolds (see
proposition 3.4.7 and [Bar14, lem. 11.5]).

Proposition 3.4.21. The coCartesian fibration MfldG,⊔ ։ FinG∗ of definition 3.4.19 is G-
symmetric monoidal category whose underlying G-category is isomorphic to the G-category MfldG

of definition 3.1.16. We call this G-symmetric monoidal structure G-disjoint union of G-manifolds.

Proof. By definition B.0.4 the underlying G-category of MfldG,⊔ has objects OG-Fin-manifolds
of the form (M → O

=−→ O) and maps represented by spans of the form




M1

��

Moo

��

// M2

��
O1

=

��

O2
oo

=

��

= // O2

=

��
O1 O2
oo = // O2




with left square equivalent to a pullback. ThisG-category is isomorphic toMfldG by the forgetful
functor (M → O

=−→ O) 7→ (M → O).
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By lemma B.0.10 it is enough to show that for every I = (U → O) ∈ FinG∗ the induced

functor
∏
ρW∗ : MfldG,⊔I → ∏

W∈Orbit(U) MfldG[W ] is an equivalence of ∞-categories, where ρW∗
is induced by the fibration MfldG,⊔ ։ FinG∗ and the inert edge

ρW =




U

��

W? _oo = //

=

��

W

=

��
O Woo = // W.


 , ρW ∈ FinG∗ .

Let (M → U → O) ∈MfldGI be an OG-Fin-manifold. The decomposition U =
∐
W∈Orbit(U)W

into orbits induces a decomposition of M into a disjoint union M = ⊔W∈Orbit(U)MW . The
action of ρW∗ on (M → U → O) is specified by a choice of coCartesian lift over ρW . By the above
description of coCartesian edges we see that




M

��

MW
? _oo

��

= // MW

��
U

��

W? _oo = //

=

��

W

=

��
O Woo = // W.




is such a coCartesian edge, therefore the functor
∏
ρW∗ is given by

∏
ρW∗ : MfldG,⊔I →

∏

W∈Orbit(U)

MfldG[W ],

∏
ρW∗ :




M

��
U

��
O




=




⊔
W∈Orbit(U)MW

��∐
W∈Orbit(U)W

��
O




7→




MW

��
W

=

��
W




W∈Orbit(U)

which is an equivalence by inspection.

3.5 G-disjoint union of f-framed G-manifolds

In this subsection we lift G-disjoint union of G-manifolds to a G-symmetric monoidal structure
on MfldG,f−fr. Recall that MfldG,f−fr was defined as the pullback of G-∞-categories (see
definition 3.3.1). We will show that the G-symmetric monoidal structure of MfldG lifts to
MfldG,f−fr by exhibiting the pullback square of definition 3.3.1 as underlying a pullback square
of G-symmetric monoidal G-∞-categories and G-symmetric monoidal functors.

In addition to G-disjoint unions of G-manifolds we will use the G-coCartesian structure,
constructed in [BDG+] and given by G-coproducts. In general the G-coCartesian structure on
a G-category C is given by a G-∞-operad C∐. However, we will only use this construction for C
with finite G-coproducts, in which case C∐ is a G-symmetric monoidal G-∞-category.

We show show that the G-functors in the pulback square of definition 3.3.1 extend to G-
symmetric monoidal functors in two steps. By a formal argument these G-functors extend to lax
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G-symmetric monoidal functors. It then remains to verify that these lax G-symmetric monoidal
functors are in fact G-symmetric monoidal.

The following claim allows us to extend G-functors to C from certain G-∞-operads to lax
G-symmetric monoidal functors.

Lemma 3.5.1. Let C be a G-category and O⊗ a unital G-∞-operad. Restriction to the underlying
G-category induces an equivalence

AlgG(O, C)→ FunG(O, C)

between the ∞-category of morphisms of G-∞-operads from O⊗ to C∐ and the ∞-category of
G-functors between the underlying G-categories.

Let B ∈ TopG be a G-space and f : B → BOn(G) be a G-map. Endow the parametrized
slice G-categories TopG

/B
, TopG

/BOn(G)
with the G-coCartesian G-symmetric monoidal structure.

By lemma 3.5.1 the G-functors

f∗ : Top
G

/B
→ TopG

/BOn(G)
, τ : MfldG → TopG

/BOn(G)

admit an essentially unique lift to lax G-symmetric monoidal functors

f∗ : Top
G

/B
→ (TopG

/BOn(G)
)∐, τ : MfldG,⊔ → (TopG

/BOn(G)
)∐

The following description of the G-coCartesian structure (TopG
/B

)∐ is useful when verifying

that the lax G-symmetric monoidal functors τ, f∗ constructed above are in fact G-symmetric
monoidal.

Remark 3.5.2. Let I = (U → G/H) ∈ FinG∗ . Then a U -family x• : U → TopG can be
described by a G-map X → U . Moreover, under this description the parametrized coproduct∐
I x• : G/H → TopG is given by the G-map X → U → G/H .
To see this first construct the left fibration associated to x•, and then notice it is a map of

G-∞-groupoids and therefore can identified with a map of G-spaces X → U . One should think of
the family X → U as assigning to each W ∈ Orbit(U) the G-map (X |W →W ) ∈ TopG

[W ]
, where

we use the explicit model of remark 2.1.7. In order to see that
∐
I x• is given by (X → U →

G/H) ∈ TopG
[G/H]

recall that
∐
I is given by G-left Kan extension along U → G/H , which by

[Sha18, prop. 10.9] is given by (unparametrized) left Kan extension along U → G/H . Applying
straightening/unstraightening, we see that

∐
I is let adjoint to pulling back along U → G/H,

and therefore given by post-composition with U → G/H.

Let B be a G-space. Combining remark 3.2.9 with the description of U -families in TopG

above, we get the following description of G-coproducts in TopG
/B

. A U -family x• : U → TopG
/B

is given by a G-map X → U together with a collection of G-maps {X |W → B} indexed by
W ∈ Orbit(U). Equivalently, x• : U → TopG

/B
is given by a pair of G-maps (X → U, X → B).

The G-coproduct
∐
I x• ∈

(
TopG

/B

)
[G/H]

is given by (X → U → G/H) ∈ TopG
[G/H]

together

with the G-map X → B.

Lemma 3.5.3. The functor τ : MfldG,⊔ → (TopG
/BOn(G)

)∐ is a G-symmetric monoidal functor.
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Proof. By proposition 3.2.10 and the Segal conditions we have a concrete description of τ .
Namely, if I = (U → G/H) ∈ FinG∗ and (M → U → G/H) ∈ MfldG,⊔I is a OG-Fin-
manifold then τ(M → U → G/H) ∈ (TopG

/BOn(G)
)∐ is given by (M → U → G/H) ∈ TopG

I

together with the G-map M → BOn(G) classifying TM → M . Therefore the G-coproduct∐
I τ(M → U → G/H) is given by (M → U → G/H) ∈ TopG

[G/H]
together with the G-map

M → BOn(G) classifying TM →M .
On the other hand, by remark 3.4.20 the G-disjoint union ⊔IM ∈ MfldG[G/H] is the OG-

manifold given by the composition M → U → G/H , therefore τ(⊔IM) is given by the OG-
manifold (M → U → G/H) ∈ MfldG[G/H] together with the G-map M → BOn(G) classifying
TM →M .

Proposition 3.5.4. The G-functor f∗ : Top
G

/B
→ TopG

/BOn(G)
extends to a G-symmetric monoidal

functor f∗ : (Top
G

/B
)∐ → (TopG

/BOn(G)
)∐ .

Proof. This is an immediate consequence of the description of G-coproducts in TopG
/B

and

TopG
/BOn(G)

: for I = (U → G/H) the diagram

(
TopG

/B

)∐
I

f∗ //

⊔I

��

(
TopG

/BOn(G)

)∐

I

∐
I

��(
TopG

/B

)
[G/H]

f∗ //
(
TopG

/BOn(G)

)

[G/H]

is commutativity, since remark 3.5.2 implies it is given by

(X → U,X → B)
❴

⊔I
��

✤ f∗ // (X → U,X → B
f−→ BOn(G))❴

∐
I

��

(X → U → G/H,X → B)
✤ f∗ // (X → U → G/H,X → B

f−→ BOn(G)).

It follows that given a G-map f : B → BOn(G) over G/H we can endow MfldG,f−fr with a
G-symmetric monoidal structure.

Corollary 3.5.5. The G-symmetric monoidal structure of G-disjoint union on MfldG lifts to a
G-symmetric monoidal structure on MfldG,f−fr, given by the pullback

MfldG,f−fr,⊔
❴✤

��

// (TopG
/B

)∐

f∗

��
MfldG,⊔

τ // (TopG
/BOn(G)

)∐.
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Proof. The ∞-category CatG,⊗∞ of G-symmetric monoidal categories admits limits, and the for-
getful G-functor CatG,⊗∞ → CatG∞ sending a G-symmetric monoidal category C⊗ ։ FinG∗ to its
underlying G-category C = C⊗ ×FinG∗

OopG preserves limits.

Remark 3.5.6. Informally, we can describe an object ofMfldG,f−fr,⊔ over (U → G/H) ∈ FinG∗
as an OG-Fin-manifold (M → U → G/H) together an f -framing fM : M → B ×G/H .

Definition 3.5.7. Let RepG,f−fr,⊔
n

⊂MfldG,f−fr,⊔ be the full G-subcategory of MfldG,f−fr,⊔

given by the pullback

RepG,f−fr,⊔
n ❴✤

��

� � //MfldG,f−fr,⊔

��
RepG,⊔

n

� � //MfldG,⊔.

It follows that RepG,f−fr,⊔
n

⊂MfldG,f−fr,⊔ is the full subcategory of f -framed OG-Fin-manifolds

(E → U → G/H) where E → U is a G-vector bundle. Note that RepG,f−fr,⊔
n

։ FinG∗ is a
G-∞-operad.

3.6 The G-category of G-disks and the definition of G-disk algebras

Our next goal is to define the G-symmetric monoidal G-∞-category of G-disks DiskG,⊔, and its
framed variants DiskG,f−fr,⊔. These G-∞-categories are the point of contact between equivari-
ant algebra and equivariant geometry.

On the one hand, we use DiskG,⊔ to define G-disk algebras, which serve as coefficients for
genuine equivariant factorization homology. In a nutshell, the algebraic structure of a G-disk
algebra is indexed by equivariant embeddings of G-disks.

On the other hand, G-disks capture the local geometry of G-manifolds: G-disks are designed
to be theG-tubular neighbourhoods of a configuration of orbits in aG-manifold. We will therefore
define G-disks as a full G-subcategory DiskG ⊂MfldG of the G-∞-category of G-manifolds.

After defining DiskG we show that G-disjoint unions endow it with G-symmetric monoidal
structure (see definition 3.6.5 and corollary 3.6.8). Finally, we construct DiskG,f−fr, a framed
version of the G-∞-category of G-disks (see definition 3.6.9) and define f -framed G-disk algebras
(see definition 3.6.11).

Definition 3.6.1 (G-disks). A G-disk is a G-vector bundle E → O rank n, where O ∈ OG is
an orbit. Clearly a G-disk is an OG-manifold.

Let DiskG ⊂ MfldG, DiskG ⊂ MfldG be the full subcategories spanned by OG-manifolds
equivalent to a composition E → U → O of G-vector bundle E → U of rank n over a finite G-set
(U → O) ∈ FinG.

Remark 3.6.2. The G-subcategory DiskG ⊂MfldG is the full G-subcategory generated from
G-disks by finite G-disjoint unions. We think of (E → U → O) ∈MfldG as a G-disjoint union of
G-disks: the decomposition U = ⊔W∈Orbit(U)W into orbits decomposes E into a disjoint union
of G-vector bundles EW → W , and each composition EW → W → O exhibits EW → O as the
topological induction of EW →W along W → O.

In fact, DiskG is the free G-category generated fromH-representations forH < G, considered
as G-vector bundles over G/H , by disjoint unions and topological induction (see lemma 3.7.2
below).
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We first verify that DiskG is a G-∞-category.

Proposition 3.6.3. The subcategory DiskG ⊂ MfldG is a G-subcategory stable under equiva-
lences.

Proof. By [BDG+16b, lem. 4.5] it is enough to show that for any coCartesian edge x → y in
MfldG if x ∈ DiskG then y ∈ DiskG. Recall that an edge




M1

��

Moo

��

// M2

��
O1 O2

ϕoo = // O2




in MfldG is coCartesian if and only if the left square is equivalent to a pullback square and
the right square is a G-isotopy equivalence. Let (M1 → O1) ∈ DiskG, then by definition it is
equivalent to E → U → O1 for U a finite G-set and E → U a G-vector bundle. Pulling back
along ϕ shows that M → O2 is equivalent to ϕ∗E → ϕ∗U → O, a G-vector bundle over a finite
G-set. Since M2 → O2 is equivalent to M → O2 it follows that (M2 → O) ∈ DiskG.

Remark 3.6.4. The coCartesian fibration DiskG ։ OopG is dual to the Cartesian fibration

DiskG → OG.

G-disjoint union of G-disks We now show (corollary 3.6.8) that G-disjoint union of G-
manifolds (see proposition 3.4.21) induces a G-symmetric monoidal structure on DiskG.

Definition 3.6.5. Define DiskG,⊔ ⊂MfldG,⊔ to be the full subcategory spanned by the OG-Fin-
manifolds M → U → O equivalent to E → U ′ → U → O where E → U ′ is a G-vector bundle
over a finite G-set U ′.

Remark 3.6.6. Note that if M → U → O is equivalent to E → U ′ → U → O where E → U ′

is a G-vector bundle over a finite G-set U ′, then U ′ = π0(E) ∼= π0(M) is the set of connected
components of M with the induced action.

Lemma 3.6.7. The subcategory DiskG,⊔ ⊂ MfldG,⊔ is a G-subcategory stable under equiva-
lences.

Proof. The proof follows from the characterization of coCartesian edges of MfldG,⊔ ։ FinG∗
as spans of OG-Fin-manifolds where the ’backwards arrow’ is equivalent to a pullback over a
summand-inclusion and the ’forwards arrow’ is equivalent to an identity-of-manifolds, following
the outline of proposition 3.6.3.

Corollary 3.6.8. The operation of G-disjoint union on MfldG induces a G-symmetric monoidal
structure on the G-subcategory DiskG.

Proof. By lemma 3.6.7 it is enough to show that to show that the underlying G-category of
DiskG,⊔ ։ FinG∗ is equivalent to DiskG. Indeed, pulling back along the G-functor

σ<G/G> : OopG → FinG∗ , O 7→ (O
=−→ O)

we see that the underlying category DiskG,⊔<G/G> has objects OG-Fin-manifolds equivalent to

(E → U ′ → O
=−→ O) for E → U ′ a G-vector bundle over a G-finite set. Therefore the full G-

subcategoryDiskG,⊔<G/G> ⊂MfldG,⊔<G/G> corresponds toDiskG ⊂MfldG under the identification

MfldG,⊔<G/G> ≃MfldG, (M → O
=−→ O) 7→ (M → O).
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Framed G-disks We now define f -framed G-disks by restricting the underlying OG-manifolds
of f -framed OG-manifolds to G-disks.

Definition 3.6.9. Let B ∈ TopG be a G-space and f : B → BOn(G) be a G-map. Define the
G-categories of f -framed G-disks as the pullback on the left.

DiskG,f−fr
❴✤

��

� � //MfldG,f−fr

��
DiskG

� � //MfldG,

DiskG,f−fr,⊔
❴✤

��

� � //MfldG,f−fr,⊔

��
DiskG,⊔ �

� //MfldG,⊔.

The G-symmetric monoidal structure of G-disjoint union on DiskG lifts to a G-symmetric
monoidal structure on DiskG,f−fr, given by the right pullback above.

G-disk algebras We define G-disk algebras using G-symmetric monoidal functors.

Notation 3.6.10. Let p : C⊗ ։ FinG∗ , q : D⊗ ։ FinG∗ be two G-symmetric monoidal categories.
A G-symmetric monoidal functor from C to D is a functor of∞-categories f : C⊗ → D⊗ overFinG∗
that takes p-coCartesian edges to q-coCartesian edges. Denote the ∞-category of G-symmetric
monoidal functors from C to D by Fun⊗

G(C,D) := FunFinG∗
(C⊗,D⊗).

Definition 3.6.11. Let C⊗ ։ FinG∗ be a G-symmetric monoidal category. A G-disk algebra
with values in C is a G-symmetric monoidal functor A : DiskG,⊔ → C⊗ (see definition 3.6.5).
Denote the ∞-category of G-disk algebras in C by Fun⊗

G(DiskG, C).
Let f : B → BOn(G) a G-map, as in definition 3.3.1. An f -framed G-disk algebra with

values in C is a G-symmetric monoidal functor A : DiskG,f−fr,⊔ → C⊗ (see corollary 3.5.5).
Denote the ∞-category of G-disk algebras in C by Fun⊗

G(DiskG,f−fr, C).

We will use G-disk algebras as coefficients in the definition of G-factorization homology in
section 4.

Example 3.6.12. Let V : pt → BOn(G) be the G-map corresponding to a real n-dimensional
G-representation V (see example 3.3.3), and DiskG,V−fr,⊔ be the G-symmetric monoidal cat-
egory of V -framed G-disks. A V -framed G-disk algebra is a G-symmetric monoidal functor
DiskG,V−fr,⊔ → C⊗. In corollary 3.9.9 we will see that V -framed G-disk algebras are equivalent
to EV -algebras.

3.7 G-disks as a G-symmetric monoidal envelope

There is a close relationship between DiskG and the G-∞-category RepG
n

of definition 3.2.3.

To state it we first define a G-∞-operad RepG,⊔
n

whose underlying G-∞-category is RepG
n

(see

definition 3.5.7), and then show that DiskG is the G-symmetric monoidal envelope of RepG,⊔
n

.

See [BDG+] for the construction and universal property of the G-symmetric monoidal enve-
lope.

Definition 3.7.1. Let RepG,⊔
n
⊂ MfldG,⊔ be the full G-subcategory on the objects of RepG

n

(using the Segal conditions on the fibers of MfldG,⊔). Note that RepG,⊔
n

։ FinG∗ is a G-∞-

operad. Equivalently, RepG,⊔
n

is the full subcategory on OG-Fin-manifolds E → U → O where
E → U is a G-vector bundle.

46



Lemma 3.7.2. The G-symmetric monoidal G-category of G-disks, DiskG,⊔, is equivalent to
EnvG(RepG,⊔

n
), the G-symmetric monoidal envelope of RepG,⊔

n
.

Proof. Recall that EnvG(RepG,⊔
n

) is given by the fiber product RepG,⊔
n
×FinG∗

ArractG (FinG∗ ),

whereArractG (FinG∗ ) ⊂ ArrG(Fin
G
∗ ) is the full subcategory of fiberwise active arrows. Unwinding

the definition, we identify the objects of EnvG(RepG,⊔
n

) with

E

��
U1

��

U1
=oo

��

// U2

��
O O

=oo = // O,

where E → U1 is a G-vector bundle.
The inclusion RepG,⊔

n
→֒MfldG,⊔ is a morphism of G-∞-operads, so by the universal prop-

erty of the enveloping G-symmetric monoidal G-category induces a G-symmetric monoidal G-
functor EnvG(RepG,⊔

n
)→MfldG,⊔, taking an object

E

��
U1

��

U1
=oo

��

// U2

��
O O

=oo = // O

to the OG-Fin-manifold E → U1 → U2 → O. Therefore the essential image of EnvG(RepG,⊔
n

)→
MfldG,⊔ is DiskG,⊔.

We have to show that the G-functor EnvG(RepG,⊔
n

)→ DiskG,⊔ is a fully faithful (i.e. that

it is fiberwise fully faithful). However, the mapping spaces of EnvG(RepG,⊔
n

) = RepG,⊔
n
×FinG∗

ArractG (FinG∗ ) are given by homotopy pullbacks of the mapping spaces ofRepG,⊔
n

andArractG (FinG∗ )

over FinG∗ . This follows from the definition of the mapping spaces of MfldG,⊔ after decomposing
the mapping spaces of DiskG,⊔ using the Segal conditions.

It follows that G-disk algebras (see definition 3.6.11) are equivalent to algebras over the
G-∞-operad RepG,⊔

n
.

Corollary 3.7.3. Let C⊗ be a G-symmetric monoidal category. The∞-category Fun⊗
G(DiskG, C)

of G-symmetric monoidal functors A : DiskG,⊔ → C⊗ is equivalent to the∞-category AlgG(RepG, C)
of morphisms of G-∞-operads RepG,⊔

n
→ C⊗, i.e algebras of the G-∞-operad RepG,⊔

n
in C.

A similar result holds for f -framed G-disks, for B a G-space and f : B → BOn(G) a G-map
as in definition 3.6.9.

Proposition 3.7.4. The G-symmetric monoidal category DiskG,f−fr,⊔ is equivalent to the G-
symmetric monoidal envelope of RepG,f−fr,⊔.
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3.8 Embedding spaces of G-disks and equivariant configuration spaces

We compare the mapping spaces of f -framedOG-manifolds with equivariant configuration spaces.

Notation 3.8.1. Let (M → G/H) ∈MfldG be an OG-manifold over G/H and (U → G/H) ∈
FinG a finite G-set over G/H . Denote by ConfGG/H(U ;M) ⊂ MapGG/H(U,M) the space of
injective G-equivariant functions U →M over G/H with compact-open topology.

Remark 3.8.2. The space ConfGG/H(U ;M) can be identified with the space of configurations of
disjoint orbits in the H-manifold M |eH (the fiber of M → G/H over the base coset eH), where
the orbits of the configurations are indexed by the orbits of U |eH , with stabilizers specified by
Stab(W ), W ∈ Orbit(U |eH).

In order to compare equivariant embedding spaces of G-disks in M with equivariant config-
uration spaces we first study the equivariant embedding space of a single G-disk.

Definition 3.8.3. Let E → U be a G-vector bundle over a finite G-set, and choose a G-
equivariant metric on E. For t > 0 define Bt(E) ⊂ E, Bt(E) =

{
v ∈ E

∣∣ ‖v‖ < t
}
, so Bt(E) →

U is the “open ball of radius t” subbundle. Define Germ(E,M) = colim−−−→n
EmbGG/H(B 1

2n
(E),M).

Lemma 3.8.4. For s < t the restriction map EmbGG/H(Bt(E),M)→ EmbGG/H(Bs(E),M) is a
homotopy equivalence.

Proof. By radial dilation we see that the inclusion Bs(E) →֒ Bt(E) is G-isotopic over G/H to a
G-equivariant homeomorphism.

Corollary 3.8.5. The restriction map EmbGG/H(E,M) → Germ(E,M) is a homotopy equiva-
lence.

Let (E → U → G/H) ∈ DiskG be a finite G-disjoint union of G-disks, i.e. E → U a G-vector
bundle, U = π0E, and (M → G/H) ∈ MfldG an OG-manifold. Precomposition with the zero
section inclusion U → E defines a fibration

c : EmbGG/H(E,M) ։ ConfGG/H(U ;M), (11)

which we think of as sending a configuration of G-disks inM to the configuration of points which
are in the centers these G-disks.

Similarly, for t > 0 we have fibrationsEmbGG/H(Bt(E),M) ։ ConfGG/H(U ;M), whose colimit

forms a fibration c : Germ(E,M) ։ ConfGG/H(U ;M).
The following corollary is used in the proof of the axiomatic properties of G-factorization

homology (see the proofs of lemma 5.2.7 and lemma 5.3.4).

Corollary 3.8.6. Let (E → U → G/H) ∈ DiskG be a finite G-disjoint union of G-disks, i.e.
E → U a G-vector bundle, U = π0E. Let (M → G/H) ∈MfldG be an OG-manifold and N ⊂M
an open G-submanifold. Then

EmbGG/H(E,N)

c
����

// EmbGG/H(E,M)

c
����

ConfGG/H(U ;N) // ConfGG/H(U ;M)

is a homotopy Cartesian square of spaces, where the vertical maps are given by (11).
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Proof. By corollary 3.8.5 the left horizontal maps in the diagram

EmbGG/H(E,N) Germ(E,N) ConfGG/H(U ;N)

EmbGG/H(E,M) Germ(E,M) ConfGG/H(U ;M)

∼ c

∼ c

(12)

are homotopy equivalences, so we have to show the right square is a homotopy pullback square.
Since the right horizontal arrows are fibrations, it is enough to show that the right square is a
pullback square.

Let x• ∈ ConfGG/H(U ;N), given by an injective G-map x• : U → N . For t ∈ R denote

the fiber of EmbGG/H(Bt(E), N) ։ ConfU (N) by EmbGG/H(Bt(E), N)x• . We have a map of
fibrations

EmbGG/H(Bt(E), N)x• EmbGG/H(Bt(E), N) ConfGG/H(U ;N)

EmbGG/H(Bt(E),M)x• EmbGG/H(Bt(E),M) ConfGG/H(U ;M).

For small enough t > 0 the left vertical arrow is an isomorphism, hence the right square is a
pullback square. Since filtered colimits commute with pullbacks in Top, we see that the right
square of diagram (12) is indeed a pullback square.

Our goal for the rest of this subsection is to study the framed version of the map (11), and show
that its V -framed variant is an equivalence (example 3.8.10). This fact will be used in section 3.9
to compare the G-∞-operad RepG,V−fr,⊔

n
(definition 3.5.7) with the classical G-operad of little

disks in V .
We begin by showing that the decomposition of the configuration of G-disks E into orbits of

G-disks induces a decomposition on its space of G-embeddings into M .

Proposition 3.8.7. Let (M → G/H) ∈ MfldG[G/H] be an OG-manifold over G/H and (E →
U → G/H) ∈ DiskG[G/H]. For W ∈ Orbit(U) let EW ∈ DiskG[G/H] denote (E|W → W → G/H),
the restriction of the vector bundle E → U to the orbit W ⊆ U . Then the commutative square
of spaces

EmbGG/H(E,M)
❴✤

c

��

// ∏
W

EmbGG/H(EW ,M)

c

��
ConfGG/H(U ;M) // ∏

W

ConfGG/H(W ;M)

is a homotopy pullback square, where the products are indexed by W ∈ Orbit(U), and the vertical
maps are given by (11).

Proof. By corollary 3.8.5 the left horizontal maps in the diagram

EmbGG/H(E,M) Germ(E,M) ConfGG/H(U ;M)

∏
W

EmbGG/H(EW ,M)
∏
W

Germ(EW ,M)
∏
W

ConfGG/H(W ;M)

∼ c

∼ c
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are equivalences, so it is enough to show that right square is a homotopy pullback square.
The right horizontal maps are Kan fibrations, therefore it is enough to show this square is a
pullback square. This is clear, since the induced map on the fibers of the horizontal maps is a
homeomorphism.

Proposition 3.8.8. Let M ∈MfldG,f−fr[G/H] be an f -framed OG-manifold over G/H, given by a

OG-manifold M → G/H together with an f -framing fM : M → B lifting τM : M → BOn(G).

Let E ∈ DiskG,f−fr[G/H] , given by (E → U → G/H) ∈ DiskG[G/H] and f -framing fE : E → B. For

W ∈ Orbit(U) denote EW ∈ DiskG,f−fr[G/H] denote the restricted G-vector bundle (E|W → W →
G/H), with the restricted framing fW : E|W ⊂ E fE−−→ B ×G/H.

Then the commutative square of spaces

EmbG,f−frG/H (E,M)
❴✤

c

��

// ∏
W

EmbG,f−frG/H (EW ,M)

c

��
ConfGG/H(U ;M) // ∏

W

ConfGG/H(W ;M)

is a homotopy pullback square, where the products are indexed by W ∈ Orbit(U), and the vertical
maps are given by precomposition with the zero section.

Proof. Recall the notation of remark 3.2.9,

B(G/H), BOn(G)(G/H) ∈ TopG/G/H ,

B(G/H) = (B ×G/H → G/H), BOn(G)(G/H) = (BOn(G)×G/H → G/H).

Consider the commutative diagram

EmbG,f−frG/H (E,M) MapG/B(G/H)(E,M)

∏
W

EmbG,f−frG/H (EW ,M)
∏
W

MapG/B(G/H)(EW ,M)

EmbGG/H(E,M) MapG/BOn(G)(G/H)(E,M)

∏
W

EmbGG/H(EW ,M)
∏
W

MapG/BOn(G)(G/H)(EW ,M),

where

MapG/B(G/H)(E,M) = MapG/B(G/H)(E
fE−−→ B ×G/H,M fM−−→ B ×G/H),

MapG/BOn(G)(G/H)(E,M) = MapG/BOn(G)(G/H)(E
fE−−→ BOn(G)×G/H,M fM−−→ BOn(G) ×G/H).
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The forward and backward faces of the cube are homotopy pullback squares by definition (see
remark 3.3.2). The diagonal morphisms on the right are equivalences, since

(
E

fE−−→ B ×G/H
)
=
∐

W

(
EW

fW−−→ B ×G/H
)
,

(
E

τE−−→ BOn(G) ×G/H
)
=
∐

W

(
EW

τW−−→ BOn(G)×G/H
)
,

and in particular the right face is a homotopy pullback square. By [Lur09a, lem. 4.4.2.1] the left
face is a homotopy pullback square.

Note that the left face is above diagram the same as the top square of the diagram

EmbG,f−frG/H (E,M)
❴✤

��

// ∏
W

EmbG,f−frG/H (EW ,M)

��
EmbGG/H(E,M)

❴✤

c

��

// ∏
W

EmbGG/H(EW ,M)

c

��
ConfGG/H(U ;M) // ∏

W

ConfGG/H(W ;M)

By proposition 3.8.7 the bottom square is a homotopy pullback square, hence by [Lur09a, lem.
4.4.2.1] so is the outer rectangle.

The endomorphism space of a single framed G-disk We identify the endomorphism
space of a single framed G-disk as a loop space. Let E

π−→ G/H be a G-vector bundle.
Note that as an object of TopG

[G/H]
it is equivalent to the terminal object (G/H

=−→ G/H),

so the G-tangent classifier τE : E → BOn(G) is given by a choice of connected component of
(BOn(G))

H ≃ ∐V BAutRepH (V ), i.e an H-representation V of dimension n. In particular, we
have an isomorphism E ∼= V ×H G of G-vector bundles over G/H .

An f -framing on E is given by aG-map e : E → B lifting V : E → BOn(G) up toG-homotopy.
Using the equivalence MapG(E,B) ≃ MapG(G/H,B) ≃ MapH(pt, B) ≃ BH we can consider e
as a point in BH .

Proposition 3.8.9. Let E → G/H be a G-vector bundle with f -framing e : E → B. Then the

endomorphism space of (E → G/H) ∈MfldG,f−fr[G/H] is weakly equivalent to the loop space of BH

with base point e, EmbG,f−frG/H (E,E) ≃ ΩeB
H .

Proof. The endomorphism space of E is given by the homotopy pullback

EmbG,f−frG/H (E,E) MapG/B(G/H)(E
e−→ B ×G/H,E e−→ B ×G/H)

EmbGG/H(E,E) MapG/BOn(G)(G/H)(E
V−→ BOn(G)×G/H,E V−→ BOn(G)×G/H).

p
(f×G/H)∗

τ

(13)

We prove our claim by identifying the mapping spaces on the right column with loop spaces and
showing that the horizontal maps are equivalences.
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Since MapG/B(G/H)(E
e−→ B ×G/H,E e−→ B ×G/H) is a mapping space in the slice category(

TopG
[G/H]

)
/B(G/H)

it is equivalent to the homotopy pullback

MapG/B(G/H)(E
e−→ B ×G/H,E e−→ B ×G/H) MapGG/H(E → G/H,E → G/H)

∗ MapGG/H(E → G/H,B ×G/H → G/H).

p
e∗

e

Since (E → G/H) ∈ TopG
[G/H]

is terminal we have

MapGG/H(E → G/H,E → G/H) ≃MapGG/H(G/H
=−→ G/H,G/H

=−→ G/H) = ∗,
MapGG/H(E → G/H,B ×G/H → G/H) ≃MapGG/H(G/H

=−→ G/H,B ×G/H → G/H)

≃MapG(G/H,B) ∼= BH ,

hence MapG/B(G/H)(E
e−→ B ×G/H,E e−→ B ×G/H) ≃ ΩeB

H .
Replacing B with BOn(G), the same calculation shows

MapG/BOn(G)(G/H)(E
V−→ BOn(G)×G/H,E V−→ BOn(G)×G/H) ≃ ΩV


 ∐

ρ : HyRn
BAutRepH (ρ)




= ΩBAutRepH (V ).

Identify EmbGG/H(E,E) ∼= EmbGG/H(V × G/H, V × G/H) ∼= EmbH(V, V ) in the homotopy

pullback square (13) we get a homotopy pullback square

EmbG,f−frG/H (E,E) ΩeB
H

AutRepH (V ) EmbH0 (V, V ) EmbH(V, V ) ΩBAutRepH (V ),

p

τ

where EmbH0 (V, V ) is the subspace of H-equivariant self embeddings V →֒ V that fix the origin.
By proposition 3.2.5 the bottom left map is a weak equivalence, and the middle bottom

arrow is clearly a homotopy equivalence. Since the composition of the bottom maps is the
known equivalence AutRepH (V ) → ΩBAutRepH (V ), we conclude that τ is a weak equivalence,
and therefore the top map of the homotopy pullback square is a weak equivalence as well.

Finally, we return to the V -framed variant of the map (11).

Example 3.8.10. Consider V -framed manifolds for V be a real n-dimensional G-representation
(example 3.3.3), and let E ∈ DiskG,V−fr

[G/H] be given by (E → U → G/H) ∈ DiskG[G/H],

with V -framing inducing a trivialization E ∼= U × V of the G-vector bundle E → U . Con-
sider the mapping space from E to (V × G/H → G/H) ∈ DiskG,V−fr

[G/H] . For every orbit

W ∈ Orbit(U) we have EW ∼= W × V as G-vector bundles over W . Therefore the homo-

topy fiber of c : EmbG,V−fr
G/H (EW , V × G/H) → ConfGG/H(W ;V × G/H) is equivalent to the

loop space of a point (see proposition 3.8.9), hence contractible. It follows that the map
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∏
W

EmbG,V−fr
G/H (EW , V × G/H) → ∏

W

ConfGG/H(W ;V × G/H) is an equivalence, since its ho-

motopy fibers are contractible. By proposition 3.8.8 precomposition with the zero section of
E → U induces a homotopy equivalence

c : EmbG,V−fr
G/H (E, V ×G/H)

∼−→ ConfGG/H(U ;V ×G/H). (14)

More generally, for any V -framed OG-manifold M ∈MfldG,V−fr
[G/H] we have

c : EmbG,V−fr
G/H (E,M)

∼−→ ConfGG/H(U ;M), (15)

since by proposition 3.8.8 the homotopy fibers are contractible.

We will use example 3.8.10 in section 3.9.

3.9 Comparison of the equivariant little disks G-operad and the G-∞-
operad of V -framed representations

Let V be a real n-dimensional representation of G, and RepG,V−fr,⊔ the G-∞-operad of defi-
nition 3.5.7. In this subsection we define the G-∞-operad EV of little G-disks (definition 3.9.5)
using the genuine operadic nerve construction of Bonventre, and show that it is equivalent to
RepG,V−fr,⊔ (proposition 3.9.8), hence EV -algebras are equivalent to V -framed G-disk algebras.

We first review the relevant details of Bonventre’s construction. This construction is best
understood in the light of [BP17, thm. III] which gives a (right) Quillen equivalence

i∗ : sOp
G → sOpG

between the G-graph model structure on simplicial G-operads (where weak equivalences is de-
tected on graph-subgroup fixed points) and the projective model structure on genuine G-operads.

Construction 3.9.1 (The genuine equivariant category of operators, see [Bon19, def. 4.1]). Let
P ∈ sOpG be a genuine G-operad. Define a simplicial category P⊗ as follows. The objects of
P⊗ are objects of FinG∗ , i.e. G-maps U → G/H from a finite G-set to a G-orbit. The simplicial
space of maps P⊗(U1 → G/H,U2 → G/K) is given by

MapP⊗

(
U1
↓

G/H
,
U2
↓

G/K

)
=
∐

ϕ

∏

W∈Orbit(U2)

P
(
f−1(W )

↓
W

)
,

where the coproduct is indexed by ϕ ∈ MapFinG∗

(
U1
↓

G/H
,
U2
↓

G/K

)
. Composition in P⊗ is defined

using coproducts of the composition maps of the genuine G-operad P .
Theorem 3.9.2 ([Bon19, thm. 4.10]). Let P ∈ sOpG be a genuine G-operad, and N⊗(P) the
coherent nerve of the P⊗. If P ∈ sOpG is locally fibrant, then N⊗(P) is a G-∞-operad.

We call N⊗(O) as the genuine operadic nerve of O.
Corollary 3.9.3 ([Bon19, cor 6.3]). Let O ∈ sOpG be a graph-fibrant simplicial G-operad with
a single color. Then i∗O ∈ sOpG is locally fibrant, and thus there exists a G-∞-operad N⊗(O)
associated to O.

In particular, the genuine coherent nerve construction associates a G-∞-operad to the equiv-
ariant little disk operad.
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Example 3.9.4 ([Bon19, ex. 6.5]). Let V be a real orthogonal n-dimensional G-representation,
and D(V ) the open unit disk of V . For H < G and U a finite H-set let EmbAff,H(U ×
D(V ), D(V )) denote the space of H-equivariant affine embeddings U × D(V ) →֒ D(V ). Let
DV be the little V -disks operad (see e.g [GM17, def. 1.1] or [BH15, def. 3.11(ii)]). Applying
the functor Sing to the spaces (DV )n we get a locally fibrant simplicial G-operad, hence an
associated G-∞-operad N⊗(DV ).

The mapping spaces of N⊗(DV ) are given by

MapN⊗(DV )

(
U1
↓

G/H
,
U2
↓

G/K

)
=
∐

ϕ

∏

Gx∈Orbit(U2)

EmbAff,Stab(x)(f−1(x) ×D(V ), D(V )).

Definition 3.9.5. Fix a real orthogonal G-representation V , and let DV denote the G-operad of
little V -disks. Let E⊗

V denote the genuine operadic nerve N⊗(DV ) of [Bon19, ex. 6.5].

Before defining EV -algebras we recall the definition of a G-∞-operad map.

Notation 3.9.6. Let P⊗ → FinG∗ , Q⊗ → FinG∗ be G-∞-operads (see [Nar17, def. 3.1]). A map
of G-∞-operads from P⊗ to Q⊗ is a map of simplicial sets f : P⊗ → Q⊗ such that

1. The diagram

P⊗ Q⊗

FinG∗

f

commutes.

2. The functor f carries coCartesian edges over inert morphisms to coCartesian edges.

Definition 3.9.7. Let C⊗ ։ FinG∗ be a G-symmetric monoidal category. An EV -algebra in
C is a map of G-∞-operads A : EV → C⊗. Let AlgEV (C) ⊆ Fun/FinG∗

(E⊗
V , C⊗) denote the full

subcategory spanned by EV -algebras.

Comparison with RepG,V−fr,⊔. We can now easily compare the G-∞-operads EV of defini-

tion 3.9.5 and RepG,V−fr,⊔ of definition 3.5.7.
We start with some observations. Fix a V -framed G-diffeomorphism D(V ) ∼= V . Let H < G

and U ′ a finite H-set and U = G×H U ′ its topological induction. Then the topological induction
of U ′ × D(V ) from H to G is U × D(V ). Note that the induced map U × D(V ) → G/H is
G-vector bundle equivalent to U × V → U by our chosen diffeomorphism, and hence V -framed.
Let EmbAff,GG/H (U × D(V ), G/H × D(V )) denote the space of affine G-embeddings over G/H .

Note that restriction to the fiber over eH defines a homeomorphism

EmbAff,H(U ′ ×D(V ), D(V )) ∼= EmbAff,GG/H (U ×D(V ), G/H ×D(V )).

On the other hand, affine G-embeddings U × D(V ) →֒ G/H × D(V ) over G/H are clearly
V -framed (using the chosen G-diffeomorphism D(V ) ∼= V . Therefore we have a map

EmbAff,GG/H (U ×D(V ), G/H ×D(V )) →֒ EmbG,V−fr
G/H (U ×D(V ), G/H ×D(V )) .
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Construct a functor F : EV → RepG,V−fr,⊔ over FinG∗ as follows. For every finite G-set
U define F (U → G/H) = (U × D(V ) → U → G/H). Define F on mapping spaces by the
embeddings

MapEV

(
U1
↓

G/H
,
U2
↓

G/K

)
=
∐

ϕ

∏

Gx∈Orbit(U2)

EmbAff,Stab(x)(f−1(x)×D(V ), D(V ))

→֒
∐

ϕ

∏

W∈Orbit(U2)

EmbG,V−fr
W (f−1(W )×D(V ), G/H ×D(V ))

= MapRepG,V−fr,⊔(U1 ×D(V ), U2 ×D(V )).

Proposition 3.9.8. The functor F : EV → RepG,V−fr,⊔ is an equivalence of G-∞-operads.

Proof. By construction F is a functor over FinG∗ , therefore it is enough to show that F is an
equivalence of ∞-categories. Clearly F is essentially surjective, since any V -framed G-vector
bundle over a finite G-set U is equivariant to U × V ∼= U × D(V ). We therefore have to show
that F is fully faithful.

By the Segal conditions it is enough to show that F induces an equivalence of spaces

F : MapEV

(
U
↓

G/H
,
G/H
↓

G/H

)
→ MapRepG,V−fr,⊔



U×D(V )

↓
U
↓

G/H

,

G/H×D(V )
↓

G/H
↓

G/H




on the mapping spaces over ϕ ∈ MapFinG∗

(
U
↓

G/H
,
G/H
↓

G/H

)
. By example 3.9.4 we have

MapEV

(
U
↓

G/H
,
G/H
↓

G/H

)
≃

∏

W∈Orbit(G/H)

EmbAff,Stab(W )(f−1(W )×D(V ), D(V )),

and since RepG,V−fr,⊔ ⊂MfldG,V−fr,⊔ is a full G-subcategory we have

MapRepG,V−fr,⊔



U×D(V )

↓
U
↓

G/H

,

G/H×D(V )
↓

G/H
↓

G/H


 = EmbG,V−fr

G/H (U ×D(V ), G/H ×D(V ))

∼= EmbG,V−fr
G/H (U × V,G/H × V ).

Consider the commutative diagram

∏
W∈Orbit(U)

EmbAff,Stab(W )(f−1(W )×D(V ), D(V ))

c

��

F // EmbG,V−fr
G/H (U × V,G/H × V )

c

��∏
W∈Orbit(U)

InjStab(W )(f−1(W ), V ) // ConfGG/H(U ;V ×G/H)

where the vertical map is given by taking the centers of disks, and the right vertical map is given
by precomposition with the zero section. We wish to prove that the top horizontal map is an
equivalence. The left vertical map is known to be an equivalence (see [BH15, prop. 4.19] and
[GM17, lem 1.2]). The right vertical map is an equivalence by example 3.8.10, and the bottom
horizontal map is a homeomorphism by inspection.
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We immediately see that EV -algebras are equivalent to V -framed G-disk algebras.

Corollary 3.9.9. There is an equivalence of ∞-categories AlgEV (C) ≃ Fun⊗G(DiskG,V−fr, C).

Proof. Precomposition with the equivalence F : EV
∼−→ RepG,V−fr,⊔ of proposition 3.9.8 in-

duces an equivalence
AlgEV (C)

∼−→ AlgRepG,V−fr (C).

By proposition 3.7.4 theG-symmetric monoidal envelope ofRepG,V−fr,⊔ is equivalent toDiskG,V−fr,⊔,
so by its universal property we have

AlgRepG,V−fr (C) ≃ Fun⊗
G(DiskG,V−fr, C).

4 Genuine G-factorization homology

In this section we use the G-categoriesMfldG,f−fr and DiskG,f−fr to define genuine equivariant
factorization homology. We define G-factorization homology, first as a parametrized colimit
(definition 4.1.2), then as a G-functor (proposition 4.1.4) and finally as a G-symmetric monoidal
functor (definition 4.2.3).

4.1 The definition of G-disk algebras and G-factorization homology as
a G-functor

In this subsection we define equivariant factorization homology (see proposition 4.1.4). This is
an smooth equivariant version of the factorization homology of [AF15] and of topological chiral
homology of [Lur, 7.5.2].

In order to define genuineG-factorization homology using parametrized∞-colimits we first re-
call the definition of a parametrized over-category from [Sha18]. The parametrized over-category
plays the role of an indexing category in the G-colimit defining factorization homology below
(see definition 4.1.2), and more generally in the G-colimit formula for G-left Kan extensions (see
[Sha18, thm. 10.3]).

Let C be a G-category and x ∈ C[G/H] an object over G/H , classified by the G-functor
σx : G/H → C. Define the parametrized over-category C/x ։ G/H (see [Sha18, not. 4.29]) as the
fiber product ArrG(C)×C G/H, considered as a G/H-category by pulling back the coCartesian
fibration ev1 : ArrG(C) → C along σx : G/H → C. Note that the fiber of C/x ։ G/H over
ϕ : G/K → G/H is equivalent to the ∞-over-category (C[G/K])/ϕ∗x, where ϕ∗x ∈ C[G/K] is
determined by choosing a coCartesian lift x→ ϕ∗x of ϕ.

If C′ ⊆ C is a full G-subcategory we abuse notation and write C′/x for the restricted G-over-

category, given by the fiber product C′ ×C C/x.
We now return to the definition of genuine G-factorization homology.
Let A ∈ Fun⊗

G(DiskG,f−fr, C) be an f -framed G-disk algebra with values in C, and M ∈
MfldG,f−fr[G/H] an f -framed OG-manifold. In the following definition we use the parametrized

over-category DiskG,f−fr/M associated to M ∈MfldG,f−fr[G/H] and DiskG,f−fr ⊂MfldG,f−fr.

Remark 4.1.1. Note that DiskG/M → G/H is the coCartesian fibration dual to the Cartesian

fibration (DiskG)/M → (OG)/[G/H] (see [Lur09a, prop 2.4.3.1], compare [Sha18, prop. 4.31]),
and therefore can be modeled by the topological Moore over category (see appendix A).
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Construct a G-functor over G/H by composing

DiskG,f−fr/M

(( ((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
// DiskG,f−fr×G/H

����

A×id
// C×G/H

uuuu❦❦❦❦
❦❦❦❦

❦❦❦❦
❦❦❦❦

❦❦

G/H.

(16)

Consider the functor (16) as an G/H-diagram in the G/H-category C×G/H . Note that the
G/H-colimit of the above diagram is a coCartesian section of C×G/H ։ G/H , or equivalently
a G-functor G/H → C and that a G-functor G/H → C represents an object of C over [G/H ].

Definition 4.1.2. LetM ∈MfldG,f−fr[G/H] be an f -framed OG-manifold, and A an f -framed G-disk

algebra. Define the G-factorization homology of M with coefficients in A by the parametrized
colimit
∫

M

A ∈ C,
∫

M

A := G/H − colim−−−→
(
DiskG,f−fr/M → DiskG,f−fr×G/H A×id−−−→ C×G/H

)
. (17)

In what follows, assume that C is a G-cocomplete G-category (i.e C has all G/H-colimits for
every H < G, see [Sha18, def. 5.12]), so that all the parametrized colimits of proposition 4.1.4
exist. Next we show that the assignmentM 7→

∫
M
A extends to aG-functor

∫
−A : MfldG,f−fr →

C, and that the G-functors
∫
−A are in turn functorial in A (proposition 4.1.4).

Construction 4.1.3. Let ι : DiskG,f−fr →֒ MfldG,f−fr denote the inclusion of the full G-
subcategory of finite G-disjoint unions of G-disks and C be a cocomplete G-symmetric monoidal
category. The inclusion G-functor ι induces a restriction G-functor ι∗ : FunG(MfldG,f−fr, C)→
FunG(DiskG,f−fr, C). By [Sha18, cor. 10.6] (proposition 2.3.3) the restriction G-functor has a
fully faithful left G-adjoint

ι! : FunG(DiskG,f−fr, C) ⇆ FunG(MfldG,f−fr, C) : ι∗.
In particular, define ι! to be the fully faithful left adjoint of

ι! : FunG(DiskG,f−fr, C) ⇆ FunG(MfldG,f−fr, C) : ι∗, (18)

the adjunction of ∞-categories between the fibers over the terminal orbit [G/G]

Proposition 4.1.4. Let C be a cocomplete G-symmetric monoidal category. Then the functor

Fun⊗G(DiskG,f−fr, C)→ FunG(DiskG,f−fr, C) ι!−→ FunG(MfldG,f−fr, C),
(A : DiskG,f−frD → C⊗) 7→ (A : DiskG,f−fr → C) 7→ (ι!A : MfldG,f−fr → C)

sends a G-disk algebra A to a G-functor

ι!A : MfldG,f−fr → C, ,M 7→ (ι!A)(M) =

∫

M

A.

Proof. By [Sha18, thm. 10.4] for every G-disk algebra A ∈ FunG(MfldG,f−fr, C) the left G-
adjoint ι!(A) : MfldG,f−fr → C) is given by left G-Kan extension of A along ι. By [Sha18, thm

10.3] applying the ι!(A) to M ∈MfldG,f−fr[G/H] is given by the G/H-colimit

(ι!A)(M) = G/H − colim−−−→
(
DiskG,f−fr/M → DiskG,f−fr×H/G A×id−−−→ C×G/H

)
=

∫

M

A.
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4.2 Extensding G-factorization homology to a G-symmetric monoidal
functor

In this subsection we prove (proposition 4.2.2) that G-factorization homology with values in a
presentable G-symmetric monoidal category extends to a G-symmetric monoidal functor (see
definition 4.2.3).

Definition 4.2.1. Let C⊗ ։ FinG∗ be a G-symmetric monoidal category. We say C⊗ is a
presentable G-symmetric monoidal category if the underlying G-category is presentable and for
every active map α : I → J in FinG∗ the G-functor ⊗α : C⊗<I> → C⊗<J> is distributive ([Nar17,
sec. 3.3]).

Proposition 4.2.2. Let C⊗ ։ FinG∗ be a presentable G-symmetric monoidal category.
Then the adjunction eq. (18) lifts to an adjunction

(ι⊗)! : Fun⊗
G(DiskG,f−fr, C)

��

// Fun
⊗
G(MfldG,f−fr, C) : (ι⊗)∗

oo

��
ι! : FunG(DiskG,f−fr, C) 00 FunG(MfldG,f−fr, C) : ι∗

pp

(19)

where ι⊗ : DiskG,f−fr,⊔ →MfldG,f−fr.⊔ is the inclusion of the subcategory of f -framed indexed
disks (see corollary 3.5.5).

Note that since ι! is fully faithful the Segal conditions imply that (ι⊗)! : Fun⊗
G(DiskG,f−fr, C)→

Fun⊗
G(MfldG,f−fr, C) is fully faithful.

Definition 4.2.3. For C⊗ ։ FinG∗ , A : DiskG,f−fr,⊔ → C⊗ as in proposition 4.2.2, denote the
G-symmetric monoidal functor (ι⊗)! by

∫
−A : MfldG,f−fr.⊔

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖
// C⊗

}}④④
④④
④④
④④

FinG∗ .

Commutativity of the diagram (19) shows that
∫
−A extends the G-functor ι!A : MfldG,f−fr → C

of eq. (18) which sends an OG-manifold (M → G/H) to its G-factorization homology ι!A(M) =∫
M A (proposition 4.1.4) to a G-symmetric monoidal functor. We call the G-symmetric monoidal

functor
∫
−A : MfldG,f−fr,⊔ → C⊗ the G-factorization homology functor with coefficients in A.

In the remainder of this subsection we prove proposition 4.2.2. The proof has two parts,
the first is a general G-categorical lemma, lemma 4.2.5, giving conditions ensuring that a G-left
Kan extension lifts to a G-symmetric monoidal functor, and the second is a verification of these
conditions.

We start with by recalling the notion of a G-lax monoidal functor and stating a useful
proposition from [BDG+]. Let D⊗, C⊗ be G-symmetric monoidal categories. Recall that a
lax G-symmetric monoidal G-functor F from D to C is a functor F : D⊗ → C⊗ over FinG∗
which preserves inert edges (i.e. coCartesian edges over inert morphisms). Let Alg(D, C) ⊂
Fun/FinG∗

(D⊗, C⊗) be the full subcategory of functors over FinG∗ which are lax G-symmetric
monoidal.
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Proposition 4.2.4. Let C⊗ ։ FinG∗ be a presentable G-symmetric monoidal category, let
M⊗ ։ FinG∗ be a small G-symmetric monoidal category and ι⊗ : D⊗ →֒ M⊗ an inclusion
of a full G-symmetric monoidal subcategory. Denote by ι : D →M the induced G-functor on the
underlying categories.

Then the restriction along ι⊗ has a left adjoint (ι⊗)! : Alg(D, C) → Alg(M, C). Moreover,
the adjunction (ι⊗)! : Alg(D, C) ⇆ Alg(M, C) : (ι⊗)∗ restricts to the adjunction ι! : Fun(D, C) ⇆
Fun(M, C) : ι∗, where ι! : Fun(D, C)→ Fun(M, C) is left adjoint to the restriction along ι.

In particular we have a commuting square of ∞-categories

Alg(D, C)

��

(ι⊗)! // Alg(M, C)

��
FunG(D, C)

ι! // FunG(M, C).

Wewill prove proposition 4.2.2 by applying the followingG-categorical lemma (aG-categorical
version of [AFT17a, lem. 2.16]).

Lemma 4.2.5. Let C⊗ ։ FinG∗ be a presentable G-symmetric monoidal category, let D⊗,M⊗ ։
FinG∗ be small G-symmetric monoidal categories and ι⊗ : D⊗ →֒ M⊗ be an inclusion of a full G-
symmetric monoidal subcategory. Denote by ι : D →M the induced G-functor on the underlying
categories.

If for every active morphism ψ : I → J in a fiber (FinG∗ )[G/H] and every coCartesian lift

x → y of ψ to M⊗ the G/H-functor ⊗ψ : (D⊗
<I>)/x → (D⊗

<J>)/y is G/H-cofinal then the
diagram

Fun⊗
G(D, C)

��

(ι⊗)! // Fun⊗
G(M, C)

��
FunG(D, C)

ι! // FunG(M, C)

commutes, where (ι⊗)! and ι! the left adjoins to the restrictions along ι⊗ and ι, respectively.

Proof. Applying proposition 4.2.4 we have:

(ι⊗)! : Alg(D, C)

��

00 Alg(M, C) : (ι⊗)∗
pp

��
ι! : FunG(D, C) 00 FunG(M, C) : ι∗

pp

We need to show that the adjunction (ι⊗)! : Alg(D, C) ⇆ Alg(M, C) : (ι⊗)∗ restricts to an ad-
junction between the full subcategories

Fun⊗
G(D, C) ⊂ Alg(D, C), Fun⊗

G(M, C) ⊂ Alg(M, C).

Clearly precomposition with theG-symmetric monoidal functor ι⊗ : D⊗ →M⊗ takesG-symmetric
monoidal functors to G-symmetric monoidal functors, so the right adjoint restricts to a functor

(ι⊗)∗ : Fun⊗G(M, C)→ Fun⊗
G(D, C).
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Let F⊗ : D⊗ → C⊗ be a G-symmetric monoidal functor, with F : C → D the induced G-
functor on the underlying categories. Applying the left adjoint (ι⊗)! to F⊗ we get a lax G-
symmetric monoidal functor (ι⊗)!F⊗ :M⊗ → C⊗, in other words (ι⊗)!F⊗ preserves coCartesian
edges over inert morphisms. We have to show that (ι⊗)!F⊗ preserves all coCartesian edges.
Using the inert-fiberwise active factorization system on M⊗ (which exists on any G-∞-operad,
see [BDG+]), we are reduced to showing that (ι⊗)!F⊗ preserves fiberwise active coCartesian
edges. By the Segal conditions it is enough to show (ι⊗)!F⊗ preserves arrows over maps I → J
in FinG∗ with J = (G/H

=−→ G/H).
Before showing that (ι⊗)!F⊗ preserve these coCartesian edges, let us first recall how the

functor (ι⊗)!F⊗ acts on morphisms.
By definition ι! : M → C is a left G-Kan extension. Using the construction of [Sha18, def.

10.1] we have a G-functor
(D ×M ArrG(M)) ⋆MM→ C

which is anM-parametrized G-colimit diagram, where

ArrG(M) = OopG ×Fun(∆1,OopG ) Fun(∆
1,M) ≃ FunG(OopG ×∆1,M)

is the fiberwise arrow category (see [Sha18, not. 4.29]). Note that by definition the restriction
to the first coordinate D ×M ArrG(M) →

(
D ×M ArrG(M)

)
⋆MM → M factors as D ×M

ArrG(M)
πD−−→ D F−→ C. and the restriction to the second coordinate is the left G-Kan extension

functor ι!F , i.e ι!F :M→ (D ×M ArrG(M)) ⋆MM→ C.
Let x ∈M⊗ be an object over I = (U → G/H) and ψ : I → J be an active morphism in the

fiber (FinG∗ )[G/H] with target J = (G/H
=−→ G/H), given by the span

ψ =




U

f

��

U
=oo

f

��

f // G/H

=

��
G/H G/H

=oo = // G/H



.

Denote the G-functor classified by x by x• : U → M (see remark B.0.8). Pulling back the
coCartesian fibration (D ×M ArrG(M)) ⋆MM ։ M along x• we get a U -parametrized G-
colimit diagram (D ×M ArrG(M) ×M U) ⋆U U → (D ×M ArrG(M)) ⋆MM → C (implicitly
using [Sha18, lem. 4.4]), and therefore a U -colimit diagram

p : (D ×M ArrG(M)×M U) ⋆U U → C×U.

Denote the U -category indexing the colimit diagram above by D/x• := D×M ArrG(M)×M U .

Note that by definition the restriction of p to D/x• factors as the U -functor

D/x• → D×U
F×U−−−→ C×U

and the restriction to U is the U -functor

ι!F (x•) : U
x•×U−−−−→M×U ι!F×U−−−−→ C×U.

Since C⊗ is a presentable G-symmetric monoidal category the tensor product functor

⊗ψ :
∏

I

C×U → C×G/H
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of definition B.0.11 is a distributiveG/H-functor (see [Nar17, def. 3.15]). Therefore the U -colimit
diagram p induces a G/H-colimit diagram

(∏

I

D/x•

)
⋆G/H G/H →

∏

I

(
D/x• ⋆U U

) ∏
ψ

p

−−→
∏

I

(C×U) ⊗ψ−−→ C×G/H (20)

exhibiting the G/H-object

⊗ψ
(∏

I

ι!F (x•)

)
: G/H

≃−→
∏

I

U
∏
I ι!F (x•)−−−−−−−→

∏

I

C×U ⊗ψ−−→ C×G/H

as the G/H-colimit of

p :
∏

I

D/x• →
∏

I

D×U →
∏

I

C×U ⊗ψ−−→ C×G/H.

First, note that we can express the G/H-colimit ⊗ψ (
∏
I ι!F (x•)) of (20) in simpler terms.

Since (ι⊗)!F⊗ : D⊗ → C⊗ is a lax G-symmetric monoidal functor we have

G/H

≃
��

x //

(ι⊗)!F
⊗(x)

))
M⊗

<I>

≃
��

((ι⊗)!F
⊗)<I> // C⊗<I>

≃
��∏

I U

∏
I x•×U //

∏
I ι!F (x•)

11
∏
IM×U

∏
I ι!F×U // ∏

I C×U,

therefore ⊗ψ (
∏
I ι!F (x•)) ≃ ⊗ψ ((ι⊗)!F⊗(x)).

On the other hand, we can also express the G/H-diagram p in simpler terms. To see this
observe the commutative diagram

(D⊗
<I>)/x

≃
��

// D⊗
<I>

≃
��

F⊗
<I> // C⊗<I>

≃
��∏

I

D/x•

⊗ψ
��

// ∏
I

D×U

⊗ψ

��

∏
I F×U

// ∏
I

C×U

⊗ψ

��
D/⊗ψx ∼=

(
D×G/H

)
/⊗ψx

// D×G/H
F×G/H

// C×G/H

(21)

where the left vertical column is induced by taking the G/H-limit of the rows of the following
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diagram of G/H-categories:

D⊗
<I>

≃
��

//M⊗
<I>

≃
��

ArrG/H(M⊗
<I>)

oo

≃
��

//M⊗
<I>

≃
��

G/H
xoo

≃
��∏

I D×U //

⊗ψ
��

∏
IM×U

⊗ψ
��

ArrG/H(
∏
IM×U)oo

⊗ψ
��

// ∏
IM×U

⊗ψ
��

∏
I U

∏
I x•oo

≃
��

D×G/H //M×G/H ArrG/H(M×G/H)oo //M×G/H G/H.
⊗ψxoo

Note that p is the composition of the middle row of diagram (21) followed by the lower right
vertical G/H-functor ⊗ψ. Therefore p is equivalent to the composition of the left vertical column
of diagram (21) followed by the bottom row:

(D⊗
<I>)/x

⊗ψ−−→ D/⊗ψx → D×G/H
F×G/H
−−−−−→ C×G/H.

Finally, by the assumption of the lemma the G/H-functor ⊗ψ : (D⊗
<I>)/x →

(
D×G/H

)
/⊗ψx

is G/H-cofinal, therefore

⊗ψ
(
(ι⊗)!F

⊗(x)
)
≃ G/H − colim−−−→

(
(D⊗

<I>)/x
⊗ψ−−→ D/⊗ψx → D×G/H

F×G/H
−−−−−→ C×G/H

)

∼−→ G/H − colim−−−→
(
D/⊗ψx → D×G/H

F×G/H
−−−−−→ C×G/H

)
≃ ι!F (⊗ψx),

so we have a coCartesian edge e : (ι⊗)!F⊗(x)→ ι!F (⊗ψx) in C⊗ over ψ.
We can now show that (ι⊗)!F⊗ :M⊗ → C⊗ preserves coCartesian edges over ψ : I → J as

above. Let e′ : x→ y be a coCartesian edge inM⊗ over ψ. By definition of ⊗ψ this coCartesian

edge factors as x→ ⊗ψx ∼−→ y over I
ψ−→ J

=−→ J (See [Lur09a, rem. 2.4.1.4 and prop. 2.4.1.5]).
Applying (ι⊗)!F⊗ we get (ι⊗)!F⊗(e′) : (ι⊗)!F⊗(x)→ (ι⊗)!F⊗(y) = ι!F (y), and we need to show
(ι⊗)!F⊗(e′) is a coCartesian lift of ψ. However, we already have a coCartesian lift of ψ, the edge

e we constructed above. Therefore (ι⊗)!F⊗(e′) factors through e as (ι⊗)!F⊗(x)
e−→ ι!F (⊗ψx)→

ι!F (y). Note that the morphism ι!F (⊗ψx) → ι!F (y) is induced from ⊗ψx ∼−→ y, and therefore
an equivalence. Hence (ι⊗)!F⊗(e′) is coCartesian as a composition of a coCartesian edge and an
equivalence.

This ends the proof of lemma 4.2.5.

We can now prove proposition 4.2.2 by verifying the cofinality conditions of lemma 4.2.5. In
fact, we prove the cofinality of the maps in lemma 4.2.5 by showing that they are equivalences.

We rely on the following result to reduce our calculations to the non-framed case B =
BOn(G).

Proposition 4.2.6. Let f : B → BOn(G) be a G-map as in definition 3.3.1, andM ∈MfldG,f−fr[G/H]

an f -framed OG-manifold over G/H. Then the G/H-functor

(MfldG,f−fr)/M →MfldG/M
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is an equivalence of G/H-categories.

In particular, every G-submanifold N ⊆M has an essentially unique lift to N ∈MfldG,f−fr/M

(informally, M induces an f -framing of N).

Proof. We show that for every ϕ ∈ G/H, ϕ : G/K → G/H the induced functor on the fibers

over ϕ,
(
(MfldG,f−fr)/M

)
[ϕ]
→
(
MfldG/M

)
[ϕ]

, is an equivalence. By construction the fibers of

the parametrized over category are equivalent to the over categories

(
(MfldG,f−fr)/M

)
[ϕ]
≃
(
MfldG,f−fr[G/K]

)
/ϕ∗M

,
(
(MfldG)/M

)
[ϕ]
≃
(
MfldG[G/K]

)
/ϕ∗M

.

By definition 3.3.1 the fiber MfldG,f−fr[G/K] is given by the pullback of ∞-categories

MfldG,f−fr[G/K]

��

//
❴✤

(TopG
[G/K]

)/B(G/K)

��
MfldG[G/K]

// (TopG
[G/K]

)/BOn(G)(G/K),

where

B(G/K) = (B ×G/K → G/K), BOn(G)(G/K) = (BOn(G) ×G/K → G/K),

see remark 2.1.7. We can simplify the pullback square above using the equivalences of re-
mark 3.2.9:

(TopG
[G/K]

)/B(G/K)
∼−→ TopG/B×G/K , (TopG

[G/K]
)/BOn(G)(G/K)

∼−→ TopG/BOn(G)×G/K .

We can now express the slice category (MfldG,f−fr[G/K] )/ϕ∗M as a pullback of slice categories

(MfldG,f−fr[G/K] )/ϕ∗M

��

//
❴✤

(
TopG/B×G/K

)
/(ϕ∗M→B×G/K)

��

(MfldG[G/K])/ϕ∗M
//
(
TopG/BOn(G)×G/K

)
/(ϕ∗M→BOn(G)×G/K)

��
TopG/ϕ∗M .

By [AF15, lem. 2.5] both the bottom right vertical arrow and the composition of the right
vertical arrows are equivalences of ∞-categories. By the two-out-of-three property we see that
the top vertical arrow is an equivalence of ∞-categories, and therefore the left vertical arrow is
also an equivalence, as claimed.

Proof of proposition 4.2.2. By the Segal conditions and proposition 4.2.6 the G/H-functors

(DiskG,f−fr,⊔<Ii>
)/Mi

→ (DiskG,⊔<Ii>
)/Mi

, i = 1, 2
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are equivalences of G/H-categories, therefore it is enough to prove the non-framed case.

Let ψ : I → J be an active morphism in the fiber (FinG∗ )[G/H]. Without loss of generality, ψ
is represented by the span

ψ =




U1

��

U1
=oo

��

// U2

��
G/H G/H

=oo = // G/H


 .

By remark 3.4.20 a coCartesian lift f : M1 →M2 of ψ is represented by a span

f =




M1

��

M1
=oo

��

∼ // M2

��
U1

��

U1
=oo

��

// U2

��
G/H G/H

=oo = // G/H




.

By lemma 4.2.5 it is enough to show that the G/H-functor (DiskG,⊔<I>)/M1
→ (DiskG,⊔<J>)/M2

is

G/H-cofinal. We prove that it is in fact an equivalence, by showing that it is induces fiberwise
equivalences.

Consider the induced functor
(
(DiskG,⊔<I>)/M1

)
[ϕ]
→
(
(DiskG,⊔<J>)/M2

)
[ϕ]

between the fibers

over ϕ ∈ G/H, ϕ : G/K → G/H .
We now inspect each fiber. By definition, we have

(DiskG,⊔<I>)/Mi
:= DiskG,⊔<I> ×MfldG,⊔<I>

(MfldG,⊔<I>)/Mi
, i = 1, 2,

and therefore the fibers over ϕ are given by
(
(DiskG,⊔<I>)/Mi

)
[ϕ]

=
(
DiskG,⊔<I>

)
[ϕ]
×(MfldG,⊔<I>)[ϕ]

(
(MfldG,⊔<I>)/Mi

)
[ϕ]
, i = 1, 2.

By the definition of parametrized slice category [Sha18, not. 4.29] we have

(
(MfldG,⊔<I>)/Mi

)
[ϕ]

∼=
(
(MfldG,⊔<I>)[ϕ]

)
/ϕ∗Mi

, i = 1, 2,

where ϕ∗Mi, i = 1, 2 is the pullback of Mi → Ui → G/H along ϕ : G/K → G/H .

Next, note that (MfldG,⊔<Ii>
)[ϕ] ∼= (MfldG,⊔)ϕ∗Ii is the fiber of MfldG,⊔ ։ FinG∗ over ϕ∗Ii =

(Ui ×G/H G/K → G/H) ∈ FinG∗ .

However, using the definition of the coCartesian fibrationMfldG,⊔ ։ FinG∗ (definition 3.4.19)
and the definition of the unfurling construction (see [Bar14, prop. 11.6] and the description of the

fibers following it) we see that (MfldG,⊔<Ii>
)[ϕ] is equivalent to (OG-Fin-Mfld)ϕ∗Ii , (the coherent

nerve of) the full topological subcategory of OG-Fin-manifolds, OG-Fin-Mfld (definition 3.4.5)

spanned by OG-Fin-manifolds over ϕ∗Ii. It follows that the ∞-category
(
(MfldG,⊔<Ii>

)/Mi

)
[ϕ]

is

equivalent to the slice category ((OG-Fin-Mfld)ϕ∗Ii)/ϕ∗Mi
, modeled by the coherent nerve of

the Moore over category ((OG-Fin-Mfld)ϕ∗Ii)
Moore
/ϕ∗Mi

. Therefore, the fiber
(
(DiskG,⊔<Ii>

)/Mi

)
[ϕ]

is
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equivalent to the full subcategory of ((OG-Fin-Mfld)ϕ∗Ii)
Moore
/ϕ∗Mi

spanned by objects represented

by morphisms (E → U ′ → Ui ×G/H G/K → G/H) → (ϕ∗Mi → Ui ×G/H G/K → G/H) over
φ∗Ii, where E → U ′ is a G-vector bundle. Recall that U ′ = π0(E) (remark 3.6.6). Unwinding the
definition of morphisms in OG-Fin-Mfld over ϕ∗Ii = Ui×G/HG/K, we see that such morphisms
are represented by commutative diagrams

E

��

E′∼oo

��

� � // Mi

��

π0(E)

��

π0(E)
=oo

��
ϕ∗Ii

��

ϕ∗Ii
=oo

��

= // ϕ∗Ii

��
G/K G/K

=oo = // G/K,

or equivalently, by a G-equivariant embedding E →֒Mi over ϕ
∗Ii.

With this concrete description of the fibers at hand, the induced functor between the fibers(
(DiskG,⊔<I1>

)/M1

)
[ϕ]
→
(
(DiskG,⊔<I2>

)/M2

)
[ϕ]

is given by composition with

ϕ∗f =




ϕ∗M1

��

ϕ∗M1
=oo

��

∼ // ϕ∗M2

��
ϕ∗I1

��

ϕ∗I1
=oo

��

// ϕ∗I2

��
G/K G/K

=oo = // G/K




.

By inspection the induced functor

(ϕ∗f) ◦ − : ((OG-Fin-Mfld)ϕ∗I1)
Moore
/ϕ∗M1

→ ((OG-Fin-Mfld)ϕ∗I2)
Moore
/ϕ∗M2



E

��

� � // ϕ∗M1

��

π0(E)

$$❍
❍❍

❍❍❍
❍❍

❍

ϕ∗I1

��
G/K




7→




E

��

� � // ϕ∗M1

��

ϕ∗M1
=oo

��

∼ // ϕ∗M2

��

π0(E)

$$❍
❍❍

❍❍
❍❍

❍❍

ϕ∗I1

��

ϕ∗I1
=oo

��

// ϕ∗I2

��
G/K G/K

=oo = // G/K




is an equivalence of topological categories.
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5 Properties of G-factorization homology

In this subsection we prove two properties of G-factorization homology: it satisfies G-⊗-excision
(proposition 5.2.3) and respects G-sequential colimits (proposition 5.3.3).

5.1 Collar decomposition of G-manifolds

We define G-collar decompositions of G-manifolds and construct inverse image functors (con-
struction 5.1.4). In the next subsection we use these constructions to define G-⊗-excision and
prove that G-factorization homology satisfies G-⊗-excision (proposition 5.2.3).

We begin with an equivariant version of collar-gluing, see [AF15, def. 3.13]. The same
definition is given in [Wee18, def. 4.20].

Definition 5.1.1. Let M ∈MfldG be an n-dimensional G-manifold. A G-collar decomposition
of M is a smooth G-invariant function f : M → [−1, 1] to the closed interval for which the
restriction f |(−1,1) : M |(−1,1) → (−1, 1) is a manifold fiber bundle, with a choice of trivialization
M |(−1,1)

∼= M0 × (−1, 1). Here M(−1,1) = f−1(−1, 1), M0 = f−1(0). For such a decomposition,
denote M+ := f−1(−1, 1], M− := f−1[−1, 1).

A G-collar decomposition of an f -framed OG-manifold M ∈ MfldG,f−fr[G/H] is a G-collar de-

composition of the underlying G-manifold M .

Remark 5.1.2. Note that M |(−1,1) is a tubular neighborhood of the codimension one G-
submanifold M0, and that M0 splits M into two G-manifolds, i.e. there exists a continuous
G-invariant function M \M0 → [−1, 1] \ {0} → {−1, 1} to the set with two elements. On the
other hand, a G-submanifold M0 ⊂ M of codimension one that splits M into two G-manifolds
has an equivariant tubular neighbourhood T ⊂ M equivalent to the total space ν(M0) of the
normal bundle of M0 (compatible with the M0 ⊂ M and the zero section M0 → ν(M) ). By
assumption, the normal bundle of M0 is a trivial vector bundle of rank 1 with trivial G action.
A choice of G-diffeomorphisms T ∼= ν(M) ∼= M0 × R ∼= M0 × (−1, 1) (compatible with M0)
determines a G-collar decomposition of M .

Remark 5.1.3. A G-collar decomposition f : M → [−1, 1] defines a decomposition of M into
a union of open G-submanifolds M = M− ∪ M+ with a chosen isomorphism M− ∩ M+

∼=
M0 × (−1, 1). The purpose of the above definition is to specify these decompositions among
all decompositions M = U ∪ V of M as a union of two open G-submanifolds. We will see
that G-equivariant homology is compatible with G-collar decompositions (definition 5.2.2 and
proposition 5.2.3). This should be compared with Bredon homology, which is compatible with
all decompositionsM = U ∪V into two equivariant open subsets (the equivariant Mayer-Vietoris
property).

Next we construct an “inverse image” functor f−1 : Mfld∂,or/[−1,1] → (MfldG,f−fr[G/H] )/M from

the ∞-category of 1-dimensional oriented manifolds with boundary over the interval [−1, 1] (see
[AF15]). By proposition 4.2.6 we have an equivalence of ∞-categories

(MfldG,f−fr[G/H] )/M
∼−→ (MfldG[G/H])/(M→G/H), (22)

so it is enough to construct f−1 : Mfld∂,or/[−1,1] → (MfldG[G/H])/(M→G/H) for (M → G/H) ∈
MfldG[G/H] the underlying OG-manifold of M ∈MfldG,f−fr[G/H] .

Note that both the domain and the codomain of the functor f−1 can be described using
coherent nerve of the Moore over categories (see appendix A), since the ∞-categories

Mfldbnd,or, MfldG[G/H]
∼= MfldG[G/H]
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are coherent nerves of topological categories. We construct the inverse image functor as the
coherent nerve of a functor of topological categories between the Moore over categories.

Construction 5.1.4. Let (M → G/H) be an OG-manifold with a collar decomposition f : M →
[−1, 1]. Define a topological functor (Mfld∂,or)Moore

/[−1,1] → (MfldG[G/H])
Moore
/(M→G/H) between the

Moore over categories:

1. Send an object of (Mfld∂,or)Moore
/[−1,1] given by oriented embedding ϕ : V →֒ [−1, 1] to its

inverse image, f−1(ϕ) : f−1V →֒M given by the pullback of ϕ along f . Since the function
f is G-invariant the embedding f−1(ϕ) is G-equivariant. The composition

f−1V
� � f−1(ϕ) // M // G/H

makes f−1V a G-manifold over G/H , hence f−1(ϕ) is a point in the topological space
EmbGG/H(f

−1V,M), i.e an object of the Moore over category (MfldG[G/H])
Moore
/(M→G/H) .

2. Let ϕ : V →֒ [−1, 1] and ϕ′ : V ′ →֒ [−1, 1] be two objects of the Moore over category
(Mfld∂,or)Moore

/[−1,1]. Let (h, (r, γ)) be a point in Map(Mfld∂,or)Moore
/[−1,1]

(ϕ, ϕ′), where h : V →֒ V ′

is an oriented embedding and (r, γ) ∈ [0,∞) ×
(
Emb∂,or(V, [−1, 1])

)[0,∞)
is a Moore path

from ϕ to ϕ′ ◦ h. Define a continuous function

f−1 : Map(Mfld∂,or)Moore
/[−1,1]

(ϕ, ϕ′)→ Map(MfldG
[G/H]

)Moore
/(M→G/H)

(
f−1(Imϕ) ⊂M, f−1(Imϕ′) ⊂M

)
,

f−1(h, (r, γ)) := (f−1(h), (r, α)),

f−1V
❴✤

��

� �f
−1(h)// f−1

❴✤

��

� � f
−1(ϕ′) // M

f

��
V �
� ϕ // V �

� h // [−1, 1]

where f−1(h) is given by the pullback

f−1V
❴✤

��

� �f
−1(h)// f−1

❴✤

��

� � f
−1(ϕ′) // M

f

��
V �
� ϕ // V �

� h // [−1, 1]

and α : [0,∞) → EmbG(f−1(V ),M) is the Moore path of length r defined as follows. If
x ∈M |(−1,1)

∼=M0 × (−1, 1) corresponds to (y, s) ∈M0 × (−1, 1) define

αt(x) = (y, γt ◦ ϕ−1(s)) ∈M0 × (−1, 1) ∼=M |(−1,1),

otherwise (i.e. f(x) = ±1) define αt(x) = x. Verification that (r, α) is a smooth G-
equivariant isotopy depending continuously on γ is left to the reader.

Clearly f−1 preserve disjoint unions.

Remark 5.1.5. More generally, one can try to define an inverse image functor along a general
smooth invariant map M → N to a oriented manifold with boundary N . However, not every
map f will do. First, in order to define the isotopy lift α assume that the restrictions of f to
f−1(N \ ∂N) and f−1(∂N) are smooth fiber bundles, and use G-equivariant parallel transport
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between the fibers. The connections on the fiber bundles need to be compatible in order for α
to be continuous and smooth. However, such parallel transport defines functions which are only
continuous in the C1-topology on EmbG(f−1V,M), since they depend on the time derivative of
the isotopy γ. Nevertheless, if the connections chosen are flat then parallel transport depends
only on the end points, and therefore defines a continuous function relative to the compact-open
topology. All these conditions can be can be captured together by assuming that f : M → N is
a G-invariant flat complete Riemannian submersion. This condition implies that the restrictions
to N \ ∂N and ∂N are flat fiber bundles, with compatibly chosen flat G-equivariant Ehresmann
connections (i.e. a constructible fiber bundle relative to the boundary stratification).

5.2 G-⊗-excision
We define an equivariant version of ⊗-excision of [AF15, def. 3.15] (see definition 5.2.2), and
prove it is satisfied by G-factorization homology (proposition 5.2.3).

Given a G-symmetric monoidal functor F : MfldG,f−fr → C and a G-collar decomposition of
an f -framedOG-manifoldM ∈MfldG,f−fr[G/H] we construct a comparison map F (M−)⊗F (M0×(−1,1))

F (M+) → F (M) in C[G/H]. This construction depends on the “inverse image” functor of con-
struction 5.1.4.

Construction 5.2.1. Let F : MfldG,f−fr → C be a G-symmetric monoidal functor. Let M ∈
MfldG,f−fr[G/H] with underlying OG-manifold (M → G/H) ∈ MfldG[G/H], and f : M → [−1, 1] a
G-collar decomposition. Consider the Disk∂,or/[−1,1]-shaped diagram in C[G/H] given by the functor

Disk∂,or/[−1,1] →Mfld∂/[−1,1]
f−1

−−→ (MfldG[G/H])/(M→G/H) ≃ (MfldG,f−fr[G/H] )/M
F−→ (C[G/H])/F (M)

(23)

where the first functor is the embedding of disks in manifolds followed by the functor forgetting
orientation (see [AF15, def. 2.18]), the second functor is the inverse image functor defined in
construction 5.1.4, followed by the equivalence of eq. (22), and the third functor is induced by the
action of F on the over categories. By [AF15, lem. 3.11] there is a cofinal map ∆op → Disk∂,or,
therefore the colimit of eq. (23) in C[G/H])/F (M) is given by




colim−−−→ (· · · →→→ F (M−)⊗ F (M0 × (−1, 1))⊗ F (M+) ⇒ F (M−)⊗ F (M+))

��
F (M)


 ∈ (C[G/H])/F (M),

known as the two sided bar construction. Assume that C[G/H] admits sifted colimits and that
the tensor product functor of C[G/H] preserves sifted colimits separately in each variable (i.e the

coCartesian fibration C⊗[G/H] → Fin∗ is compatible with sifted colimits in the sense of [Lur, def.

3.1.1.18]). Then the relative tensor product F (M−)⊗F (M0×(−1,1)) F (M+) can be identified with
the colimit of this two sided bar construction (see [Lur, thm. 4.4.2.8]). Hence we identify the
colimit of the diagram eq. (23) with




F (M−)⊗F (M0×(−1,1)) F (M+)

��
F (M)


 ∈ (C[G/H])/F (M). (24)
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Definition 5.2.2. A G-symmetric monoidal functor F : MfldG,f−fr → C satisfies G-⊗-excision
if for every M ∈MfldG,f−fr with underlying OG-manifold (M → G/H) together with a G-collar
decomposition f : M → [−1, 1] the morphism (24) is an equivalence in C[G/H].

The main result of this subsection is

Proposition 5.2.3. Let A : DiskG,f−fr,⊔ → C⊗ be an f -framed G-disk algebra. Then the
G-factorization homology functor

∫
A : MfldG,f−fr,⊔ → C⊗ of definition 4.2.3 satisfies G-⊗-

excision.

Remark 5.2.4. We view the proof of proposition 5.2.3 as an instance of “equivariant push-
forward”. We conjecture that the pushforward paradigm of [AF15, sec. 3.4] and [AFT17a,
sec. 2.5] has an equivariant generalization to a smooth constructible G-fiber bundle between
equivariantly-framed OG-manifolds with boundary. However, the definition of equivariantly
framed OG-manifolds with boundary is beyond the scope of this work.

Instead, we are able to prove proposition 5.2.3 without these definitions because the action
of G on the oriented manifold [−1, 1] is trivial.

We could have followed a slightly more general approach, considering aG-constructible bundle
M → N where N has boundary and trivial G-action. To do this, note that since G acts trivially
on N , any G-embedding V →֒ N must have a trivial G-action as well, so the slice category of G-
disks overN is a constant G-diagram. This allows us to harness the definition of (nonequivariant)
framing given in [AF15] to construct a replacement for the expected “G-slice category of f -
framed G-embeddings V →֒ N” needed to preform pushforward. We chose not to prove this
generalization since we do not currently need it, and we believe it would further obfuscate the
proof.

In order to prove proposition 5.2.3 we need the following auxiliary construction.

Construction 5.2.5. Let M → G/H be an OG-manifold and f : M → [−1, 1] be a G-collar
decomposition of M . Define a G/H-category Xf → G/H and G/H-functors

ev0 : Xf → DiskG,f−fr/M , ev1 : Xf → G/H ×Disk∂,or/[−1,1]

by the taking the limit of the following diagram of G/H-categories.

DiskG,f−fr/M FunG/H(G/H ×∆1,MfldG,f−fr/M ) G/H ×Disk∂,or/[−1,1]

MfldG,f−fr/M MfldG,f−fr/M

f−1

where f−1 is the inverse image functor of construction 5.1.4.

Remark 5.2.6. Using proposition 4.2.6 and unwinding the definitions shows that the fiber of
Xf → G/H over ϕ : G/K → G/H is given by the limit of

(DiskG[G/K])/ϕ∗M Fun(∆1, (DiskG[G/K])/ϕ∗M ) Disk∂,or/[−1,1]

(MfldG[G/K])/ϕ∗M (MfldG[G/K])/ϕ∗M ,

f−1
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where the∞-over categories (DiskG[G/H])/ϕ∗M , (MfldG[G/H])/ϕ∗M can be modeled as the coherent
nerve of the Moore over category (see appendix A). Explicitly, an object of (Xf )[ϕ] is given by

(g : V →֒ [−1, 1], h : E →֒ ϕ∗M,h′ : E →֒ f−1V, γ) where

• V is a finite disjoint union of 1-dimensional oriented disks with boundary, i.e oriented open
intervals equivalent to R and oriented half open intervals equivalent to [0, 1) or (0, 1],

• g is an orientation preserving embedding of V into the closed interval [−1, 1],
• E → U → G/K is a finite G-disjoint union of G-disks (i.e E → U a G-vector bundle over

a finite G-set),

• h is a G-equivariant embedding over G/K of E into the pullback of M → G/H along ϕ,

• h′ is a G-equivariant embedding over G/K of E into the preimage f−1V

• γ is a Moore path in EmbG[G/K](E,ϕ
∗M) from h to E

h′
−→ f−1V

f−1(g)−−−−→ ϕ∗M .

The functor ev0 sends the object (g : V →֒ [−1, 1], h : E →֒ ϕ∗M,h′ : E →֒ f−1V, γ) described
above to (h : E →֒ ϕ∗M) ∈ (MfldG[G/K])/ϕ∗M , while the functor ev1 sends it to (g : V →֒ [−1, 1]) ∈
Disk∂,or/[−1,1] .

By [Lur09a, prop. 2.4.7.12] it follows that for every ϕ ∈ G/H the functor

(ev0)[ϕ] : (Xf )[ϕ] → (DiskG[G/H])/ϕ∗M

is a Cartesian fibration (and therefore that ev1 is a G/H-Cartesian fibration, see [Sha18, def.
7.1]).

The following lemma is the main ingredient in the proof of proposition 5.2.3.

Lemma 5.2.7. The G/H-functor ev0 : Xf → DiskG,f−fr/M is G/H-cofinal.

The following proof is an adaptation of [Lur, thm. 5.5.3.6], [AF15, lem. 3.21] and [AFT17a,
lem. 2.27] to the equivariant setting.

Proof of lemma 5.2.7. By proposition 4.2.6 we have to prove that ev0 : Xf → DiskG/M is G/H-
cofinal. By [Sha18, thm. 6.7, def. 6.8] the G/H functor ev0 is G/H-cofinal if and only if for each

(ϕ : G/K → G/H) ∈ G/H the functor (ev0)[ϕ] : (Xf )[ϕ] → (DiskG/M )[ϕ] is cofinal.

By replacing f : M → [−1, 1] with ϕ∗M →M
f−→ [−1, 1] we reduce to ϕ = (G/H

=−→ G/H) ∈
G/H : it is enough to prove that (ev0)[G/H] is cofinal.

By remark 5.2.6 the functor (ev0)[G/H] is a Cartesian fibration, therefore by [Lur09a, prop.

4.1.3.2] it is enough to show that for each (E →֒M) ∈ (DiskG[G/H])/M the fiber (ev0)
−1(E →֒M)

is weakly contractible.
Note that the category (ev0)

−1(E →֒M) has a functor to Disk∂,or/[−1,1] by construction:

(ev0)
−1(E →֒M) Disk∂,or/[−1,1]

∼= {E →֒M} ×Disk∂,or/[−1,1]

(Xf )[G/H] (DiskG[G/H])/M ×Disk∂,or/[−1,1]

Fun(∆1, (MfldG[G/H])/M ) (MfldG[G/H])/M × (MfldG[G/H])/M

p

((ev0)[G/H],(ev1)[G/H])

p
(ι,f−1)
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The top horizontal functor (ev0)
−1(E →֒ M) → Disk∂,or/[−1,1] is pullback of a left fibration, since

it can be written as

(ev0)
−1(E →֒M) Disk∂,or/[−1,1]

(
(MfldG[G/H])/M

)
(E →֒M)/

(MfldG[G/H])/M

Fun(∆1, (MfldG[G/H])/M ) (MfldG[G/H])/M × (MfldG[G/H])/M ,

p
f−1

p ({E →֒M},id)

where the middle horizontal arrow is a left fibration by [Lur09a, cor. 2.1.2.2].

The left fibration (ev0)
−1(E →֒M)→ Disk∂,or/[−1,1] classifies the functor

(MfldG[G/H])/M → S, (V →֒ [−1, 1]) 7→ Map(MfldG
[G/H]

)/M
(E →֒M, f−1V →֒M),

and by [Lur09a, 3.3.4.5] we have to show that the colimit

colim−−−→(V →֒[−1,1])∈Disk∂,or
[−1,1]

Map(MfldG
[G/H]

)/M
(E →֒M, f−1V →֒M)

is weakly contractible.
Let Disk∂,or([−1, 1]) denote the ordinary category with the same objects as Disk∂,or/[−1,1] and

sets of morphisms given by forgetting the topology of the mapping spaces of Disk∂,or/[−1,1] (see

[AF15, def. 2.8]). Note that the category Disk∂,or([−1, 1]) is equivalent to the partial ordered
set of open subsets V ( [−1, 1] for V a finite disjoint union of intervals in [−1, 1], possibly
containing the edge points −1, 1, after excluding the whole interval [−1, 1] ⊆ [−1, 1].

By [AF15, prop. 2.19] the functor Disk∂,or([−1, 1]) → Disk∂,or/[−1,1] is cofinal, hence it is

enough to show that the homotopy colimit

hocolim−−−−−→(V([−1,1])∈Disk∂,or([−1,1])
Map(MfldG

[G/H]
)/M

(E →֒M, f−1V →֒M)

is contractible.
Using observation 1 we see that the space Map(MfldG

[G/H]
)/M

(E →֒ M, f−1V →֒ M) is the

homotopy fiber of EmbG[G/H](E, f
−1V ) → EmbG[G/H](E,M), hence by [Lur09a] it is enough to

show that the map

hocolim−−−−−→(V([−1,1])∈Disk∂,or([−1,1])
EmbG[G/H](E, f

−1V )→ EmbG[G/H](E,M)

is an equivalence.
By [Lur09a, thm. 6.1.0.6] colimits in S are universal, therefore by corollary 3.8.6 it is enough

to prove that the map

hocolim−−−−−→(V([−1,1])∈Disk∂,or([−1,1])
ConfGG/H(U ; f−1V )→ ConfGG/H(U ;M)

is an equivalence. Since
{
ConfGG/H(U ; f−1V )

}
(V([−1,1])∈Disk∂,or([−1,1])

is a complete open cover

of ConfGG/H(U ;M) it follows from [DI04, cor. 1.6] that the above map is an equivalence.
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We will also need a simple cofinality lemma. Assume we have a coCartesian fibration p : D ։
C between S-categories C,D (i.e. an S-coCartesian fibration, see [Sha18, rem. 7.3]), and an
S-object x : S → C. Let p−1(x) := S ×C D be the pullback of p along x. Since p−1(x) ։ S is a
coCartesian fibration we can considered p−1(x) as an S-category, which we denote by p−1(x).

Lemma 5.2.8. Let C,D be S-categories and p : D ։ C be a coCartesian fibration, and x : S → C
an S-object of C. Then the S-functor p−1(x)→ D/x is S-cofinal.

Proof. By [Sha18, thm. 6.7] we have to show that for each s ∈ S the functor p−1(x)
[s]
→ (Dx)[s]

between the fibers of p−1(x) → D/x over s is cofinal. Since p[s] : D[s] ։ C[s] is a coCartesian

fibration it follows that (p−1
[s] (x(s)) → (D[s])/x(s) is cofinal. The result now follows from the

equivalence p−1
[s]
∼= (p[s])

−1(x(s)).

With lemma 5.2.7 at hand we turn to the proof of proposition 5.2.3. The proof follows the
outline of the proof of [AF15, prop. 3.23] (“pushforward”).

Proof of proposition 5.2.3. By eq. (17) and lemma 5.2.7 we have

∫

M

A := G/H − colim−−−→(DiskG,f−fr/M → DiskG,f−fr×G/H
A×G/H
−−−−−→ C×G/H)

= G/H − colim−−−→(Xf
ev0−−→ DiskG,f−fr/M → DiskG,f−fr×G/H

A×G/H
−−−−−→ C×G/H).

Using the characterization of parametrized Kan extensions as parametrized left adjoints (see
[Sha18, thm. 10.4], and also [Nar16, def. 2.10 and def. 2.12]) we can express the above G/H-
colimit as a left G/H-Kan extension of L : Xf → C×G/H along the structure map Xf → G/H,
where L is the G/H-functor given by the composition

L : Xf
ev0−−→ DiskG,f−fr/M → DiskG,f−fr×G/H

A×G/H
−−−−−→ C×G/H. (25)

Equivalently the G/H-colimit over Xf is given by the left G/H-adjoint to restriction along the
structure map Xf → G/H ,

G/H − colim−−−→ : FunG/H(Xf , C×G/H) ⇆ FunG/H(G/H, C×G/H) ≃ C×G/H.

By construction ev1 : Xf → G/H ×Disk∂,or/[−1,1] is a G/H category, therefore the structure map

Xf → G/H factors as Xf
ev1−−→ G/H × Disk∂,or/[−1,1] → G/H. We can now extend L along

Xf → G/H in two steps, again using [Sha18, thm. 10.4], as the composition of left G/H-
adjoints

(ev1)! : FunG/H(Xf , C×G/H) FunG/H(G/H ×Disk∂,or/[−1,1], C×G/H) : (ev1)
∗,

G/H − colim−−−→ : FunG/H(G/H ×Disk∂,or/[−1,1], C×G/H) FunG/H(G/H, C×G/H) ≃ C×G/H,

where (ev1)! is the left G/H-Kan extension of (25) along ev1. In particular restricting to fibers

over (G/H
=←− G/H) ∈ G/H we get composition of unparametrized left adjoints (see [Lur, prop.

7.3.2.6] and [Sha18, def. 8.1]):

(ev1)! : FunG/H(Xf , C×G/H) FunG/H(G/H ×Disk∂,or/[−1,1], C×G/H) : (ev1)
∗,
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G/H − colim−−−→ : FunG/H(G/H ×Disk∂,or/[−1,1], C×G/H) FunG/H(G/H, C×G/H) ≃ C[G/H].

Applying both left adjoints to the G/H-functor L : Xf → C×G/H of (25) produces the G-

factorization homology
∫
M
A = G/H − colim−−−→(L : Xf → C×G/H). Let L′ := (ev1)!(L) ∈

FunG/H(G/H × Disk∂,or/[−1,1], C×G/H) be the left G/H-Kan extension of L along ev1. Then

the G/H-colimit of L′ is

G/H − colim−−−→(L′) = G/H − colim−−−→ ((ev1)!(L)) ≃ G/H − colim−−−→(L) =

∫

M

A.

Next, note that the G/H-colimit over the constant diagram G/H ×Disk∂,or/[−1,1] is equivalent

to an unparametrized colimit over Disk∂,or/[−1,1]. To see this, use the equivalence

FunG/H(G/H ×Disk∂,or/[−1,1], C×G/H)
∼−→ Fun(Disk∂,or/[−1,1], C[G/H]),

L′ 7→ L′|{
G/H

=←−G/H}
×Disk∂,or

/[−1,1]

and the global definition of a colimit as a left adjoint

colim−−−→ : Fun(Disk∂,or/[−1,1], C[G/H]) ⇆ C[G/H].

Therefore, we have
∫

M

A ≃ G/H − colim−−−→(L′) ≃ colim−−−→
(
L′|{

G/H
=←−G/H}

×Disk∂,or
/[−1,1]

)
,

which we write as
∫

M

A ≃ colim−−−→(V →֒[−1,1])∈Disk∂,or
/[−1,1]

L′(G/H
=−→ G/H, V →֒ [−1, 1]).

Out next goal is to calculate L′(y) for y = (G/H
=−→ G/H, V →֒ [−1, 1]) where (V →֒

[−1, 1]) ∈ Disk∂,or/[−1,1] is an oriented embedding. We claim that L′(y) ≃
∫
f−1V

A ∈ C[G/H] is

the G-factorization homology of f−1(V ) ∈ MfldG,f−fr[G/H] . After asserting our claim we use the

cofinal map ∆op → Disk∂,or/[−1,1] of [AF15, lem. 3.11] to deduce
∫
M
A is equivalent to the colimit

of the simplicial diagram ∆op →
{
G/H

=←− G/H
}
×Disk∂,or/[−1,1]

L′
−→ C[G/H]. Since the functor

L′(V →֒ [−1, 1]) ≃
∫
f−1V A takes disjoint unions over [−1, 1] to tensor product in C[G/H] (see

proposition 4.2.2), and using the equivalence of oriented open and half open intervals over [−1, 1]
(as objects of Disk∂,or/[−1,1]) we see that

∫
M A ∈ C[G/H] is equivalent to the realization of the two

sided bar construction

· · · →→→
∫

M−

A⊗
∫

M0×(−1,1)

A⊗
∫

M−

A⇒
∫

M−

A⊗
∫

M−

A,

[n] 7→
(∫

M−

A

)
⊗
(∫

M0×(−1,1)

A

)⊗n

⊗
(∫

M−

A

)
.

By [Lur, 4.4.2.8-11] we see that G-factorization homology ofM is equivalent to the relative tensor
product

∫
M
A ≃ (

∫
M−

A)⊗(
∫
M0×(−1,1)

A) (
∫
M−

A). Therefore it is enough to prove our claim that

L′(y) ≃
∫
f−1V A ∈ C[G/H].
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Since L′ is the left G/H-Kan extension of L : Xf → C×G/H along ev1, it is given by the
following G/H-colimit

L′(y) = G/H − colim−−−→
(
(Xf )/y → Xf

L−→ C×G/H
)

= G/H − colim−−−→
(
(Xf )/y → Xf

ev0−−→ DiskG,f−fr/M → DiskG,f−fr×G/H
A×G/H
−−−−−→ C×G/H

)

Next we replace the G/H-category Xf indexing the above colimit by a G/H-category which is

more closely related to G-disks in f−1V . Note that ev1 : Xf → G/H×Disk∂,or is a coCartesian

fibration, and let (ev1)
−1(y) denote the pullback of Xf along the G/H-functor

G/H → G/H ×Disk∂,or, (G/K → G/H) 7→ (G/K → G/H, V →֒ [−1, 1])

corresponding to y = (G/H
=−→ G/H, V →֒ [−1, 1]) ∈ G/H × Disk∂,or. By lemma 5.2.8 the

G/H-functor (ev1)
−1(y)→ (Xf )/y is G/H-cofinal, hence L′(y) is the G/H-colimit of the G/H-

diagram

(ev1)
−1(y)→ (Xf )/y → Xf

ev0−−→ DiskG,f−fr/M → DiskG,f−fr×G/H
A×G/H
−−−−−→ C×G/H.

Since ev1 : Xf → G/H ×Disk∂,or factors through (DiskG,f−fr/M )×G/H
(
G/H ×Disk∂,or/[−1,1]

)
we

can express (ev1)
−1(y) as the iterative pullback

(ev1)
−1(y) Xf

DiskG,f−fr/M ×G/H G/H (DiskG,f−fr/M )×G/H
(
G/H ×Disk∂,or/[−1,1]

)

G/H−y G/H ×Disk∂,or/[−1,1].

p
(ev0,ev1)

p

id×y

On the other hand we can express Xf is the pullback

Xf FunG/H(G/H ×∆1,MfldG,f−fr/M )

(DiskG,f−fr/M )×G/H
(
G/H ×Disk∂,or/[−1,1]

)
MfldG,f−fr/M ×G/H MfldG,f−fr/M .

p
(ev0,ev1)

ι×f−1

Notice that the composition

DiskG,f−fr/M ×G/H G/H

(DiskG,f−fr/M )×G/H
(
G/H ×Disk∂,or/[−1,1]

)

MfldG,f−fr/M ×G/H MfldG,f−fr/M

id×y

ι×f−1
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is equivalent to

DiskG,f−fr/M ×G/H G/H
(ι,f−1(y))−−−−−−→MfldG,f−fr/M ×MfldG,f−fr/M ,

and therefore that

(ev1)
−1(y) ∼=

(
DiskG,f−fr/M

)
/(f−1V →֒M)

≃ DiskG,f−fr/f−1V

(compare [AF15, lem. 2.1]). Finally, since the diagram

(ev1)
−1(y)

≃
��

// (Xf )/y
// Xf

��
DiskG,f−fr/f−1V

// DiskG,f−fr/M
// DiskG,f−fr×G/H

A×G/H
// C×G/H

commutes, we get

L′(y) ≃ G/H − colim−−−→
(
DiskG,f−fr/f−1V → DiskG,f−fr×G/H

A×G/H
−−−−−→ C×G/H

)
.

Therefore, by the definition of left G/H-Kan extension we see that indeed L′(y) ≃
∫
f−1V A.

5.3 G-sequential unions

Definition 5.3.1. Let M be a G-manifold. A G-sequential union of M is a sequence of open
G-submanifolds M1 ⊂ M2 ⊂ · · · ⊂ M with M = ∪∞i=1Mi. A G-sequential union of an f -framed

OG-manifold M ∈MfldG,f−fr[G/H] is a G-sequential union of its underlying G-manifold.

If F : MfldG,f−fr → C is a G-symmetric monoidal functor andM = ∪∞i=1Mi is a G-sequential

union of M ∈ MfldG,f−fr[G/H] , then we have a comparison morphism colim−−−→F (Mi) → F (M) in
C[G/H].

Definition 5.3.2. We say that G-symmetric monoidal functor F : MfldG,f−fr → C respects
G-sequential unions if for every G-sequential union M = ∪∞i=1Mi the comparison morphism

colim−−−→F (Mi)→ F (M)

is an equivalence in C[G/H].

Proposition 5.3.3. Let C⊗ ։ FinG∗ be a G-symmetric monoidal G-category and A be an f -
framed G-disk algebra with values in C. Then G-factorization homology

∫
−A : MfldG,f−fr → C

of definition 4.2.3 respects G-sequential unions.

The proof of proposition 5.3.3 relies on the following lemma.

Lemma 5.3.4. Let M ∈MfldG,f−fr[G/H] be an f -framed OG-manifold over G/H, and M = ∪∞i=1Mi

a G-sequential union of M . Then the G/H-functor colim−−−→DiskG,f−fr/Mi

∼−→ DiskG,f−fr/M is an

equivalence of G/H-categories.
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Proof. By proposition 4.2.6 it is enough to prove that the G/H-functor colim−−−→DiskG/Mi
→

DiskG/M is a fiberwise equivalence. Without loss of generality we show that the functor be-

tween the fiber over (G/H
=←− G/H) ∈ G/H is an equivalence. Since colimits of G-categories

are computed fiberwise, we have to show that colim−−−→i
(DiskG[G/H])/Mi

→ (DiskG[G/H])/M is an

equivalence of ∞-categories.
In order to show that this functor is fully faithful we first show that EmbGG/H(E,M) is

equivalent to the homotopy colimit hocolim−−−−−→i
EmbGG/H(E,Mi). Let (E → U → G/H) ∈ DiskG be

a finite G-disjoint union of G-disks, i.e. E → U a G-vector bundle, U = π0E. By corollary 3.8.6
the square

EmbGG/H(E,Mi)

��

// EmbGG/H(E,M)

��
ConfGG/H(U ;Mi) // ConfGG/H(U ;M)

is a homotopy pullback square for each i ∈ N. Since filtered homotopy colimits preserves homo-
topy pullbacks, the square

hocolim−−−−−→i
EmbGG/H(E,Mi)

��

// EmbGG/H(E,M)

��
hocolim−−−−−→i

ConfGG/H(U ;Mi) // ConfGG/H(U ;M)

is also a homotopy pullback square. However,
{
ConfGG/H(U ;Mi)

}
i
∈ N is a complete open cover

of ConfGG/H(U ;M), so by [DI04, cor. 1.6] the bottom map is a weak equivalence. Therefore the

map hocolim−−−−−→i
EmbGG/H(E,Mi)

∼−→ EmbGG/H(E,M) is a weak equivalence.

We now show that colim−−−→i
(DiskG[G/H])/Mi

→ (DiskG[G/H])/M is fully faithful.

Let (E′ → U ′ → G/H), (E′′ → U ′′ → G/H) ∈ DiskG[G/H] and f
′ : E′ →֒Mi′ f

′′ : E′′ →֒Mi′′)

be two G-embeddings over G/H , representing two objects in colim−−−→i
(DiskG[G/H])/Mi

. For i

greater then i′ and i′′ they represent objects of the same slice category

(f ′
i : E

′ f ′
−→Mi′ ⊆Mi), (f

′′
i : E

′′ f ′′
−−→Mi′′ ⊆Mi) ∈ (DiskG[G/H])/Mi

,

with mapping space Map(DiskG
[G/H]

)/Mi
(f ′
i : E

′ →֒Mi, f
′′
i : E

′′ →֒Mi) given by the homotopy fiber

of (f ′′
i )∗ : Emb

G
G/H(E

′, E′′) → EmbGG/H(E
′,Mi) over f ′

i ∈ EmbGG/H(E
′,Mi). Homotopy fibers

are preserved by filtered homotopy colimits, so the homotopy fiber of the map

EmbGG/H(E′, E′′)→ hocolim−−−−−→i
EmbGG/H(E

′,Mi) ≃ EmbGG/H(E′,M)

induced by post composition with f ′′ : E′′ →֒ Mi ⊂ M over f ′ : E′ →֒ Mi ⊆ M is equivalent
to hocolim−−−−−→i

Map(DiskG
[G/H]

)/Mi
(f ′
i : E

′ →֒Mi, f
′′
i : E

′′ →֒Mi). On the other hand, this homotopy

fiber is equivalent to the mapping space of the slice category (DiskG[G/H])/M , hence

colim−−−→i
Map(DiskG

[G/H]
)/Mi

(f ′
i : E

′ →֒Mi, f
′′
i : E

′′ →֒Mi)
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is homotopy equivalent to

Map(DiskG
[G/H]

)/M
(f ′ : E′ →֒M, f ′′ : E′′ →֒M),

so the functor colim−−−→i
(DiskG[G/H])/Mi

→ (DiskG[G/H])/M is fully faithful.

It remains to show that colim−−−→i
(DiskG[G/H])/Mi

→ (DiskG[G/H])/M is essentially surjective.

Let (E → U → G/H) ∈ DiskG[G/H], (f : E →֒ M) ∈ (DiskG[G/H])/M for E → U a G-vector
bundle. Choose t > 0 small enough so that the restriction of f to the open ball of radius t

bundle, Bt(E) →֒ E
f−→ M , factors through some Mi ⊆ M . By radial dilation we see that the

inclusion (Bt(E)→ G/H)→ (E → G/H) is an equivalence in DiskG[G/H]. Postcomposition with

f : E →֒ M induces an equivalence (f : E →֒ M) ≃ (Bt(E) →֒ E
f−→ M) of objects in the slice

category (DiskG[G/H])/M . On the other hand, since (Bt(E) →֒ E
f−→M) factors through Mi this

object is clearly in the image of the functor colim−−−→i
(DiskG[G/H])/Mi

→ (DiskG[G/H])/M , showing

the functor is indeed essentially surjective.

We now show that G-factorization homotopy respects sequential colimits.

Proof of proposition 5.3.3. LetM ∈MfldG,f−fr[G/H] be an f -framed OG-manifold andM = ∪∞i=1Mi

a G-sequential union of M . The assembly map colim−−−→i

∫
Mi
A →

∫
M
A factors as a sequence of

equivalences

colim−−−→i

∫

Mi

A = colim−−−→i

(
G/H − colim−−−→

(
DiskG,f−fr/Mi

→ DiskG,f−fr×G/H A×id−−−→ C×G/H
))

≃ G/H − colim−−−→
(
colim−−−→i

(
DiskG,f−fr/Mi

→ DiskG,f−fr×G/H A×id−−−→ C×G/H
))

∼−→ G/H − colim−−−→
(
DiskG,f−fr/M → DiskG,f−fr×G/H A×id−−−→ C×G/H

)
=

∫

M

A,

where the second equivalence is induced by the equivalence colim−−−→DiskG,f−fr/Mi

∼−→ DiskG,f−fr/M

of lemma 5.3.4.

6 Axiomatic characterization of G-factorization homology

theories

In this subsection we give an axiomatic characterization of G-factorization homology theories
with values in a presentableG-symmetric monoidal G-category (definition 4.2.1), as G-symmetric
monoidal functors that satisfy G-⊗-excision (definition 5.2.2) and respects G-sequential unions
(definition 5.3.2).

Definition 6.0.1. Let C⊗ ։ FinG∗ be a G-symmetric monoidal category and B → BOn(G) a
G-map, as in definition 3.3.1. An equivariant homology theory of G-manifolds is a G-symmetric
monoidal functor F : MfldG,f−fr,⊔ → C⊗ which satisfies G-⊗-excision and respects G-sequential
unions. We denote the full subcategory of equivariant homology theories by H(MfldG,f−fr, C) ⊂
Fun⊗

G(MfldG,f−fr, C).

The main result in this subsection is the following characterization of G-factorization homol-
ogy.
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Theorem 6.0.2. Let C⊗ ։ FinG∗ be a presentable G-symmetric monoidal category. Then the
full subcategory H(MfldG,f−fr, C) ⊂ Fun⊗

G(MfldG,f−fr, C) is spanned by objects for which the
counit map of the adjunction

(ι⊗)! : Fun⊗
G(DiskG,f−fr, C) // Fun

⊗
G(MfldG,f−fr, C) : (ι⊗)∗

oo

of (19) is an equivalence. In particular, the adjunction restricts to an equivalence

(ι⊗)! : Fun⊗G(DiskG,f−fr, C) ∼−→ H(MfldG,f−fr, C), A 7→
∫

−
A

sending an f -framed G-disk algebra A to G-factorization homology with coefficients in A.

Proof. Let A be a G-disk algebra. By proposition 5.2.3 and proposition 5.3.3 the functor

(ι⊗)! : Fun⊗
G(DiskG,f−fr, C)→ Fun⊗G(MfldG,f−fr, C)

factors though the full G-subcategory H(MfldG,f−fr, C) ⊂ Fun⊗
G(MfldG,f−fr, C).

On the other hand, let F ∈ H(MfldG,f−fr, C) be an equivariant homology theory of G-
manifolds. Denote by A : DiskG,f−fr,⊔ → C⊗ the restriction of F along ι⊗. We have to show
that the counit

∫
−A→ F is an equivalence. Since F,

∫
−A are G-symmetric monoidal functors

it is enough to show that for every f -framed OG-manifold M ∈ MfldG,f−fr the counit map∫
M A→ F (M) is an equivalence in C. We proceed by induction.

For k = 0, 1, . . . , n let F≤k ⊆MfldG,f−fr be the fullG-subcategory of f -framedOG-manifolds
whose underlying OG-manifold is of the form (M ×G/H D → G/H) where G/H ∈ OG is a G-
orbit, M → G/H is a k-dimensional OG-manifold and (D → G/H) is a finite G-disjoint union
of (n− k)-dimensional G-disks, i.e. equivalent to D → U → G/H where U is a finite G-set and
D → U is a G-vector bundle of rank n− k (and therefore U = π0(D)).

We now prove that the counit map is an equivalence on objects of F≤k by induction on k.
For k = 0 the underlying OG-manifold of M ∈ F≤0 is simply a finite G-disjoint union of

G-disks, (D → G/H) ∈ DiskG, therefore M ∈ DiskG,f−fr and
∫
M A ≃ A(M) = F (M), since ι!

is fully faithful A is the restriction of F along ι.
For k ≥ 1, let N ∈ F≤k with underlying OG-manifold (M ×G/H D → G/H). We show

that the counit map
∫
N A → F (N) is an equivalence using equivariant Morse theory. In what

follows we only consider G-submanifolds of M ×G/H D → G/H , which by proposition 4.2.6
have an essentially unique f -framing induced from the inclusion into N . Therefore we omit the
identification of such G-submanifolds with their f -framed lift to MfldG,f−fr.

Choose aG-equivariantMorse function f : M → R with f−1(−∞, r] a compactG-submanifold
for every r ∈ R (see [Was69, thm. 4.10]). Choose an increasing sequence of regular values
r0 < r1 < r2 < · · · such that f−1(−∞, r0) = ∅, the interval (ri, ri+1) contains a single critical
value and ri →∞.

LetMi := f−1((−∞, ri)), then M =
∞⋃
i=0

Mi and thereforeM ×G/HD ∼=
( ∞⋃
i=0

Mi

)
×G/HD ∼=

∞⋃
i=0

(
Mi ×G/H D

)
is a G-sequential union of (M ×G/H D → G/H) (definition 5.3.1). Since

both F ∈ H(MfldG,f−fr, C) and
∫
−A respect G-sequential unions (definition 5.3.2 and propo-

sition 5.3.3) we have F (M ×G/H D) ≃ colim−−−→F (Mi ×G/H D),
∫
M×G/HD A ≃ colim−−−→

∫
Mi×G/HD A.

Therefore it is enough to prove that the counit map
∫
Mi×G/HD A→ F (Mi ×G/H D) is an equiv-

alence, which we prove by induction on i.
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Let Mi := f−1(−∞, ri]. Since Mi is compact Mi+1 \Mi has only a finite number of critical
orbits, xj : Wj →֒ M, j = 1, . . . , s. Note that the tangent bundle TxjM → Wj over the critical
orbit xj is a G-vector bundle which decomposes as a direct sum of two G-bundles Txj

∼= Pj ⊕Ej
on which the Hessian is negative definite (called the index Ej) and positive definite (called the
co-index Pj).

By [Was69, thm. 4.6] Mi+1 is equivariantly diffeomorphic to Mi with s handle-bundles
N1, . . . , Ns disjointly attached, where the handle-bundle Nj := D(Pj)×Wj D(Ej) is the fiberwise

product of the closed unit disk bundles D(Pj) → Wj , D(Ej) → Wj , attached to Mi along
D(Pj) ×Wj S(Ej) where S(Ej) → Wj is the unit sphere bundle of the negative definite G-
subbundle (the index).

Since the handle-bundles are attached disjointly and F,
∫
−A are G-symmetric monoidal we

can reduce to the case of a single handle-bundle by attaching one handle-bundle at a time.
Therefore we assume that there is a single critical orbit x : W →֒ M in Mi+1 \Mi with TxM ∼=
P ⊕ E, and Mi+1

∼=Mi

⋃
D(P )×W S(E)

(
D(P )×W D(E)

)
.

Let A(E) → W denote the unit annulus bundle of E, i.e. the open unit disk bundle minus
the zero section. Note that A(E) is a G-tubular neighbourhood of S(E), therefore Mi+1

∼=
Mi

⋃
D(P )×WA(E)

(
D(P )×W A(E)

)
a union of k-dimensional G-manifolds with boundary along a

k-dimensional manifold with boundary.
Discarding boundary points we see that the Mi+1 is equivariantly diffeomorphic to the union

of Mi with the G-manifold D(P ) ×W D(E) along the G-manifold D(P )×W A(E). After taking
fibered product with the fibration map D → G/H we have

Mi+1 ×G/H D ∼= (Mi ×G/H D)
⋃

((D(P )×WA(E))×G/HD)

(
(D(P ) ×W D(E))×G/H D

)
. (26)

This decomposition has the following properties:

1. The decomposition of eq. (26) is in fact a G-collar decomposition. Intuitively, the codi-
mension one G-submanifold (D(P )×W S(E)) ×G/H D splits the handle bundle of eq. (26)
to two G-submanifolds, Mi and the handle bundle. Explicitly, construct a G-collar decom-
position by defining a G-invariant smooth G-invariant function Mi+1 → [−1, 1] for which
the restriction to the open interval (−1, 1) is a manifold bundle as follows. Compose the
G-diffeomorphism of eq. (26) with the restriction of the Morse function f : M → R to the
handle-bundle of eq. (26), followed by a smooth function Ψ: R→ [−1, 1] such that

(a) it sends the closed interval (−∞, a+ ǫ] to −1 for some small ǫ > 0.

(b) it sends [c− ǫ,∞) to 1 for c the unique critical value of f in the interval [a, b].

(c) it has a positive derivative in the open interval (a+ ǫ, c− ǫ).

Note that the fibers ofMi+1 → [−1, 1] over (−1, 1) are
(
(D(P )×W S(E, r)) ×G/H D

)
where

S(E, r) is the radius-r-sphere bundle, for various radii r.

2. The induced handle-bundle
(
(D(P )×W D(E)) ×G/H D → G/H

)
∈ DiskG is a finite G-

disjoint union of G-disks, since the open unit disk bundle of a G-vector bundle is equivalent
to the entire vector bundle.

We now distinguish between two cases, according to the rank of the bundle E →W .

1. If the critical orbit x has zero index, i.e. the Hessian is positive definite on TxM , then
E → W is a rank zero G-vector bundle, and its unit annulus A(E) = ∅ is empty. In this
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case the G-collar decomposition of eq. (26) is a disjoint union

Mi+1 ×G/H D ∼= (Mi ×G/H D) ⊔
(
(D(P ) ×W D(E))×G/H D

)
.

Since F,
∫
−A are G-symmetric monoidal functors we have

∫

Mi+1

A ≃
(∫

Mi

A

)
⊗
(∫

((D(P )×WD(E))×G/HD)
A

)
,

F (Mi+1) ≃ F (Mi)⊗ F
(
(D(P )×W D(E))×G/H D

)

where
(
(D(P )×W D(E))×G/H D

)
≃
(
(P ×W E)×G/H D

)
∈ DiskG is a finite G-disjoint

union of G-disks. Therefore
∫
Mi+1

A
∼−→ F (Mi+1) by induction on i.

2. Otherwise the critical orbit x has positive index, i.e. rank(E) > 0. In this case, A(E) ∼=
S(E)× (−1, 1) where G acts trivially on the open interval (−1, 1), since the Morse function
f is G-invariant. It follows that

(D(P )×W A(E))×G/H D ∼= A(E)×W (P ×G/H D) ∼= S(E)×W ((−1, 1)× P ×G/H D),

hence (S(E)→W → G/H) is a G-manifold of dimension

dim S(E) = rank(E)− 1 ≤ dimM − 1 = k − 1,

so we have (D(P )×W A(E))×G/H D ∈ Fk−1. It follows by induction on k that the counit

map
∫
(D(P )×WA(E))×G/HD A

∼−→ F ((D(P )×W A(E)) ×G/H D) is an equivalence.

The G-functor
∫
−A satisfies G-⊗-excision by proposition 5.2.3 and F satisfies G-⊗-excision

by assumption, therefore applying F,
∫
−A to the G-collar decomposition of eq. (26) we get

F (Mi ×G/H D)⊗F((D(P )×WA(E))×G/HD) F
(
(D(P )×W D(E))×G/H D

) ∼−→ F (Mi+1),
(∫

(Mi×G/HD)

A

)
⊗(∫

(D(P )×W A(E))×G/HD
A

)

(∫

(D(P )×WD(E))×G/HD

)
A

∼−→
∫

Mi+1

A

and by induction on i the map
∫
Mi+1

A
∼−→ F (Mi+1) is an equivalence.

7 Equivariant versions of Hochschild homology

As an application of the G-⊗-excision property (proposition 5.2.3) we describe two variants of
topological Hochschild homology using G-factorization homology.

7.1 Real topological Hochschild homology as G-factorization homology

Let C2 denote the cyclic group of order two and let σ be its one dimensional sign representation.

The structure of an Eσ-algebra in SpC2. Let us first describe the algebraic structure of an

Eσ-algebra A in SpC2 . We will use this description in the proof of proposition 7.1.1.
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• By corollary 3.9.9 we have an equivalence

AlgEσ(Sp
C2) ≃ Fun⊗

G(DiskC2,σ−fr,SpC2),

so A corresponds to a C2-symmetric monoidal functor A : DiskC2,σ−fr → SpC2 . In par-
ticular the G-symmetric monoidal functor A restricts to symmetric monoidal functors

A[C2/C2] : DiskC2,σ−fr
[C2/C2]

→ SpC2
, A[C2/C2] : DiskC2,σ−fr

[C2/e]
→ Sp. (27)

• By abuse of notation, we use A to denote the “underlying” genuine C2-spectrum,

A[C2/C2](R
σ) ∈ SpC2 ,

where Rσ ∈ DiskC2,σ−fr is the one dimensional sign representation of C2, considered as a
σ-framed C2-manifold.

• Unwinding the definitions we see that DiskC2,σ−fr
[C2/e]

is equivalent to the∞-category Diskfr1

of [AF15, rem 2.10]. Since A : DiskC2,σ → SpC2 is a G-functor it is compatible with the
forgetful functors

ResC2
e : DiskC2,σ

[C2/C2]
→ DiskC2,σ

[C2/e]
≃ Diskfr1 , ResC2

e : SpC2
→ Sp,

therefore A[C2/e](R1) = A[C2/e](Res
C2
e Rσ) ≃ ResC2

e A[C2/C2](Rσ) = ResC2
e A.

• Observe that ResC2
e A is endowed with a structure of an E1-sing spectrum. To see this,

recall that R1 ∈ Diskfr1 is an E1-algebra in Diskfr1 , which induces an equivalence between

the symmetric monoidal envelope of E1 and Diskfr1 (see [AFT17a, prop. 2.12]).

• Let
⊔C2R1 ∈ DiskC2,σ−fr

[C2/C2]
, ⊔C2R1 = C2 × R1

denote the topological induction of R1 ∈ Diskfr1 . The compatibility of the G-symmetric
monoidal functorA : DiskC2,σ−fr → SpC2 with with topological induction and the Hopkins-
Hill-Ravenel norm,

⊔C2 : Diskfr1 ≃ DiskC2,σ
[C2/C2]

→ DiskC2,σ
[C2/e]

, NC2
e : Sp→ SpC2

,

implies that A[C2/C2](⊔C2R1) ≃ NC2
e A.

• Note that NC2
e A is an E1-algebra in SpC2

, since NC2
e : Sp→ SpC2

is a symmetric monoidal
functor and ResC2

e A is an E1-ring spectrum.

• The “underlying” C2-spectrum A has the structure of a module over NC2A. To see this
structure, note that an equivariant oriented embeddings

(
⊔C2R1

)
⊔ Rσ →֒ Rσ

induces a map
NC2
e A⊗A→ A.

Proposition 7.1.1. For A an Eσ-algebra in SpC2 there is an equivalence of genuine C2-spectra
∫

S1

A ≃ A⊗
N
C2
e A

A.

where C2 acts on S1 by reflection.
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Proof. Consider the C2-collar gluing S1 = Rσ ∪⊔C2R1 Rσ into two hemispheres, where each

hemisphere is reflected onto itself by the action of C2. Note that the intersection ⊔C2R1 consists of
two segments interchanged by the action of C2. Applying proposition 5.2.3 we get an equivalence
of genuine C2-spectra

∫

S1

A ≃
(∫

Rσ
A

)
⊗(∫

⊔C2
R1 A

)
(∫

Rσ
A

)
≃ A⊗

N
C2
e A

A.

Remark 7.1.2. The tensor product A⊗
N
C2
e A

A appearing in proposition 7.1.1 is equivalent to

the derived smash product A ∧L
N
C2
e A

A of left and right NC2
e -modules. Dotto, Moi, Patchkoria

and Reeh ([DMPR17]) show that for A a flat ring spectrum with anti-involution there is a stable
equivalence of genuine C2-spectra

THR(A) ≃ A ∧L
N
C2
e A

A,

where THR(A) is the Bökstedt model for real topological Hochschild homology.
By [DMPR17, def. 2.1] we can interpret a ring spectrum with anti-involution as an algebra

over an operad Assσ in C2-sets. Direct inspection shows Assσ is equivalent to G-operad Dσ of
the little σ-disks 16, whose genuine operadic nerve is Eσ. Regarding a flat ring spectrum with
anti-involution A as an Eσ-algebra in SpC2 , we can reinterpret proposition 7.1.1 as an equivalence

∫

S1

A ≃ THR(A)

of genuine C2-spectra.

7.2 Twisted Topological Hochschild Homology of genuine Cn-ring spec-
tra

We start with a general lemma relating trivially framed G-disk algebras to En-algebras. Let G
be a finite group acting trivially on Rn, and MfldG,R

n−fr the G-category of trivially framed
G-manifolds.

Lemma 7.2.1. Let C⊗ ։ FinG∗ be a G-symmetric monoidal ∞-category. The ∞-category

Fun⊗
G(DiskG,R

n−fr, C) of trivially framed G-disk algebras in C is equivalent to the ∞-category
AlgEn(C[G/G]) of En-algebras in the fiber C[G/G].

The structure of a trivially framed Cn-disk algebra Let Cn the cyclic group of order
n and C = SpCn , the Cn-∞-category of genuine Cn-spectra. We will use the following an
explicit description of the trivially framed Cn-disk algebra corresponding to A. The Cn-functor
A : DiskCn,R

n−fr,⊔ → SpCn sends

∀H < Cn : A[Cn/H] : ⊔Cn/H R1 7→ NCn
H (A) ∈ SpH ,

where NCn
H (A) denotes the Hill-Hopkins-Ravenel norm applied to the restriction of the genuine

Cn-spectrum A ∈ SpCn to SpH . In particular, A : DiskCn,R
n−fr,⊔ → SpCn sends Rn with trivial

Cn-action to A ∈ SpCn and the topological induction ⊔CnR1 = Cn × R1 ∈ to NCn
e (A) ∈ SpCn .

16This also follows from a direct analysis of the mapping spaces of RepC2,σ−fr,⊔, which are homotopically
discrete.
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We will need some notation for our next statement. Let A be an En-ring spectrum in SpCn .
Define an A−Aop-bimodule structure on A ∈ SpCn with “twisted” left multiplication, given by
first acting on the scalar by the generator τ ∈ Cn:

A⊗Aτ ⊗A→ Aτ , x⊗ a⊗ y 7→ τx · a · y.

We denote this “twisted” A − A-bimodule by Aτ . Let THH(A;Aτ) denote the topological
Hochschild homology of A with coefficients in Aτ .

Proposition 7.2.2. Let A be an E1-ring spectrum in SpCn, and Cn y S1 be the standard
action. Then there exists an equivalence of spectra

(∫

S1

A

)ΦCn

≃ THH(A;Aτ ).

In particular, THH(A;Aτ) admits a natural circle action.

Proof. Consider S1 as the n-fold covering space p : S1 → S1, with the standard Cn-action given
by deck transformations. Let S1 = U ∪U∩V V be the standard collar decomposition of the base
S1 by hemispheres. Construct a Cn-collar decomposition S1 = p−1(U) ∪p−1(U∩V ) p

−1(V ) of the
covering space by taking preimages. Observe that the pieces of this Cn-collar decomposition are
given by topological induction,

p−1(U) = ⊔CnU ∼= ⊔CnR1, p−1(V ) = ⊔CnV ∼= ⊔CnR1,

p−1(U ∩ V ) = ⊔Cn(U ∩ V ) ∼= ⊔Cn(R1 ⊔ R1) = (⊔CnR1) ⊔ (⊔CnR1).

Therefore by Cn-⊗-excision
∫

S1

A ≃
(∫

p−1(U)

A

) ⊗
∫
p−1(U∩V )

A

(∫

p−1(V )

A

)
≃
(∫

⊔CnR1

A

) ⊗
∫
(⊔Cn R1)⊔(⊔Cn R1)

A

(∫

⊔CnR1

A

)

≃ (NCn
e A)

⊗

(NCne A)⊗(NCne A)op

(NCn
e A)τ .

Let us pause and explain the superscript decorations in the last term. The
(∫

p−1(U∩V )A
)
-

module structure of
∫
p−1(U) A is induced by the inclusion p−1(U ∩ V ) →֒ p−1(U). When we

identify p−1(U∩V ) ∼= (⊔CnR1)⊔(⊔CnR1) the module structure on
∫
p−1(U) A is naturally identified

with an (NCn
e A) − (NCn

e A)-bimodule structure, or equivalently a right (NCn
e A) ⊗ (NCn

e A)op-
module structure. Similarly,

∫
p−1(V )

A is naturally a left NCn
e (A)−NCn

e (A)op-module. However

the left module structure is induced by an embedding ⊔CnR1 →֒ p−1V which defers from the
standard embedding (the topological induction of R1 →֒ V ) by a deck transformation. Therefore
the left multiplication is “twisted”, i.e. given by first acting on the scalar by the generator
τ ∈ Cn. In order to remember this twist in the module structure of the right hand side we add
the superscript τ .

Next we take geometric fixed points of
∫
S1 A. Since the geometric fixed points functor

(−)ΦCn : SpCn → Sp is symmetric monoidal and preserve homotopy colimits

(∫

S1

A

)ΦCn

≃ (NCn
e A)ΦCn

⊗

(NCne A)ΦCn⊗((NCne A)op)ΦCn

((NCn
e A)τ )ΦCn ≃ A

⊗

A⊗Aop
Aτ .
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The right hand side is equivalent to the topological Hochschild homology THH(A;Aτ ) of A ∈ Sp
with coefficients in the A−A-bimodule Aτ .

Finally, we describe the natural circle action on
(∫
S1 A

)ΦCn
. Note that the automorphism

space of S1 ∈ MfldCn,1−fr[Cn/Cn]
acts on S1, so by functoriality it induces a natural action on

(∫
S1 A

)ΦCn
. The endomorphism space of S1 ∈ MfldCn,1−fr[Cn/Cn]

is the space of Cn-equivariant

oriented embeddings EmbCn(S1, S1). In particular the endomorphism space S1 ∈MfldCn,1−fr[Cn/Cn]

includes rotations of S1, therefore the circle group acts on
∫
S1 A by rotations, and by functoriality

on
(∫
S1 A

)ΦCn
.

Remark 7.2.3. The inclusion of the circle group into EmbCn(S1, S1) is in fact a deformation
retract.

Remark 7.2.4. This theorem can be seen as an instance of a more general principle: factoriza-
tion homology with local coefficients on a manifold M can be constructed as the fixed points of
G-factorization homology on a cover of M .

Relation to the relative norm construction The spectrum THH(A;Aτ ) and its circle
action have been used to define the relative norm in [ABG+14]. In order to give a precise
statement we recall the notation of [ABG+14].

Fix U a complete universe of the circle group (in the sense of orthogonal spectra), and define
a complete Cn-universe Ũ = ι∗CnU . Let R be an associative ring orthogonal Cn-spectrum indexed

on the universe Ũ . Let IR
∞

Ũ
, IUR∞ denote the “change of universe” functors. The relative norm

NS1

Cn
R of [ABG+14, def. 8.2] is the genuine S1-spectra defined as

IUR∞

∣∣∣N cyc,Cn
∧ (IR

∞

Ũ
R)
∣∣∣ ,

where N cyc,Cn
∧ (−) is the “twisted cyclic bar construction” of [ABG+14, def. 8.1].

Note that the geometric realization |N cyc,Cn
∧ (IR

∞

Ũ
R)| is equivalent to THH(R;Rσ), computed

using the standard bar resolution. By proposition 7.2.2 there exists an equivalence of spectra

(∫

S1

R

)ΦCn

≃
∣∣∣N cyc,Cn

∧
(
IR

∞

Ũ
R
)∣∣∣ ,

where one the left hand side we consider R as an E1-algebra in SpCn .
Moreover, by inspection the above equivalence respects the circle action, hence after applying

the change of universe functor IUR∞ we get an equivalence of genuine S1-spectra

NS1

CnR ≃ IUR∞

((∫

S1

R

)ΦCn
)
.

Appendix A The Moore over category

Let C be a topological category and x ∈ C an object. Denote by N(C) ∈ Cat∞ the coherent
nerve of C, and by N(C)/x ∈ Cat∞ the over category. Note that N(C)/x is not equivalent to the
coherent nerve of C/x, the topological over category: both have the same objects, but a point

in MapC/x(y0
f0−→ x, y1

f1−→ x) is an given by a map h ∈ MapC(y0, y1) satisfying f0 = f1 ◦ h,
while a point in MapN(C)/x(y0

f0−→ x, y1
f1−→ x) is given by a map h ∈ MapC(y0, y1) together
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with a path in MapC(y0, x) from f0 to f1 ◦ h. Nevertheless, it is useful to have a topological
category whose coherent nerve is equivalent to N(C)/x. Of course, this could be achieved by
applying homotopy coherent realization to N(C)/x, but unwinding the construction one sees
that an explicit description of topological category involves a lot of simplicial combinatorics. In
what follows we construct a topological category CMoore

/x whose coherent nerve is equivalent to

N(C)/x, which avoids simplicial combinatorics.

An obvious candidate for the mapping space MapCMoore
/x

(y0
f0−→ x, y1

f1−→ x) is the space of

maps h : y0 → y1 in C together with a path from f0 to f1 ◦ f in MapC(y0, x), formally given
by the fiber product MapC(y0, y1) ×MapC(y0,x) P (MapC(y0, x)). However, one runs into trouble
when trying to define composition functions which are strictly associative, since the composition
action uses concatenation of paths. The problem of defining strictly associative concatenation of
paths has a classical solution, namely replacing the space of paths with the homotopy equivalent

space of Moore paths. Defining the mapping space MapCMoore
/x

(y0
f0−→ x, y1

f1−→ x) using Moore

paths leads to a simple construction of a topological category CMoore
/x , the Moore over category

(definition A.0.1), whose coherent nerve is equivalent to N(C)/x (corollary A.0.5).
We first recall the definition of the Moore path space and concatenation of Moore paths. Let

X be a topological space. The Moore path space of X is the subspace

M(X) ⊂ [0,∞)×X [0,∞), M(X) =
{
(r, γ)| the restriction γ|[r,∞) is a constant function

}
,

where X [0,∞) is the space of functions [0,∞) → X endowed with the compact-open topology.
The “starting point” and “finishing point” fibrations α, ω : M(X) ։ X are the given by α(r, γ) =
γ(0), ω(r, γ) = γ(r). Moreover, the “ends points” map (α, ω) : M(X) ։ X ×X is also a Serre
fibration. Concatenation of Moore paths is defined by

∗ : M(X)×X M(X)→M(X), (r0, γ0) ∗ (r1, γ1) =
(
r0 + r1, t 7→

{
γ0(t) t ≤ r0
γ1(t− r0) t ≥ r0

)
.

It is straightforward to verify that concatenation of paths is associative, i.e.

((r0, γ0) ∗ (r1, γ1)) ∗ (r2, γ2) = (r0, γ0) ∗ ((r1, γ1) ∗ (r2, γ2)) .
For x ∈ X a point, the “constant instant Moore path” (0, t 7→ x) ∈ M(X) is a neutral element
for concatenation.

With the definition of Moore paths at hand, we can define the Moore path category.

Definition A.0.1. Let C be a topological category and x ∈ C an object. Define a topological
category CMoore

/x with objects arrows f : y → x, i.e pairs (y, f) where y ∈ C, f ∈ MapC(y, x), and

morphism spaces MapCMoore
/x

(y0
f0−→ x, y1

f1−→ x) given by the fiber products

{f0}×MapC(y0,x)M(MapC(y0, x))×MapC(y0,x),(f1◦C(−)) MapC(y0, y1)

= {((r, γ), h) | γ(0) = f0, γ(r) = f1 ◦C h} .
Define composition in CMoore

/x by

◦ : MapCMoore
/x

(y0
f0−→ x, y1

f1−→ x)×MapCMoore
/x

(y0
f1−→ x, y1

f2−→ x)→ MapCMoore
/x

(y0
f0−→ x, y1

f2−→ x)

(((r, γ), h), ((r′, γ′), h′)) 7→ ((r, γ) ∗ (r′, γ′ ◦C h), h′ ◦C h)

and identity of f : y → x by ((0, t 7→ f), idy) ∈ MapCMoore
/x

(y
f−→ x, y

f−→ x), using the constant

instant Moore path at f . We call CMoore
/x the Moore over category of C over x.
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Observation 1. The mapping space MapCMoore
/x

is the homotopy fiber of

f1 ◦ (−) : MapC(y0, y1)→ MapC(y0, x).

Remark A.0.2. If the mapping spaces MapC(y, x) of C has a smooth structure one can replace
the Moore spaces of continuous Moore paths by spaces of piecewise smooth Moore paths, without
changing the ∞-category represented by N(CMoore

/x ).

Lemma A.0.3. The coherent nerve of the Moore category CMoore
/x has a terminal object (x

=−→
x) ∈ CMoore

/x .

Proof. For every object (y
f−→ x) ∈ CMoore

/x the mapping space MapCMoore
/x

(y
f−→ x, x

=−→ x) is the

space of Moore paths in MapC(y, x) starting at f , a contractible space.

Define a functor of topological categories U : CMoore
/x → C sending U : (y

f−→ x) 7→ y and

U : MapC/x(y0
f0−→ x, y1

f1−→ x)→ MapC(y0, y1), U : ((r, γ), h) 7→ h

on mapping spaces by projection.

Lemma A.0.4. The induced map of coherent nerves N(U) : N(CMoore
/x ) → N(C) is a right

fibration.

Proof. First we observe that N(U) is an inner fibration. For each pair of objects (y0
f0−→

x), (y1
f1−→ x) ∈ CMoore

/x the map U : MapC/x(y0
f0−→ x, y1

f1−→ x) → MapC(y0, y1) is a pull-

back of the “end points” fibration (α, ω) along {f0} × (f1 ◦C (−)), and therefore a fibration. By
[Lur09a, prop. 2.4.1.10 (1)] it follows that N(U) is an inner fibration.

By [Lur09a, prop. 2.4.2.4] we need to show that every morphism ((r, γ), h) : (y0
f0−→ x) →

(y1
f1−→ x) in CMoore

/x is U -Cartesian. By [Lur09a, prop. 2.4.1.10 (2)] we have to show that for

every (y
f−→ x) in CMoore

/c the diagram

MapCMoore
/x

(f, f0)

U
����

((r,γ),h)◦− // MapCMoore
/x

(f, f1)

U
����

MapC(y, y0)
h◦C− // MapC(y, y1)

is homotopy Cartesian. We show that the induced map between the fibers is a homotopy equiv-
alence. For every point (h′ : y → y0) ∈ MapC(y, y0), the fiber over h′ is the space of Moore paths
in MapC(y, x) starting at f and ending at f0 ◦ h, the fiber over h ◦ h′ is the space of Moore paths
in MapC(y, x) starting at f and ending at f1 ◦ h′ ◦ h, and the map between the fibers is given
by concatenation with the Moore path (r, γ ◦ h′) starting at f0 ◦ h′ and ending at f1 ◦ h ◦ h′, a
homotopy equivalence.

Corollary A.0.5. Let C be a topological category and x ∈ C an object. The coherent nerve
N(CMoore

/x ) is equivalent to the ∞-over category N(C)/x.

Proof. The right fibration N(U) : N(CMoore
/x ) → N(C) takes the terminal object (x

=−→ x) ∈
N(CMoore

/x ) to x ∈ C. By [Lur09a, prop. 4.4.4.5] the right fibrations N(U) : N(CMoore
/x ) → N(C)

and N(C)/x ։ N(C) are equivalent fibrant objects of the contravariant model structure on
sSet/N(C) (both right fibrations classify the representable functor Map(−, x) : Cop → S ), and
claim the follows.
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Appendix B The definition of a G-Symmetric Monoidal
category

This appendix contains no original results or definitions. The notion of G-symmetric monoidal
∞-category, developed by Barwick, Dotto, Glasman, Nardin and Shah, is central to our treatment
of G-factorization homology. For the convenience of the reader we include the definition here
(see definition B.0.7), which is equivalent to the definition given in [Nar17].

Parametrized join First we recall the parametrized version of the join construction.

Definition B.0.1. Let S be an∞-category. Restricting along S×∂∆1 → S×∆1 defines a functor
sSet/S×∆1 → sSet/S×∂∆1

∼= sSet/S×{0} × sSet/S×{1} which carries coCartesian fibrations over
S ×∆1 to coCartesian fibrations over S × ∂∆1 = S × {0}∐S × {1}. This functor has a right
adjoint which is called the S-parametrized join and denoted by

sSet/S×∆1 ⇆ sSet/S×{0} × sSet/S×{1} :⋆S.

By [Sha18, prop. 4.3], if C ։ S,D ։ S are coCartesian fibrations (i.e S-categories), then
C ⋆S D ։ S is a coCartesian fibration.

It follows from [Sha18, thm. 4.16] that the parametrized join carries coCartesian fibrations
over S × ∂∆1 to inner fibrations over S ×∆1 with coCartesian lifts over S × ∂∆1.

The parametrized join X ⋆S Y → S ×∆1 of X → S, Y → S can be informally described as
follows (see [Sha18, lem. 4.4]): its restriction to S × {0} is X → S, its restriction to S × {1} is
Y → S, and for each s ∈ S its restriction to {s} ×∆1 is the join X[s] ⋆ Y[s], where X[s], Y[s] are
the fibers of X → S, Y → S over s ∈ S.

Fact: for the case Y = S one gets a coCartesian fibration X ⋆S S ։ S.

Finite pointed G-sets We denote by FinG∗ the G-category of finite pointed G-sets of [Nar16,
def. 4.12]. An object I ∈ FinG∗ over the orbit G/H is a G-equivariant map I = (U → G/H)
from a finite G-set U . A morphism in FinG∗ over ϕ : G/K → G/H is a span of the form

U

��

U ′oo

��

// V

��
G/H G/K

ψoo = // G/K

where the left square is a summand inclusion, i.e it induces an inclusion of U ′ into the pullback
ψ∗U = G/K ×G/H U . The span above is a coCartesian edge if the left square is Cartesian and
the map U ′ → V is an isomorphism of finite G-sets ([Nar16, lem. 4.9, def. 4.12]). We call the
span above inert if U ′ → V is an isomorphism.

Notation B.0.2. Let G/K ∈ OopG be an orbit. Denote by I+(G/K) = (G/K
=−→ G/K) ∈ FinG∗

the finite pointed set given by the identity map of G/K.

Definition B.0.3. Let I ∈ FinG∗ , I = (U → G/H) be a finite pointed G-set over G/H. Recall
that the left fibration

G/H = (OopG )[G/H]/ → OopG , (G/H ← G/K) 7→ G/K

classifies the representable functor Hom(−, G/H) : OopG → Set (see [BDG+16b, ex. 2.4]). By

Yoneda’s lemma the set (FinG∗ )[G/H] of finite G-sets over G/H is in bijection with the set of
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natural transformations Nat
(
Hom(−, G/H), (FinG∗ )(−)

)
, which in turn is in bijection with the

set of G-functors G/H → FinG∗ . Define σ<I> : G/H → FinG∗ as the G-functor corresponding

to I under the bijection above. Explicitly, σ<I> acts on objects by σ<I> : (G/H
ϕ←− G/K) 7→

(ϕ∗U → G/K) .

The underlying G-categories of the G-diagram classified by C⊗ ։ FinG∗ By straight-
ening/unstraightening for G-categories ([BDG+16b, prop. 8.3]) the coCartesian fibration C⊗ ։
FinG∗ corresponds to a G-functor FinG∗ → Cat∞,G, which we can interpret as a FinG∗ -shaped

G-diagram in Cat∞,G. The functor Fin
G
∗ → Cat∞,G assigns to each I ∈ (FinG∗ )[G/H] an object of

(Cat∞,G)[G/H] = Fun(G/H, Cat∞) ≃ (Cat∞)coCart/G/H (see [BDG+16b, ex. 7.5]), i.e a coCartesian

fibration over G/H 17, which can be constructed as follows.

Definition B.0.4. Let C⊗ ։ FinG∗ be a coCartesian fibration, and I ∈ FinG∗ a G-set over G/H.
Define a coCartesian fibration C⊗<I> ։ G/H by pulling back C⊗ along σ<I>,

C⊗<I>

����

//
❴✤

C⊗

����
G/H

σ<I> // FinG∗ .

In particular, for I+(G/G) = (G/G
=−→ G/G), the terminal object of FinG∗ , denote by C :=

C⊗<I+(G/G)> the underlying G-category of C⊗.

An inert diagram in FinG∗ Let I = (U → G/H) be a finite pointed G-set over G/H ,
as before. Applying the parametrized join construction for S = G/H and the left fibrations

G/H
=−→ G/H, U ։ G/H 18 we get a coCartesian fibration U ⋆G/H G/H ։ G/H ×∆1, which

we can consider as a G-category by composing with the coCartesian fibration G/H×∆1 ։ G/H

and the left fibration G/H ։ OopG .

For each I ∈ FinG∗ we construct a G-functor Φ<I> : U ⋆G/H G/H → FinG∗ (a G-diagram in

FinG∗ ):

Definition B.0.5. Let I = (U → G/H) be a finite pointed G-set over G/H. We define a
G-functor

Φ<I> : U ⋆G/H G/H

����

// FinG∗

����
G/H ×∆1 // // G/H // // OopG

by specifying its restrictions to U ։ G/H×{0} and G/H ։ G/H×{1}, together with its action

on morphisms over (id, 0→ 1) ∈ G/H ×∆1:

17 We think of a coCartesian fibration over G/H as representing an H-category, since the category G/H =

(Oop
G )/[G/H] is equivalent to Oop

H .
18 Since FinG is a category, a map of finite G-sets U → V induces a G-functor U → V . By comparison, a map

f : x → y in an ∞-category C induces a span x = C/x
∼←− C/f → C/y = y where both arrows are left fibrations

and the left arrow is an equivalence of ∞-categories.
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1. The G-functor U → FinG∗ is the composition U // // G/H
σ<I> // FinG∗ , where the first

map is the left fibration induced by U → G/H.

2. The G-functor G/H → FinG∗ is the composition G/H // // G/G
σ<I+(G/G)> // FinG∗ ,

where the first map is the structure map G/H ։ OopG = G/G and the second map is the
G-functor corresponding to I+(G/G) (in fact, the composition is just σ<I+(G/H)>).

3. Let (G/H
ψ←− G/K) ∈ G/H, then the fiber of U ⋆G/HG/H → G/H×∆1 over ({ψ} , 0→ 1)

is
(
U ⋆G/H G/H

)
ψ
= Uψ ⋆ {ψ}, a co-cone diagram on the finite set of maps ϕ : G/H → U

such that

G/K
ϕ //

ψ ##❋
❋❋

❋❋
❋❋

❋
U

��
G/H

commutes. Therefore, morphisms of U⋆G/HG/H ։ G/H×∆1

over (idψ, 0→ 1) ∈ G/H ×∆1 are in bijection to ϕ : U → G/H making the above diagram
commute. Let ϕ̄ : G/K → ψ∗U be the unique map given by

G/K

=

��

∃!ϕ̄

##●
●

●
● ϕ

%%
ψ∗U //

��

❴✤
U

��
G/K

ψ // G/H

The functor Φ<I> sends the morphism over (idψ, 0 → 1) corresponding to ϕ : U → G/H
to the span of finite pointed G-sets

ψ∗U

��

G/K
ϕ̄oo = //

=

��

G/K

=

��
G/K G/K

=oo = // G/K.

Using the fact that OG is atomic (i.e orbits have no non-trivial retracts) one can check that
the left square is a summand inclusion.

Steps 1 and 2 define Φ<I> on every morphism over G/H × (0→ 1), since every such morphism
uniquely decomposes as a morphism in U followed by a morphism over ({ψ} , 0 → 1) for some
ψ ∈ G/H. Verifying that Φ<I> is well defined is a straightforward calculation, using the fact that

every morphism of U ⋆G/H G/H can be uniquely decomposed as a morphism over ({ψ′} , 0→ 1)

followed by a morphism in G/H.

Construction of Segal maps and definition of a G-symmetric monoidal ∞-category
For any coCartesian fibration over FinG∗ we construct ’Segal maps’:

Definition B.0.6. Let C⊗ ։ FinG∗ be a coCartesian fibration and I = (U → G/H) a finite
pointed G-set over G/H. Construct a G-functor over G/H by the following steps:
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1. Pulling C⊗ along Φ<I> produces a coCartesian fibration (Φ<I>)
∗C⊗ ։ U ⋆G/HG/H, which

we can consider as a coCartesian fibration over G/H ×∆1 by the composition

(Φ<I>)
∗C⊗ ։ U ⋆G/H G/H ։ G/H ×∆1. (28)

2. The restriction of the coCartesian fibration (28) to G/H × {0} is given by

U ×G/H C⊗<I> ։ U ։ G/H × {0} ,

as it is the pullback of C⊗ ։ FinG∗ along U // // G/H
σ<I> // FinG∗ .

3. The restriction of the coCartesian fibration (28) to G/H × {1} is given by

G/H×C ։ G/H
=−→ G/H × {1} ,

as it is the pullback of C⊗ ։ FinG∗ along G/H // // G/G
σ<I+(G/G)> // FinG∗ .

4. Therefore, the coCartesian fibration (28) classifies a G-functor over G/H

U ×G/H C⊗<I>
'' ''PP

PPP
// G/H×C
yyyysss
s

G/H,

which by [BDG+16b, thm. 9.7] is equivalent to a G-functor over G/H

φ<I> : C⊗<I>
'' ''◆◆

◆◆◆
// FunG/H(U,G/H×C)
uuuu❦❦❦❦

❦❦

G/H.

(29)

We call (29) the Segal map of I.

We can now give the definition of a G-symmetric monoidal G-category.

Definition B.0.7. A G-symmetric monoidal G-category is a coCartesian fibration C⊗ ։ FinG∗
such that for every finite pointed G-set I = (U → G/H) the Segal map φ<I> of eq. (29) is an
equivalence of G/H-categories.

Remark B.0.8. Let C⊗ → FinG∗ be a G-symmetric monoidal G-category. The Segal conditions
imply that an object x ∈ C⊗ over I = (U → G/H) ∈ FinG∗ classifies a G-functor x• : U → C. To
see this, first note that by Yoneda’s lemma x defines a G/H object σx : G/H → C⊗. Since x ∈ C⊗

is over I ∈ FinG∗ the composition G/H
σx−→ C⊗ → FinG∗ is equivalent to σ<I> : G/H → FinG∗ ,

so σx factors as σx : G/H → C⊗<I> → C⊗. Therefore we can regard σx as a G/H-object of C⊗<I>.
Using the Segal conditions we identify σx with a G/H-object of FunG/H(U, C×G/H). Finally

we use the equivalence

FunG/H(G/H,FunG/H(U, C×G/H) ≃ FunG/H(U, C×G/H) ≃ FunG(U, C).

to identify σx : G/H → FunG/H(U, C×G/H) with a G-functor x• : U → C.
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Remark B.0.9. The codomain of the above Segal map is equivalent to a parametrized product:

The “internal hom” G/H-functor FunG/H(U,−) : CatG/H∞ → CatG/H∞ is right adjoint to the

composition

CatG/H∞ // CatU∞ // CatG/H∞ ,

(D ։ G/H)
✤ // (D ×G/H U ։ U)

✤ // (X ×G/H U ։ U → G/H).

Therefore, it decomposes as the composition of the right adjoints:

Under this equivalence, the Segal map of I = (U → G/H) is given by

φ<I> : C⊗<I>
&& &&▼▼

▼▼▼
▼

// ∏
I

C×U
zzzz✉✉✉
✉

G/H.

(30)

In particular, we can identify an object x ∈ C⊗ over I with a G/H-object of
∏
I

C×U as follows.

Since FinG∗ ։ OopG , I 7→ [G/H ] the object x belongs to the fiber C⊗[G/H], and by Yoneda’s lemma

is classified by a G-functor σx : G/H → C⊗. Since x ∈ C⊗ is over I ∈ FinG∗ , the G-functor

G/H → C⊗ ։ FinG∗ classifies I ∈ FinG∗ , and is therefore equivalent to σ<I>. Therefore it

induces a G/H-functor G/H → C⊗<I>. Post-composing with the Segal map of eq. (30) we get

our desired G/H-object G/H → C⊗<I>
∼−→ ∏

I

C×U , which by abuse of notation we also denote

by σx : G/H →
∏
I

C×U .

Unpacking the construction of the Segal maps (29) in definition B.0.7 gives the following
fiberwise characterization of G-symmetric monoidal categories, which is easier to verify.

Lemma B.0.10. A coCartesian fibration C⊗ ։ FinG∗ is a G-symmetric monoidal category
(definition B.0.7) if and only if for each finite pointed G-set J = (V → G/K) ∈ FinG∗ the
functor

C⊗J →
∏

W∈Orbit(ψ∗U)

C[W ]

is an equivalence of ∞-categories, where C⊗J is the fiber of C⊗ ։ FinG∗ over J = (V → G/K)

and the above functor is the product of C⊗J → C[W ] associated to the FinG∗ edges

∀W ∈ Orbit(V ) : V

��

Woo = //

=

��

W

=

��
G/K Woo = // W.

Proof. The Segal condition of G-symmetric monoidal G-categories states that the Segal map

φ<I> is a parametrized equivalence, i.e for each (G/H
ψ←− G/K) ∈ G/H , the Segal map φ<I>

induces an equivalence between the fibers

(C⊗<I>)[ψ] → FunG/H(U,G/H×C)[ψ].
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The fiber of C⊗<I> over ψ is the fiber of C⊗ ։ FinG∗ over the finite pointed G-set J := (ψ∗U →
G/K). The fiber of FunG/H(U,G/H×C) over ψ is the∞-category of G-functors FunOopG (ψ∗U, C).
Decomposing the finite G-set ψ∗U =

∐
W∈Orbit(ψ∗U)W into orbits we have

FunOopG (ψ∗U, C) ∼= FunOopG (
∐

W, C) ≃
∏

W

FunOopG (W, C) ≃
∏

W∈Orbit(ψ∗U)

C[W ].

Since both sides depend only on J = (ψ∗U → G/K) ∈ FinG∗ the result follows.

We end this appendix with the definition of parametrized tensor product functors in a G-
symmetric monoidal category.

Definition B.0.11. Let C⊗ ։ FinG∗ be a G-symmetric monoidal category. Let I = (U →
G/H), J = (V → G/H) ∈ FinG∗ be two object over the orbit G/H, and f : I → J a morphism
in (FinG∗ )[G/H], given by

U

��

U
=oo

��

f // V

��
G/H G/H

=oo = // G/H.

The morphism f corresponds to a functor ∆1 → (FinG∗ )[G/H], or equivalently to a G-functor

σ<f> : G/H×∆1 → FinG∗ , which restricts to σ<I> over G/H×{0} and to σ<J> over G/H×{1}.
Pulling back C⊗ ։ FinG∗ along σ<f> we get a coCartesian fibration C⊗<f> ։ G/H×∆1 which

restricts to C⊗<I> over G/H × {0} and to C⊗<J> over G/H × {1}. Therefore this coCartesian
fibration classifies a G/H-functor

⊗f : C⊗<I>
&& &&▼▼

▼▼▼
// C⊗<J>
zzzz✈✈✈
✈

G/H

which we refer to as the tensor product over f . Composing with the Segal maps of eq. (30), we
can rewrite the tensor product over f as

⊗f :
∏
I

C×U
&& &&◆◆

◆

// ∏
J

C×V
zzzz✉✉✉

G/H.

Appendix C Mapping spaces in over-categories

We prove some simple properties of mapping spaces in over categories.

Lemma C.0.1. Consider the over category C/b for b an object in an ∞-category C. Let x →
b, y1 → b, y2 → b be objects in C/b, and a morphism ϕ in C/b from y1 → b to y2 → b. Then

MapC/b(x→ b, y1 → b) //

ϕ∗

��

MapC(x, y1)

ϕ∗

��
MapC/b(x→ b, y2 → b) // MapC(x, y2)
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is a homotopy pullback square.

Proof. The mapping space MapC/b(x → b, y → b) is the homotopy fiber of the postcomposition

map MapC(x, y)→ MapC(x, b). Therefore the lower square and outer rectangle in the diagram

MapC/b(x→ b, y1 → b) //

ϕ∗

��

MapC(x, y1)

ϕ∗

��
MapC/b(x→ b, y2 → b) //

��

MapC(x, y2)

(y2→b)∗

��
∗ x→b // Map/C(x, b)

are homotopy pullback diagram. It follows that the top square is a homotopy pullback square.

Lemma C.0.2. Let f : b→ b′ be a morphism in an ∞-category C, and consider the postcompo-
sition functor f∗ : C/b → C/b′ . Let x→ b, y1 → b, y2 → b be objects in C/b, and a morphism ϕ in
C/b from y1 → b to y2 → b. Then

MapC/b(x→ b, y1 → b)
f∗ //

ϕ∗

��

MapC/b′ (x→ b
f−→ b′, y1 → b

f−→ b′)

ϕ∗
��

MapC/b(x→ b, y2 → b)
f∗ // MapC/b′ (x→ b

f−→ b′, y2 → b
f−→ b′)

is a homotopy pullback square.

Proof. Consider the commutative diagram

MapC/b(x→ b, y1 → b)
f∗ //

ϕ∗

��

MapC/b′ (x→ b
f−→ b′, y1 → b

f−→ b′) //

ϕ∗
��

MapC(x, y1)

ϕ∗

��
MapC/b(x→ b, y2 → b)

f∗ // MapC/b′ (x→ b
f−→ b′, y2 → b

f−→ b′) // MapC(x, y2).

By lemma C.0.1 the right square and the outer rectangle are homotopy pullback squares, hence
the left square is a homotopy pullback square.

Next, let f : b→ b′ be a morphism in an∞-category C as before, and T :M→ C/b′ a functor
of ∞-categories. Define an ∞-categoryMT as the pullback

MT

u

��

// C/b
f∗

��
M T // C/b′ .
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Lemma C.0.3. Let C, f : b→ b′, T :M→ C/b′ andMT be as above. Let X,Y1, Y2 be objects in
MT and Φ : Y1 → Y2 be morphism in MT . Then

MapMT
(X,Y1)

Φ∗ //

��

MapMT
(X,Y2)

��
MapM(u(X), u(Y1))

u(Φ)∗ // MapM(u(X), u(Y2))

is a homotopy pullback square.

Proof. Denote the images of X,Y1, Y2 ∈ MF in C/b by x→ b, x→ y1, x→ y2, and the image of

Φ by ϕ. Using the equivalences u(X) ≃ (x → b
f−→ b′), u(Y1) ≃ (y1 → b

f−→ b′), u(Y2) ≃ (y2 →
b
f−→ b′) in C/b′ we can identify the mapping spaces

MapC/b′ (Tu(X), T u(Yi)) ≃MapC/b′ (x→ b
f−→ b′, yi

f−→ b′), i = 1, 2.

Under these identifications we have a commutative diagram

MapMT
(X,Y1) MapM(u(X), u(Y1))

MapC/b(x→ b, y1 → b) MapC/b′ (x→ b
f−→ b′, y1 → b

f−→ b′)

MapC/b(x→ b, y2 → b) MapC/b′ (x→ b
f−→ b′, y2

f−→ b′).

T

ϕ∗

f∗

ϕ∗

f∗

The top square is a homotopy pullback square by the definition of MT as a pullback, and the
bottom square is a homotopy pullback square by lemma C.0.2. Therefore the outer rectangle is
a homotopy pullback square. On the other hand, this is also the outer rectangle in the diagram

MapMT
(X,Y1)

Φ∗ //

��

MapMT
(X,Y2)

��

// MapC/b(x→ b, y2 → b)

f∗
��

MapM(u(X), u(Y1))
u(Φ)∗ // MapM(u(X), u(Y2))

T // MapC/b′ (x→ b
f−→ b′, y2

f−→ b′).

By definition ofMT is a pullback the right square is a homotopy pullback square, hence the left
square is a homotopy pullback square, as claimed.
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Kaif Hilman∗
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In this paper, we develop the notion of presentability in the parametrised homo-
topy theory framework of [BDG+16a] over orbital categories. We formulate and
prove a characterisation of parametrised presentable categories in terms of its asso-
ciated straightening. From this we deduce a parametrised adjoint functor theorem
from the unparametrised version, prove various localisation results, and we record
the interactions of the notion of presentability here with multiplicative matters.
Such a theory is of interest for example in equivariant homotopy theory, and we
will apply it in [Hil22b] to construct the category of parametrised noncommutative
motives for equivariant algebraic K-theory.
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1 Introduction

Parametrised homotopy theory is the study of higher categories fibred over a base ∞-category.
This is a generalisation of the usual theory of higher categories, which can be viewed as the
parametrised homotopy theory over a point. The advantage of this approach is that many
structures can be cleanly encoded by the morphisms in the base ∞-category. For example, in
the algebro-geometric world, various forms of pushforwards exist for various classes of scheme
morphisms (see [BH21] for more details). Another example, which is the main motivation of
this work for our applications in [Hil22b], is that of genuine equivariant homotopy theory for a
finite group G - here the base ∞-category would be Oop

G , the opposite of the G-orbit category.
In this case, for subgroups H ≤ K ≤ G, important and fundamental constructions such as
indexed coproducts, indexed products, and indexed tensors

∐

K/H

∏

K/H

⊗

K/H

can be encoded by the morphisms in Oop
G . One framework in which to study this is the

series of papers following [BDG+16a] and the results in this paper should be viewed as a
continuation of the vision from the aforementioned series - we refer the reader to them for
more motivations and examples.

For an ∞-category to admit all small colimits and limits is a very desirable property as it
means that many constructions can be done in it. However, this property entails that it has
to be large enough and we might lose control of it due to size issues. Fortunately, there is
a fix to this problem in the form of the very well-behaved class of presentable ∞-categories:
these are cocomplete ∞-categories that are “essentially generated” by a small subcategory.
One of the most important features of presentable ∞-categories is the adjoint functor theorem
which says that one can test whether or not a functor between presentables is right or left
adjoint by checking that it preserves limits or colimits respectively. The ∞-categorical theory
of presentability was developed by Lurie in [Lur09, Chapter 5], generalising the classical
1-categorical notion of locally presentable categories.

The goal of this paper is to translate the above-mentioned theory of presentable ∞-
categories to the parametrised setting and to understand the relationship between the notion of
parametrised presentability and its unparametrised analogue in [Lur09]. As a signpost to the
expert reader, we will always assume throughout this paper that the base category is orbital in
the sense of [Nar17]. Besides that, we will adopt the convention in said paper of defining a T -
category, for a fixed based ∞-category T , to be a cocartesian fibration over the opposite, T op.
This convention is geared towards equivariant homotopy theory as introduced in the motivation
above where T = OG. Note that by the straightening-unstraightening equivalence of [Lur09],

a T -category can equivalently be thought of as a functor T op → Ĉat∞. The first main result
we obtain is then the following characterisation of parametrised presentable ∞-categories.
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Theorem A (Straightening characterisation of parametrised presentables, full version in The-
orem 6.1.2). Let C be a T -category. Then it is T -presentable if and only if the associated

straightening C : T op → Ĉat∞ factors through the non-full subcategory PrL ⊂ Ĉat∞ of pre-
sentable categories and left adjoint functors, and morevoer these functors themselves have left
adjoints satisfying certain Beck-Chevalley conditions (3.1.8).

In the full version, we also give a complete parametrised analogue of the characterisations
of presentable ∞-categories due to Lurie and Simpson (cf. [Lur09, Thm. 5.5.1.1]), which in
particular shows that the notion defined in this paper is equivalent to the one defined in [Nar17,
§1.4]. While it is generally expected that the theory of ∞-cosmoi in [RV22] should absorb the
statement and proof of the Lurie-Simpson-style characterisations of presentability, the value of
the theorem above is in clarifying the relationship between the notion of presentability in the
parametrised sense and in the unparametrised sense. Indeed, the description in Theorem A is
a genuinely parametrised statement that is not seen in the unparametrised realm where T = ∗.
One consequence of this is that we can easily deduce the parametrised adjoint functor theorem
from the unparametrised version instead of repeating the same arguments in the parametrised
setting.

Theorem B (Parametrised adjoint functor theorem, Theorem 6.2.1). Let F : C → D be a
T -functor between T -presentable categories. Then:

1. If F strongly preserves T -colimits, then F admits a T -right adjoint.

2. If F strongly preserves T -limits and is T -accessible, then F admits a T -left adjoint.

Another application of Theorem A is the construction of presentable Dwyer-Kan locali-
sations, Theorem 6.3.7. This is deduced essentially by performing fibrewise localisations,
which are in turn furnished by [Lur09]. It is an extremely important construction, much
like in the unparametrised world, and we will for example use it in [Hil22b] to understand
the parametrised enhancement of the noncommutative motives of [BGT13]. Other highlights
include the localisation-cocompletions construction in Theorem 6.4.2, the idempotent-
complete-presentables correspondence Theorem 6.5.4, as well as studying the various
interactions between presentability with multiplicative matters and functor categories in
§6.7 where, among other things, we prove a formula for the tensor product of parametrised
presentable categories that was claimed in [Nar17] without proof.

We now comment on the methods and philosophy of this article. The approach taken here
is an axiomatic one and is slightly different in flavour from the series of papers in [BDG+16a]
in that we freely pass between the viewpoint of parametrised ∞-categories as cocartesian
fibrations and as ∞-category-valued functors via the straightening-unstraightening equivalence
of Lurie. This allows us to work model-independently, ie. without thinking of our ∞-categories
as simplicial sets. The point is that, as far as presentability and adjunctions are concerned,
the foundations laid in [BDG+16b; BGN14; Sha23; Sha22; Nar17] are sufficient for us to make
model-independent formulations and proofs via universal properties. Indeed, a recurring trick
in this paper is to say that relevant universal properties guarantee the existence of certain
functors, and then we can just check that certain diagrams of ∞-categories commute by virtue
of the essential uniqueness of left/right adjoints.

Outline of paper. In Sections 2 to 4 we collect all the background materials, together
with references, that will be needed for the rest of the paper. We hope that this establishes
notational consistency and makes the paper as self-contained as possible. We have denoted by
“recollections” those subsections which contain mostly only statements that have appeared in
the literature. We recommend the reader to skim this section on first reading and refer to it as
necessary. In §5 we introduce the notions of T -compactness and T -idempotent-completeness.
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We then come to the heart of the paper in §6 where we state and prove various basic results
about parametrised presentable ∞-categories as enumerated above.

Conventions and assumptions. This paper is written in the language of ∞-categories
and so from now on we will drop the adjective ∞- and mean ∞-categories when we say
categories. Moreover, throughout the paper the base category T will be assumed to be orbital
(cf. Definition 2.1.11) unless stated otherwise. We will also use the notation Cat for the

category of small categories and Ĉat∞ for the category of large categories.

Related work. Since the appearance of this article, Louis Martini and Sebastian Wolf
have also independently produced many similar results in [MW22] using a different formalism
of working internal to an ∞–topos. An important point of departure of this work from
[MW22] is the the following: because this article is geared towards the applications we have in
mind in [Hil22b], our setup crucially interacts well with the notion of parametrised symmetric
monoidal structures (a.k.a. multiplicative norms), which to the best of our knowledge, is not
yet formulated in their formalism at the present moment. Moreover, this work has also been
incorporated as Chapters 1 and 2 of the author’s PhD thesis [Hil22a].

Acknowledgements. I am grateful to Jesper Grodal, Markus Land, and Maxime Ramzi
for useful comments, sanity checks, and many hours of enlightening conversations. I would
also like to acknowledge my debt to Fabian Hebestreit and Ferdinand Wagner whose joint
notes [HW21] on a lecture series given by the former have taught me much about how to use
higher category theory model-independently. Finally, I would like to thank Malte Leip for
proofreading the various drafts of this article. This article is based on work done during the
author’s PhD which was supported by the Danish National Research Foundation through the
Copenhagen Centre for Geometry and Topology (DNRF151).

2 Preliminaries: general base categories

2.1 Recollections: basic objects and constructions

Recollections 2.1.1. For a category T , there is Lurie’s straightening-unstraightening equiv-
alence coCart(T op) ≃ Fun(T op,Cat) (cf. for example [HW21, Thm. I.23]). The category of
T –categories is then defined simply as Fun(T op,Cat) and we also write this as CatT . We will
always denote a T –category with an underline C. Under the equivalence above, the datum of
a T –category is equivalent to the datum of a cocartesian fibration p : Total(C) → T op, and a
T –functor is defined just to be a morphism of T –categories C → D, is then equivalently a map
of cocartesian fibrations Total(C) → Total(D) over T op. For an object V ∈ T , we will write
CV or CV for the fibre of Total(C) → T op over V .

Remark 2.1.2. The product C × D in CatT of two T –categories C,D is given as the pullback
Total(C) ×T op Total(D) in the cocartesian fibrations perspective. We will always denote with
× when we are viewing things as T –categories and we reserve ×T op for when we are viewing
things as total categories. In this way, there will be no confusion as to whether or not ×T op

denotes a pullback in CatT : this will never be the case.

Notation 2.1.3. Since CatT = Fun(T op,Cat) is naturally even a 2–category, for C,D ∈ CatT ,
we have the category of T –functors from C to D: this we write as FunT (C,D). Unstraightening,
we obtain FunT (C,D) ≃ Funcocart(Total(C),Total(D))×Fun(Total(C),T op) {p} where Funcocart is
the full subcategory of functors preserving T op–cocartesian morphisms.

Example 2.1.4. We now give some basic examples of T –categories to set notation.
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• (Fibrewise T –categories) Let K ∈ Cat. Write constT (K) ∈ CatT for the constant
K–valued diagram. In other words, Total(constT (K)) ≃ K × T op.

• We write ∗ := constT (∗). This is clearly a final object in CatT = Fun(T op,Cat).

• (Corepresentable T –categories) Let V ∈ T . Then we can consider the left (and so
cocartesian) fibration associated to the functor MapT : T op → S and denote this T –
category by V . Note that Total(V ) ≃ (T/V )op. By corepresentability of V , we have
FunT (V , C) ≃ CV . To wit, for K ∈ Cat, by Construction 2.1.13, we have

MapCat

(
K,FunT (V , C)

)
≃ MapCatT

(
V ,FunT (const(K), C)

)

≃ MapCat(K, CV )

Definition 2.1.5. The category of T –objects of C is defined to be FunT (∗, C).

Remark 2.1.6. If T op has an initial object T ∈ T op, then this means that the category of
T –objects in C is just CT .

Construction 2.1.7 (Parametrised opposites). For a T –category C, its T –opposite Copopopopopopopopopopopopopopopopop is
defined to be the image under the functor obtained by applying Fun(T op,−) to (−)op : Cat →
Cat. In the unstraightened view, this is given by taking fibrewise opposites in the total category.
In [BDG+16b] this was called vertical opposites (−)vop to invoke just such an impression.

Observation 2.1.8. Let V be a corepresentable T –category. Then V opopopopopopopopopopopopopopopopop ≃ V since the functor
(−)op : Cat → Cat restricts to the identity on S.

Construction 2.1.9. The cone and cocone are functors (−)⊳, (−)⊲ : Cat → Cat which add
a (co)cone point to a category. Applying Fun(T op,−) to this functor yields the T –cone and
–cocone functors (−)⊳ and (−)⊲ respectively. We refer to [Sha23] for more on this.

Definition 2.1.10. A T –functor is T -fully faithful (resp. T -equivalence) if it is so fibrewise.
There is the expected characterisation of T –fully faithfulness in terms of T –mapping spaces,
see Remark 3.3.2.

Definition 2.1.11. We say that the category T is orbital if the finite coproduct cocompletion
FinT admits finite pullbacks. Here, by finite coproduct cocompletion, we mean the full sub-
category of the presheaf category Fun(T op,S) spanned by finite coproduct of representables.
We say that it is atomic if every retraction is an equivalence.

Notation 2.1.12 (Basechange). As in [Nar17], we will write CV := C × V = Total(C) ×T op

Total(V ) for the basechanged parametrised category, which is now viewed as a T/V –category.
The (−)V is a useful reminder that we have basechanged to V , and so for example we will
often use the notation FunV to mean FunT/V

and not FunTotal(V ) ≃ Fun(T/V )op .

Construction 2.1.13 (Internal T –functor category, [BDG+16b, §9]). For C,D ∈ CatT , there
is a T –category FunT (C,D) such that

FunT (E ,FunT (C,D)) ≃ FunT (E × C,D)

This is because Fun(T op,Cat) is presentable and the endofunctor −×C has a right adjoint since
it preserves colimits. In particular, by a Yoneda argument we get FunT (∗,D) ≃ D. Moreover,
plugging in E = ∗ we see that T –objects of the internal T –functor object are just T –functors.
Furthermore, the T –functor categories basechange well in that

FunT (C,D)V ≃ FunV (CV ,DV )
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so the fibre over V ∈ T op is given by FunV (CV ,DV ). To wit, for any T/V –category E ,

Map(CatT )/V
(E ,FunT (C,D)V ) ≃ MapCatT (E ,FunT (C,D))

≃ Map(CatT )/V
(E × C,DV )

≃ Map(CatT )/V
(E ×V CV ,DV )

≃ Map(CatT )/V
(E ,FunV (CV ,DV ))

Notation 2.1.14 (Parametrised cotensors). Let I be a small unparametrised category. Then
the adjunction −× I : Cat ⇄ Cat : Fun(I,−) induces the adjunction

(−× I)∗ : Fun(T op,Cat) ⇄ Fun(T op,Cat) : Fun(I,−)∗

Under the identification Fun(T op,Cat) ≃ CatT where CatT is the category of T -categories,
it is clear that (− × I)∗ corresponds to the T -functor constT (I) × −, whose right adjoint we
know is FunT (constT (I),−). Therefore FunT (constT (I),−) implements the fibrewise functor
construction. We will introduce the notation fun(I,−) for FunT (constT (I),−). This satisfies
the following properties whose proofs are immediate.

1. CatT is cotensored over Cat in the sense that for any T -categories C,D we have

FunT (C, fun(I,D)) ≃ fun(I,FunT (C,D))

2. fun(I,−) preserves T -adjunctions.

Observation 2.1.15. There is a natural equivalence of T –categories

FunT (C,D)opopopopopopopopopopopopopopopopop ≃ FunT (Copopopopopopopopopopopopopopopopop,Dopopopopopopopopopopopopopopopopop)

This is because (−)opopopopopopopopopopopopopopopopop : CatT → CatT is an involution, and so for any E ∈ CatT ,

MapCatT (E ,FunT (C,D)opopopopopopopopopopopopopopopopop) ≃ MapCatT (E
opopopopopopopopopopopopopopopopop,FunT (C,D))

≃ MapCatT (E
opopopopopopopopopopopopopopopopop × C,D)

≃ MapCatT (E × Copopopopopopopopopopopopopopopopop,Dopopopopopopopopopopopopopopopopop)

≃ MapCatT (E ,FunT (C
opopopopopopopopopopopopopopopopop,Dopopopopopopopopopopopopopopopopop))

Construction 2.1.16 (Cofree parametrisation, [Nar17, Def. 1.10]). Let D be a category.
There is a T –category Cofree(D) : T op → Cat classified by V 7→ Fun((T/V )op,D). This has
the following universal property: if C ∈ CatT , then there is a natural equivalence

FunT (C,Cofree(D)) ≃ Fun(Total(C),D)

of ordinary ∞-categories. This construction is of foundational importance and it allows us to
define the following two fundamental T –categories.

Notation 2.1.17. We will write CatT := CofreeT (Cat) for the T –category of T –categories ;
we write ST := CofreeT (S) for the T –category of T –spaces.

Theorem 2.1.18 (Parametrised straightening-unstraightening, [BDG+16b, Prop. 8.3]). Let
C ∈ CatT . Then there are equivalences

FunT (C,CatT ) ≃ coCart(Total(C)) FunT (C,ST ) ≃ Left(Total(C))
Proof. This is an immediate consequence of the usual straightening-unstraightening and the
universal property of T –categories of T –objects above. For example,

FunT (C,CatT ) ≃ Fun(Total(C),Cat) ≃ coCart(Total(C))
and similarly for spaces.
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2.2 Parametrised adjunctions

T –adjunctions as introduced in [Sha23] is based on the relative adjunctions of [Lur17].

Definition 2.2.1 ([Lur17, Def. 7.3.2.2]). Suppose we have diagrams of categories

C D C D

E E
q

G

p q

F

p

Then we say that:

• For the first diagram, G admits a left adjoint F relative to E if G admits a left adjoint
F such that for every C ∈ C, q sends the unit η : C → GFC to an equivalence in E
(equivalently, if qη : q ⇒ p ◦ F exhibits a commutation p ◦ F ≃ q by [Lur17, Prop.
7.3.2.1]).

• For the second diagram, F admits a right adjoint G relative to E if F admits a right
adjoint G such that for every D ∈ D, p maps the counit ε : FGD → D to an equivalence
in E (equivalently if pε : q ◦G⇒ p exhibits q ◦G ≃ p by [Lur17, Prop. 7.3.2.1]).

Observe that when E ≃ ∗, this specialises to the usual notion of adjunctions.

Remark 2.2.2. These two definitions are compatible. To see this, assume the first condition
for example, ie. that G has a left adjoint F relative to E . We need to see that F then admits
a right adjoint G relative to E in the sense of the second condition, ie. that p sends the counit
ε : FGD → D to an equivalence in E . For this just consider the commutative diagram

qG qGFG pFG

qG p

qηG
≃

qGε

≃

pε

≃

where the triangle is by the adjunction, and the square is by the natural equivalence qG ≃ p.

Definition 2.2.3. Let C,D ∈ CatT . Then a T -adjunction F : C ⇄ D : G is defined to be a
relative adjunction such that F,G are T –functors. A T -Bousfield localisation is a T –adjunction
where the T –right adjoint is T –fully faithful.

Proposition 2.2.4 (Stability of relative adjunctions under pullbacks, [Lur17, Prop. 7.3.2.5]).
Suppose we have a relative adjunction

C D

E
q

F

G

p

Then for any functor E ′ → E the diagram of pullbacks

C ×E E ′ D ×E E ′

E ′
q

F

G

p

is again a relative adjunction.
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We now have the following criteria to obtain relative adjunctions - these are just modified
from Lurie’s more general assumptions.

Proposition 2.2.5 (Criteria for relative adjunctions, [Lur17, Prop. 7.3.2.6]). Suppose p : C →
E, q : D → E are cocartesian fibrations. If we have a map of cocartesian fibrations F

C D

E
q

F

p

Then:

(1) F admits a right adjoint G relative to E if and only if for each E ∈ E the map of fibres
FE : CE → DE admits a right adjoint GE. The right adjoint need no longer be a map of
cocartesian fibrations.

(2) F admits a left adjoint L relative to E if and only if for each E ∈ E the map of fibres
FE : CE → DE admits a left adjoint LE and the canonical comparison maps (constructed
in [Lur17, Prop. 7.3.2.11])

Lf∗ → LFf∗L
ε−→ f∗L

constructed from the fibrewise adjunction are equivalences - here f∗ is the pushforward
given by the cocartesian lift along some f : E′ → E in E. The relative left adjoint, if it
exists, must necessarily be a map of cocartesian fibrations.

Proof. We prove each in turn. To see (1), suppose F has an E-right adjoint G. Then for
each e ∈ E the inclusion {e} →֒ E induces a pullback relative adjunction over the point
{e} by Proposition 2.2.4, and so we get the statement on fibres. Conversely, suppose we have
fibrewise right adjoints. To construct an E-right adjointG, since adjunctions can be constructed
objectwise by the unparametrised version of Proposition 3.3.9 below, we need to show that for
each e ∈ E and d ∈ De, there is a Gd ∈ Ce and a map ε : FGd→ d such that:

(a) For every c ∈ C the following composition is an equivalence

MapC(c,Gd)
F−→ MapD(Fc, FGd)

ε−→ MapD(Fc, d)

(b) The morphism pε : pFGd→ pd is an equivalence in E .
We can just define Gd := Ge(d) ∈ Ce given by the fibrewise right adjoint and let ε : FGd → d
be the fibrewise counit. Since these are fibrewise, point (b) is automatic. To see point (a), let
c ∈ Ce′ for some e′ ∈ E . Since the mapping space in the total category of cocartesian fibrations
are just disjoint unions over the components lying under MapC(c,Gd), we can work over some
f ∈ MapE(e

′, e). Consider

MapfC(c,Gd) MapDe
(f∗Fc, d) ≃ MapfD(Fc, d)

MapCe
(f∗c,Gd) MapDe

(f∗Fc, FGd)

≃

F

≃
ε

where we have used also that F was a map of cocartesian fibrations so that f∗F ≃ Ff∗ and that
the diagonal map is an equivalence since we had a fibrewise adjunction Fe ⊣ Ge by hypothesis.
This completes the proof of part (1).
For case (2), to see the cocartesianness of a relative left adjoint L, note

MapC(Lf
∗d, c) ≃ MapD(f

∗d, Fc) ≃ MapfD(d, Fc)

≃ MapfC(Ld, c) ≃ MapC(f
∗Ld, c)
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The proof for right adjoints in (1) go through in this case but now we use

MapfC(Ld, c) MapDE
(f∗d, Fc) ≃ MapfD(d, Fc)

MapCE
(f∗Ld, c) MapCE

(Lf∗d, c)

≃ ≃

and so the technical condition in the statement says that there is a canonical map inducing
the bottom map in the square which must necessarily be an equivalence.

Remark 2.2.6. One might object to the notation we have adopted for the pushforward being
f∗ instead of f!. This convention is standard in the framework of [BDG+16a] because the
latter notation is reserved for the left adjoint of f∗ (the so-called T –coproducts) that will be
recalled later.

Corollary 2.2.7 (Fibrewise criteria for T –adjunctions). Let F : C → D be a T –functor. Then
it admits a T –right adjoint if and only if it has fibrewise right adjoints GV for all V ∈ T and

CW DW

CV DV

GW

f∗

GV

f∗

commutes for all f : W → V in T . Similarly for left T –adjoints.

Proof. The commuting square ensures that the relative right adjoint is a T –functor.

Proposition 2.2.8 (Criteria for T –Bousfield localisations, “[Lur09, Prop. 5.2.7.4]”). Let C ∈
CatT and L : C → C a T –functor equipped with a fibrewise natural transformation η : id ⇒ L.
Let j : LC ⊆ C be the inclusion of the T –full subcategory spanned by the image of L. Suppose
the transformations Lη, ηL : L =⇒ L ◦ L are equivalences. Then the pair (L, j) constitutes a
T –Bousfield localisation with unit η.

Proof. We want to apply Corollary 2.2.7. Since we are already provided with the fact that
L was a T –functor, all that is left to show is that it is fibrewise left adjoint to the inclusion
LC ⊆ C. But this is guaranteed by [Lur09, Prop. 5.2.7.4], and so we are done.

Finally, we show that parametrised adjunctions have the expected internal characterisation
in terms of the parametrised mapping spaces recalled in Construction 3.3.1.

Lemma 2.2.9 (Mapping space characterisation of T –adjunctions). Let F : C ⇆ D : G be a
pair of T –functors. Then there is a T –adjunction F ⊣ G if and only if we have a natural
equivalence

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F−,−) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, G−) : Copopopopopopopopopopopopopopopopop ×D −→ ST

Proof. The if direction is clear: since F and G were already T –functors, by Corollary 2.2.7
the only thing left to do is to show fibrewise adjunction, and this is easily implied by the
equivalence which supplies the unit and counits. For the only if direction, by definition of a
relative adjunction, we have a fibrewise natural transformation η : idC ⇒ GF (ie. a morphism
in FunT (C, C)) and so we obtain a natural comparison

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F−,−)
G−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(GF−, G−)

η∗−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, G−)

Since equivalences between T –functors are checked fibrewise, let c ∈ CV , d ∈ DV . Then
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MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F−,−) : (c, d) 7→
(
(W

f−→ V ) 7→ (MapDV
(Fc, d) → MapDW

(f∗Fc, f∗d)
)
∈ SV

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, G−) : (c, d) 7→
(
(W

f−→ V ) 7→ (MapCV
(c,Gd) → MapCW

(f∗c, f∗Gd)
)
∈ SV

Since F,G were T –functors, we have Ff∗ ≃ f∗F and Gf∗ ≃ f∗G, and so the natural com-
parison coming from the relative adjunction unit given above exhibits a pointwise equivalence
between MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F−,−) and MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, G−) by Corollary 2.2.7.

3 Preliminaries: orbital base categories

Some of the notions here still make sense for general T , but we want orbitality in order to
make formulations involving Beck-Chevalley conditions. Hence, from now on, we assume that
T is orbital.

3.1 Recollections: colimits and Kan extensions

Definition 3.1.1. Let K ∈ CatT and q : K → ∗ be the unique map. Then precomposition
induces the T –functor q∗ : D ≃ FunT (∗,D) −→ FunT (K,D). The T –left adjoint q!, if it exists,
is called the K–indexed T –colimit, and similarly for T-limits q∗.

Example 3.1.2. Here are some special and important classes of these:

• A T –(co)limit indexed by constT (K) for some ordinary∞–categoryK is called a fibrewise
T -(co)limit.

• A T –(co)limit indexed by a corepresentable T –category V (cf. Example 2.1.4) of some
V ∈ T is called the T-(co)product.

Definition 3.1.3 ([Sha23, Def. 11.2]). Let F : C → D be a T –functor.

• We say that it preserves T -colimits if for all T –colimit diagrams d : K⊲ → C, the post-
composed diagram F ◦ d : K⊲ → D is a T –colimit. Similarly for T –limits.

• We say that F strongly preserves T -colimits if for all V ∈ T , FV : CV → DV preserves
T/V –colimits. Similarly for T –limits.

Warning 3.1.4 ([Sha23, Rmk. 5.14]). Note that being T –cocomplete is much stronger than
just admitting all T –colimits. This is because admitting all T –colimits just means that any
T/V –diagramKV → CV pulled back from a T –diagramK → C admits a T/V –colimit. However
not every T/V –diagram is pulled back as such. We will elaborate on the distinction of these
definitions in the next subsection. In this document, we will never consider preservations, but
only strong preservations.

Definition 3.1.5 ([Sha23, Def. 5.13]). Let C ∈ CatT . Then we say C is T –(co)complete if for
all V ∈ T and T/V –diagram p : K → CV with K small, p admits a T/V –(co)limit.

Terminology 3.1.6. When we want to specify particular kinds of parametrised (co)limits
that a T –category admits, it is convenient to use the following terminology: for K = {KV }V ∈T
some collection of diagrams varying over V ∈ T , we say that C strongly admits K–(co)limits if
for all V ∈ T , CV admits K–colimits for all K ∈ KV . Examples include:

• C strongly admits all T –(co)limits means that it is T –(co)cocomplete,

• Let κ be a regular cardinal. We say that C strongly admits κ–small T –(co)products
to mean that it has T –(co)limits for any diagram indexed over

∐
a∈A V a where A is

a κ–small set. Hence, strongly admitting finite T –(co)products means admitting finite
fibrewise (co)products and (co)limits for all corepresentable diagrams V .
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Lemma 3.1.7 (Decomposition of indexed coproducts). Let Ra, V ∈ T and
∐
a fa :

∐
aRa → V

be a map where the coproduct is not necessarily finite. Suppose C strongly admits finite T –
coproducts and arbitrary fibrewise coproducts. Then C admits

∐
a fa-coproducts and this is

computed by composing fibrewise T –coproduct
∐
a with the individual indexed T –coproducts.

Proof. We will in fact show that we have T/V –adjunctions

FunV (
∐
aRa, CV ) =

∏
a FunV (Ra, CV )

∏
a FunV (V , CV ) FunV (V , CV )

∏
a(fa)!

∐
a

∏
a(fa)

∗ ∆

That these T/V –adjunctions exist is by our hypotheses, and all that is left to do is check that∏
a(fa)

∗ ◦∆ ≃ (
∐
a fa)

∗. But this is also clear since we have the commuting diagram

∐
aRa V

∐
a V

∐
a fa

fa ∐
a idV

Applying (−)∗ to this triangle completes the proof.

Terminology 3.1.8 (Beck-Chevalley conditions). Let C ∈ CatT that admits finite fibrewise
coproducts (resp. products) and such that for each f : W → V in T , f∗ : CV → CW admits a
left adjoint f! (resp. right adjoint f∗). We say that C satisfies the left Beck-Chevalley condition
(resp. right Beck-Chevalley condition) if for every pair of morphisms f :W → V and g : Y → V
in T : in the pullback (whose orbital decomposition exists by orbitality of T )

∐
aRa = Y ×V W Y

W V

y
∐

a fa

∐
a ga

g

f

the canonical basechange transformation

∐

a

ga!f
∗
a =⇒ f∗g!

(
resp. f∗g∗ =⇒

∏

a

ga∗f
∗
a

)

is an equivalence.

Here is an omnibus of results due to Jay Shah.

Theorem 3.1.9 ([Sha23, 5.5-5.12 and §12] ). Let C ∈ CatT . Then:

(1) (Fibrewise criterion) C strongly admits T –colimits indexed by constT (K) if and only if
for every V ∈ T the fibre CV has all colimits indexed by K and for every morphism
f : W → V in T the cocartesian lift f∗ : CV → CW preserves colimits indexed by K. A
cocone diagram p : constT (K)⊲ → C is a T –colimit if and only if it is so fibrewise.

(1) (T-coproducts criteria) C strongly admits finite T –coproducts if and only if we have:

(a) For every W ∈ T the fibre CW has all finite coproducts and for every f :W → V in
T the map f∗ : CV → CW preserves finite coproducts,

(b) C satisfies the left Beck-Chevalley condition (cf. Terminology 3.1.8).

(3) (Decomposition principle) C is T –cocomplete if and only if it has all fibrewise colimits
and strongly admits finite T –coproducts.
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Similar statements hold for T –limits, and the right adjoint to f∗ will be denoted f∗.

Theorem 3.1.10 (Omnibus T –adjunctions, [Sha23, §8]). Let F : C ⇄ D : G be a T –adjunction
and I be a T –category. Then:

(1) We get adjunctions F∗ : FunT (I, C) ⇄ FunT (I,D) : G∗, G∗ : FunT (C, I) ⇄ FunT (D, I) :
F ∗. By Corollary 2.2.7 this implies ordinary adjunctions when we replace FunT by FunT .

(2) F strongly preserves T –colimits and G strongly preserves T –limits.

Proof. In [Sha23, Cor. 8.9], part (2) was stated only as ordinary preservation, not strong
preservation. But then strong preservation was implicit since relative adjunctions are stable
under pullbacks by Proposition 2.2.4, and the statement in [Sha23] also holds after pulling
back to −× V for all V ∈ T .

Proposition 3.1.11 (T –cocompleteness of Bousfield local subcategories). If L : C ⇄ D : j
is a T –Bousfield localisation where C is T –cocomplete, then D is too and T –colimits in D is
computed as L applied to the T –colimit computed in C.
Proof. This is an immediate consequence of Lemma 2.2.9.

Proposition 3.1.12 (T –(co)limits of functor categories is pointwise). Let K, I, C be T –
categories. Suppose C strongly admits K–indexed diagrams. Then so does FunT (I, C) and
the parametrised (co)limits are inherited from that of C.
Proof. This is a direct consequence of the adjunction (colimK)∗ : FunT (K,FunT (I, C)) ≃
FunT (I,FunT (K, C)) ⇄ FunT (I, C) : const for T –colimits. The other case is similar.

Definition 3.1.13 (T –Kan extensions). Let j : I → K be a T –functor. If j∗ : FunT (K,D) −→
FunT (I,D) has a T –left adjoint, then we denote it by j! and call it the T-left Kan extension.
Similarly for T –right Kan extensions.

Proposition 3.1.14 (Fully faithful T –Kan extensions, [Sha23, Prop. 10.6]). Let i : C →֒ D
be a T –fully faithful functor and F : C → E be another T –functor. If the T –left Kan extension
i!F exists, then the adjunction unit F ⇒ i∗i!F : C → E is an equivalence.

Theorem 3.1.15 (Omnibus T –Kan extensions, [Sha23, Thm. 10.5]). Let C ∈ CatT be T –
cocomplete. Then for every T –functor of small T –categories f : I → K, the T –left Kan
extension f! : FunT (I, C) −→ FunT (K, C) exists.

3.2 Strong preservation of T -colimits

We now explain in more detail the notion of strong preservation. In particular, the reader may
find Proposition 3.2.2 to be a convenient alternative description, and we will have many uses
of it in the coming sections.

Observation 3.2.1 (Strong preservations vs preservations). Here are some comments for the
distinction. Proposition 3.2.2 will then characterise strong preservations more concretely.

(1) Recall Warning 3.1.4 that admitting T –colimits is weaker than being T –cocomplete. In
the proof of the Lurie-Simpson characterisation Theorem 6.1.2, we will see that we really
need T –cocompleteness via Proposition 3.2.2.

(2) However, C admitting T –colimits indexed by p : K → T op does imply CV admits T/V –
colimits indexed by KV . This is because the adjunction p! : FunT (K, C) ⇄ FunT (∗, C) :
p∗ pulls back to the p! : FunV (KV , CV ) ⇄ FunV (V , CV ) : p∗ adjunction by Proposi-
tion 2.2.4. We have also used that functor T –categories basechange well by Construc-
tion 2.1.13.
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(3) Strongly preserving fibrewise T –(co)limits is equivalent to preserving these (co)limits on
each fibre since by Theorem 3.1.9 fibrewise (co)limits are constructed fibrewise.

The following result was also recorded in the recent [Sha22, Thm. 8.6].

Proposition 3.2.2 (Characterisation of strong preservations). Let C,D be T –cocomplete cat-
egories and F : C → D a T –functor. Then F strongly preserves T –colimits if and only if it
preserves colimits in each fibre and for all f : W → V in T , the following square commutes
(and similarly for T –limits)

CW CV

DW DV

f!

FW FV

f!

Proof. To see the only if direction, that F preserves colimits in each fibre is clear since F in
particular preserves fibrewise T –colimits. Now for f : W → V , we basechange to V . Since F
strongly preserves T –colimits, we get commutative squares

FunV (W, C × V ) FunV (V , C × V )

FunV (W,D × V ) FunV (V ,D × V )

f!

(FV )∗ (FV )∗

f!

Taking global sections by using that FunV (W, C×V ) ≃ FunT (W, C) ≃ CW from Example 2.1.4,
we get the desired square.
For the if direction, we know by Theorem 3.1.9 that all T –colimits can be decomposed as

fibrewise T –colimits and indexed T –coproducts, and so if we show strong preservation of these
we would be done. By Observation 3.2.1 (3) strong preservation of fibrewise T –colimits is the
same as preserving colimits in each fibre, so this case is covered. Since arbitrary indexed T –
coproducts are just compositions of orbital T –coproducts and arbitrary fibrewise coproducts
by Lemma 3.1.7, we need only show for orbital T –coproducts, so let f :W → V be a morphism
in T . We need to show that the canonical comparison in

FunV (W, C × V ) FunV (V , C × V )

FunV (W,D × V ) FunV (V ,D × V )

f!

(FV )∗ (FV )∗

f!

is a natural equivalence. Since equivalences is by definition a fibrewise notion, we can check
this on each fibre. So let ϕ : Y → V be in T , and consider the pullback

∐
aRa Y

W V

∐
fa

y∐
ϕa

ϕ

f

by orbitality of T . We need to show that

FunV (W, C × V )Y FunV (V , C × V )Y

FunV (W,D × V )Y FunV (V ,D × V )Y

f!

(FV )∗ (FV )∗

f!
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commutes. But then by the universal property of the internal functor T –categories from
Construction 2.1.13, this is the same as

FunY (
∐
aRa, C × Y ) ≃ FunY (W ×V Y , C × Y ) FunY (Y , C × Y )

FunY (
∐
aRa,D × Y ) ≃ FunY (W ×V Y ,D × Y ) FunY (Y ,D × Y )

f!

(FY )∗ (FY )∗

f!

and this is in turn

∏
a CRa CY

∏
aDRa DY

∐
(fa)!

∏
Fa FV

∐
(fa)!

which commutes by hypothesis together with that F commutes with fibrewise T –colimits (and
so in particular finite fibrewise coproducts). This finishes the proof of the result.

3.3 Recollections: mapping spaces and Yoneda

Construction 3.3.1 (Parametrised mapping spaces and Yoneda, [BDG+16b, Def. 10.2]). Let
C be a T –category. Then the T –twisted arrow construction gives us a left T –fibration

(s, t) : TwArT (C) −→ Copopopopopopopopopopopopopopopopop × C

T –straightening this via Theorem 2.1.18 we get a T –functor

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC : Copopopopopopopopopopopopopopopopop × C −→ ST

By [BGN14, §5] we know that MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−,−) : Copopopopopopopopopopopopopopopopop×C → ST is given on fibre over V by the map
Cop
V × CV → Fun((T/V )op,S)

(c, c′) 7→
(
(W

f−→ V ) 7→ (MapCV
(c, c′) → MapCW

(f∗c, f∗c′)
)

Moreover, by currying we obtain the T –Yoneda embedding

j : C −→ PShT (C) = FunT (Copopopopopopopopopopopopopopopopop,ST )

which on level V ∈ T is given by

jV : CV →֒ Total(Copopopopopopopopopopopopopopopopop)×T op Total(V ) →֒ FunV (Copopopopopopopopopopopopopopopopop × V ,SV )
≃ Fun(Total(Copopopopopopopopopopopopopopopopop)×T op Total(V ),S)

Remark 3.3.2. By the explicit fibrewise description of the parametrised mapping spaces above,
we see immediately that a T –functor F : C → D is T –fully faithful if and only if it induces
equivalences on MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap(−,−).

Lemma 3.3.3 (T –Yoneda Lemma, [BDG+16b, Prop. 10.3]). Let C be a T –category and let
X ∈ CV for some V ∈ T . Then for any T/V –functor F : Copopopopopopopopopopopopopopopopop × V −→ SV , we have an
equivalence of T/V –spaces

F (X) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShV (CV )

(
jV (X), F

)

In particular, the T –Yoneda embedding j : C −→ PShT (C) is T –fully faithful.

14



Proof. First of all note that the V -fibre Yoneda map above factors as

CV Fun(Total(Copopopopopopopopopopopopopopopopop)×T op Total(V ),S)

(Total(Copopopopopopopopopopopopopopopopop)×T op Total(V ))op

jV

j̃V

This already gives that jV is fully faithful, and so by definition of parametrised fully faithfulness,
the T –yoneda functor j : C → PShT (C) is T –fully faithful. On the other hand, by the universal
property of the T –category of T –objects from Construction 2.1.16, we can regard F as an
ordinary functor F : Total(Copopopopopopopopopopopopopopopopop)×T op Total(V ) → S. And so by ordinary Yoneda we get

MapFunV (Copopopopopopopopopopopopopopopopop×V ,SV )

(
jV (X), F

)
≃ MapFun(Total(Copopopopopopopopopopopopopopopopop)×T opTotal(V ),S)

(
jV (X), F

)

≃ F (X) ∈ S

as required.

Theorem 3.3.4 (Continuity of T –Yoneda, [Sha23, Cor. 11.10]). Let C ∈ CatT . The T –yoneda
embedding j : C → PShT (C) strongly preserves and detects T –limits.

Corollary 3.3.5. Let f : V → W be a map in T . Let B ∈ CV , X ∈ CW , and f! ⊣ f∗ ⊣ f∗.
Then

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCW
(f!B,X) ≃ f∗MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV

(B, f∗X) ∈ SW
Proof. Applying Theorem 3.3.4 on Copopopopopopopopopopopopopopopopop, we see that

Copopopopopopopopopopopopopopopopop →֒ Fun(C,S) :: A 7→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCopopopopopopopopopopopopopopopopop(−, A) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(A,−)

strongly preserves T –limits. Hence, since f∗ in Copopopopopopopopopopopopopopopopop is given by f! in C, we see that

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCW
(f!B,−) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCW

opopopopopopopopopopopopopopopopop (−, f!B) ≃ f∗MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV
opopopopopopopopopopopopopopopopop (−, B) ≃ f∗MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV

(B,−)

as required.

Theorem 3.3.6 (T –Yoneda density, [Sha23, Lem. 11.1]). Let j : C →֒ PShT (C) be the T –
yoneda embedding. Then idPShT (C) ≃ j!j, that is, everything in the T –presheaf is a T –colimit
of representables.

Theorem 3.3.7 (Universal property of T –presheaves, [Sha23, Thm. 11.5]). Let C,D ∈ CatT
and suppose D is T –cocomplete. Then the precompositions j∗ : FunLT (PShT (C),D) −→
FunT (C,D) and j∗ : FunLT (PShT (C),D) −→ FunT (C,D) are equivalences with the inverse given
by left Kan extensions. Here FunLT means those functors which strongly preserve T –colimits
(cf. Notation 3.3.10).

We learnt of the following useful procedure from Fabian Hebestreit.

Definition 3.3.8 (Adjoint objects). Let R : D → C be a T –functor. Let x ∈ C and y ∈ D and
η : x→ R(y). We say that η witnesses y as a left adjoint object to x under R if

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(y,−)
R−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(Ry,R−)

η∗−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(x,R−)

is an equivalence of T –functors D → ST .

The following observation, due to Lurie, is quite surprising for ∞-categories: adjunctions can
be constructed objectwise, ie. to check that we have an adjunction, it is enough to construct
a left adjoint object for each object.
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Proposition 3.3.9 (Pointwise construction of adjunctions). R : D → C admits a left adjoint
L : C → D if and only if all objects in C admits a left adjoint object. More generally, writing
CR for the full subcategory of objects admitting left adjoint objects, we obtain a T –functor
L : CR → D that is T –left adjoint to the restriction of R : D → C to the subcategory of D
landing in CR.

Proof. The trick is to use the T –Yoneda lemma to help us assemble the various left adjoint
objects into a coherent T –functor. We consider MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, R−) : Copopopopopopopopopopopopopopopopop ×D → ST as a T –functor
H : Copopopopopopopopopopopopopopopopop → FunT (D,ST ). Hence by definition of CR, the bottom left composition lands in the
essential image of the Yoneda embedding and so we obtain a lift Lopopopopopopopopopopopopopopopopop in the commuting square

Copopopopopopopopopopopopopopopopop
R Dopopopopopopopopopopopopopopopopop

Copopopopopopopopopopopopopopopopop FunT (D,ST )

Lopopopopopopopopopopopopopopopopop

y

H

To see that when CR = C, we get a T –left adjoint, note that by construction y ◦ Lopopopopopopopopopopopopopopopopop ≃ H in
FunT (Copopopopopopopopopopopopopopopopop,Fun(D,ST )), and hence MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(L−,−) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, R−) in FunT (Copopopopopopopopopopopopopopopopop ×D,ST ). By
the characterisation of T –adjunctions from Lemma 2.2.9, we are done.

Notation 3.3.10. We write RFunT (resp. LFunT ) for the T –full subcategories in FunT
of T –right adjoint functors (resp. T –left adjoint functors). This is distinguished from the
notations FunRT (resp. FunLT ) by which we mean the T –full subcategories in FunT of strongly
T –limit-preserving functors (resp. strongly T –colimit-preserving functors).

Proposition 3.3.11 (“[Lur09, Prop. 5.2.6.2]”). Let C,D ∈ CatT . Then there is a canonical
equivalence LFunT (D, C) ≃ RFunT (C,D)opopopopopopopopopopopopopopopopop.

Proof. Let j : D →֒ PShT (D) be the T –Yoneda embedding. Then the T –functor

j∗ : FunT (C,D) →֒ FunT (C,PShT (D)) ≃ FunT (C × Dopopopopopopopopopopopopopopopopop,ST )

which is T –fully faithful by Corollary 3.4.6 has essential image consisting of those parametrised
functors ϕ : C × Dopopopopopopopopopopopopopopopopop → ST such that for all c ∈ C, ϕ(c,−) : Dopopopopopopopopopopopopopopopopop → ST is representable. The
essential image under j∗ of RFunT (C,D) ⊆ FunT (C,D) will then be those parametrised functors
as above which moreover satisfy that for all d ∈ D, ϕ(−, d) : C → ST is corepresentable
- this is since T –adjunctions can be constructed objectwise by Proposition 3.3.9. Let E ⊆
FunT (C × Dopopopopopopopopopopopopopopopopop,ST ) be the T –full subcategory spanned by those functors satisfying these two

properties, so that RFunT (C,D)
≃−→ E .

On the other hand, repeating the above for FunT (Dopopopopopopopopopopopopopopopopop, Copopopopopopopopopopopopopopopopop) gives

FunT (Dopopopopopopopopopopopopopopopopop, Copopopopopopopopopopopopopopopopop) →֒ FunT (Dopopopopopopopopopopopopopopopopop × C,ST )

where the essential image of RFunT (Dopopopopopopopopopopopopopopopopop, Copopopopopopopopopopopopopopopopop) will be precisely those that satisfy the two

properties, and so also RFunT (Dopopopopopopopopopopopopopopopopop, Copopopopopopopopopopopopopopopopop)
≃−→ E . Thus, combining with RFunT (Dopopopopopopopopopopopopopopopopop, Copopopopopopopopopopopopopopopopop) ≃

LFunT (D, C)opopopopopopopopopopopopopopopopop from Observation 2.1.15, we obtain the desired result.

3.4 (Full) faithfulness

In this subsection we provide the parametrised analogue of the Lurie-Thomason formula for
limits in categories, Theorem 3.4.2, as well as show that parametrised functor categories pre-
serve (fully) faithfulness in Corollary 3.4.6.
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Notation 3.4.1. For p : C → I a T –functor which is also a cocartesian fibration, we will
write Γcocart

T (p) for the T –category of cocartesian sections of p. In other words, it is the
T –category Funcocart

T (I, C)×FunT (I,I) ∗ where Funcocart
T (I, C) means the full T –subcategory of

those that parametrised functors that preserve cocartesian morphisms over I, and the T –
functor ∗ → FunT (I, I) is the section corresponding to the identity on I.

The following proof is just a parametrisation of the unparametrised proof that we learnt
from [HW21, Prop. I.36].

Theorem 3.4.2 (Lurie-Thomason formula). Given a T –diagram F : I → CatT , we get

limIF ≃ Γ
I−cocart
T (UnStrcocart(F ))

In particular, if it factors through F : I → ST , then we have limIF ≃ ΓT (UnStr
cocart(F )).

Proof. Let d : I → ∗ be the unique map. Since CatT has all T –limits, we know abstractly that
we have the T –right adjoint

d∗ : CatT ⇄ FunT (I,CatT ) : d∗ =: limT

so now we just need to understand the fibrewise right adjoint formula (by virtue of Corol-
lary 2.2.7). Without loss of generality, we work with global sections and we want to describe
the right adjoint in

d∗ : Fun(T op,Cat) ⇄ FunT (I,CatT ) ≃ Fun(Total(I),Cat) : d∗

We can now identify d∗ concretely via the straightening-unstraightening equivalence to get
d∗ : coCart(T op) → coCart(Total(I)) given by

C 7→
(
πC : Total(C)×T op Total(I) → Total(I)

)

Let (p : EF → Total(I)) := UnStrcoCart(F ) be the cocartesian fibration associated to F :

Total(I) → Cat. We need to show that Γ
I−cocart
T (p) satisfies a natural equivalence

MapcoCart(Total(I))(πC , p) ≃ MapcoCart(T op)(C,ΓI−cocart
T (p))

for all C ∈ coCart(T op). First of all, by definition we have the pullback

MapcoCart(T op)/ Total(I)
(πC , p) MapcoCart(T op)(Total(C)×T op Total(I), EF )

∗ MapcoCart(T op)(Total(C)×T op Total(I),Total(I))

y
πC

which by currying is the same as the pullback

MapcoCart(T op)/ Total(I)
(πC , p) MapcoCart(T op)(C,FunT (I, EF ))

∗ MapcoCart(T op)(C,FunT (I, I))

y
idI

Now recall that MapcoCart(Total(I))(πC , p) ⊆ MapcoCart(T op)Total(I)
(πC , p) consists precisely of

those components of functors over Total(I) (in the left diagram)

Total(C)×T op Total(I) EF = C FunT (I, EF )

Total(I) FunT (I, I)

πC
p πC p
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preserving cocartesian morphisms over Total(I). Since the cocartesian morphisms in the co-
cartesian fibration πC : Total(C) ×T op Total(I) → Total(I) are precisely the morphisms of
Total(I) and an equivalence in C, we see that this condition corresponds in the curried ver-

sion on the right to those functors landing in Fun
I−cocart
T (I, EF ). Finally for the statement

about the case of factoring over ST recall that unstraightening brings us to left fibrations
EF → Total(I), and since in left fibrations all morphisms are cocartesian, we need not have
imposed the condition above. This shows us that we have a bijection of components

π0 MapcoCart(Total(I))(πC , p) ≃ π0 MapcoCart(T op)(C,ΓI−cocart
T (p))

We now need to show that this would already imply that we have an equivalence of mapping
spaces. For this, we will need to first construct a map of spaces realising the bijection above.
First note that we have a map of cocartesian fibrations over Total(I)

ε : Γ
I−cocart
T (p)× I −→ EF

from the evaluation. Therefore we get the following maps of spaces

MapcoCart(T op)(−,ΓI−cocart
T (p))

I×−−−−→ MapcoCart(Total(I))(I ×−, I × Γ
I−cocart
T (p))

ε∗−→ MapcoCart(Total(I))(I ×−, EF )

(1)

On the other hand, we know by the pullback definition of ΓT that

MapcoCart(T op)(−,ΓT (p)) ≃ MapcoCart(T op)/ Total(I)
(I ×−, EF ) (2)

and so the comparison map (1) is induced by this equivalence. Our bijection on components
then gives that the equivalence (2) restricts to an equivalence of spaces (1). This completes
the proof of the result.

As far as we are aware the following proof strategy first appeared in [GHN17, §5].
Proposition 3.4.3 (Mapping space formula in T –functor categories). Let C,D ∈ CatT and
F,G : C → D be T –functors. Then we have an equivalence of T –spaces

NatT (F,G) ≃ lim(x→y)∈TwArT (C)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F (x), G(y)) ∈ ST

Proof. Recall from [BDG+16b, §10] that by definition, the parametrised mapping spaces are
classified by the parametrised twisted arrow categories. By Theorem 3.4.2 we have

lim(x→y)∈TwAr(C)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F (x), G(y)) ≃ ΓT
(
P → TwArT (C)

)

where p : P → TwArT (C) is the associated unstraightening. By considering the pullbacks

P P ′ TwArT (D)

TwArT (C) Copopopopopopopopopopopopopopopopop × C Dopopopopopopopopopopopopopopopopop ×D ST

y y

(s,t) F opopopopopopopopopopopopopopopopop×G MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(−,−)

we get that
ΓT

(
P → TwArT (C)

)
≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap/Copopopopopopopopopopopopopopopopop×C(TwArT (C), P ′)

Now by the parametrised straightening of Theorem 2.1.18 we see furthermore that

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap/Copopopopopopopopopopopopopopopopop×C(TwArT (C), P ′) ≃ NatT
(
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC ,MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD ◦ (F opopopopopopopopopopopopopopopopop ×G)

)
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Currying FunT (Copopopopopopopopopopopopopopopopop × C,ST ) ≃ FunT (C,PShT (C)) we see that

NatT
(
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC ,MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD ◦ (F opopopopopopopopopopopopopopopopop ×G)

)
≃ NatT

(
yC , F

∗ ◦ yD ◦G)
)

But then now we have the sequence of equivalences

NatT
(
yC , F

∗ ◦ yD ◦G)
)
≃ NatT

(
F! ◦ yC, yD ◦G)

)

≃ NatT
(
yD ◦ F, yD ◦G)

)

≃ NatT (F,G)

where the last equivalence is by Lemma 3.3.3 and the second by the square

C D

PShT (C) PShT (D)

F

yC yD

F!

which commutes by functoriality of presheaves.

Definition 3.4.4. A T –functor is called T -faithful if it is so fibrewise, where an ordinary
functor is called faithful if it induces component inclusions on mapping spaces.

Observation 3.4.5. For f : X → Y a map of spaces, it being an inclusion of components is
equivalent to the condition that for each x ∈ X , the fibre fibf(x)

(
X → Y

)
is contractible. On

the other hand, it is an equivalence if and only if for each y ∈ Y , the fibre fiby
(
f : X → Y

)

is contractible. We learnt of this formulation and of the following proof in the unparametrised
case from [Lei22, Appendix B].

Corollary 3.4.6. Let F : C → D be a T –(fully) faithful functor and I another T –category.
Then F∗ : FunT (I, C) → FunT (I,D) is again T –(fully) faithful.

Proof. Since T –(fully) faithfulness was defined as a fibrewise condition, we just assume without
loss of generality that T has a final object and work on global sections. In the faithful case,
let ϕ, ψ : I → C be two T –functors. We need to show that

NatFunT (I,C)(ϕ, ψ) −→ NatFunT (I,D)(Fϕ, Fψ)

is an inclusion of components. By the preceeding observation, we need to show that for each
η ∈ NatFunT (I,C)(ϕ, ψ), the fibre

fibη
(
NatFunT (I,C)(ϕ, ψ) → NatFunT (I,D)(Fϕ, Fψ)

)
∈ Γ(ST → T op)

is contractible. But then we are now in position to use Proposition 3.4.3:

fibη

(
NatFunT (I,C)(ϕ, ψ) → NatFunT (I,D)(Fϕ, Fψ)

)

≃ lim(x→y)∈TwArT (I)fibη

(
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(ϕ(x), ψ(y)) → MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(Fϕ(x), Gψ(y))

)

≃ lim(x→y)∈TwArT (I)∗T ≃ ∗T

as was to be shown, where the second last step is by our hypothesis that F was T –faithful.
The case of T –fully faithfulness can be done similarly.
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3.5 Recollections: filtered colimits and Ind-completions

Construction 3.5.1. Let κ be a regular cardinal. We define the T -Ind-completion functor
Indκ : CatT → CatT to be the one obtained by applying Fun(T op,−) to the ordinary functor
Indκ : Cat → Cat.

Notation 3.5.2. We will write Funfilt
T for the full T –subcategory of parametrised functors

preserving fibrewise ω–filtered colimits, and similarly Funκ -filt
T for those that preserve fibrewise

κ-filtered colimits.

Remark 3.5.3. This agrees with the definition given in the recent paper [Sha22] by virtue of the
paragraph after Theorem D therein. As indicated there, Indκ(C) is the minimal T –subcategory
of PShT (C) generated by C under fibrewise κ-filtered colimits. In more detail, [Sha22, Rmk.
9.4] showed that the fibrewise presheaf construction PShfbT (C) is a T –full subcategory of the
T –presheaf PShT (C) via the fibrewise left Kan extension. In particular, this means that
PShfbT (C) ⊆ PShT (C) preserves fibrewise colimits. On the other hand, by construction and
[Lur09, Cor. 5.3.5.4], Indκ(C) ⊆ PShfbT (C) is the minimal T –subcategory generated by C under
fibrewise κ-filtered colimits. Therefore, in total, we see that Indκ(C) ⊆ PShT (C) is the T –
subcategory generated by C under fibrewise κ-filtered colimits.

Proposition 3.5.4 (Universal property of Ind, “[Lur09, Prop. 5.3.5.10]”). Let C,D be T –
categories where C is small and D has fibrewise small κ-filtered colimits. Then:

(1) Indκ(C) ⊆ PShT (C) is the T –subcategory generated by C under fibrewise κ-filtered colim-
its.

(2) The T –inclusion i : C →֒ Indκ(C) induces an equivalence

i∗ : Funκ -filt
T (Indκ(C),D) −→ FunT (C,D)

Proof. Part (1) is by the remark above. For part (2), we show that the T –left Kan extension
functor i! : FunT (C,D) −→ Funκ -filt

T (Indκ(C),D) exists and is an inverse to i∗. To do this, it will
be enough to show that functors F : C → D can be T –left Kan extended to i!F : Indκ(C) → D
and that functors F : Indκ(C) → D which preserves fibrewise κ-filtered colimits satisfy that
i!i

∗F ⇒ F is an equivalence. This will be enough since we would have shown the natural
equivalence i!i

∗ ≃ id, and Proposition 3.1.14 gives that i∗i! ≃ id always.
To show that the T –left Kan extension exists, consider the diagram

C

Indκ(C) D

PShT (C) D′

f

where D ⊆ D′ is a strongly T –colimit preserving inclusion into a T –cocomplete D′ using
the opposite T –Yoneda embedding. In particular by hypothesis D is closed under κ-filtered
colimits in D′. The bottom dashed map is gotten from Theorem 3.3.7, and so strongly preserves
T –colimits. Hence restriction to Indκ(C) lands in D so we get middle dashed map, and by the
following Lemma 3.5.5, this is a left Kan extension.
Now we show that if F preserves fibrewise κ-filtered colimits, then the canonical comparison

i!i
∗F ⇒ F is an equivalence. Again, by Proposition 3.1.14 we know that both sides agree on

C ⊆ Indκ(C). Also, both sides preserve κ-filtered colimits by assumption. Hence, by statement
(1) of the proposition, we see that it must be an equivalence as was to be shown.
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Lemma 3.5.5. Suppose we have fully faithful functors C i−֒→ D j−֒→ E and functors C f−→ A y−֒→ B,
where B is T –(co)complete. Suppose we have a factorisation j∗j!i!(y ◦ f) : C f−→ A y−֒→ B. Then
f ≃ i!f : D → A.

Proof. Let ϕ : D → A. We need to show that Nat(f, ϕ) ≃ Nat(f, i∗ϕ). We compute:

Nat(f, ϕ) ≃ Nat(y ◦ f, y ◦ ϕ)
= Nat(j∗j!i!(y ◦ f), y ◦ ϕ)
≃ Nat(y ◦ f, i∗j∗j∗(y ◦ ϕ))
≃ Nat(y ◦ f, i∗(y ◦ ϕ) ≃ Nat(f, i∗ϕ)

where the first and last equivalences are since y was fully faithful; the fourth equivalence is
since j was fully faithful and so Proposition 3.1.14 applies. The relevant Kan extensions exist
since B was assumed to be T –(co)complete.

We learnt of the following proof method from Markus Land.

Lemma 3.5.6. For C,D ∈ Cat, we have a functor Fun(C,D) → Fun(Ind(C), Ind(D)) that
takes F : C → D to Ind(F ) : Ind(C) → Ind(D).

Proof. We know that Ind(E × C) ≃ Ind(E)× Ind(C). In particular, we get functors

∆n × Ind(C) −→ Ind(∆n × C) ≃ Ind(∆n)× Ind(C)
natural in both ∆n and C. These then induce a map of simplicial spaces

Fun(∆• × C,D)≃ −→ Fun(Ind(∆• × C), Ind(D))≃ −→ Fun(∆• × Ind(C), Ind(D))≃

where the first map is just by the (∞, 1)–functoriality of Ind. Via the complete Segal space
model of ∞-categories, we see that we have the desired functor which behaves as in the state-
ment by looking at the case • = 0.

Lemma 3.5.7 (Ind adjunctions). Let f : C ⇄ D : g be an adjunction. Then we also have an
adjunction F := Ind(f) : Ind(C) ⇄ Ind(D) : Ind(g) =: G.

Proof. By [RV19, Def. 1.1.2] we know that such an adjunction is tantamount to the data of
η : idC ⇒ gf and ε : fg ⇒ idD such that we have the triangle identities

C C = C

D D D

f
ε

η
g

g
g g

⇒
idg

and the analogous other triangle. Now, we have Fun(C, C) → Fun(Ind(C), Ind(C)) by
Lemma 3.5.6 and so the the triangle identity on the source gets sent to a triangle identity
on the target.

Theorem 3.5.8 (Diagram decomposition, [Sha22, Thm. 8.1]). Let C be a T –category, J a
category, and p• : J → (CatT )/C a functor with colimit the T –functor p : K → C and suppose
that for all j ∈ J , the T –functor pj : Kj → C admits a T –colimit σj. Then the σj’s assemble to
a T –functor σ• : constT (J) → C so that if σ• admits a T –colimit σ, then p admits a T –colimit
given by σ.

Corollary 3.5.9 (Parametrised filtered colimit decomposition, “[Lur09, Cor. 4.2.3.11]”). Let
τ ≪ κ be regular cardinals and C be a T –category admitting τ-small T –colimits and fibrewise
colimits indexed by κ-small τ-filtered posets. Then for any κ-small T –diagram d : K → C,
its T –colimit in C exists and can be decomposed as a fibrewise κ-small τ-filtered colimit whose
vertices are τ-small T –colimits of C.
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Proof. Let J denote the poset of τ -small T –subcategories of K. It is clearly τ -filtered and
moreover it is κ-small by the hypothesis that τ ≪ κ. We can therefore apply the theorem
above since the associated σ• : constT (J) → C will admit a T –colimit by hypothesis.

Theorem 3.5.10 (Limit-filtered colimit exchange, special case of [Sha22, Thm. C]). Let κ be a
regular cardinal and J a κ–filtered category. Then colimconstT (J) : Fun(constT (J),SSSSSSSSSSSSSSSSST ) −→ SSSSSSSSSSSSSSSSST
strongly preserves T –κ–small T –colimits.

4 Preliminaries: atomic orbital base categories

Finally, we begin to impose the strictest conditions on our base category T . From here on, T
will be assumed to be both orbital and atomic.

4.1 Recollections: parametrised semiadditivity and stability

In this subsection we recall the algebraic constructions and results of [Nar16; Nar17].

Construction 4.1.1. The following list of constructions will be important in discussing T –
semiadditivity and T –stability. See [Nar16, §4] for the original source on these constructions
or [NS22, Def. 2.1.2] for a more recent treatment. Note that we have adopted the notation of
Span instead of the original notation of effective Burnside categories Aeff .

(1) Write Span(T ) := Span(FinT ).

(2) By [Nar17, Cons. 4.8], there is a T –category p : SpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpan(T ) → T op whose objects are
morphisms [U → V ] in FinT where V ∈ T and the cocartesian fibration p sends [U → V ]
to V . The morphisms in this category are spans

U W U ′

V V ′ V ′

(3)

(3) From this we obtain a wide T –subcategory Fin∗T ⊂ SpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpan(T ) whose morphisms are spans
as in (3) such that the map W → U ×V V ′ in FinT is a summand inclusion: this makes
sense since T was assumed to be orbital and so FinT admits the pullback U ×V V ′ which
will be a finite coproduct of objects of V .

(4) There is a canonical inclusion ∗ →֒ Fin∗T given by sending W → V to

V W W

V W W

Definition 4.1.2. Let C strongly admit finite T –coproducts and D strongly admit finite T –
products. Then we say that a T –functor F : C → D is T -semiadditive if it sends finite
T –coproducts to finite T –products. We say that a T –category C strongly admitting finite
T –products and T –coproducts is T –semiadditive if the identity functor is T –semiadditive. If
moreover C has fibrewise pushouts and D has fibrewise pullbacks, then we say that F is T –
linear if it is T –semiadditive and sends fibrewise pushouts to fibrewise pullbacks. We write
Fun

sadd
T (C,D) (resp. LinT (C,D)) for the T –full subcategories of FunT (C,D) consisting of the

T –semiadditive functors (resp. T –linear functors).
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Notation 4.1.3. For C strongly admitting finite T –limits we will denote T –Mackey func-

tors by MackT (C) := Fun
sadd
T (SpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpan(T ), C) and T –commutative monoids by CMonT (C) :=

Fun
sadd
T (Fin∗T , C).

Proposition 4.1.4 (T –semiadditivisation, [Nar16, Prop. 5.11]). Let C be a T –category
strongly admitting finite T –products. Then the functor CMonT (C) → C induced by the inclusion
∗ →֒ Fin∗T from Construction 4.1.1 (4) is an equivalence if and only if C were T –semiadditive.

Theorem 4.1.5 (“CMon =Mackey”, [Nar16, Thm. 6.5]). Let C strongly admit finite T –limits.
Then the defining inclusion j : Fin∗T →֒ SpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpan(T ) induces an equivalence

j∗ : Fun
sadd
T (SpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpan(T ), C) −→ CMonT (C)

Notation 4.1.6. We write FunexT ,Fun
lex
T , and Funrex

T for the category of T –functors which
strongly preserve finite T –(co)limits, strongly preserve finite T –limits, and strongly preserve
finite T –colimits, respectively.

Construction 4.1.7. Let SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSppw : CatlexT → CatlexT be the functor obtained by applying
Fun(T op,−) to Sp: Catlex → Catlex. Now let D ∈ CatT strongly admitting finite T –limits.
Then we can define its T –stabilisation to be SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (D) := CMonT (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

pw(D)). In particular, ap-
plying this to the case D = ST , we get SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT := CMonT (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

pw(ST )) which is called T –category
of genuine T –spectra. Note that this is different from the notation in [Nar16, Defn. 7.3] where
he used SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT instead, and reserved SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT for what we wrote as SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSppw. We prefer the notation we
have adopted as it aligns well with all the parametrised subscripts (−)T and the superscripts

are reserved for modifiers such as (−)ω or (−)∆
1

that we will need later.

Theorem 4.1.8 (Universal property of T –stabilisations, [Nar16, Thm. 7.4]). Let C be a pointed
T –category strongly admitting finite T –colimits and D a T –category strongly admitting finite
T –limits. Then the functor Ω∞ : FunrexT (C, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (D)) −→ LinT (C,D) is an equivalence of T –

categories. In particular, we see that SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (D) ≃ LinT (Sfin
∗T ,D).

4.2 Parametrised symmetric monoidality and commutative algebras

Recollections 4.2.1. There is a notion of T –operads mimicking the notion of ∞-operads,
in the sense of [Lur17, §2.1], due to Nardin in [Nar17, §3] and further developed in [NS22,
§2]. A T –symmetric monoidal category is then a T –category C⊗ equipped with a cocartesian
fibration over Fin∗T satisfying the T –operad axioms analogous to the operad axioms of [Lur17,
Definition 2.1.1.10]. Alternatively, the T –category of T –symmetric monoidal categories is also
given as CMon(Cat) much like in the unparametrised setting. Furthermore, there is also
the attendant notion of T -inert morphisms defined as those morphisms in Fin∗T where the
the map W → U ′ is an equivalence (cf. the span notation in (3)). The T –category of T -
commutative algebras CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C⊗) of a T –symmetric monoidal category C⊗ is then defined to

be Fun
inert
Fin∗T

(Fin∗T , C⊗) where Fun
inert
Fin∗T

⊆ FunFin∗T
is the T –full subcategory of functors over

Fin∗T preserving T –inert morphisms. We refer the reader to the original source [Nar17, §3.1]
or to [NS22, §2] for details on this.

Terminology 4.2.2. Let C⊗,D⊗ be T –symmetric monoidal categories. By a T -symmetric
monoidal localisation L⊗ : C⊗ → D⊗ we mean a T –symmetric monoidal functor whose under-
lying T –functor is a T –Bousfield localisation. By the proof of [Nar17, Prop. 3.5], we see that
the T –right adjoint canonically refines to a T –lax symmetric functor. Hence in this situation
we obtain a relative adjunction over Fin∗T
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C⊗ D⊗

Fin∗T

L⊗

in the sense of [Lur17, §7.3.2] whose counit is moreover an equivalence.

Lemma 4.2.3 (T –adjunction on T –commutative algebras, “[GGN15, Lem. 3.6]”). Let C⊗,D⊗

be T –symmetric monoidal categories and L⊗ : C⊗ → D⊗ a T –symmetric monoidal localisation.
Then there is an induced T –Bousfield localisation L′ : CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) → CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (D) such that the
diagram

CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (D)

C D

L′

R′

L

R

commutes, where the vertical maps are given by

CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) := Fun
inert
T (Fin∗T , C⊗)×FunT (Fin∗T ,Fin∗T ) ∗ −→ FunT (∗, C) ≃ C

induced by the inclusion ∗ →֒ Fin∗T , which lands in the T –inerts. Moreover, given A ∈
CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) there is a unique T –commutative algebra structure on RLA such that the unit map
A→ RLA enhances to a morphism of T –commutative algebras.

Proof. First note that we have the adjunction squares

Fun
inert
T (Fin∗T , C⊗) Fun

inert
T (Fin∗T ,D⊗)

FunT (Fin∗T , C⊗) FunT (Fin∗T ,D⊗)

L′

R′

L
⊗
∗

R
⊗
∗

where the bottom T –adjunction is by Theorem 3.1.10 and has the property that the counit
is an equivalence. Now [Lur17, Prop. 7.3.2.5] says that relative adjunctions are stable under
pullbacks and the property of being T –functors is of course preserved by pullbacks too, and so
we get the square

CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (D)

Fun
inert
T (Fin∗T , C⊗)×FunT (Fin∗T ,Fin∗T ) ∗ Fun

inert
T (Fin∗T ,D⊗)×FunT (Fin∗T ,Fin∗T ) ∗

FunT (Fin∗T , C⊗)×FunT (Fin∗T ,Fin∗T ) ∗ FunT (Fin∗T ,D⊗)×FunT (Fin∗T ,Fin∗T ) ∗

L′

R′

L
⊗
∗

R
⊗
∗

Then the square in the statement of the result is just composition of this square with the
one induced by the inclusion ∗ →֒ Fin∗T namely

CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (D)

FunT (Fin∗T , C)×FunT (Fin∗T ,Fin∗T ) ∗ FunT (Fin∗T ,D)×FunT (Fin∗T ,Fin∗T ) ∗

C = FunT (∗,D) D = FunT (∗,D)

L′

R′

L
⊗
∗

R
⊗
∗

L∗

R∗
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For the next part, we know already that R′L′A comes with a canonical T –commutative
algebra map η′ : A → R′L′A given by the L′ ⊣ R′ unit evaluated at A. By the square in the
statement we see that this forgets to the L ⊣ R unit η : A → RLA. Now if η′′ : A → R′B is
another such map of T –commutative algebras, then by universality of η′ we have an essentially
unique factorisation φ ◦ η′ : A → R′L′A → R′B. Now fgt: CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) → C is conservative by
[Lur17, Lem. 3.2.2.6], thus since φ forgets to the identity, φ must have been an equivalence in
CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) as required.

4.3 Indexed (co)products of categories

We now investigate various permanence properties of indexed products on categories. To begin
with, recall the following for which a good summary is [QS22, Ex. 5.20].

Construction 4.3.1 (Indexed products of categories). Let f : U → U ′ be a map of finite
T –sets. Then Construction 2.1.16 gives us the equivalences in

f∗ : Fun(Total(U ′),Cat) ≃ FunT (U ′,CatT ) → FunT (U,CatT ) ≃ Fun(Total(U),Cat)

This has a right adjoint f∗ (also written
∏
f ). Thus, for C ∈ CatU and D ∈ CatD we have

FunU ′

(
D, f∗C

)
≃ FunU (f

∗D, C)

By setting D = V we see that f∗C is a T/U ′–category with V –fibre given by

FunU (UV , C) ≃
∏

O∈Orbit(U×U′V )

CO

where UV is the model for the corepresentable T –category associated to U ×U ′ V whose fibre
over [W → U ] is given by the space of commutative squares in FinT

W U

V U ′

Lemma 4.3.2 (Indexed constructions preserve adjunctions). Let f : W → V be in T . Let
L : C ⇄ D : R be a T/W –adjunction and M : A ⇄ B : N be a T/V –adjunction. Then

f∗L : f∗C ⇄ f∗D : f∗R f∗M : f∗A ⇄ f∗B : f∗N

are T/V – and T/W–adjunctions respectively.

Proof. By Corollary 2.2.7, we need to show that these induce fibrewise adjunctions. This is
clear for the pair (f∗M, f∗N) since fibrewise they are the same as (M,N); for (f∗L, f∗R), we
use that (unparametrised) products of adjunctions are again adjunctions.

Lemma 4.3.3 ((Co)unit of indexed products). The T –cofree category CatT strongly ad-
mits T –products, and for f : W → V , X ∈ T/W , and Y ∈ T/V , we have that (f∗D)Y ≃∏
M∈Orbit(Y×VW ) DM and moreover:

• The unit is given by η = F ∗ : CY −→ (f∗f∗C)Y =
∏
M∈Orbit(Y×VW ) CM where F :

Y ×V W → Y is the structure map from the pullback,

• The counit is given by ε = proj : (f∗f∗C)X =
∏
N∈Orbit(X×VW ) DN −→ DX the compo-

nent projection (see the proof for why we have this).
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Proof. We know that f∗ : Fun((T/V )op,Cat) −→ Fun((T/W )op,Cat) abstractly has a right
adjoint f∗ via right Kan extension, and the formula for ordinary right Kan extensions gives us
the required description (which is also gotten from Construction 4.3.1).
To describe the (co)units, we have to check the triangle identities

f∗ f∗f∗f∗ f∗ f∗f∗f∗

f∗ f∗

f∗η

εf∗

ηf∗

f∗ε (4)

First of all we clarify why we have the counit map as stated. For this it will be helpful to write
carefully the datum ϕ : X →W instead of just X . Consider

X

X ×V W X

W V

ϕ y
fϕ

f

This shows that X is a retract of X ×V W , and so by atomicity, we get that X was an orbit
in the orbit decomposition of X ×V W , and so the component projection ε : (f∗f∗D)X =∏
N∈Orbit(X×VW ) DN −→ DX is well-defined

To check the first triangle identity, let (ϕ : X →W ) ∈ T/W and consider

∐
aNa X

W V

∐
a ξa

y
fϕ

f

where one of the Na’s is X , by the argument above. Then we have that the composition in the
first triangle in (4) is

(
(f∗C)X (f∗f∗f∗C)X (f∗C)X

)
≃

(
CX

∏
a CNa CX

)
f∗η εf∗

∏
a ξ

∗
a proj

which is of course the identity since ξa = id in the case Na = X .
The second triangle identity is slightly more intricate. Let (ψ : Y → V ) ∈ T/V . We consider

two pullbacks (where the right square is for each b appearing in the left square)

∐
bMb Y

∐
cb
M̃cb Mb

W V W V

∐
b ζb

∐
b ρb

y
ψ

∐
cb
ℓcb

y
fρb

f f

From this, the composition in the second triangle in (4) is

(
(f∗D)Y

ηf∗−−→ (f∗f
∗f∗D)Y

f∗ε−−→ (f∗D)Y

)

≃
(∏

b

DMb

∏
b

∏
cb
ℓ∗cb−−−−−−−→

∏

b

∏

cb

D
M̃cb

∏
b proj−−−−−→

∏

b

DMb

)

which is the identity map as wanted since Mb is one of the orbits in
∐
cb
M̃cb by the argument

above. Here we have used the diagram
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(f∗D)Y
∏
b(f∗D)Mb

∏
bDMb

∏
b

∏
cb
D
M̃cb

ηf∗=
∏

b ζ
∗
b

∏
b

∏
cb
ℓ∗cb

to analyse the map ηf∗ , which in turn comes from the top square in

∐
cb
M̃cb Mb

∐
bMb Y

W V

W V

y

∐
cb
ℓcb

∐
cb
ℓcb y

ζb

y
f

f

This finishes the proof.

4.4 Norms and adjunctions

We now recall the notion of T –distributivity and indexed tensor products (also termed norms)
of categories introduced in [Nar17, §3.3 and §3.4] and a nice summary of which can be found
for instance in [QS22, §5.1].

Definition 4.4.1. Let f : U → V be a map in FinT , C ∈ CatT/U
, D ∈ CatT/V

, and F : f∗C →
D be a T/V –functor. Then we say that F is T/V –distributive if for every pullback

U ′ V ′

U V

f ′

g′
y

g

f

in FinT and T/U ′–colimit diagram p : K⊲ → g′∗C, the VVVVVVVVVVVVVVVVV ′–functor

(f ′
∗K)⊲

can−−→ f ′
∗(K

⊲)
f ′
∗p−−→ f ′

∗p
′∗C ≃ g∗f∗C g∗F−−→ g∗D

is a T/V ′–colimit. We write FunδV (f∗C,D) for the subcategory of T/V –distributive functors.

Construction 4.4.2 (Norms of categories). Let f : U → V be a map in FinT and C a
T/U–category which is T/U–cocomplete. Then we define the f -norm f⊗C, if it exists, to be a
T/V –cocomplete category admitting a T/V –distributive functor τ : f∗C → f⊗C such that for
any other T/V –cocomplete category, the following functor is an equivalence

τ∗ : FunLV (f⊗C,D) → FunδV (f∗C,D)

We also write this as f⊗ =
⊗

f .

Lemma 4.4.3 (Norms preserve adjunctions). Let F : C ⇄ D : G be a T/U–adjunction such
that G itself admits a right adjoint and f : U → V be a map in FinT . Then this induces a
T/V –adjunction

f⊗F : f⊗C ⇄ f⊗D : f⊗G
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Proof. Recall from Lemma 4.3.2 that we have a T/V –adjunction f∗F : f∗C ⇄ f∗D : f∗G and
since G itself has a right adjoint, both f∗F and f∗G strongly preserve T/V –colimits. Now
observe that this adjunction can equivalently be encoded by the data of morphisms

(
η : id ⇒ (f∗G) ◦ (f∗F )

)
∈ FunLV (f∗C, f∗C)

(
ε : (f∗F ) ◦ (f∗G) ⇒ id

)
∈ FunLV (f∗D, f∗D)

whose images under the functors

(f∗F )∗ : Fun
L
V (f∗C, f∗C) → FunLV (f∗C, f∗D)

(f∗F )
∗ : FunLV (f∗D, f∗D) → FunLV (f∗C, f∗D)

respectively compose to a morphism equivalent to the identity

f∗F (f∗F ) ◦ (f∗G) ◦ (f∗F )

f∗F

f∗F (η)

εf∗F

and similarly for the other triangle identity. Now, we have commutative squares

f∗C f∗D

f⊗C f⊗D
ϕ

f∗F

f∗G
ψ

f⊗F

f⊗G

where ϕ : f∗C → f⊗C, ψ : f∗D → f⊗D are the universal distributive functors: this is since G
strongly preserves T –colimits by hypothesis. This yields

FunLV (f∗C, f∗C) FunLV (f∗C, f∗D) FunLV (f∗D, f∗D)

FunδV (f∗C, f⊗C) FunδV (f∗C, f⊗D) FunδV (f∗D, f⊗D)

FunLV (f⊗C, f⊗C) FunLV (f⊗C, f⊗D) FunLV (f⊗D, f⊗D)

ϕ∗

(f∗F )∗

ψ∗

(f∗F )∗

ψ∗

(f⊗F )∗ (f⊗F )∗

ϕ∗ ≃
(f⊗F )∗

ϕ∗ ≃
(f⊗F )∗

ψ∗ ≃

Then the morphism
(
η : id ⇒ (f∗G) ◦ (f∗F )

)
∈ FunLV (f∗C, f∗C) in the top left corner gets sent

to a morphism
(
η̃ : id ⇒ (f⊗G) ◦ (f⊗F )

)
∈ FunLV (f⊗C, f⊗C) in the bottom left, and similarly

for ε. Then by the characterisation of adjunctions above, since the composition of the images
in the middle top term is equivalent to the identity, so is the image in the middle bottom term,
that is, we have the commuting diagram

f⊗F (f⊗F ) ◦ (f⊗G) ◦ (f⊗F )

f⊗F

f⊗F (η̃)

ε̃f⊗F

and similarly for the other triangle identity. This witnesses that we have a T/V –adjunction
f⊗F ⊣ f⊗G as required.
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Remark 4.4.4. Let V,W ∈ T and C⊗ a T –symmetric monoidal category. Concretely speaking,
we get the structure of tensor products and norm functors as follows:

• (Tensor functor): Consider the morphism in Fin∗T given by

V
∐
V V

∐
V V

V V V

∇ ∇

∇

The cocartesian lifts along this morphism give us the tensor product

⊗ : CV × CV ≃ CV ∐
V −→ CV

• (Norm functor): Suppose f : V →W is a morphism in T . Consider

V V W

W W W

f f

f

The cocartesian lifts along this morphism give us the norm functor

Nf : CV ≃ C⊗
[f :V→W ] −→ C⊗

[W=W ] ≃ CW

Note that it might have been tempting to define the norm functor as the pushforward
along the more obvious morphism

V V W

V V W

f

f

instead, but the problem is that this is not a morphism in Fin∗T because by definition
the bottom right map needs to be the identity!

5 Parametrised smallness adjectives

We now introduce the notion of T –compactness and T –idempotent-completeness. Not only are
these notions crucial in proving the characterisations of T –presentables in Theorem 6.1.2, they
are also fundamental for the applications we have in mind for parametrised algebraic K–theory
in [Hil22b]. The moral of this section is that these are essentially fibrewise notions and should
present no conceptual difficulties to those already familiar with the unparametrised versions.
Recall that we will assume throughout that T is orbital.

5.1 Parametrised compactness

Recall that an object X in a category C is compact if MapC(X,−) : C → S commutes with
filtered colimits (cf. [Lur09, §5.3.4]). In this subsection we introduce the parametrised analogue
of this notion and study its interaction with Ind-completions.

Definition 5.1.1. Let C be a T –category and V ∈ T . A V -object in C (ie. an object in
FunT (V , C)) is T/V –κ-compact if it is fibrewise κ-compact. We will also use the terminology
parametrised-κ-compact objects when we allow V to vary. We write Cκ for the T –subcategory
of parametrised-κ-compact objects, that is, (Cκ)V is given by the full subcategory of T/V –κ-
compact objects.
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Notation 5.1.2. We write Fun
κ
T for the full T –subcategory of parametrised functors preserv-

ing parametrised κ-compact objects.

Warning 5.1.3. In general, for V ∈ T op, the inclusion (Cκ)V ⊆ (CV )κ is not an equivalence
- the point is that parametrised-κ-compactness must be preserved under the cocartesian lifts
f∗ : CV → CW for all f :W → V , but these do not preserve κ-compactness in general.

This definition of compactness makes sense by virtue of the following:

Proposition 5.1.4 (Characterisation of parametrised-compactness). Let C admit fibrewise κ-
filtered T –colimits. A T –object C ∈ FunT (∗, C) is κ–T –compact in the sense above if and only
if for all V ∈ T and all fibrewise κ-filtered T/V –diagram d : constV (K) → CV the comparison

colimconstV (K)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV
(CV , d) → MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV

(CV , colimconstV (K)d)

is an equivalence.

Proof. Suppose C is κ–T –compact. We are already provided with the comparison map above,
and we just need to check that it is an equivalence, which can be done by checking fibrewise.
Since Total(V ) = (T/V )op has an initial object, we can assume that T has a final object. So
let W ∈ T . Recall that as in the proof of Lemma 2.2.9 we have

(
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(C, d)

)
W

≃
(
MapC•(C•, d•)

)
•∈(T/W )op

∈ Fun((T/W )op,S)

Then
(
colimconstV (K)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV

(CV , d)
)
W

≃ colim
K

(
MapC•(C•, d•)

)
•∈(T/W )op

≃−→
(
MapC•(C•, colim

K
d•)

)
•∈(T/W )op

where the first equivalence is since fibrewise parametrised colimits are computed fibrewise, and
the comparison map is an equivalence since colimits in Fun((T/V )op,S) are computed pointwise,
and C is pointwise κ-compact by hypothesis.
Now for the reverse direction, let C ∈ C satisfy the property in the statement and V ∈ T

arbitrary. We want to show that CV ∈ CV is κ-compact, that is: for any ordinary small
κ-filtered diagram d : K → CV , we have that

colim
K

MapCV
(CV , d) → MapCV

(CV , colim
K

d)

is an equivalence. Now recall that CV = FunV (V , CV ) by Example 2.1.4 and so by adjunction

we obtain from d : K → CV a T/V –functor d : constV (K) −→ CV . In this case the desired
comparison is an equivalence by virtue of the following diagram

colimK MapCV
(CV , d) MapCV

(CV , colimK d)

(
colimconstV (K)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV

(CV , d)
)
V

(
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV

(CV , colimconstV (K)d)
)
V

≃

where the bottom map is an equivalence by hypothesis. This finishes the proof.

Observation 5.1.5. By the characterisation of T –compactness above together with the T –
Yoneda Lemma 3.3.3, and that T –colimits in T –functor categories are computed in the target
by Proposition 3.1.12 we see that the T –Yoneda embedding lands in PShT (C)κ.
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Proposition 5.1.6 (T –compact closure, “[Lur09, Cor. 5.3.4.15]”). Let κ be a regular cardinal
and C be T –cocomplete. Then Cκ is closed under κ-small T –colimits in C, and hence is κ–T –
cocomplete.

Proof. Let d : K → Cκ be a κ-small T –diagram. Since all κ-small T –colimits can be de-
composed as κ-small fibrewise T –colimits and T –coproducts by the decomposition principle
in Theorem 3.1.9 (3), we just have to treat these two special cases. The former case is clear
by [Lur09, Cor. 5.3.4.15] since everything is fibrewise. For the latter case, let V be a corepre-
sentable T –category, A be a κ-filtered category, and f : constT (A) → C be a κ-filtered fibrewise
T –diagram. We need to show that the map in ST

colimconstT (A)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(colimV d, f) −→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(colimV d, colimconstT (A)f)

is an equivalence. In this case, since we have for the source

colimconstT (A)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(colimV d, f) ≃ colimconstT (A)limV opopopopopopopopopopopopopopopopopMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(d, f)

and for the target

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(colimV d, colimconstT (A)f) ≃ limV opopopopopopopopopopopopopopopopopcolimconstT (A)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(d, f),

Theorem 3.5.10 gives the required equivalence, using also that V opopopopopopopopopopopopopopopopop is still corepresentable by
Observation 2.1.8.

5.2 Parametrised Ind-completions and accessibility

Proposition 5.2.1 (Ind fully faithfulness, “[Lur09, Prop. 5.3.5.11]”). Let C ∈ CatT and

D ∈ ĈatT which strongly admits fibrewise κ-filtered colimits. Suppose F : IndκC → D strongly
preserves fibrewise κ-filtered colimits and f = F ◦ j : C → D.

1. If f is T –fully faithful and the T –essential image lands in Dκ, then F is T –fully faithful.

2. If f is T –fully faithful, lands in Dκ, and the T –essential image of f generates D under
fibrewise κ-filtered colimits, then F is moreover a T –equivalence.

Proof. We prove (i) two steps. The goal is to show that

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapIndκC(A,B) → MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(FA,FB)

is an equivalence. First suppose A ∈ C and write B ≃ colimiBi as a fibrewise filtered colimit
where Bi ∈ C. We can equivalently compute MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapIndκC(A,B) as MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(A,B), and so

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapIndκC(A,B) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(A, colimiBi) ≃ colimiMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(A,Bi)

≃ colimiMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapIndκC(A,Bi)

and
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(FA,F colimiBi) ≃ colimiMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(fA, fBi)

where for the second equivalence we have used both hypotheses that F preserves fibrewise
κ-filtered colimits and that the image lands in Dκ. This completes this case. For a general
A ≃ colimiAi where Ai ∈ C and the T –colimit is fibrewise κ-filtered, we have

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(A,B) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(colimiAi, B) ≃ limiMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(Ai, B)
≃−→ limiMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(FAi, FB)

≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(FA,FB)

where the third equivalence is by the special case above, and so we are done. For (ii), we have
shown T –fully faithfulness, and T –essential surjectivity is by hypothesis.
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Lemma 5.2.2. Let D ∈ CatT . Then the T –Yoneda embedding y : D →֒ FunlexT (Dopopopopopopopopopopopopopopopopop,ST )
strongly preserves finite T –colimits.

Proof. Suppose k : K → D is a finite T –diagram. We need to show that the map

colimKMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(−, k) → MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(−, colimKk)

in Funlex
T (Dopopopopopopopopopopopopopopopopop,ST ) is an equivalence. So let ϕ ∈ Funlex

T (Dopopopopopopopopopopopopopopopopop,ST ) be an arbitrary object. Then
mapping the morphism above into this and using Yoneda, we obtain

ϕ(colimKk) −→ limKopopopopopopopopopopopopopopopopopϕ(k)

which is an equivalence since ϕ is a T –left exact functor.

We thank Maxime Ramzi for teaching us the following slick proof, which is different from
the standard one from [BGT13, Prop. 3.2], for instance.

Proposition 5.2.3. Let D ∈ CatT . Then Ind(D) ≃ Funlex(Dopopopopopopopopopopopopopopopopop,ST ). In particular, if D were
T –stable, then Ind(D) ≃ Funex(Dopopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT ).

Proof. First of all, note that Funlex(Dopopopopopopopopopopopopopopopopop,ST ) ⊆ Fun(Dopopopopopopopopopopopopopopopopop,ST ) is closed under fibrewise filtered
colimits since fibrewise filtered colimits commutes with finite T –limits in ST by Theorem 3.5.10.
Hence y : D →֒ Funlex(Dopopopopopopopopopopopopopopopopop,ST ) induces y : Ind(D) −→ Funlex(Dopopopopopopopopopopopopopopopopop,SSSSSSSSSSSSSSSSST ) which we then know
is T –fully faithful by Proposition 5.2.1. Moreover, since y strongly preserves finite T –colimits
by Lemma 5.2.2, y strongly preserves small T –colimits. Hence, by Theorem 6.2.1, it has a
right adjoint R : Funex(Dopopopopopopopopopopopopopopopopop,SSSSSSSSSSSSSSSSST ) → Ind(D) (we are free to use this result here since the
present situation will not feature anywhere in the proof of adjoint functor theorem). If we
can show that this right adjoint is conservative, then we would have shown that y and R
are inverse equivalences. But conservativity is clear by mapping from representable functors
and an immediate application of Yoneda. Finally, the statement for the T –stable case is a
straightforward consequence of Theorem 4.1.8.

Proposition 5.2.4 (“[Lur09, Prop. 5.3.5.12]”). Let C ∈ CatT and κ a regular cardinal. Then
the canonical functor F : Indκ(PShT (C)κ) → PShT (C) is an equivalence.

Proof. To see that F is an equivalence, we want to apply Proposition 5.2.1. Let j : PShT (C)κ →֒
Indκ(PShT (C)κ) be the canonical embedding. That the composite f := F ◦ j is T –fully faithful
and lands in PShT (C)κ is clear. To see that the essential image of f generates PShT (C) under
fibrewise κ-filtered colimits, recall that any X ∈ PShT (C) can be written as a small T –colimit
of a diagram valued in C ⊆ PShT (C) by Theorem 3.3.6. Then Corollary 3.5.9 gives that X can
be written as a fibrewise κ-filtered colimit taking values in E ⊆ PShT (C) where each object of
E is itself a κ-small T –colimit of some diagram taking values in C ⊆ PShT (C)κ. But then by
Proposition 5.1.6 we know that E ⊆ PShT (C)κ, and so this completes the proof.

Proposition 5.2.5 (Characterisation of T –compacts in T –presheaves, “[Lur09, Prop.
5.3.4.17]”). Let C ∈ CatT and κ a regular cardinal. Then a T –object C ∈ PShT (C) is κ–
T –compact if and only if it is a retract of a κ-small T –colimit indexed in C ⊆ PShT (C).

Proof. The if direction is clear since C ⊆ PShT (C)κ and by the compact closure of Proposi-
tion 5.1.6 we know that κ–T –compacts are closed under κ-small T –colimits and retracts.
Now suppose C is κ–T –compact. First of all recall by Theorem 3.3.6 that C ≃ colimaj(Ba)

where j : C →֒ PShT (C) is the T –Yoneda embedding and Ba ∈ C. Combining this with
Corollary 3.5.9 yields

C = colimaj(Ba) ≃ colimf∈constT (F )colim
(
pf :Kf→C⊆PShT (C)

)pf
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where F is a κ-filtered category. But then by Proposition 5.1.4 we then have that

idC ∈ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(C,C) ≃ colimf∈constT (F )MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(C, colim(
pf :Kf→C⊆PShT (C)

)pf )

Hence we see that C is a retract of some colim(
pf :Kf→C⊆PShT (C)

)pf as required.

Definition 5.2.6. Let κ be a regular cardinal and C a T –category. We say that C is κ–T –
accessible if there is a small T –category C0 and a T –equivalence Indκ(C0) → C. We say that
C is T –accessible if it is κ–T –accessible for some regular cardinal κ. A T –functor out of a
T –accessible C is said to be T -accessible if it strongly preserves all fibrewise κ-filtered colimits
for some regular cardinal κ.

Lemma 5.2.7 (T –accessibility of T –adjoints, “[Lur09, Prop. 5.4.7.7]”). Let G : C → C′

be a T –functor between T –accessibles. If G admits a right or a left T –adjoint, then G is
T –accessible.

Proof. The case of left T –adjoints is clear since these strongly preserve all T –colimits, so
suppose G ⊣ F . Choose a regular cardinal κ so that C′ is κ-accessible, ie. C′ = IndκD for some

D small. Consider the composite D j−→ IndκD
F−→ C. Since D is small there is a regular cardinal

τ ≫ κ so that both C is τ -accessible and the essential image of F ◦ j consists of τ -T –compact
objects of C. We will show that G strongly preserves fibrewise τ -filtered colimits.
Since IndκD ⊆ PShT (D) is stable under small τ -filtered colimits by Proposition 3.5.4 it will

suffice to prove that

G′ : C G−→ IndκD → PShT (D)

preserves fibrewise τ -filtered colimits. Since colimits in presheaf categories are computed point-
wise by Proposition 3.1.12 it suffices to show this when evaluated at eachD ∈ DV for all V ∈ T .
Without loss of generality we just work with D ∈ D, ie. a T –object D ∈ FunT (∗,D). In other
words, by the T –Yoneda lemma we just need to show that

G′
D : C G−→ IndκD →֒ PShT (D)

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (D)(j(D),−)
−−−−−−−−−−−−−−→ ST

preserves fibrewise τ -filtered colimits. But G is a right adjoint and so by Lemma 2.2.9

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (D)(j(D), G(−)) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapIndκD(j(D), G(−)) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(Fj(D),−)

By assumption on τ , Fj lands in τ -compact objects, completing the proof.

5.3 Parametrised idempotent-completeness

Recall that every retraction r : X ⇄ M : i gives rise to an idempotent self-map i ◦ r of
X since (i ◦ r) ◦ (i ◦ r) ≃ i ◦ (r ◦ i) ◦ r ≃ i ◦ r. On the other hand, in general, not every
idempotent self-map of an object in a category arises in this way, and a category is defined to
be idempotent-complete if every idempotent self-map of an object arises from a retraction (cf.
[Lur09, §4.4.5]). We now introduce the parametrised version of this.

Definition 5.3.1. A T –category is said to be T -idempotent-complete if it is so fibrewise. A
T –functor f : C → D is said to be a T -idempotent-completion if it is fibrewise an idempotent-
completion (cf. [Lur09, Def. 5.1.4.1]).

Observation 5.3.2 (Consequences of fibrewise definitions). Here are some facts we can imme-
diately glean from our fibrewise definitions.
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1. We know that for C small, Indκ(Indκ(C)κ) ≃ Indκ(C), and so since T –compactness and
T –Ind objects are fibrewise notions, we also get that for any small T –category C we
have Indκ

(
Indκ(C)κ

)
≃ IndκC. Here we have used crucially that Indκ(C)κ is really just

fibrewise compact, that is, that the cocartesian lifts of the cocartesian fibration IndκC →
T op preserve κ-compact objects. This is because Indκ(−)κ computes the idempotent-
completion by [Lur09, Lem. 5.4.2.4], which is a functor.

2. By the same token, C → (IndκC)κ exhibits the T –idempotent-completion of C for any
small T –category C.

The following result will be crucial in the proof of Theorem 6.1.2.

Proposition 5.3.3 (T –Yoneda of idempotent-complete, “[Lur09, Prop. 5.3.4.18]”). Let C
be a small T –idempotent-complete T –category which is κ–T –cocomplete. Then the T –Yoneda
embedding j : C → PShT (C)κ has a T –left adjoint.

Proof. By Proposition 3.3.9 we construct the adjunction objectwise. Let D ⊆ PShT (C) be the
full subcategory generated by all presheaves M where there exists ℓM ∈ C satisfying

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(M, j(−)) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(ℓM,−)

By definition, the desired left adjoint exists on this full subcategory, and hence it would suffice
now to show that PShT (C)κ ⊆ D.
We first claim that D is closed under retracts and inherits κ–T –cocompleteness from

PShT (C). If MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(N, j(−)) is a retract of MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(M, j(−)) inside PShT (C). But
then MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(M, j(−)) is in the Yoneda image from C, which is idempotent-complete, and
hence its retract is also in the Yoneda image.
To see that D ⊆ PShT (C) inherits κ–T –cocompleteness, consider

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(colimKMk, j(−)) ≃ limKopopopopopopopopopopopopopopopopopMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(Mk, j(−))

≃ limKopopopopopopopopopopopopopopopopopMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(ℓMk,−)

≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(colimKℓMk,−)

where the last is since C is κ–T –cocomplete by hypothesis.
Now Proposition 5.2.5 says that everything in PShT (C) is a retract of κ-small T –colimits of

the Yoneda image C ⊆ PShT (C). Hence, since C ⊆ D clearly, the paragraphs above yield that
PShT (C)κ ⊆ D as required.

6 Parametrised presentability

We are now ready to formulate and prove two of the main results in this paper, namely
the characterisations of T –presentables in Theorem 6.1.2 and the T –adjoint functor theo-
rem, Theorem 6.2.1. As we shall see, given all the technology that we have, the proofs for
these parametrised versions will present us with no especial difficulties either because we can
mimic the proofs of [Lur09] almost word-for-word, or because we can deduce them from the un-
parametrised versions (as in the cases of the adjoint functor theorem or the presentable Dwyer-
Kan localisation Theorem 6.3.7). In subsections §6.3 and §6.4 we will also develop the impor-
tant construction of localisation–cocompletions. We will then prove the parametrised analogue
of the correspondence between presentable categories and small idempotent-complete ones in
Theorem 6.5.4 as well as record the various expected permanence properties for parametrised
presentability in §6.7 and §6.6.
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6.1 Characterisations of parametrised presentability

Definition 6.1.1. A T –category C is T –presentable if C is T –accessible and is T –cocomplete.

We are now ready for the Lurie-Simpson-style characterisations of parametrised presentabil-
ity. Note that characterisation (7) is a purely parametrised phenomenon and has no analogue
in the unparametrised world. The proofs for the equivalences between the first six characteri-
sations is exactly the arguments in [Lur09] and so the expert reader might want to jump ahead
to the parts that concern point (7).

Theorem 6.1.2 (Characterisations for parametrised presentability, “[Lur09, Thm. 5.5.1.1]”).
Let C be a T –category. Then the following are equivalent:

(1) C is T –presentable.

(2) C is T –accessible, and for every regular cardinal κ, Cκ is κ–T –cocomplete.

(3) There exists a regular cardinal κ such that C is κ–T –accessible and Cκ is κ–T –cocomplete

(4) There exists a regular cardinal κ, a small T –idempotent-complete and κ–T –cocomplete
category D, and an equivalence IndκD → C. In fact, this D can be chosen to be Cκ.

(5) There exists a small T –idempotent-complete category D such that C is a κ–T –accessible
Bousfield localisation of PShT (D). By definition, this means that the image is κ–T –
accessible, and so by Lemma 5.2.7 the T –right adjoint is also a κ–T –accessible functor
and hence the Bousfield localisation preserves κ–T –compacts.

(6) C is locally small and is T –cocomplete, and there is a regular cardinal κ and a small set G
of T-κ-compact objects of C such that every T –object of C is a small T –colimit of objects
in G.

(7) C satisfies the left Beck-Chevalley condition (Terminology 3.1.8) and there is a regular

cardinal κ such that the straightening C : T op −→ Ĉat factors through C : T op −→ PrL,κ.

Proof. That (1) implies (2) is immediate from Proposition 5.1.6. That (2) implies (3) is because
by definition of T –accessibility, there is a κ such that C is κ–T –accessible, and since the second
part of (2) says that Cτττττττττττττττττ is τ -T –cocomplete for all τ , this is true in particular for τ = κ so chosen.
To see (3) implies (4), note that accessibility is a fibrewise condition and so we can apply the
characterisation of accessibility in [Lur09, Prop. 5.4.2.2 (2)]. To see (4) implies (5), let D be
given by (4). We want to show that C is a T –accessible Bousfield localisation of PShT (D).
Consider the T –Yoneda embedding (it lands in κ–T –compacts by Observation 5.1.5)

j : D →֒ PShT (D)κ

This has a T –left adjoint ℓ by Proposition 5.3.3. Define L := Indκ(ℓ) and J := Indκ(j), so
that, since Indκ is a fibrewise construction, we have a T –adjunction by Lemma 3.5.7

L : Indκ(PShT (D)κ) ⇄ IndκD : J

where J is T –fully faithful by Proposition 5.2.1. But then by Proposition 5.2.4, we get
Indκ(PShT (D)κ) ≃ PShT (D) and this completes this implication.
To see (5) implies (6), first of all PShT (D) is locally small and so C ⊆ PShT (D) is too.

Moreover, Bousfield local T –subcategories always admit T –colimits admitted by the ambient
category and so C is T –cocomplete. For the last assertion, consider the composite

ϕ : D →֒ PShT (D)
L−→ C
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Since PShT (D) is generated by D under small T –colimits by Theorem 3.3.6 and since L
preserves T –colimits, we see that C is generated under T –colimits by Imϕ. To see that Imϕ ⊆
Cκ, note that since by hypothesis C was κ–T –accessible, we know from Lemma 5.2.7 that the
T –right adjoint of L is automatically T –accessible, and so L preserves κ–T –compacts, and we
are done.
To see (6) implies (1), by definition, we just need to check that C is κ–T –accessible. As-

sumption (6) says that everything is a T –colimit of T –compacts, but we need to massage this
to say that everything is a fibrewise κ-filtered T –colimit of an essentially small subcategory -
note this is where we need the assumption about G and not just use all of Cκ, the problem
being that the latter is not necessarily small. Let C′ ⊆ Cκ be generated by G and C′ ⊆ C′′ ⊆ Cκ
be the κ–T –colimit closure of C′: here we are using that C′′ ⊆ Cκ since κ–T –compacts are
closed under κ-small T –colimits Proposition 5.1.6. Then since small T –colimits decompose
as κ-small T –colimits and fibrewise κ-filtered colimits, we get that C is generated by C′′ ⊆ C
under κ-filtered colimits, as required.
Now to see (5) implies (7), suppose we have a T –Bousfield localisation F : PShT (C) ⇄ D : G.

For f :W → V in T we have

PShT (C)V = Fun(Total(Copopopopopopopopopopopopopopopopop × V ),S) DV

PShT (C)W = Fun(Total(Copopopopopopopopopopopopopopopopop ×W ),S) DW

f∗

FV

f∗
GV

f!
FW

f∗

GW

f! f∗

where all the solid squares commute. We need to show a few things, namely:

• That the dashed adjoints exist.

• That f∗ : DV → DW preserves κ-compacts.

• That f! ⊣ f∗ on D satisfies the left Beck-Chevalley conditions.

To see that the dashed arrows exist, define f! to be FV ◦ f! ◦GW . This works since

MapDV
(FV ◦ f! ◦GW−,−) ≃ MapPShT (C)W (GW−, f∗ ◦GV−)

≃ MapPShT (C)W (GW−, GW ◦ f∗−)

≃ MapDW
(−, f∗−)

To see that f∗ exists, we need to see that f∗ preserves ordinary colimits. For this, we use
the description of colimits in Bousfield local subcategories. So let ϕ : K → DV be a diagram.
Then

f∗ colim
K⊆DV

ϕ ≃ f∗FV
(

colim
K⊆PShV

GV ◦ ϕ
)

≃ FW f
∗( colim

K⊆PShV

GV ◦ ϕ
)

≃ FW
(

colim
K⊆PShW

f∗ ◦GV ◦ ϕ
)

≃ FW
(

colim
K⊆PShW

GW ◦ f∗ ◦ ϕ
)

=: colim
K⊆DW

f∗ ◦ ϕ

And hence f∗ preserves colimits as required, and so by presentability, we obtain a right adjoint
f∗. This completes the first point. Now to see that f∗ : DV → DW preserves κ-compacts, note
that f∗ : PShT (C)V → PShT (C)W does since f∗ : PShT (C)W → PShT (C)V is κ-accessible by
Lemma 5.2.7. Hence since f∗FV ≃ FW f

∗, taking right adjoints we get f∗GW ≃ GV f∗. By
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hypothesis (5), G was κ-accessible and so since it is also fully faithful fibrewise, we get that
f∗ : DW → DV is κ-accessible, as required. For the third point, we already know from Propo-
sition 3.1.11 that D is T –cocomplete, and so f! must necessarily give the indexed coproducts
which satisfy the left Beck-Chevalley condition by Theorem 3.1.9.
Finally to see (7) implies (1), Theorem 3.1.9 says that C is T –cocomplete, and so we are

left to show that it is κ–T –accessible. But then this is just because C ≃ Indκ(Cκ) by [Lur09,
Prop. 5.3.5.12] (since parametrised-compacts and ind-completion is just fibrewise ordinary
compacts/ind-completion because the straightening lands in PrL,κ). This completes the proof
for this step and for the theorem.

6.2 The adjoint functor theorem

We now deduce the parametrised version of the adjoint functor theorem from the un-
parametrised version using characterisation (7) of Theorem 6.1.2. Interestingly, and perhaps
instructively, the proof shows us precisely where we need the notion of strong preservation and
not just preservation (cf. Definition 3.1.3 and the discussion in Observation 3.2.1).

Theorem 6.2.1 (Parametrised adjoint functor theorem). Let F : C → D be a T –functor
between T –presentable categories. Then:

(1) If F strongly preserves T –colimits, then F admits a T –right adjoint.

(2) If F strongly preserves T –limits and is T –accessible, then F admits a T –left adjoint.

Proof. We want to apply Corollary 2.2.7. To see (1), observe that the ordinary adjoint functor
theorem gives us fibrewise right adjoints FV : CV ⇄ DV : GV . To see that this assembles to a
T –functor G, we just need to check that the dashed square in the diagram

CV DV

CW DW

FV

f! f!
GW

FW

f∗ f∗

GW

commutes. But then the left adjoints of the dashed compositions are the solid ones, which
we know to be commutative by hypothesis that F strongly preserves T –colimits (and so in
particular indexed coproducts, see Observation 3.2.1). Hence we are done for this case and
part (2) is similar.

We will need the following characterisation of functors that strongly preserve T –colimits
between T –presentables in order to understand the correspondence between T –presentable
categories and small T –idempotent-complete ones.

Proposition 6.2.2 (“[Lur09, Prop. 5.5.1.9]”). Let f : C → D be a T –functor between T –
presentables and suppose C is κ–T –accessible. Then the following are equivalent:

(a) The functor f strongly preserves T –colimits

(b) The functor f strongly preserves fibrewise κ-filtered colimits, and the restriction f |Cκ

strongly preserves κ–T –colimits.

Proof. That (a) implies (b) is clear since Cκ ⊆ C creates T –colimits by Proposition 5.1.6.
Now to see (b) implies (a), let C = Indκ(Cκ) where Cκ is κ–T –cocomplete and T –idempotent-
complete category by Proposition 5.1.6. Now by the proof of (4) implies (5) in Theorem 6.1.2
we have a T –Bousfield adjunction

L : PSh(Cκ) ⇄ C : k
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Now consider the composite

j∗f : Cκ j−→ C f−→ D
By the universal property of T –presheaves we get a strongly T –colimit-preserving functor F
fitting into the diagram

Cκ D

C

PShT (Cκ)

j∗f

j
y

k

f

F :=y!j
∗f

We know then that f ≃ k∗y!j∗f = k∗F . On the other hand, we can define a functor

F ′ := f ◦ L ≃ F ◦ k ◦ L : PShT (Cκ) −→ C −→ D

The T –Bousfield adjunction unit idPShT ⇒ k ◦ L gives us a natural transformation

β : F =⇒ F ′ = F ◦ k ◦ L

If we can show that β is an equivalence then we would be done, since F , and so F ′ = f ◦ L,
strongly preserves T –colimits. Hence since L was a T –Bousfield localisation, f also strongly
preserves T –colimits, as required.
To see that β is an equivalence, let E ⊆ PShT (Cκ) be the full T –subcategory on which β

is an equivalence. Since both F and F ′ strongly preserve fibrewise κ-filtered colimits, we see
that E is stable under such. Hence it suffices to show that PShT (Cκ)κ ⊆ E since the inclusion
will then induce the T –functor PShT (Cκ) ≃ Indκ(PShT (Cκ)κ) → E which is an equivalence by
Proposition 5.2.1 (2).
Since L ◦ k ≃ id we clearly have Cκ ⊆ E , ie. that β : F ⇒ F ′ is an equivalence on

Cκ ⊆ PShT (Cκ). On the other hand, by Proposition 5.1.6 we know that PShT (Cκ)κ is κ–T –
cocomplete, and its objects are retracts of κ-small T –colimits valued in Cκ ⊆ PShT (Cκ) by
Proposition 5.2.5. Thus it suffices to show that F and F ′ strongly preserve κ-small T –colimits
when restricted to PShT (Cκ)κ. That F does is clear since it in fact strongly preserves all small
T –colimits. That F ′ does is because it can be written as the composition

F ′|PShT (Cκ)κ : PShT (Cκ)κ
L−→ Cκ f−→ D

where L is a T –left adjoint and f strongly preserves κ-small T –colimits by assumption. Here
we have crucially used that L lands in Cκ since this category is T –idempotent-complete and
κ–T –cocomplete.

6.3 Dwyer-Kan localisations

Terminology 6.3.1. We recall the clarifying terminology of [Hin16] in distinguishing between
Bousfield localisations, as defined in Definition 2.2.3, and Dwyer-Kan localisations. By the
latter, we will mean the following: let C be a T –category and S a class of morphisms in C such
that f∗(SW ) ⊆ SV for all f : V →W in T . Suppose a T –category S−1C exists and is equipped
with a map f : C → S−1C inducing the equivalence

f∗ : FunT (S
−1C,D)

≃−→ FunS
−1

T (C,D)
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for all T –categories D, where FunS
−1

T (C,D) ⊆ FunT (C,D) is the full subcategory of
parametrised functors sending morphisms in S to equivalences. Such a T –category must nec-
essarily be unique if it exists, and this is then defined to be the T –Dwyer-Kan localisation of
C with respect to S. The following proposition shows that being a T –Bousfield localisation is
stronger than that of being a T –Dwyer-Kan localisation.

Proposition 6.3.2 (Bousfield implies Dwyer-Kan). Let C, LC be T –categories and L : C ⇄
LC : i be a T –Bousfield localisation. Let S be the collection of morphisms in C that are sent

to equivalences under L. Then the functor L induces an equivalence L∗ : FunT (LC,D)
≃−→

FunS
−1

T (C,D) for any T –category D so that LC is a Dwyer-Kan localisation against S.

Proof. Since L ⊣ i was a T –Bousfield localisation, we know that i∗ : FunT (LC,D) ⇄
FunT (C,D) : L∗ is also a T –Bousfield localisation by Theorem 3.1.10, and so in particular

L∗ is T –fully faithful. The image of L∗ also clearly lands in FunS
−1

T (C,D), and so we are left to

show T –essential surjectivity. By basechanging if necessary, we just show this on FunS
−1

T (C,D).
Let ϕ : C → D be a T –functor that inverts morphisms in S. We aim to show that ϕ⇒ ϕ◦ i◦L
is an equivalence. Since L ⊣ i was a T –Bousfield localisation, the unit η : id ⇒ i ◦ L gets sent
to an equivalence under L, and so η ∈ S. Since ϕ inverts S by assumption, in particular it
inverts η.

Proposition 6.3.3. T –presentable categories are T –complete.

Proof. Let C be T –presentable so that it is a T –Bousfield localisation of some T –presheaf
category PShT (D) by description (5) of Theorem 6.1.2. We know that PShT (D) is T –complete
and so all we need to show is that T –Bousfield local subcategories are closed under T –limits
which exist in the ambient category. But this is clear since T –Bousfield local subcategories
can be described by a mapping-into property.

Terminology 6.3.4. For S ⊆ C a collection of morphisms, an object X ∈ C is said to be
S–local if MapC(−, X) sends morphisms in S to equivalences.

In fact, as in the unparametrised case, we can give a precise description of maps that get
inverted in a Bousfield localisation against an arbitrary collection of morphisms S, generalising
the usual theory available for instance in [Lur09, §5.5.4].

Definition 6.3.5. Let S be a T –collection of morphisms in a T –category C. We say that it is
T –strongly saturated if the following conditions are satisfied:

1. (Pushout closure) Suppose we have a fibrewise pushout square in C
A B

C D.
p

If the left vertical is in S, then the right vertical is also in S.

2. (T -colimit closure) The T -full subcategory FunS(∆1, C) ⊆ Fun(∆1, C) of morphisms in
S is closed under T -colimits.

3. (2-out-of-3) If any two of the three morphisms in

A B C

are in S, then the third one is too.
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For any T –collection of morphisms S, we define its T –strong saturation closure S to be the
smallest T –collection containing S which is T –strongly saturated.

Proposition 6.3.6. Let C be a T -presentable category and S a T –collection of morphisms in
C, and S its T -strong saturation. Let L : C → LSC be the T -Bousfield localisation at S. Then
the collection of L-equivalences consists precisely of the collection S.

Proof. We will bootstrap the parametrised statement from the unparametrised version in
[Lur09, Prop. 5.5.4.15]. Let T be the collection of L-equivalences. First of all, note that
we have S ⊆ T since it is straightforward to check that T is a T –strongly saturated collection
containing S and S is by definition the minimal such collection. To see the reverse inclusion,
let f : X → Y be an L-equivalence and consider the square

X Y

LX LY

f

Lf

≃

Now since a T -Bousfield localisation is in particular a fibrewise Bousfield localisation, we can
apply [Lur09, Prop. 5.5.4.15 (1)] to see that the vertical maps in the square are in S. And
hence by 2-out-of-3, we see that f was also in S, as desired.

The following result, which will be crucial for our application in [Hil22b], is another example
of the value of characterisation (7) from Theorem 6.1.2. The proof of the unparametrised
result, given by Lurie in [Lur09, §5.5.4], is long and technical, and characterisation (7) allows
us to obviate this difficulty by bootstrapping from Lurie’s statement.

Theorem 6.3.7 (Parametrised presentable Dwyer-Kan localisations). Let C be a T -presentable
category and S a small collection of T -morphisms of C (ie. if f : V → W in T and y → z a
morphism in SW , then f∗y → f∗z is in SV ). Then:

(1) Writing S∐ ⊃ S for the closure of S under finite indexed coproducts, the fibrewise full
subcategory S−1

∐ C ⊆ C of S∐-local objects assembles to a T –full subcategory.

(2) We have a T –accessible T –Bousfield localisation L : C ⇄ S−1
∐ C : i.

(3) For any T –category D, the T –functor L∗ : FunLT (S
−1
∐ C,D) −→ FunL,S

−1

T (C,D) is an

equivalence. Moreover, the inclusion FunL,S
−1

T (C,D) ⊆ FunL,S
−1

T (C,D) is an equivalence.

Proof. For (1), we just nee to show that S−1
∐ C is closed under the restriction functors in C.

Let f : V → W be a map in T and let x ∈ (S−1
∐ C)W . We need to show that f∗x ∈ (S−1

∐ C)V
is again S∐–local. So let ϕ : a → b be a morphism in S∐. Because S∐ is closed under finite
indexed coproducts, we have the equivalence

MapV (b, f
∗x) ≃ MapW (f!b, x)

(f!ϕ)
∗

−−−−→
≃

MapW (f!a, x) ≃ MapV (a, f
∗x)

as wanted. For (2), we know from [Lur09, Prop. 5.5.4.15] that we already have fibrewise
Bousfield localisations, and all we need to do is show that these assemble to a T –Bousfield
localisation via Corollary 2.2.7. Let f : V →W be in T . We need to show that

CV S−1
∐ CV

CW S−1
∐ CW

LV

LW

f∗
f∗
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commutes, and for this, we first note that the diagram

CV S−1
∐ CV

CW S−1
∐ CW

f∗

iV

f∗

iW

commutes where here f∗ exists since C is T –complete by Proposition 6.3.3. Now recall by
definition that f∗(SW ) ⊆ SV and so for y → z in SW the map

MapW (z, f∗x) ≃ MapV (f
∗z, x) −→ MapV (f

∗y, x) ≃ MapV (y, f∗x)

is an equivalence, which implies that f∗ takes S∐-local objects to S∐-local objects. Now by
uniqueness of left adjoints, the first diagram commutes, as required. Finally, the first sentence
of (3) is just a consequence of Proposition 6.3.2 and Proposition 6.3.6, noting also that S = S∐.

That the inclusion is an equivalence is because if F ∈ FunL,S
−1

T (C,D) and we have a morphism
in S of the form colimJϕ : colimJa → colimJb for some J–indexed diagram of morphisms all
landing in S, then F colimJϕ ≃ colimJFϕ is an equivalence by the hypothesis on F .

6.4 Localisation–cocompletions

In this subsection we formulate and prove the construction of localisation–cocompletions whose
proof is exactly analogous to that of [Lur09]. As far as we can see, unfortunately the proof
cannot be bootstrapped from the unparametrised statement as with the proof of Theorem 6.3.7
because the notion of a parametrised collection of diagrams might involve diagrams that are
not fibrewise in the sense of Example 3.1.2.

Definition 6.4.1 (Parametrised collection of diagrams). Let C ∈ CatT . A parametrised col-
lection of diagrams in C is defined to be a triple (C,K,R) where:

• K is a collection of small categories parametrised over T op, ie. a collection KV of small
T/V –categories for each V ∈ T .

• R is a parametrised collection of diagrams in C whose indexing categories belong to K,
ie. for each V ∈ T a collection of coconed diagrams RV indexed over categories in KV .

Theorem 6.4.2 (T –localisation–cocompletions, “[Lur09, Prop. 5.3.6.2]”). Let (C,K,R) be a
parametrised collection of diagrams in C. Then there is a T –category PShKR(C) and a T –functor
j : C → PShKR(C) such that:

1. The category PShKR(C) is K–T –cocomplete, ie. it strongly admits K–indexed T –colimits,
CV admits K–indexed T/V –colimits.

2. For every K-T –cocomplete category D, the map j induces an equivalence of T –categories

j∗ : FunKT (PSh
K
R(C),D) −→ FunR

T (C,D)

where the source denotes the T –category of functors which strongly preserve K–indexed
colimits and the target consists of those functors carrying each diagram in R to a
parametrised colimit diagram in D.

3. If each member of R were already a T –colimit diagram in C, then in fact j is T –fully
faithful.

Proof. We give first all the constructions. By enlarging the universe, if necessary, we may
reduce to the case where:
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• Every element of K is small

• That C is small

• The collection of diagrams R is small

Let y : C →֒ PShT (C) be the T –yoneda embedding and let V ∈ T . For a T/V –diagram
p̄ : K⊲ → CV with cone point Y , let X denote the T/V –colimit of y ◦ p : K → PShT (C)V . This
induces a T/V –morphism in PShT (C)V

s : X → y(Y )

Here we have used that PShT (C)V ≃ PShV (CV ) by Construction 2.1.13. Now let S be the
set of all such T/V –morphisms running over all V ∈ T . This is small by our assumption and
so let L : PShT (C) → S−1PShT (C) denote the T –Bousfield localisation from Theorem 6.3.7.
Now we define PShKR(C) ⊆ S−1PShT (C) to be the smallest K–cocomplete full T –subcategory
containing the image of L ◦ y : C → PShT (C) → S−1PShT (C). We show that this works and
prove each point in turn.
Point (i) is true by construction, and so there is nothing to do. For point (ii), let D be K–T –

cocomplete. We now perform a reduction to the case when D is T –cocomplete. By taking the
opposite Yoneda embedding we see that D sits T –fully faithfully in a T –cocomplete category
D′ and the inclusion strongly preserves K–colimits. We now have a square of T –categories
(where the vertical functors are T –fully faithful by Corollary 3.4.6)

FunK
T (PSh

K
R(C),D) FunR

T (C,D)

FunK
T (PSh

K
R(C),D′) FunR

T (C,D′)

φ:=j∗

φ′:=j∗

We claim this is cartesian in ĈatT if φ′ were an equivalence: given this, to prove that φ is an
equivalence, it suffices to prove that φ′ is an equivalence. For this, we need to show that the
map into the pullback is an equivalence. That φ′ is an equivalence ensures that the map into
the pullback is fully faithful. To see essential surjectivity, let F : PShKR(C) → D′ be a strongly
K–colimit preserving functor that restricts to C → D. Then in fact F lands in D ⊆ D′ since
D ⊆ D′ is stable under K–indexed colimits, and by construction, PShKR(C) is generated under
K–indexed colimits by C.
Now we turn to showing φ is an equivalence in the case D is T –cocomplete. Let E ⊆ PShT (C)

be the inverse image L−1PShKR(C) and S be the collection of all morphisms α in E such
that Lα is an equivalence. Since the T –Bousfield localisation L : PSh(C) ⇄ S−1PSh(C) : i
induces a T –Bousfield localisation L : E ⇄ PShKR(C) : i we see by Proposition 6.3.2 that L∗ :

FunT (PSh
K
R(C),D) → FunS

−1

T (E ,D) is an equivalence. Furthermore, by using the description
of colimits in T –Bousfield local subcategories as being given by applying the localisation L
to the colimit in the ambient category, we see that f : PShKR(C) → D strongly preserves
K–colimits if and only if f ◦ L : E → D does. This gives us the following factorisation of φ

φ : FunKT (PSh
K
R(C),D)

L∗
−−→
≃

FunS
−1
,K

T (E ,D)
j∗−→ FunRT (C,D)

and hence we need to show that the functor j∗ is an equivalence. Since D is T –cocomplete,
we can consider the T –adjunction j! : Fun

R
T (C,D) ⇄ FunK

T (E ,D) : j∗. We need to show:

• that j! lands in FunS
−1
,K

T (E ,D),

• that j! ◦ j∗ ≃ id on FunS
−1
,K

T (E ,D) and j∗ ◦ j! ≃ id.
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For the first point, fix a V ∈ T . Since relative adjunctions are closed under pullbacks by
Proposition 2.2.4 and since FunT (C,D)V ≃ FunV (CV ,DV ) by Construction 2.1.13, we also

get a T/V -adjunction j! : Fun
RV

V (CV ,DV ) ⇄ Fun
KV

V (EV ,DV ) : j∗. Suppose F : CV → D is
a V –functor that sends RV to V –colimit diagrams. We want to show that j!F : EV → DV

inverts maps in S, ie. those maps that get inverted by LV . Consider

CV

EV DV

PShV (CV )

j
F

y

k y!F

Note that j!F ≃ k∗y!F since j! = id ◦ j! ≃ k∗k!j! ≃ k∗y!. Now since y!F : PShV (CV ) → DV

strongly preserves V –colimits and since EV is stable under K–indexed colimits in PShV (CV )
(since PSh

KV

RV
(CV ) was closed under K–colimits by construction) it follows that j!F ≃ k∗y!F

strongly preserves K–colimits. Now note that the maps in S ⊆ PShV (CV ) are inverted by
y!F since these were the maps comparing colimit in PShV (CV ) and cone point in CV , and
by hypothesis, F , and hence y!F turns these into equivalences. Therefore, by the universal
property of Dwyer-Kan localisations Theorem 6.3.7, y!F : PShV (CV ) → D factors through the

Bousfield localisation L, and so in particular inverts S, so that j!F ≃ k∗y!F does too. Also y!F
strongly preserves all V –colimits by the universal property of presheaves, and so j!F ≃ k∗y!F
strongly preserves K–colimits since the inclusion k : EV →֒ PShV (CV ) does.
For the second point, since j was T –fully faithful, we have that j∗ ◦ j! ≃ id as usual by

Proposition 3.1.14. For the equivalence j! ◦ j∗ ≃ id, suppose F ∈ FunS
−1
,K

T (E ,D). Write
F ′ := j!j

∗F . By universal property of Kan extensions we have α : F ′ = j!j
∗F → F and we

want to show this is an equivalence. Since F inverts S by hypothesis and j!j
∗F also inverts S

by the claim of the previous paragraph, we get the diagram

CV

EV DV

PSh
KV

RV
(CV )

j

LV

F

F ′

f ′ f

The transformation α induces a transformation β : f ′ → f since FunS
−1

V (EV ,DV ) ≃
FunV (PSh

KV

RV
(CV ),DV ) and we want to show that β is an equivalence. To begin with, note

that it is an equivalence on the image of the embedding j : CV →֒ PSh
KV

RV
(CV ). Since F and

F ′ strongly preserve K–colimits, hence so do f ′ and f . Therefore, f ′ → f is an equivalence on

all of PSh
KV

RV
(CV ) since this V -category was by construction generated under these colimits by

C. This completes the proof of point (ii).
Finally, for point (iii), suppose every element of R were already a colimit diagram in C. The

Yoneda map can be factored, by construction, as j : C →֒ E L−→ PShKR(C) where the first map
is T –fully faithful. Since the restriction L|S−1PShT (C) ≃ id, it will suffice to show that j lands

in S−1PShT (C). That is, that C is S-local, ie. for each V ∈ T and C ∈ CV , and for each
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f :W → V in T and s : X → jY in SW , we need to see that

s∗ : MapPShT (C)W (jY, jf∗C) −→ MapPShT (C)W (X, jf∗C)

is an equivalence. To see this, the hypothesis of (iii) gives Y = colimK⊆CW
ϕ. Then

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)W (jY, jf∗C) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCW
(colimK⊆CW

ϕ, f∗C) ≃ limK
opopopopopopopopopopopopopopopopop⊆CW

opopopopopopopopopopopopopopopopop MapC(ϕ, f
∗C)

where the first equivalence is by Yoneda. On the other hand,

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)W (X, jf∗C) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)W (colimKj ◦ ϕ, jf∗C)

≃ limKopopopopopopopopopopopopopopopopopMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)W (jϕ, jf∗C)

≃ limKopopopopopopopopopopopopopopopopopMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCW
(ϕ, f∗C)

and so taking the section overW , one checks that these two identifications are compatible with
the map s∗. This completes the proof of (iii).

6.5 The presentables–idempotents equivalence

We want to formulate the equivalence between presentables and idempotent-completes in the
parametrised world, and so we need to introduce some definitions. To avoid potential confusion,
we will for example use the terminology parametrised -accessibles instead of T –accessibles to
indicate that we take T/V –accessibles in the fibre over V .

Definition 6.5.1. Let κ be a regular cardinal.

• Let AccT ,κ ⊂ ĈatT be the non-full T –subcategory of κ-parametrised-accessible cate-
gories and κ-parametrised-accessible functors preserving κ-parametrised-compacts.

• Let Cat
Idem
T ⊆ ĈatT be the full T –subcategory on the small parametrised-idempotent-

complete categories.

• Let Cat
rex(κ)
T ⊂ ĈatT be the non-full subcategory whose objects are κ-parametrised–

cocomplete small categories and morphisms those parametrised–functors that strongly
preserve κ-small parametrised–colimits.

• Let Cat
Idem(κ)
T ⊆ Cat

rex(κ)
T be the full subcategory whose objects are κ-parametrised–

cocomplete small parametrised-idempotent-complete categories.

• Let PrT ,L,κ ⊂ AccT ,κ be the non-full T –subcategory whose objects are parametrised-
presentables and whose morphisms are parametrised-left adjoints that preserve κ-
parametrised-compacts.

• Let PrT ,R,κ -filt ⊂ ĈatT be the non-full T –subcategory of parametrised presentable cat-
egories and morphisms the parametrised κ-accessible functors which strongly preserve
parametrised limits.

Notation 6.5.2. Let Fun
κ
T ⊆ FunT be the full subcategory of κ–T –compact-preserving func-

tors.

Lemma 6.5.3 (“[Lur09, Prop. 5.4.2.17]”). Let κ be a regular cardinal. Then (−)κ : AccT ,κ −→
ĈatT induces an equivalence to Cat

Idem
T , whose inverse Cat

Idem
T → AccT ,κ is Indκ.
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Proof. To see T –fully faithfulness, Proposition 3.5.4 gives

Fun
κ -filt,κ
T (IndκC, IndκD)

≃−→ Fun
κ
T (Indκ(C)κ, IndκD)

≃−→ FunT (Indκ(C)κ, Indκ(D)κ)

where we have also used, by Observation 5.3.2 (1), that Indκ(Indκ(C)κ) ≃ IndκC. As for the
essential image, let C be a small T –idempotent-complete category. Then by Observation 5.3.2
(2) we know that C ≃ Indκ(C)κ, and so it is in the essential image as required. Finally to see the
statement about the inverse, just note that we already have the functors and the appropriate
natural transformations on compositions. Then using Observation 5.3.2 again, we see that the
transformations are pointwise equivalences, and so equivalences.

Theorem 6.5.4 (T –presentable-idempotent correspondence, “[Lur09, Prop. 5.5.7.8 and Rmk.

5.5.7.9]”). Let κ be a regular cardinal. Then (−)κ : PrT ,L,κ −→ Ĉat
rex(κ)

T is T –fully faithful

with essential image Cat
Idem(κ)
T , and inverse Cat

Idem(κ)
T → PrT ,L,κ given by Indκ.

Proof. That it is T –fully faithful with the specified essential image is by Lemma 6.5.3 together
with Proposition 5.1.6 and Proposition 6.2.2. That the inverse from Lemma 6.5.3 via Indκ
lands in T –presentables is by Theorem 6.1.2 (4).

6.6 Indexed products of presentables

The purpose of this subsection is to show that the (non-full) inclusions PrT ,L,κ,PrT ,R,κ -filt ⊂
ĈatT create indexed products.

Lemma 6.6.1 (Indexed products of T –presentables). Let f : W → V be in T and C be a
T/W –presentable category. Then f∗C is a T/V –presentable category.

Proof. We first note that if D is a T/W –category, then f∗FunW (D,SW ) ≃ FunV (f!D,SV ). To
see this, let E be a T/V –category. Then

MapCatT/V
(E , f∗FunW (D,SW )) ≃ MapCatT/W

(f∗E ,FunW (D,SW ))

≃ MapCatT/W
(D,FunW (f∗E ,SW ))

≃ MapCatT/W
(D, f∗FunV (E ,SV ))

≃ MapCatT/V
(f!D,FunV (E ,SV ))

≃ MapCatT/V
(E ,FunV (f!D,SV ))

By Theorem 6.1.2 we have a accessible T/W –Bousfield localisation FunW (D,SW ) ⇄ C for some
small T/W –category D. Hence by Lemma 4.3.2, we obtain the accessible adjunction

FunV (f!D,SV ) ≃ f∗FunW (D,SW ) f∗C

Therefore, f∗C must be T/V –presentable, again by Theorem 6.1.2.

Proposition 6.6.2 (Creation of indexed products for presentables). The (non-full) inclusions

PrT ,L,κ,PrT ,R,κ -filt ⊂ ĈatT create indexed products.

Proof. Let f : W → V be in T and C,D be T/V – and T/W –presentables, respectively. We

know from Lemma 4.3.3 that ĈatT has indexed products. We need to show that

MapLV (C, f∗D) ≃ MapLW (f∗C,D)
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MapR,κ -filt
V (C, f∗D) ≃ MapR,κ -filt

W (f∗C,D)

We claim that the unit and counit in ĈatT are already in both PrT ,L,κ and PrT ,R,κ -filt. If we
can show this then we would be done by the following pair of diagrams

MapLV (C, f∗D) MapLW (f∗C, f∗f∗D) MapLW (f∗C,D)

MapV (C, f∗D) MapW (f∗C, f∗f∗D) MapW (f∗C,D)

f∗ ε∗

f∗

≃

ε∗

MapLV (C, f∗D) MapLV (f∗f
∗C, f∗D) MapLW (f∗C,D)

MapV (C, f∗D) MapV (f∗f
∗C, f∗D) MapW (f∗C,D)

η∗ f∗

η∗ f∗

≃

and similarly when we replace MapL by MapR,κ -filt: that the (co)units are in PrT ,R,κ -filt and

PrT ,L,κ imply that the maps ε∗ and η∗ above takes MapL to MapL; that f∗ and f∗ also do
these is by Lemma 4.3.2; and finally the bottom equivalences are inverse to each other, and so
restrict to inverse equivalences to the top row of each diagram.
We now prove the claims. That they preserve κ–T –compact objects is clear by Lemma 4.3.3

and Theorem 6.1.2. To see that the counit ε : f∗f∗D → D strongly preserves T –(co)limits,
since it is clear that they preserve fibrewise T –(co)limits, by Proposition 3.2.2 we are left
to show that they preserve the indexed (co)products. So let ξ : Y → Z be in T/W . For
this we will need to know that D has indexed coproducts and products (for the latter, see
Proposition 6.3.3). We need to show that the squares with the dashed arrows in

(f∗f∗D)Z DZ

(f∗f∗D)Y DY

ε

ξ∗ ξ∗

ε

ξ! ξ∗ ξ! ξ∗ (5)

commute. We analyse this in terms of the counit formula from Lemma 4.3.3. For this, consider
the diagram of orbits ∐

bRb Y

∐
a Sa Z

W V

W V

y
∐

b ξab y
ξ

y
f

f

(6)

where the top square is also a pullback since we can view this diagram as

∐
bRb

∐
a Sa W

Y Z V

f
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with the right square and the outer rectangle being pullbacks. From this we obtain that the
diagram (5) is equivalent to

∏
aDSa DZ

∏
bDRb

DY

πZ

∏
b ξ

∗
ab

ξ∗

πY

ξ! ξ∗ ξ! ξ∗

where the counits have been identified with the projections πZ (resp. πY ) onto the DZ (resp.
DY ) components by virtue of Lemma 4.3.3. Here

∏
b ξ

∗
ab

is supposed to mean forgetting about
the components of

∐
a Sa that do not receive a map from

∐
bRb and the functor ξ∗ab for the

other components: this makes sense because an orbit in a coproduct can only map to a unique
orbit. Since C was T/W –presentable, it in particular admits an T/W –initial object. And so we
can easily use these, together with the adjoints (ξab)! and fibrewise coproducts to obtain a left
adjoint ξ! of

∏
b ξ

∗
ab , and similarly a right adjoint ξ∗. It is then immediate that the dashed

squares also commute since the counits just project left/right adjoints from the left vertical to
those on the right.
To see that the unit strongly preserves T –(co)limits, similarly as above, we are reduced to

the case of showing that it preserves indexed (co)products. Let ζ : U → X be in T/V . And so
we want the squares with the dashed arrows

CX (f∗f∗C)X

CU (f∗f∗C)U
ζ∗

η

ζ∗

η

ζ! ζ∗ ζ! ζ∗

to commute. For this consider the pullback comparison

∐
bMb U

∐
aNa X

W V

W V

y
∐

b ζab y
ζ

y
f

f

where the top square is also a pullback by the argument for the previous case. Since

(f∗f
∗C)X =

∏

a

CNa and (f∗f
∗C)U =

∏

b

CMb

we see that the units η arise as restrictions along the maps
∐
aNa → X and

∐
bMb → U

respectively. Then the required dashed squares commute by the Beck-Chevalley property of
indexed (co)products of C associated to the top pullback square. This completes the proof.

6.7 Functor categories and tensors of presentables

In this final subsection, we record several basic results about the interaction between
parametrised-presentability and functor categories, totally analogous to the unparametrised
setting.
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Lemma 6.7.1 (Small cotensors preserve T –presentability). Let C be a small T -category and
D be T –presentable. Then FunT (C,D) is also T –presentable.

Proof. As a special case, suppose first that D ≃ PShT (D′) for a small T –category D′. Then
FunT (C,D) ≃ FunT (C × D′opopopopopopopopopopopopopopopopop,ST ), and so it is also a T –presheaf category, and so is T –
presentable. For a general T –presentable D, we know that we have a κ–T –accessible Bous-
field localisation L : PShT (D′) ⇄ D : i for some small T –category D′. Then we get a
κ–T –accessible Bousfield localisation L∗ : FunT (C,PShT (D′)) ⇄ FunT (C,D) : i∗ and so
since FunT (C,PShT (D′)) was T –presentable by the first part above, by characterisation The-
orem 6.1.2 (5) we get that FunT (C,D) is too.

Lemma 6.7.2 (“[Lur09, Lem. 5.5.4.17]”). Let F : C ⇄ D : G be a T –adjunction between
T –presentables. Suppose we have a T –accessible Bousfield localisation L : C ⇄ C0 : i. Let
D0 := G−1(C0) ⊆ D. Then we have a T –accessible Bousfield localisation L′ : D ⇄ D0 : i′.

Proof. The T –accessibility of the Bousfield localisation L : C ⇄ C0 : i ensures that there is a
small set of morphisms of C such that C0 are precisely the S-local objects. Then it is easy to
see that D0 ⊆ D is precisely the F (S)-local T –subcategory by using the adjunction.

Lemma 6.7.3 (“[Lur09, Lem. 5.5.4.18]”). Let C be a T –presentable category and {Ca}a∈A be
a family of T –accessible Bousfield local subcategories indexed by a small set A. Then

⋂
a∈A Ca

is also a T –accessible Bousfield local subcategory.

Proof. This is because, if we write S(a) for the morphisms of C such that Ca is the S(a)-local
objects, then

⋂
a∈A Ca are the

⋃
a∈A S(a)-local objects.

For the remaining results, recall from Notation 3.3.10 that FunRT and FunLT denote strongly
T –limit- and T –colimit-preserving functors, respectively, and RFunT and LFunT denote T –
right and T –left adjoint functors, respectively.

Lemma 6.7.4 (Presentable functor categories, “[Lur17, Lem. 4.8.1.16]”). Let C,D be T –
presentables. Then FunRT (Copopopopopopopopopopopopopopopopop,D) and FunLT (C,D) are also T –presentable.

Proof. By characterisation (5) of Theorem 6.1.2 and that Bousfield localisations are Dwyer-
Kan Proposition 6.3.2, we know that C ≃ S−1PShT (C′) for some small T –category C′ and S a
small collection of morphisms in PShT (C′). Then we have

FunRT (PShT (C′)opopopopopopopopopopopopopopopopop,D) ≃ FunLT (PShT (C′),Dopopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop ≃ FunT (C′,Dopopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop

≃ FunT (C′opopopopopopopopopopopopopopopopop,D)

where the first and last equivalence is by Observation 2.1.15, and the second by Proposi-
tion 3.5.4 and since T –presentables are also T –complete by Proposition 6.3.3. The right hand
term is T –presentable by Lemma 6.7.1, and so FunRT (PShT (C′)opopopopopopopopopopopopopopopopop,D) is too by the equivalence

above. Now note that we have FunRT (Copopopopopopopopopopopopopopopopop,D) ≃ FunR,S
−1

T (PShT (C′)opopopopopopopopopopopopopopopopop,D): this is by virtue of
the following diagram

FunRT ((S
−1PShT (C′))opopopopopopopopopopopopopopopopop,D) ≃ FunLT (S

−1PShT (C′),Dopopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop

L∗
−−→
≃

FunL,S
−1

T (PShT (C′),Dopopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop

≃ FunR,S
−1

T (PShT (C′)opopopopopopopopopopopopopopopopop,D)

where we have the equivalence L∗ owing to the formula for T –colimits in T –Bousfield local
subcategories. Therefore, if for each α ∈ S we write E(α) ⊆ FunRT (PShT (C′)opopopopopopopopopopopopopopopopop,D) to be the T –
full subcategory of those functors which carry α to an equivalence in D, then FunRT (Copopopopopopopopopopopopopopopopop,D) ≃
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⋂
α∈S E(α) ⊆ FunRT (PShT (C′)opopopopopopopopopopopopopopopopop,D). Hence to show FunR(Copopopopopopopopopopopopopopopopop,D) is a T –accessible Bousfield

localisation of FunRT (PShT (C′)opopopopopopopopopopopopopopopopop,D), it will be enough to show it, by Lemma 6.7.3, for each
E(α). Now these α’s are morphisms in the various fibres over T op but since everything interacts
well with basechanges, we can just assume without loss of generality that T op has an initial
object and that α is a morphism in the fibre of this initial object. Given this, it is clear that
we have the pullback

E(α) FunRT (PShT (C′)opopopopopopopopopopopopopopopopop,D)

E FunT (constT (∆
1),D)

y
evα

where E is the full subcategory spanned by the equivalences. Hence by Lemma 6.7.2 it will
suffice to show that E ⊆ FunT (constT (∆

1),D) is a T –accessible Bousfield localisation. But
this is clear since it is just given by the T –left Kan extension along ∗ → ∆1.
The statement for FunLT (C,D) is proved analogously, but without having to take opposites

in showing that L∗ : FunLT (S
−1PShT (C′),D) → FunL,S

−1

T (PShT (C′),D) is an equivalence.

The following result was stated as Example 3.26 in [Nar17] without proof, and so we prove
it here. Here the tensor product is the one constructed in [Nar17, §3.4].

Proposition 6.7.5 (Formula for presentable T –tensors). Let T be an atomic orbital category,
and let C,D be T –presentable categories. Then C ⊗ D ≃ FunRT (Copopopopopopopopopopopopopopopopop,D).

Proof. This is just a consequence of the universal property of the tensor product. To wit, let E
be an arbitrary T –presentable category and write FunR,accT for T –accessible strongly T –limit
preserving functors. Then

FunL,L(C × D, E) ≃ FunL(C,FunL(D, E))
≃ FunRT (Copopopopopopopopopopopopopopopopop,FunLT (D, E)opopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop

≃ FunRT (Copopopopopopopopopopopopopopopopop,LFunT (D, E)opopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop

≃ FunRT (Copopopopopopopopopopopopopopopopop,RFunT (E ,D))opopopopopopopopopopopopopopopopop

≃ FunRT (Copopopopopopopopopopopopopopopopop,FunR,accT (E ,D))opopopopopopopopopopopopopopopopop

≃ FunR,accT (E ,FunRT (Copopopopopopopopopopopopopopopopop,D))opopopopopopopopopopopopopopopopop

≃ RFunT (E ,FunRT (Copopopopopopopopopopopopopopopopop,D))opopopopopopopopopopopopopopopopop

≃ LFunT (Fun
R
T (Copopopopopopopopopopopopopopopopop,D), E)

≃ FunLT (Fun
R
T (Copopopopopopopopopopopopopopopopop,D), E)

where the second equivalence is by Observation 2.1.15; the third, fifth, seventh, and ninth
equivalence is by the adjoint functor Theorem 6.2.1; the fourth and eighth are from Propo-
sition 3.3.11. In the seventh and ninth equivalence, we have also used that FunRT (Copopopopopopopopopopopopopopopopop,D)
is T –presentable, which is provided by Lemma 6.7.4. Therefore, FunRT (Copopopopopopopopopopopopopopopopop,D) satisfies the
universal property of C ⊗ D.
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Parametrised Poincaré duality and
equivariant fixed points methods
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In this article, we introduce and develop the notion of parametrised Poincaré du-
ality in the formalism of parametrised higher category theory by Martini–Wolf, in
part generalising Cnossen’s theory of twisted ambidexterity to the nonpresentable
se�ing. We prove several basechange results, allowing us to move between differ-
ent coefficient categories and ambient topoi. We then specialise the general frame-
work to yield a good theory of equivariant Poincaré duality spaces for compact Lie
groups and apply our basechange results to obtain a suite of isotropy separation
methods. Finally, we employ this theory to perform various categorical Smith–
theoretic manoeuvres to prove, among other things, a generalisation of a theorem
of Atiyah–Bo� and Conner–Floyd on group actions with single fixed points.
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3.1. Spivak data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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1. Introduction

Poincaré duality has a distinguished history that goes back right to the birth of algebraic topol-
ogy at the hands of Henri Poincaré. Broadly speaking, it says that there is o�en a hidden sym-
metry between homology and cohomology, and arguably beyond Poincaré’s wildest dreams,
it is a phenomenon that is not just endemic to algebraic topology but also pervasive in fields
as far as algebraic geometry, arithmetic geometry, and even representation theory. Essentially,
it tends to show up in any context in which homological algebra is present. Perhaps a reason
as to why it is such a useful principle is that it may be exploited both computationally as well
as theoretically: the former because it halves the amount of homological computations to be
made and the la�er because, for instance, it may be used to produce “wrong–way” maps which
opens the way to powerful transfer arguments. No less importantly in the way of theoretical
significance, it would also be remiss of us not to mention that Poincaré duality constitutes one
of the starting points of the surgery theory of manifolds. In either case, it would be fair to sum-
marise that Poincaré duality provides strong structural constraints on homological invariants
which lends a rigidity not seen for a bare homotopy type.

On another front, group actions on manifolds have a�racted the a�ention of topologists
nearly since the beginning of the subject. A deep vein in this line of work is the hope of
finding algebro–topological constraints on group actions in order to rule out the existence of
certain group actions on manifolds. Smith theory, for example, predicts that if a p-groupG acts
on an Fp-homology sphere, then the fixed points of the action must also be an Fp-homology
sphere. In a similar spirit, the Conner–Floyd conjecture, resolved affirmatively by Atiyah–
Bo�, predicts in a simple version that if p is an odd prime and the group Cpk acts smoothly
on a smooth, closed, orientable, positive–dimensional manifold, then the fixed point set of the
action cannot consist of a single isolated point.

Given the motivations above, it should come as no surprise that a theory of equivariant
Poincaré duality is desirable in order to incorporate the strong homological constraints afore-
mentioned in the equivariant context. Indeed, so natural is this a question that there is a very
rich corpus of contributions – too many to mention exhaustively – in this line of investiga-
tion coming from a wide variety of schools of thought. From our point of view, the strand
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of work that is most pertinent to us (and on which we build, either directly or indirectly),
is the parametrised category theoretic one of Costenoble–Waner [CW92; CW16] and May–
Sigurdsson [MS06], which were informed by the work of tom Dieck in [Die87]. More specifi-
cally, our work builds heavily upon Cnossen’s work on twisted ambidexterity [Cno23], which
is, in turn, built upon the insights of the preceding work. A more detailed account of the re-
lationships between the present work and the ones just mentioned will be given at the end of
the introduction.

�e main goal of this article is to develop the theory of equivariant Poincaré duality for
compact Lie groups from an∞–categorical perspective. As a proof of concept, we will then
apply it to a selection of concrete problems in equivariant geometric topology, some of which
have been resolved through different methods before. Our categorical formalism of choice
is the parametrised ∞–category theory of [Mar22a; Mar22b; MW22; MW24] and a central
role will be played by equivariant stable homotopy theory as first systematically developed in
[LMS86] and later in [GM95; MNN17]. �e rest of the introduction will give an overview of
our methods and highlighted results.
Notations and conventions: We work in the se�ing of∞–categories as developed by Joyal
and Lurie without referring to any particular model such as quasicategories. To avoid nota-
tional clu�er, we will refer to∞–categories as just categories, while classical categories (for
which there is a set of morphisms between objects as opposed to a space of such) will be re-
ferred to as 1-categories. We fix three Grothendieck universes U ∈ V ∈W called small, large
and very large. We denote the large category of small categories by Cat and the very large
category of large categories by Ĉat. �e term “category” will be reserved for small categories.
Furthermore, le� adjoints will always be wri�en on top of right adjoints in our diagrams.

Equivariant and parametrised homotopy theory

Let G be compact Lie group. It has long been understood that in order to have good access
to inductive methods in equivariant homotopy theory, the fixed points spaces for all closed
subgroups of G should be recorded as part of the structure of a G–space. �e earliest cate-
gorical articulation of this principle is the theorem of Elmendorf’s which says that there is an
equivalence of (∞–)categories SG ≃ Fun(O(G)op,S) between the category of G–spaces and
presheaves on the orbit category of G.

In the same way that the category of spectra is the universal homology theory on spaces, it
has been identified in [Seg70] and fully developed in [LMS86] that the appropriate replacement
of spectra in the equivariant se�ing is the stable category SpG of genuine G–spectra. In the
finite group case, we may even view SpG asG–Mackey functors valued in spectra. To eachG–
space X ∈ SG we may associate an “equivariant stable homotopy type” Σ∞

+X ∈ SpG. From
this, we may, among other things, recover the stable homotopy type of all fixed point spaces
XH for subgroups H ≤ G via the geometric fixed points functor ΦH : SpG → Sp to obtain
ΦH(Σ∞

+X) ≃ Σ∞
+ (XH). In fact, more generally, there is a geometric fixed points functor

associated to a family F of closed subgroups ofG, and it should be thought as a functor which
universally kills equivariant cells G/H whereH ∈ F .

It turns out to be fruitful to treat questions about G–spaces not only through a categor-
ical lense, but rather work with equivariant versions of categories themselves. Two equiv-
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alent approaches have been developed, the first by Barwick–Do�o–Glasman–Nardin–Shah
[BDG+16a; BDG+16b; Sha23; Nar17; NS22] and the second by Martini–Wolf [Mar22a; Mar22b;
MW22; MW24]. Each formalism has their advantages, and for our purposes in this article,
we have chosen to work mainly in the second one since it affords us the flexibility of work-
ing over an arbitrary topos: this will allow us to give uniform and streamlined proofs. In
either case, the appropriate replacement for Cat in the equivariant se�ing is the category
CatG := Fun(O(G)op,Cat) of G–categories. We will write C for an object in CatG and
C(G/H) for the evaluation of C at G/H . Some G–categories of special interest to us, viewed
as presheaves on the orbit category, are

S : G/H 7→ SH the G–category of G–spaces;
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp: G/H 7→ SpH the G–category of G–spectra;

Pic(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp): G/H 7→ Pic(SpH) the G–space of invertibleG–spectra.

Crucially, for a large part of this article, we will rely upon a good theory of parametrised
presentable categories, whereupon we may speak of, for instance, the category PrL,G−st

G of
G–stable presentable G–categories (in which SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is the symmetric monoidal unit). Now for
a closed normal subgroup N ≤ G and writing Q := G/N for the quotient group, there is a
fully faithful inclusion incl : ĈatQ →֒ ĈatG of largeQ–categories into largeG–categories and
it admits a le� adjoint (−)N given by forge�ing all information from the subgroups of G that
do not contain N . �ese two functors restrict to give functors incl : PrL,Q−st

Q →֒ PrL,G−st
G

and (−)N : PrL,G−st
G → PrL,Q−st

Q respectively. However, the adjunction on large categories
does not descend to an adjunction on the presentable categories because the adjunction unit
in ĈatG is not a morphism in PrL,G−st

G . Nevertheless, we show the following:

�eoremA (�eorem 2.2.26 and Proposition 2.2.29). LetG andQ be as above. �en the inclusion
PrL,Q−st

Q →֒ PrL,G−st
G admits a le� adjoint ΦN which is a smashing localisation.

We call the functorΦN above the Brauer quotient functor, borrowing the term from classical
Mackey functor theory. In fact, in the precise versions of the result, we prove it more gener-
ally for families and we also prove this for small G–stable categories when the group is finite.
�e result above should be viewed as a categorification of the geometric fixed points functors
aforementioned. We may indeed recover the usual geometric fixed points functors by consid-
ering the adjunction unit evaluated on SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp. Using �eorem A, we may functorially construct
geometric fixed points for any G–stable category, a construction that will be important to us
in performing isotropy separation arguments for equivariant Poincaré duality, as we shall see
below.

Equivariant and parametrised Poincaré duality

Poincaré duality is usually formulated as the statement that for a closed d-manifoldM , there
exists an infinite cyclic local coefficient systemO onM and a class [M ] ∈ Hd(M ;O) such that
the the cap product with [M ] induces, for every local coefficient system η onM , isomorphisms

[M ] ∩ − : H∗(M ; η) −→ H∗(M ; η ⊗O).
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We will briefly recall a different formulation due to [Kle01] in terms of local systems of spectra
(c.f. [Lan22, App. A] for a nice and detailed exposition of this point of view). It will let us arrive
at an equivariant version (even a parametrised one, in general) with li�le creativity.

Following the notation of [Cno23], letM : M → ∗ be the unique map. We get adjunctions

SpM Sp

M!

M∗

M∗

whereM! (resp. M∗) associates to each local system ξ ∈ SpM its colimit (resp. limit), and the
resulting spectrum should be viewed as the homology (resp. cohomology) of M with coeffi-
cients in ξ. For a smooth manifold M , the Spivak normal fibration can be used to construct
a local system DM ∈ Pic(Sp)M ⊂ SpM . �e stable Pointryagin–�om collapse map can be
viewed as a map c : S→M!DM , which deserves the name “fundamental class” forM . It is pos-
sible1 to describe the cap product with the fundamental class as a morphism in Fun(SpM ,Sp)

c ∩ − : M∗(−)→M!(− ⊗DM ) (1)

and Poincaré duality may be interpreted as demanding that this transformation be an equiv-
alence. It turns out that using general Morita theory, it is possible to construct a unique
DX ∈ SpX and c : S → X!DX for any compact space X such that the associated map
c ∩ − : X∗(−) → X!(− ⊗DX) is an equivalence (since it is such a crucial property, we term
the property of this map being an equivalence as twisted ambidexterity, inspired by [Cno23]).
�e local system DX is referred to as the dualising sheaf of X . We call the compact space X
a Poincaré space if the dualising sheaf DX takes values in invertible spectra, i.e. in Pic(Sp).
Poincaré duality, as formulated above, shows that closed manifolds are Poincaré spaces. It
bears mentioning that Wall, in his seminal paper [Wal67], introduced the notion of Poincaré
complexes and we show in Example 3.2.15 that his notion coincides with Poincaré spaces as
defined above (see also [Lan22, Prop. A.12] for a proof for finite spaces).

Now the theory of parametrised higher categories as introduced in [MW22; MW24] affords
us the latitude of considering the situation just presented, but working internally to an arbitrary
base topos B (e.g. the topos SG of G–spaces). In this se�ing, one may speak of B–functor
categories,B–adjunctions,B–Kan extensions,B–(co)limits,B–Morita theory, etc. For example,
in the equivariant situation, we may take parametrised colimits with respect to a diagram
indexed by aG–category (and so in particular, diagrams indexed byG–spaces). In light of this,
we may just transpose the discussions of the previous paragraph into the parametrised se�ing
with relative ease and make sense of the notion of parametrised Poincaré duality.

However, in our theory, we have chosen to strictly generalise the well–known presenta-
tion above in two main ways: (1) we do not just consider the coefficient category of spectra
(or rather B–spectra), but we allow for arbitrary symmetric monoidal coefficient categories
(which was also done in [Cno23] in the twisted ambidextrous se�ing); (2) we do not just con-
sider presentable coefficient B–categories, as in [Cno23], but also arbitrary B–categories. As
we shall see in our geometric applications later, both of these extra flexibilities will play im-
portant and conceptually natural roles. Crucially, point (2) precludes us from having access to
1�is is conveniently descibed in [Lur11] or [Lan22], which we generalise in §3.1.
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Morita theory, by which token being a B–Poincaré space is a property. Hence, we will have to
declare more structures in order to be able to speak of Poincaré duality in arbitrary coefficient
categories. We axiomatise this as follows:

Definition (Spivak data, Definition 3.1.1). Let X be a B–space and C a symmetric monoidal
B–category admi�ingX–shaped colimits. A C–Spivak datum forX is defined to be a pair (ξ, c)
where ξ ∈ Fun(X, C) is called the dualising sheaf and c : 1C → X!ξ is a morphism in C called
the fundamental class.

From this datum, provided C satisfies a standard condition called theX–projection formula
(c.f. Terminology 2.1.13), we may construct from (ξ, c) a transformation

c ∩ξ − : X∗(−) −→ X!(− ⊗ ξ) (2)

as in (1), called the capping transformation. �is is a morphism in Fun(CX , C). We then say
that the C–Spivak datum (ξ, c) is twisted ambidextrous if (2) is an equivalence, and we say that
it is Poincaré if additionally ξ : X → C factors through Pic(C). As will become clear in the
article, one advantage of studying such a structural axiomatisation of the situation is that it
provides us with a finer control over the specific fundamental class and capping equivalences
at play. Also note that this approach is very close to traditional formulations of Poincaré duality
and even covers general duality groups in the sense of Bieri-Eckmann [BE73], which we hope
helps clarify the relation of modern works such as Cnossen’s [Cno23] with classical literature.

Having set up the primitive notions of the paper, we focus on the equivariant se�ing (i.e.
working over the base topos B = SG of G–spaces) for the rest of the introduction and point
out the more general parametrised versions along the way, as appropriate.

We now state one of the main theorems of our abstract equivariant Poincaré duality theory.
For ease of statement in this introductory section, we only state it for presentableG–categories,
where being Poincaré is a property of a G–space (i.e. the Spivak datum is unique, if it exists).

�eorem B (Poincaré isotropy basechange, �eorem 4.2.7). Let G be a compact Lie group, N a
closed normal subgroup, X a G–space, and C a presentably symmetric monoidal fibrewise stable
G–category. IfX is Poincaré with coefficient C, then the G/N–fixed points spaceXN is Poincaré
with coefficient in the fibrewise stable Brauer quotient G/N–category ΦNC of �eorem A.

In the full statement, the result above works in the generality of a fixed family of closed
subgroups and we also provide a version of the theorem for small categories with a weaker
conclusion, but which is nevertheless strong enough for our applications in §5.1. Furthermore,
�eorem B will be the key tool for our categorified Smith–theoretic proof of �eorem H.

It should also be mentioned that the theorem above is an immediate consequence of a much
more general set of basechange results for arbitrary base topoi (c.f. �eorems 3.3.5, 3.3.8
and 3.3.12). �ese general results constitute the main theorems in our theory of parametrised
Poincaré duality. �e operating philosophy of these results, and thus of the paper by extension,
is that many important inductive manoeuvres on Poincaré duality may be casted as instances
of basechanging the coefficient categories and basechanging the ambient topoi.

�e most important coefficient category for us will be that of genuine G–spectra SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp, and
we say that a G–space is G–Poincaré if it is Poincaré with respect to SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp. As a straightforward
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consequence of �eorem B, we obtain the following result which says that being Poincaré is
compatible with taking fixed points. It should be viewed as a spectral enhancement of the
homological statement [CW17, Prop. 2.4] of Costenoble–Waner.

�eorem C (�eorem 4.2.9). Let G be a compact Lie group, H ≤ G a closed subgroup, and
N ≤ G a closed normal subgroup. If X is a G–Poincaré space, then XH is a Poincaré space and
XN is a G/N–Poincaré space.

In fact, we also provide a conditional converse to the result above in �eorem 4.2.10 where
we give a recognition principle for equivariant Poincaré duality in terms of nonequivariant
Poincaré duality by way of the geometric fixed points functors. We warn the reader that the
converse - that a compactG-spaceX isG-Poincaré ifXH is Poincaré for each closed subgroup
H ≤ G - is not true, and we will comment on this below.

Next, to justify the theory of equivariant Poincaré spaces, we first give a large collection of
examples of such as encapsulated by the following (the smooth manifolds case is certainly not
new and has been proven in various forms for example in [MS06; CW16; CW17; HKZ24]):

�eorem D (Proposition 4.4.2 and �eorem 4.4.8). Let G be a compact Lie group. �en smooth
closedG–manifolds and tomDieck’s generalised homotopy representations areG–Poincaré spaces.

Here, by tom Dieck’s generalised homotopy representations, we mean a compactG–space V
such that all fixed points VH have the homotopy type of a sphere of some dimension. �ey are
a class of G–spaces strictly distinct from smooth G–manifolds. For example, Bredon [Bre72]
gave an example of a generalised C2–homotopy representation V such that VC2 and Ve are
spheres of the same dimension, although the map VC2 → Ve is not an equivalence. Of course,
this cannot arise as the underlying C2–space of a smooth closed C2–manifold.

With plenty of naturally interesting examples in hand, we then provide a suite of construc-
tion principles to construct new examples of equivariant Poincaré spaces from old ones in
§4.3. Among other things, we show that equivariant Poincaré duality is preserved under var-
ious standard equivariant operations such as inflations, restrictions, inductions, coinductions,
and Borelifications. We also make contact with the nilpotence theory of Mathew–Naumann–
Noel [MNN17; MNN19] and show that Poincaré duality interacts nicely with nilpotence with
respect to families. Furthermore, we also show the following equivariant generalisation of
Klein’s well–known result [Kle01, Cor. F].

�eorem E (�eorem 4.3.12). Let C be a presentably symmetric monoidal G–category and
f : X → Y a map of G–spaces. If Y is C–Poincaré and for every closed subgroup H ≤ G,
the fibres of f over every H–point of Y is ResGH C–Poincaré, then X is C–Poincaré too.

Having set up a robust and nonempty abstract theory, we now ask ourselves: what does it
all mean and what is it useful for?

Phenomena and applications

It turns out that equivariant Poincaré duality for a G–space X offers quite a lot “hidden” ho-
motopical information about X that is not obvious from merely having all its fixed points
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satisfying Poincaré duality. To put it in a slogan, this is essentially because there is a global
fundamental class which ties together the local fundamental classes of the various fixed points
spaces in nontrivial ways. �is is certainly not a new observation and is one that has been ap-
preciated by many of the forerunners to this story. For the remainder of this introduction, we
highlight three applications of a geometric flavour of our theory which exploit this principle
in one form or another and which illustrate the rigidity of Poincaré spaces hinted at before.

Let p be a prime and G a finite group. Now for a G–spaceX , we may view the cohomology
groupH∗(XG;Fp) as a count of the fixed points ofX mod p. As aptly interpreted by Browder
in [Bro87], if a map of G–spaces f : X → Y induces an injection on H∗(−;Fp), then we may
“pull back” the mod p fixed points of Y to those of X and, among many things, he studied
situations in which one can upgrade this cohomological statement to an actual surjection on
the fixed points as topological spaces. Cohomological injection results of this type were first
proved by Bredon as [Bre73, �m. 5.1] for the group G = Cp purely homotopy–theoretically
and later on generalised by Browder as [Bro72, �m. 1.1] to arbitrary finite abelian p–groups
under strongermanifold assumptions. �is question has also been studied for instance in [ES86;
HP06]. In this line, we employ our categorical technology in the generality of Poincaré duality
for small, non–presentable coefficient categories to prove the following version of the afore-
mentioned results:
�eorem F (�eorem 5.1.1). Let A be an elementary abelian p–group. Let f : X → Y be a map
of compact A–spaces. Suppose Xe, Y e are HFp–Poincaré spaces such that f e : Xe → Y e is of
degree one. �en for any HFp–local system ζ ∈ Fun(Y A,PerfHFp) for the fixed point space Y

A,
the map fA induces an injectionH∗(Y A; ζ)→ H∗(XA; f∗ζ).

Unlike the cited works above, our methods avoid manifold assumptions altogether and apart
from one preliminary standard argument, we also avoid spectral sequences entirely and use
instead formal categorical and stable homotopy theoretic manipulations. It should be noted
also that our result works for arbitrary twisted coefficient systems, which as far as we know,
is new and depends crucially on the categorical nature of our approach.

As an application of �eorem F (in fact, the version proved by Bredon suffices), we obtain
the following rigidity result for equivariant Poincaré duality spaces.
�eorem G (�eorem 5.1.14). Let G be a solvable finite group (e.g. a group of odd order) and
X ∈ SωG a compact G–Poincaré space withXe ≃ ∗ ∈ S . �en X ≃ ∗ ∈ SG.

�is is a slightly surprising result in light of Bredon’s examples mentioned a�er �eorem D
which demonstrated that Poincaré spaces can be rather counterintuitive when the underlying
space is noncontractible. Combining this with the celebrated theorem of Jones [Jon71] on the
converse to Smith theory, we construct an example of a compact Cp–space whose underlying
and fixed points spaces are Poincaré but which is not itself Cp–Poincaré, making good on our
warning a�er �eorem C.

We mention one more application, whose investigation was one of the main goals of this
project. In [CF64], Conner–Floyd made the following conjecture:

�ere cannot exist a periodic differentiable map of odd prime power period acting on a
closed oriented manifold V n, n > 0 preserving the orientation and possessing exactly
one fixed point.
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�e first proof of this statement (in fact, a slightly more general version) was given by Atiyah-
Bo� in [AB68] and soon a�er by Conner–Floyd [CF66] themselves. Many variations have
been proven since then, and we mention [Lüc88; ABK92] as further examples. Atiyah-Bo�’s
argument uses Atiyah–Singer’s index theory, whereas Conner–Floyd’s proof uses a particular
bordism spectrum. In all these cases, local structures in the geometric se�ings were used in
essential ways.

Inspired by the notion of a “gluing class” due to Lück which measures how the singular part
of a G–space is glued into the whole space, we consider such a construction in our se�ing
and use it to prove a very general version of the Conner–Floyd conjecture which in particular
yields the theorem of Atiyah–Bo� as an immediate corollary.

�eorem H (�eorem 5.2.2). Let p be an odd prime, G = Cpk for some k, and supposeX ∈ SωG
is a G–Poincare space such that the underlying space Xe ∈ Sω is connected, Z–orientable, and
has formal dimension (in the classical sense) d > 0. �en XG 6≃ ∗.

Our proof uses categorified Smith–theoretic methods afforded to us by �eorem B which
reduces the problem to various forms of Tate cohomology considerations. In particular, it is
fully homotopical and thus is of a “global” nature. We hazard a suggestion here that, apart
from being a new generalisation of a very classical result, �eorem H locates the explanation
of such phenomena in the global realm of homotopy theory as opposed to the local one of
geometry. Finally, let us point out that when paired together,�eorems G and H give a curious
partial dichotomy for Cpk–Poincaré spaces delineated by whether or not the underlying space
is contractible.

Before closing the introduction, we mention that since the theory of Poincaré duality here
was developed in the generality of Martini–Wolf’s parametrised category theory, it might be
interesting to explore the theory presently developed in the context of topoi other than the
equivariant ones. It could be said that the defining feature of our work is in exploiting various
kinds of geometric morphisms of topoi central to equivariant homotopy theory, and one can
imagine that this might also lead to fruitful lines of pursuit in other contexts.

Relations to other work

�e following works are some of the milestones that made this article possible. Wall intro-
duced the notion of a Poincaré space motivated by surgery theory, and developed their theory
in [Wal67]. Klein built up an impressive amount of theory related to Poincaré spaces, one
of his most influential concepts being that of the dualising spectrum [Kle01; Kle07]. His ap-
proachwas revisited by Lurie [Lur11, Lecture 26], Nikolaus-Scholze [NS18, Sec. I.4.1.] and Land
[Lan22, Appendix A], also providing an account of the “universality” of Klein’s construction.
An advantage of Klein’s approach is that the stable Spivak fibration of a Poincaré space admits
a categorically more natural description (as the dualising spectrum) than in Wall’s original
work, where it had to be constructed. �e theory of dualising spectra in general was coined
“twisted ambidexterity” by Cnossen in [Cno23].

Cnossen develops twisted ambidexterity in a general topos in terms of parametrised homo-
topy theory, and his approach is what we most closely follow. His motivation is a character-
isation of the G-category of G-spectra as the initial presentable, fibrewise stable G-category
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in which all compact G-spaces are twisted ambidextrous. An important predecessor in the
equivariant context is the book of May-Sigurdsson [MS06], which also gives an account of
equivariant Poincaré duality. A more classical approach to equivariant Poincaré duality in
terms of equivariant homology and cohomology (over the Burnside ring), much in the spirit of
Wall’s original definition can be found in the work of Costenoble-Waner [CW92; CW17]. For
finite groups G, a nonabelian version of equivariant Poincaré duality for so–called “V –framed
manifolds” has also been studied in [Zou23; HKZ24] which in particular implies the homolog-
ical version of Poincaré duality for such objects, c.f. [HKZ24, Prop. 4.1.4]. An approach to
Poincaré duality in the context of six-functor-formalisms is to be found for instance in [Sch23,
Lecture V].

Organisation of the paper

In §2, we introduce and develop the categorical underpinnings that will support the later sec-
tions. In more detail, we recall in §2.1 the Martini–Wolf theory of parametrised higher cat-
egories and take the opportunity to record some elementary observations about geometric
morphisms that we need. In §2.2, we specialise the preceding discussions to the equivariant
context and recall the standard gamut of equivariant operations on categories; this will lead
to the proof of �eorem A, categorifying the well–known geometric fixed points functor. �is
will be used later to articulate our results about fixed points of equivariant Poincaré spaces.

Having set up the requisite language, we turn to thema�er of defining and studying Poincaré
duality in §3 in the general context of parametrising over arbitrary topoi. We define and work
out the basic properties of Spivak data in §3.1; we then use this structure to define twisted
ambidexterity and Poincaré duality in §3.2 with respect to arbitrary coefficientB–categories. In
§3.3, we give several constructions one can perform on Spivak data and prove the main results
of the section in the form of �eorems 3.3.5 and 3.3.8 on basechanging coefficient categories
and �eorem 3.3.12 on basechanging the base topoi. Finally, we set up a theory of degrees for
maps between Poincaré spaces in §3.4.

We specialise the general parametrised theory in §3 to the equivariant situation in §4 for
compact Lie groups. A�er recording the specialisations of the notions in §4.1, we state and
prove several isotropy separation statements including �eorems B and C in §4.2, which will
form our main suite of techniques for dealing with fixed points of equivariant Poincaré spaces.
Following that, we provide a set of construction principles in §4.3 to generate new equivari-
ant Poincaré spaces from old ones and we supply in §4.4 geometrically natural examples of
Poincaré spaces. We then introduce the notion of gluing classes in §4.5 that will form the
main obstruction class for our applications in §5.2, and we lay down a rudimentary theory of
equivariant degrees in §4.6.

In the final §5, we use categorifiedSmith–theoreticmethods supported by the abstract theory
developed in the article to give two strands of applications: in §5.1, we use degree theory to
show �eorem F, which is in turn used to show �eorem G; then, in §5.2, we use the gluing
classes to prove �eorem H.

Beyond the main body of the article, we record in Appendix A several characterisations of
G–stability for presentable categories whenG is a compact Lie group, and we prove a standard
observation about reflecting pushout squares in Appendix B.
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2. Preliminaries

�e present section reviews the techniques that are essential to our approach to parametrised
Poincaré duality. In §2.1, we first recall some preliminaries on category theory parametrised
by a topos B. Special a�ention is given to presentable B-categories, and basechange methods
that allow us to switch the base topos along a geometric morphism. �ese basechange results
will be essential for the isotropy separation arguments in the equivariant context.

A�er that, §2.2 specialises to topoi related to the category SG of G-spaces, where G is a
compact Lie group. �is also features various change-of-group functors like induction, restric-
tion and coinduction along a homomorphism of compact Lie groups α : H → G, as well as the
theory of families. We give a quick recollection on the basics ofG-spaces. A�er that, we record
some facts on equivariant stability, preservation of equivariant stability under change-of-group
functors, and multiplicative properties of these constructions. We then prove the main result
of this section, namely �eorem A on Brauer quotients which categorifies the geometric fixed
points functors. �e section ends with some remarks on free actions that will be used later on.

2.1. Parametrised category theory

For the rest of this section, let B be a topos. For us, most topoi of interest will actually be
presheaf topoi, and for the purpose of this article the most important such will be that of
presheaves on the orbit categoryO(G) for a compact Lie groupG. As category theory internal
to B is essential to our considerations, we give a short recollection of the formalism developed
by Martini and Martini-Wolf in the series of articles [Mar22b; Mar22a; MW22; MW24]. Let
us mention here that the theory of categories parametrised by a topos was preceded by about
a decade by the theory of categories parametrised by presheaf topoi, pioneered by Barwick–
Do�o–Glasman–Nardin–Shah in [BDG+16b; BDG+16a; Nar16; Sha23].

Definition 2.1.1. A B–category C is a limit preserving functor C : Bop → Cat, i.e. a sheaf of
categories on B. Denote by CatB ⊆ PShCat(B) the full subcategory on B–categories. Maps
in CatB are called B-functors.

In [Mar22b], Martini produces an equivalence of categories

PShCat(B) ⊇ {Cat-valued sheaves on B} ≃ {Complete Segal objects in B} ⊆ sB.

It is worthwhile to study B–categories from both perspectives, the parametrised point of view
on the le� as well as the internal point of view on the right.

11



As our arguments will o�en require us to work with unparametrised categories and B–
categories at the same time, we follow the convention of underlining B categories, so a generic
B category is denoted C,D, E , . . . and so on. For example, the category of G–spaces will be
denoted by SG while theG–category ofG–spaces is wri�en S (or SG if we want to emphasise
that this is happening for the group G).

Example 2.1.2 (Presheaf topoi). For a small categoryT , consider the presheaf toposPSh(T ) =
Fun(T op,S). We writeCatT := CatPSh(T ) and call it the category of T–categories. Restriction
along the Yoneda embedding T →֒ PSh(T ) induces an equivalence CatT

≃−→ Fun(T op,Cat)
so a T–category is simply a functor T op → Cat. In particular for T = ∗, we see CatS ≃ Cat
and an S–category is just an ordinary (∞-)category. In the special case where G is a finite
group (or a compact Lie group) and T = O(G) is its orbit category, the category of transitive
G-sets (or homogeneousG–spaces), we obtain the categoryCatG := CatO(G) ofG–categories.

Example 2.1.3 (B-groupoids). �e Yoneda embedding B → Fun(Bop,Cat) restricts to a limit
preserving fully faithful functor B → CatB. An object in the essential image will be referred
to as a B-groupoid.

Switching to the internal picture, Martini [Mar22b, Section 3.1] also characterisedB-groupoids
as the complete Segal objects that are equivalent to constant simplicial objects in B. We will
not distinguish between B-groupoids and objects in B, so to avoid confusion we also denote
both with an underline byX,Y ,Z, . . . , except in the spectial case B = S .

With equivariant applications in mind, it will be important for us to change the base topos
B. �is can be done along geometric morphisms of topoi, defined as:

Definition 2.1.4. A geometric morphism is an adjunction between topoi f∗ : B ⇋ B′ :f∗
whose le� adjoint f∗ is le� exact, i.e. commutes with finite limits.

Construction 2.1.5 (Basechange along geometricmorphisms). Ageometricmorphism f∗ : B ⇋
B′ :f∗ of topoi induces an adjoint pair f∗ : CatB ⇋ CatB′ :f∗ where the right adjoint f∗ is
given by restriction along (f∗)op : Bop → (B′)op.

In the internal picture, the functor f∗ : B → B′ applied entrywise induces a functor on
simplicial objects sB → sB′, which commutes with finite limits. By [Mar22b, Lem. 3.3.1], it
restricts to a functor on complete Segal objects, and this is how to obtain f∗ : CatB → CatB′ .

Lemma 2.1.6. For a geometric morphism f∗ : B ⇋ B′ :f∗ of topoi, the functor f∗ : CatB →
CatB preserves finite limits. In fact, it preserves all limits if f∗ : B → B′ does.

Proof. �e induced functor sf∗ : sB → sB′ commutes with finite limits, and complete Segal
objects are closed under limits. �us, f∗ preserves finite limits by being a restriction of a finite
limit preserving functor to a category closed under (finite) limits.

Example 2.1.7 (Geometric morphisms from presheaves). A good supply of examples of ge-
ometric morphisms is given by considering a functor f : S → T of small categories. �en
restriction and right Kan extension along fop : Sop → T op induce a geometric morphism
f∗ : PSh(T ) ⇋ PSh(S) :f∗.
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Example 2.1.8 (Étale geometric morphisms). If B is a topos and X ∈ B, then so is the slice
category B/X . We have an ajunction

(πX)
∗ : B ⇋ B/X : (πX)∗ (3)

whose le� adjoint takes A ∈ B to A×X → X . Now B/X itself is a topos, and the adjunction
above is in fact a geometric morphism of topoi. Geometric morphisms equivalent (in the cate-
gory of topoi) equivalent to such of this kind are called étale geometric morphisms, see [Lur09,
Sec. 6.3.5.] for a detailed account. A special feature of étale geometric morphisms is that in the
adjunction (3) a further le� adjoint exists, and so (πX)

∗ commutes with all limits. �e further
le� adjoint forgets the map to X and is denoted by (πX)!. A useful characterisation of étale
geometric morphisms is given in [Lur09, Prop. 6.3.5.11.].

Note that if a geometric morphism f∗ : CatB ⇋ CatB′ : f∗ is étale, then Lemma 2.1.6 shows
that f∗ : CatB → CatB′ preserves all limits.

Example 2.1.9 (Constant categories and global sections). Recall from [Lur09, Prop. 6.3.4.1]
that there is a unique geometric morphism Const: S ⇋ B : Γ. It induces an adjunction
Const: Cat ⇋ CatB : Γ. We refer to Γ as the global sections functor. Explicitly, it is given
by evaluation at the terminal object in ∗ ∈ B. Since geometric morphisms from S are unique,
for any geometric morphism f∗ : B ⇋ B′ : f∗, we get a triangle of geometric morphisms

Cat

CatB CatB′

constB′

ΓB′constB ΓB
f∗

f∗

In particular, note that constB′ ≃ f∗ constB and ΓBf∗ ≃ ΓB′ .

Example 2.1.10 (Internal functor categories and 2-categorical structures). �e categoryCatB
is cartesian closed. �is means that for any B–category C the product functor−×C : CatB →
CatB admits a right adjoint Fun(C,−) : CatB → CatB. We call Fun(C,D) the B–category of
B-functors and denote its global sections (in the sense of Example 2.1.9) byFunB(C,D). Maps in
FunB(C,D) are called B-natural transformations. FunB can be enhanced to a Cat-enrichment
of CatB making CatB into a 2-category, see [Mar22b, Remark 3.4.3].

Definition 2.1.11 (Adjoint functors). Using the 2-categorical structure on CatB, one can de-
fine an adjoint pair of B-functors as an internal adjunction in CatB. Explicitly, an adjunction
consists of a pair of B-functors L : C ⇋ D : R as well as a pair of natural transformations
η : idC → RL, ǫ : LR → idD . satisfying the triangle identities in the sense that ǫL ◦ Lη and
Rǫ ◦ ηR are equivalent to the respective identities.

We recall here the key standard categorical concept that will underpin most this article.

Construction 2.1.12. Suppose we have a commuting square of B–categories
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C D

C′ D′

g

f

g′

f ′

such that f , f ′ admit a right adjoints h, h′ respetively. �en we obtain a transformation

BC∗ : gh
ηgh−−→ h′f ′gh ≃ h′g′fh h′g′ǫ−−−→ h′g′

called the right Beck–Chevalley transformation. Similarly, if f, f ′ admit le� adjoints ℓ, ℓ′ respec-
tively, then we obtain a transformation

BC! : ℓ
′g′

ℓ′g′η−−−→ ℓ′g′fℓ ≃ ℓ′f ′gℓ ǫgℓ−−→ gℓ

called the le� Beck–Chevalley transformation. We will o�en omit the words “le�” and “right”
when the context is clear. �ese transformations enjoy excellent functoriality properties, and
we refer the reader to [CSY22, §2.2] for a good source on these ma�ers.

�e following is an important class of Beck–Chevalley transformations.

Terminology 2.1.13 (Projection formula). Let J be a B–category and r : J → ∗ the unique
map. We say that a symmetric monoidal B–category C satisfies the J-projection formula if it
admits J-shaped colimits and the Beck–Chevalley transformation

PFJ! : r!(ξ ⊗ r∗(−))→ r!ξ ⊗ (−)

of functors C → C is an equivalence for all ξ ∈ CJ .
In [MW24, Prop. 3.2.9.] it is shown, using work on relative adjunctions due to Lurie, that a

functor R : C → D admits a le� adjoint if and only if the following conditions are satisfied:

1. For every objectX ∈ B the map R(X) : C(X)→ D(X) admits a le� adjoint L(X).

2. For every map f : X → Y in B the Beck–Chevalley transformation f∗L(X)→ L(Y )f∗

is an equivalence.

Example 2.1.14 (Limits and colimits). A B–category C is said to admit I-shaped B-(co)limits
if the restriction functor I∗ : C → Fun(I, C) along I : I → ∗ admits a right (resp. le�) adjoint.
�e right adjoint will usually be denoted by I∗, the le� adjoint by I!. Note that for example,
the adjunction unit for I! ⊣ I∗ produces for each F ∈ FunB(I, C) a natural transformation

F → I∗I!F ∈ FunB(I, C)

which should be thought of as analogous to the diagram defining a colimit in unparametrised
category theory.

Example 2.1.15 (Symmetric monoidal categories). A symmetric monoidal B–category is a
commutative monoid in CatB. So CMon(CatB) is the category of symmetric monoidal B–
categories and symmetric monoidal functors. Notice that CMon(CatB) is equivalent to the
category of CMon(Cat)–valued sheaves on B.
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Geometric and étale morphisms of topoi

We record here further miscellaneous elementary observations about geometric and étale mor-
phisms that will be relevant to us later. Since this will just be a litany of minor technical results,
the reader is advised to skip this on first reading and return to it as needed.

Lemma 2.1.16. Let f∗ : B ⇋ B′ :f∗ be a geometric morphism of topoi. �ere is an equivalence,
natural in X ∈ B and C ∈ CatB′ of functors f∗Fun(f∗X, C) ≃ Fun(X, f∗C). Moreover, if C
were a symmetric monoidal B–category, then this equivalence naturally upgrades to a symmetric
monoidal one.

Proof. Note that the diagram

CatB′ CatB′
/f∗X

CatB′

CatB CatB/X
CatB

(πf∗X)∗

f∗

(πf∗X)∗

f∗ f∗

(πX)∗ (πX)∗

(4)

commutes as the corresponding diagram

B′ B′/f∗X B′

B B/X B

(πf∗X)∗

f∗

(πf∗X)∗

f∗ f∗

(πX)∗ (πX)∗

of topoi commutes (this can be checked a�er passing to le� adjoints everywhere where it is easy
to see, see e.g. [Lur09, Remark 6.3.5.8.]). Now the compositeCatB

(πX)∗−−−−→ CatB/X

(πX)∗−−−−→ CatB
sends C ∈ CatB to Fun(X, C) = limX C which proves the first part of the statement.

For the part about symmetric monoidality, note that all functors in (4) are finite limit pre-
serving. As the forgetful functors CMon(CatB) → CatB are limit preserving, this shows
that the equivalence f∗Fun(f∗X, C) ≃ Fun(X, f∗C) from the first part naturally refines to a
symmetric monoidal one.

Lemma 2.1.17. Let f∗ : B ⇋ B′ :f∗ be an étale morphism of topoi. �ere is an equivalence,
natural in X ∈ B and C ∈ CatB of functors f∗Fun(X, C) ≃ Fun(f∗X, f∗C). Moreover, if C
were a symmetric monoidal B–category, then this equivalence naturally upgrades to a symmetric
monoidal one.

Proof. �e proof is similar to Lemma 2.1.16. As f is étale, it is equivalent to a functor of the
form (πY )

∗ : B ⇋ B/Y : (πY )∗ for some Y ∈ B. Observe that there is a commutative diagram

CatB CatB/X
CatB

CatB/Y
CatB/X×Y

CatB/Y

(πX)∗

(πY )∗

(πX)∗

(πY )∗ (πY )∗

(πX)∗ (πX)∗

(5)
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coming from the commutative diagram of topoi

B B/X B

BY B/X×Y B/Y .

(πX)∗

(πY )∗

(πX)∗

(πY )∗ (πY )∗

(πX)∗ (πX)∗

�e le� square here obviously commutes and commutativity of the right square is easy to
check a�er passing to le� adjoints. Now the top right composite sends C to f∗Fun(X, C)
while the bo�om le� composite sends it to Fun(f∗X, f∗C). For the statement about symmet-
ric monoidality, again note that all functors in (5) are product preserving and use the same
argument as in the proof of Lemma 2.1.16.

Lemma 2.1.18 (Pushforward of parametrised (co)limits). Let f∗ : B ⇋ B′ :f∗ be a geometric
morphism of topoi. Consider X ∈ B and a B′–category C which admits f∗X-shaped limits
and colimits. �en f∗C admits X-shaped limits and colimits. Furthermore, the equivalence from
Lemma 2.1.16 induces an identification of adjoint triples

f∗Fun(f∗X, C) f∗C

Fun(X, f∗C) f∗C.

f∗r!

f∗r∗
f∗r∗

r!

r∗
r∗

(6)

Proof. First note that (6) commutes with the le�wards pointing arrows. Since the functor
f∗ : CatB′ → CatB preserves adjunctions (see e.g. [MW24, Cor. 3.1.9.]), it follows that f∗r! and
f∗r∗ define le� and right adjoints to r∗ and (6) also commutes with the rightwards pointing
arrows.

Lemma 2.1.19 (Pullback of parametrised (co)limits). Let f∗ : B ⇋ B′ :f∗ be an étale morphism
of topoi. Consider X ∈ B and a B–category C which admits X-shaped limits and colimits. �en
f∗C admits f∗X-shaped limits and colimits. Furthermore, the equivalence from Lemma 2.1.17
induces an identification of adjoint triples

f∗Fun(X, C) f∗C

Fun(f∗X, f∗C) f∗C.

f∗r!

f∗r∗
f∗r∗

r!

r∗
r∗

(7)

Proof. �e proof is identical to Lemma 2.1.18, using Lemma 2.1.17 instead of Lemma 2.1.16.

Lemma 2.1.20. Let f∗ : B ⇋ B′ :f∗ be a geometric morphism of topoi. Let J ∈ CatB and
C,D ∈ CatB′ , and let α : Fun(f∗J, C) × constB′ ∆1 → D be a natural transformation and

f∗α ◦ (id × η) : Fun(J, f∗C) × constB ∆1 → Fun(J, f∗C) × f∗f∗ constB ∆1 f∗α−−→ f∗D the
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associated transformation. �en α is a natural equivalence if and only if f∗α ◦ (id × η) is a
natural equivalence.

Proof. By using that ΓBf∗ ≃ ΓB′ from Example 2.1.9, the two putatively equivalent statements
are equivalent to the condition that the natural transformation FunB′(f∗J, C)×∆1 → ΓB′D
of unparametrised categories is a natural equivalence.

Notation 2.1.21. Recall that there is the Picard space functor Pic : CMon(Cat)→ CGrp(S)
which takes as input a symmetric monoidal category and outputs a space of invertible objects.
�is functor is right adjoint to the inclusion CGrp(S) →֒ CMon(S) →֒ CMon(Cat) and is
corepresented as Pic(−) ≃ MapCMon(Cat)(Ω

∞ S,−).

Lemma 2.1.22. Let f∗ : B ⇋ B′ :f∗ be a geometric morphism. �en we have an equivalence of
functors Pic(f∗−) ≃ f∗Pic(−) : CMon(CatB′) → CGrp(B). If f∗ ⊣ f∗ were moreover étale,
then we also have an equivalence f∗Pic(−) ≃ Pic(f∗−) : CMon(CatB)→ CGrp(B′).

Proof. �e first part is an immediate consequence of the fact that the diagram of le� adjoints

CMon(CatB) CGrp(B)

CMon(CatB′) CGrp(B′)
f∗ f∗

commutes, which is clear. For the second part, we note thatPic(−) : CMon(CatB)→ CGrp(B)
is given byMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatB(constB Ω∞ S,−). �us, since f∗ ⊣ f∗ was étale, we get that f∗Pic(−) ≃
f∗MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatB(constB Ω∞ S,−) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatB′ (constB′ Ω∞ S, f∗−) ≃ Pic(f∗−).

Corollary 2.1.23. Let f∗ : B ⇋ B′ :f∗ be a geometric morphism of topoi, X ∈ B, D ∈
CMon(CatB′), and E ∈ CMon(CatB).

(1) A functorX → f∗D has the property that it factors through Pic(f∗D) →֒ f∗D if and only
if the associated functor f∗X → D factors through Pic(D) →֒ D,

(2) Suppose f∗ ⊣ f∗ is moreover étale. If a functor X → E factors through Pic(E), then
f∗X → f∗E factors through Pic(f∗E).

Proof. Part (1) is an immediate consequence of the equivalence

MapCatB(constB ∗, f∗Fun(f
∗X,Pic(D))) ≃ MapCatB′ (constB′ ∗,Fun(f∗X,Pic(D)))

and the computation

Fun(X,Pic(f∗D)) ≃ Fun(X, f∗Pic(D)) ≃ f∗Fun(f∗X,Pic(D))

where the first equivalence is by Lemma 2.1.22 and the second by Lemma 2.1.16. For part (2),
if we have a factorisation X → Pic(E) →֒ E , then applying f∗ to this and using the second
part of Lemma 2.1.22 gives the required factorisation.
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Proposition 2.1.24. Let f∗ : B ⇋ B′ :f∗ be a geometric morphism of topoi, X ∈ B, D ∈
CMon(CatB′), and E ∈ CMon(CatB).

(1) �e symmetric monoidal B′–category D satisfies the f∗X–projection formula if and only
if the symmetric monoidal B–category f∗D satisfies theX–projection formula,

(2) If f∗ is fully faithful, then the colimit X! : Fun(X, f∗D) → f∗D (resp. limit X∗) exists if
and only if the colimit (f∗X)! : Fun(f

∗X,D)→ D (resp. limit (f∗X)∗) does,

(3) If f∗ ⊣ f∗ is moreover étale, then if E satisfies theX–projection formula, then f∗E satisfies
the f∗X–projection formula.

Proof. For (1), by the symmetric monoidal identification Lemma 2.1.16 and the identification of
adjunctions Lemma 2.1.18, we see that for a fixedA ∈ D, applying f∗ to the projection formula
transformation on the le� in

Fun(f∗X,D) D Fun(X, f∗D) f∗D⇓ PF

(f∗X)!(−⊗(f∗X)∗A)

(f∗X)!(−)⊗A

⇓ PF

X!(−⊗X∗A)

X!(−)⊗f∗A

yields the projection formula transformation on the right. �us, by Lemma 2.1.20, we see that
the le� projection formula transformation is an equivalence if and only if the right one is.

For (2), that the existence of (f∗X)! implies the existence of X! is by Lemma 2.1.18. For
the converse, we use again the diagram Lemma 2.1.18 together with the fact f∗ preserves
adjunctions by [MW24, Cor. 3.1.9] and that f∗f∗ ≃ id by fully faithfulness.

Part (3) is proved similarly as in (1), but using Lemma 2.1.17 and Lemma 2.1.19 instead.

Presentability

Presentable categories are useful for many reasons, among them being that they have all
(co)limits, fulfill the adjoint functor theorem, and have a symmetric monoidal structure coming
from the Lurie tensor product. Presentability in the parametrised context was first studied in
[Nar17] and later on in [Hil22]. Subsequently, Martini-Wolf [MW22] introduced and developed
amuchmore general theory forB–categories, and this is the theory thatwewill use. Recall that
presentable categories are usually large categories. To talk about presentable B–categories, we
define a large B–category to be a sheaf of large categories on B, i.e. a limit preserving functor
Bop → Ĉat. �e very large category of large B–categories will be denoted by ĈatB.

Definition 2.1.25. A B–category C is called fibrewise presentable if the map C : Bop → Ĉat
factors through PrL ⊂ Ĉat. Furthermore, C is called presentable if it is fibrewise presentable
and the following conditions hold:

1. For any map f : X → Y in B the map f∗ : C(Y )→ C(X) admits a le� adjoint f!.
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2. For any pullback square
X ′ X

Y ′ Y

g′

f ′ f

g

(8)

in B the Beck–Chevalley transformation f ′! (g′)∗ → g∗f! between functors C(X) →
C(Y ′) is an equivalence.

�e above definition was chosen because it is easy to state, but there are many useful ways
to characterise presentable B–categories, see [MW22, �m. 6.2.4].

Definition 2.1.26. A map F : C → D between presentable B–categories is said to preserve
B-colimits if it satisfies the following conditions:

1. For any objectX ∈ B the map F (X) : C(X)→ D(X) preserves colimits.

2. For any map f : X → Y in B the Beck–Chevalley transformation f!F (X)→ F (Y )f! is
an equivalence.

If C is presentable, then f∗ : C(Y ) → C(X) also admits a right adjoint f∗. By passing to
right adjoints one can see that for any pull back square (8) the Beck–Chevalley transformation
g∗f∗ → (f ′)∗(g′)∗ is an equivalence, see e.g. [Hai22, Observation 1.6.2].

Definition 2.1.27. Denote byPrLB the (nonfull) subcategory of ĈatB of presentableB–categories
andB-colimit preserving functors. WewriteFunLB(C,D) for the fullB-subcategory ofFun(C,D)
of colimit preserving functors. �e subcategories PrLB/X

⊂ ĈatB/X
assemble into the B–

category PrLB ⊂ ĈatB of presentable B–categories.

�e B–category PrLB admits all B-limits and B-colimits [MW22, Cor. 6.4.11.]. Moreover, for
two presentable B–categories C and D, their functor category FunL(C,D) is presentable.

Construction 2.1.28 (Tensor product of presentable categories). Given two presentable B–
categories C and D, their tensor product C ⊗ D is a presentable B–category together with a
functor C × D → C ⊗ D which preserves colimits in each variable such that precomposition
along it induces an equivalence FunLB(C ⊗D, E)

≃−→ FunLB(C,FunL(D, E)) for any presentable
B–category E . �is equips PrLB with the structure of a closed symmetric monoidal category. It
can even be extended to a symmetric monoidal structure on the B–category PrLB, see [MW22,
Proposition 8.2.9]. Furthermore, the tensor product − ⊗ − : PrLB × PrLB → PrLB preserves
B-colimits in each variable.

Definition 2.1.29. A presentably symmetric monoidal B–category is a commutative algebra
C ∈ CAlg(PrLB). Explicitly, this means that C is a symmetric monoidal B–category which is
presentable such that the tensor product − ⊗ − : C × C → C preserves B-colimits in both
variables. �e la�er condition means that:

1. For allX ∈ B the tensor product C(X)× C(X)→ C(X) preserves colimits.
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2. For all maps f : X → Y in B and all A ∈ C(X) and B ∈ C(Y ) the Beck–Chevalley
transformation f!(A⊗ f∗B)→ f!A⊗B is an equivalence.

To construct examples of presentable B–categories, the following proposition is useful.

Proposition 2.1.30 ([MW22, Section 8.3]). �ere is a symmetric monoidal colimit preserving
fully faithful functor − ⊗B Ω: ModB(PrL) →֒ PrLB whose right adjoint Γlin refines the global
sections functor Γ: PrLB → PrL.

Lemma 2.1.31 (Presentablility and basechange). Let f∗ : B ⇋ B′ :f∗ be a geometric morphism.
�en the functor f∗ : ĈatB′ → ĈatB restricts to a functor f∗ : PrLB′ → PrLB. It admits a unique lax
symmetric monoidal refinement f⊗∗ : PrL,⊗B′ → PrL,⊗B li�ing the lax symmetric monoidal functor

PrL,⊗B′ → Ĉat
×
B′

f∗−→ Ĉat
×
B along the lax symmetric monoidal functor PrL,⊗B → Ĉat

×
B .

Proof. Recall that f∗ : ĈatB′ → ĈatB is given by precomposition with f∗ : Bop → (B′)op.
Hence, the first condition in Definition 2.1.25 is immediate. �e second condition follows from
the fact that f∗ : Bop → (B′)op also preserves finite limits, and in particular pullbacks.

For the statement about lax symmetricmonoidality, wewill freely use the terminologies from
[MW22]. First observe that as f∗ : ĈatB′ → ĈatB preserves products, it is symmetric monoidal
with respect to the cartesian symmetric monoidal structure on both sides. Recall from [MW22,
Section 8.2] that PrL,⊗B′ # Ĉat

×
B′ is the subcategory generated by presentable B′–categories

and locally multilinear functors. We know from the first part that f∗ : ĈatB′ → ĈatB pre-
serves presentable categories and multilinear functors between those. As f∗ : ĈatB → ĈatB′

preserves colimits and finite limits it preserves effective epimorphisms. From this it follows
that f∗ also preserves locally multilinear functors.

Lemma 2.1.32 (Presentability and fully faithful basechange). Let f∗ : B ⇋ B′ :f∗ be a geo-
metric morphism of topoi and assume that f∗ is fully faithful. �en the square

PrLB′ PrLB

ĈatB′ ĈatB

f∗

" "
f∗

is cartesian. In particular, f∗ : PrLB′ → PrLB is fully faithful.
If, in addition, the image of f∗ : PrLB′ → PrLB is closed under ⊗, then the maps f∗C ⊗ f∗D →

f∗(C ⊗ D) coming from the lax symmetric monoidal structure are equivalences.

Proof. We have to show that a B′–category C is presentable if f∗C is presentable and similarly
that a B′-functor F : C → D is B′-colimit preserving if f∗F is B-colimit preserving. Notice
that the counit map f∗f∗ → id is an equivalence as f∗ is fully faithful. �is implies that for
X ∈ B we have f∗C(f∗X) = C(f∗f∗X) ≃ C(X). �e statements about presentablility and
colimit preservation now directly follow from the definitions.

For the statement about the lax monoidal multiplication map, observe that for presentable
B′–categories C,D, E , the functor f∗ induces an equivalence between B′-multilinear functors
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C×D → E andB-multilinear functors f∗C×f∗D → f∗E : It is clear that if g is multilinear, then
f∗g is multilinear while the converse follows from essential surjectivity of f∗. In particular,
precomposition along the map f∗C ⊗ f∗D → f∗(C ⊗ D) induces an equivalence

FunL(f∗(C ⊗ D), f∗E) ≃−→ FunL(f∗C ⊗ f∗D, f∗E)

from which the claim follows.

Lemma 2.1.33 (Presentability and étale basechange). For X ∈ B, the basechange adjunction
π∗X : ĈatB ⇋ ĈatB/X

: (πX)∗ along the étale geometric morphism π∗X : B ⇋ B/X : (πX)∗
restricts to an adjunction π∗X : PrLB ⇋ PrLB/X

: (πX)∗. �e le� adjoint π∗X : PrLB → PrLB/X

admits a unique symmetric monoidal refinement which li�s the lax symmetric monoidal functor

PrLB → ĈatB
π∗
X−−→ ĈatB/X

.

Proof. �at π∗X : ĈatB ⇋ ĈatB/X
: (πX)∗ restricts to an adjuction π∗X : PrLB ⇋ PrLB/X

: (πX)∗
is shown in [Cno23, Corollary 2.14]. For the statement about symmetric monoidality, note that
(πX)∗ : ĈatB/X

→ ĈatB is product preserving as it admits the le� adjoint (πX)!. In particular,
we obtain the symmetric monoidal unit map PrLB → (πX)∗π∗XPr

L
B which on global sections

gives the desired symmetric monoidal refinement of (πX)∗ : PrLB → PrLB/X
.

C-linear categories
Here we recall some facts about C-linear categories and the classification of C-linear functors
from [Cno23, Section 2.2].

Definition 2.1.34. (C-linear categories) Consider a presentably symmetric monoidal category
C ∈ CAlg(PrLB). A C-linear category is a le� C-module in PrLB. �e category of C-linear
categories and C-linear functors is defined as the categoryModC(PrLB).

�e categories Modπ∗
XC(PrLB/X

) assemble into the B–category ModC(Pr
L
B). �e relative

tensor product from [MW22, Proposition 7.2.7] equips this with the structure of a symmetric
monoidal B–category which is B-complete and B-cocomplete such that the tensor product is
bilinear. �is symmetric monoidal structure onModC(PrLB) is closed and we denote the inter-
nal mapping object by FunC(−,−). As in [Mar22b, Remark 3.4.3] it endowsModC(PrLB) with
a 2-categorical structure. �is allows us to talk about internal adjunctions inModC(PrLB). �e
following lemma gives convenient criteria for a C-linear functor to be an internal le� adjoint.

Lemma 2.1.35 ([Cno23], Lem. 2.21). A C-linear functor F : D → E is an internal le� adjoint in
ModC(PrLB) if and only if its right adjointG preserves fibrewise colimits and satisfies the projection
formula, i.e. for eachX ∈ B and e ∈ E(X) the mapPF∗ : c⊗G(e)→ G(c⊗e) is an equivalence.

Definition 2.1.36 (Free and cofree categories, [Cno23, Definition 2.23]). ForD ∈ ModC(PrLB)
and an objectX ∈ B we define the cofree C-linear B–category on X by DX := limX D where
the B-limit is formed over the constant diagramX → ModC(Pr

L
B) with value D.
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Note that a�er forge�ing the C-linear structure, DX is given by Fun(X,D) as the forgetful
functor ModC(Pr

L
B) → CatB preserves B-limits. If D ∈ CAlg(ModC(PrLB)) is a C-algebra,

then DX has a canonical pointwise symmetric monoidal structure as the forgetful functor
CAlg(ModC(Pr

L
B))→ ModC(Pr

L
B) preserves B-limits.

�e following theorem is crucial for the development of Poincaré duality in a presentable
context, even in classical terms. It should be viewed as a generalisation of the fact that for a
small category for a space X there is an equivalence FunL(SX ,S) ≃ SX , that is sometimes
referred to as Morita theory.

�eorem2.1.37 (Classification of C-linear functors, [Cno23,�eorem2.32]). Let C ∈ CAlg(PrLB)
and X ∈ C. �en there is an equivalence of C-linear B–categories

CX → FunC(CX , C), ζ 7→ r!(− ⊗ ζ).

Here, the map in the statement of the theorem is adjoint to the map CX ⊗ CX → CX r!−→ C .
Proposition 2.1.38 (Basechange of module categories, [MW22, Prop. 7.2.7]). Suppose that
f : C → D is a map inCAlg(PrLB). �en the restriction functor f∗ : ModD(Pr

L
B)→ ModC(Pr

L
B)

admits a symmetric monoidal le� adjoint −⊗C D : ModC(Pr
L(B))→ ModD(Pr

L(B))

Proof. Apply [MW22, Proposition 7.2.7] to the case R = D ∈ CAlg(ModC(Pr
L
B)).

2.2. Equivariant categories and the theory of families

Change of group functors

We now specialise the previous general theory to the equivariant se�ing for a compact Lie
groupG. We set SG := PSh(O(G)), the category ofG–spaces, whereO(G) is the orbit category
of G. �is is a topos, and we write CatG := CatSG

≃ Fun(O(G)op,Cat) for the category of
G–categories. �e value of aG-category C at an orbitG/H will be denoted by C(G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H) or CH .
Recollections 2.2.1. Recall that the category of locally compact Hausdorff topological G–
spaces is enriched over topological spaces by employing the compact–open topology on mor-
phism sets. �e full subcategory on the homogenous G–spaces, that is Hausdorff spaces with
a transitive G-action, is equivalent to the full subcategory spanned by the orbits G/H , where
H ≤ G is a closed subgroup. By O(G) we denote the associated (∞-) category which we call
the orbit category of G.

Later we will need the following standard facts: For any morphism α : H → G of compact
Lie groups, there is an induction functor

IndOα : O(H) −→ O(G), S 7→ G×H S.

If α : H −→ G is an epimorphism, this admits the restriction functor

ResOα : O(G)→ O(H)

as a fully faithful right adjoint. Both functors and the adjunction can be constructed on the level
of topological categories. For a closed subgroup H ≤ G, induction induces an equivalence of
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categories O(H)
≃−−→ O(G)/(G/H) whose inverse sends T → G/H to the homogeneous H-

space given as the fibre over eH ∈ G/H .
More information on orbit categories of compact Lie groups can be found in [LNP22, Sec. 6]

or [Bre72, Chapters I.3 and I.4].

Notation 2.2.2 (Restrictions, (co)inductions, and (co)inflations). Consider a continuous ho-
morphism α : K → G of compact Lie groups. We obtain the two adjunctions

CatH CatG,

Coindα

Indα

Resα

called the induction, restriction, and coinduction functors, respectively. Here, Resα is given by
restriction along IndOα : O(K) → O(G) and Indα and Coindα are given by le� and right
Kan extensions. �e functors Resα and Coindα restrict to a geometric morphism of topoi
Resα : SG ⇋ SK : Coindα. �e two main classes of examples are:

(a) Ifαwere an injection ι : H  G, then the geometricmorphismResι : SG ⇋ SH : Coindι
is étale. We will o�en also write Indι,Resι, and Coindι as IndGH , ResGH , and CoindGH re-
spectively;

(b) If α were an epimorphism θ : G ։ G/N =: Q (so that N ≤ G is a closed normal
subgroup), then Coindθ admits a further right adjoint which we write as Coinflθ given
by right Kan extension along the fully faithful right adjoint ResOθ to IndOθ . In particular,
Resθ = (IndOθ )

∗ ≃ (ResOθ )! and Coinflθ = (ResOθ )∗ are fully faithful in this epimorphic
case. Note also that in this case, Coindθ ≃ (ResOθ )

∗, i.e. Coindθ may be computed by
restricting along ResOθ : O(G) → O(K). We summarise in the following diagram the
special notations we will also use in the epimorphic case as follows:

CatQ CatG,

Coinflθ

(−)N :=Coindθ

N\(−):=Indθ

Inflθ:=Resθ

�e maps N\(−), Inflθ, (−)N , and Coinflθ are called the genuine quotient, inflation,
genuine fixed points, and coinflation, respectively. We o�en also write Inflθ and Coinflθ
as InflQG and CoinflQG respectively.

Remark 2.2.3. From the le� Kan extension formula defining the genuine quotient, we obtain

(N\C)(Q/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/H) ≃ colim
G/K, Q/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/H→N\(G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K)

C(G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K). (9)
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Stability

In the parametrised theory, the theory of stability is more subtle than in the nonparametrised
se�ing. �e most naive version is the following, equivalent characterisations of which can be
found in [MW22, Section 7.3].

Definition 2.2.4. A B–category C is called fibrewise pointed (resp. stable) if the functor
C : Bop → Cat factors through the subcategoryCat∗ ⊂ Cat of pointed categories and pointed
functors (resp. Catst ⊂ Cat of stable categories and exact functors). We denote by CatptdB
(resp. CatstB ) the category of fibrewise pointed (resp. stable) categories and pointed (resp. ex-
act) functors.

As a parametrised analogue of the category of spectra, there is theG-category of G-spectra
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG whose value at an orbit G/H is given by the category SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG(G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H) = SpH of genuine
H-spectra together with restriction maps between them, see Definition A.0.1 for a definition.
IfG is clear form the context, we will also just write SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp for SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG. In addition to being fibrewise
stable, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG satsifies some form of theWirthmüller isomorphism in the sense that indexed prod-
ucts and coproducts over orbits G/H are canonically equivalent. �is was used by Nardin in
[Nar17] to define the notion ofG-stability for finite groupsG. We will not recall the definition
here and refer the interested reader to [Nar17] or [Hil22, Section 4.1] for an exposition of this
theory. In Appendix A we generalise this to define G-stability for presentable G-categories.
�is will be sufficient for our purposes.

Notation 2.2.5. For a compact Lie group G, we denote by PrL,G−st
G ⊆ PrL,stG ⊆ PrLG the full

subcategories on G-stable and fibrewise stable presentable G-categories. For a finite group G,
we also denote by CatG−st

G ⊂ CatG the subcategory of G-stable G-categories and G-exact
functors.

Now we study the behaviour ofG-stability with respect to standard equivariant operations.

Lemma 2.2.6 (Coinduction and stability). Let α : K → G be a continous group homomor-
phism of compact Lie groups. �e lax symmetric monoidal functor Coindα : PrLK → PrLG from
Lemma 2.1.31 restricts to a lax symmetric monoidal functor Coindα : Pr

L,K−st
K → PrL,G−st

G

Proof. We apply�eorem A.0.5 (3) to show thatCoindα sendsK-stable toG-stable categories.
Suppose that C is a K-stable category and V is a finite dimensional G-representation. By
Lemma 2.1.18 we can identify the maps SV ⊗− and Coindα(SResα V ⊗−) on Coindα C. But
as Resα V is a finite dimensional K-representation, K-stability of C implies that the second
map is invertible.

Lemma 2.2.7 (Restriction and stability). For an injective continuous homomorphismα : H  G
of compact Lie groups, the adjunction Resα : PrLG ⇋ PrLH : Coindα from Lemma 2.1.33 restricts
to an adjunction Resα : Pr

L,G−st
G ⇋ PrL,H−st

H : Coindα with symmetric monoidal le� adjoint

Proof. By Lemma 2.2.6 CoindGH restricts to a functor between equivariantly stable categories.
To show that restriction ResGH preserves equivariantly stable categories we employ �eo-
rem A.0.5. Recall that, by the Peter-Weyl theorem, for any finite dimensionalH-representation
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W there is a finite dimensional G-representaiton V such that W is a summand of ResGH V .
Now, if C is a G-stable category, then SV ⊗ − is invertible on C. By Lemma 2.1.19, we can
identify the two maps ResGH(SV ⊗ −) and SResGH V ⊗− on ResGH C. �is shows that SResGH V

and thus also SW act invertibly on ResGH C .

Lemma 2.2.8 (Coinflation and stability). Let θ : G։ Q = G/N be a continuous epimorphism
of compact Lie groups. �en the lax symmetric monoidal functor Coinflθ : PrLQ → PrLG from
Lemma 2.1.31 restricts to a lax symmetric monoidal functor Coinflθ : Pr

L,Q−st
Q → PrL,G−st

G .

Proof. We apply �eorem A.0.5 to show that Coinflθ sends Q-stable to G-stable categories.
Suppose that C is a Q-stable category and V is a finite dimensional G-representation. By
Lemma 2.1.18 we can identify themapsSV ⊗− andCoinflθ(Coindθ SV ⊗−) onCoinflθ C . Note
thatCoindθ SV ≃ SV

N is the representation sphere of the finite dimensionalQ-representation
carrying the residual action. By Q-stability of C, this map is invertible.

Construction 2.2.9 (Spectral restriction). Let α : K → G be a homomorphism of compact Lie
groups. Lemma 2.2.6 endows Coindα : PrL,K−st

K → PrL,G−st
G with a lax symmetric monoidal

structure. �is endows Coindα SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK with the structure of a commutative algebra in PrL,G−st
G .

In particular, using that SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is the initial commutative algebra inPrL,G−st
G , we obtain the sym-

metricmonoidalG-colimit preserving functorResα : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG → Coindα SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK called the restriction
map. If α = θ : G ։ Q is an epimorphism, we also call Resθ = Inflθ : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpQ → Coindθ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG
the inflation map.

Categorical isotropy separation

At various places in this article we will use isotropy separation arguments. For this, we recall
here some constructions on G–categories given a family F of subgroups of G. Recall that a
family of subgroups of a compact Lie group G is a collection of closed subgroups of G which
is closed under subgroups and conjugation.

Note that conjugacy classes of subgroups ofG correspond bijectively to isomorphism classes
of objects in O(G). Given any collection S of closed subgroups of G that is closed under
conjugacy, we set OS(G) ⊂ O(G) to be the full subcategory on thoseG/H withH ∈ S. One
important example of this is the collection S = Fc given by the collection of all subgroups
which lie in the complent of a familyF . �is never forms a family, except in the extreme cases
of the empty family or the family of all subgroups.

Example 2.2.10 (A family for quotients). Suppose that N ≤ G is a closed normal subgroup
of G. An interesting family is provided by ΓN := {H ≤ G | N � H}. �en ΓcN consists of
those H ≤ G with N ≤ H . Let α : G → G/N denote the quotient homomorphism. Observe
that the adjunction IndOα ⊣ ResOα restricts to an equivalence of categories

IndOα : OΓc
N
(G) ≃ O(G/N) : ResOα .

Example 2.2.11 (A family for free actions). Suppose again that N ≤ G is a closed normal
subgroup of G. Another family is given as FN := {H ⊂ G | H ∩N = {1}}. Note that when
N 6= {1}, there is an inclusion of families FN ⊆ ΓN . �us, there is an inclusion ΓcN ⊆ FcN .
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Definition 2.2.12. LetG be a compact Lie group and S a collection of subgroups, closed under
conjugacy. �en we write CatG,S := Fun(OS(G)op,Cat) for the category of S–categories.

If F is a family of closed subgroups of G, we have the following variant of the standard
isotropy separation sequence relating the categories CatG, CatG,F and CatG,Fc . �is will
allow us to “separate” our problems into orthogonal pieces, one part concentrated in Fc and
the part which is F–local.

Construction 2.2.13 (Isotropy separation for G–categories). Let F be a family of subgroups
of a compact Lie group G and denote by b : OF (G) →֒ O(G) and s : OFc(G) →֒ O(G) the
inclusions. We obtain the adjoint triples

CatG,Fc CatG CatG CatG,F

s!

s∗

s∗ b∗

b!

b∗

by restriction andKan extension along s and b. Withoutmaking this precise, let usmention that
these can be made into an unstable recollement using the cofibre sequenceEF+

b−→ S0 → ẼF
of pointed G–spaces. For example, the map b∗ : CatG → CatG,F is equivalently given by
taking the global sections on the map b∗ : Cat→ Fun(EF ,Cat).

Unwinding the right Kan extension formula, one obtains for example that s∗ is given by

(s∗C)H =

{
CH , H /∈ F
∗, H ∈ F .

Notice that the adjunction b∗ ⊣ b∗ is the basechange adjunction associated to the étale mor-
phism π∗EF : SG ⇋ (SG)/EF : (πEF )∗. In particular, it restricts to an adjunctionPrLG ⇋ PrLG,F
by Lemma 2.1.33. Similarly, the adjunction s∗ ⊣ s∗ is the basechange adjunction associated to
the geometric morphism s∗ : SG ⇋ SG,Fc :s∗.

Example 2.2.14 (Isotropy separation and coinduction). Consider a continuous epimorphism
θ : G ։ G/N of compact Lie groups. Recall from Example 2.2.10 that there is the functor
ResOθ : O(Q) →֒ O(G) which restricts to an equivalenceO(G/N) ≃ OΓc

N
(G). �is identifies

the adjunctions Coindθ : CatG ⇋ CatQ : Coinflθ and s∗ : CatG ⇋ CatG,Γc
N

:s∗.

Construction 2.2.15 (Singular part). Consider the inclusion s : OFc(G) →֒ O(G). �en we
get the Bousfield colocalisation s! : SG,Fc ⇋ SG :s∗ such s!s∗(G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H) = G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H for every and
s!s

∗(G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H) = ∅ . Since s!s∗ picks out the isotropy of a G–spaceX not in F , we shall also use
the notations (which will be part of a larger notational package in Notation 2.2.28)

XFc := s∗X ∈ SFc X F̃ := s!s
∗X = s!XFc ∈ SG.

�e adjunction counit ǫ : XF̃ → X thus admits the classical interpretation as the inclusion of
the F–singular part of theG–spaceX . It is the identity map onG/H forH /∈ F and the map
∅→ G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H forH ∈ F . We refer to ǫ : XF̃ → X as the inclusion of the F–singular part ofX .
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Example 2.2.16. For F = P , the family of proper subgroups, XP̃ is given by the fixed points
space XG, considered as a G–space with trivial action. For F = {e}, the trivial family, the
intuition forX F̃ is that is gives the G–space of all points inX with nontrivial isotropy.

Having recounted the constructions relevant to the complementary part Fc, we now re-
call some language associated to the F–local part. Recall that for a family F , we denoted by
b : EF → ∗ the unique map.

Definition 2.2.17. We say that a G–category C is F–Borel if that the map C → b∗b∗C is an
equivalence. AG–category C will be calledF–coBorel if the map b!b∗C → C is an equivalence.

Example 2.2.18 (Borel categories). For the trivial family F = {1}, we will also write EF as
EG and write Bor := b∗ : CatG,{1} ≃ CatBG →֒ CatG. We call Bor(C) the Borel-G-category
associated to C. Explicitly, Bor(C)(G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H) = ChH . In this case, the adjunctions Construc-
tion 2.2.13 produce the Borelification Bousfield (co)localisations studied in [Hil24, §2.4]. While
we will not need it in this article, we mention that there, it was shown in the case of finite
groups G that b∗ : CatG → CatBG naturally assemble to a G–symmetric monoidal Bousfield
localisation and thus interacts well with the multiplicative norms.

Fact 2.2.19. An alternative description for b!b∗C and b∗b∗C are EF × C and Fun(EF , C) re-
spectively.

Notation 2.2.20. For a subgroup K ≤ G, we write FK for the family of subgroups of K
which belong to F . Note that, in particular, the equivalenceO(G)/(G/K) ≃ O(K) induces an
equivalenceOF (G)/(G/K) ≃ OFK

(K).

Proposition 2.2.21 (Characterisations of (co)Borelness). Let C ∈ CatG. �en:

(a) C is F–coBorel if and only if CH ≃ ∅ for all H ∈ Fc,

(b) C isF–Borel if and only if for allK ≤ G, the canonical map CK → limG/H∈OFK
(K)op CH

induced by restrictions is an equivalence.

Proof. Part (a) is immediate using the description b!b∗C ≃ EF × C. For part (b), the comma
category used to compute the value of the right Kan extension b∗ : Fun(OF (G)op,Cat) →
Fun(O(G)op,Cat) at G/K is

(
OF (G)

op
)
(G/K)/

≃
(
OF (G)/(G/K)

)op ≃ OFK
(K)op

whence the claim.

Example 2.2.22 (Modules over F–nilpotent rings). Suppose G is a finite group and F is a
family of subgroups. By [MNN17, Prop. 6.38 (1), �m. 6.42] and the concrete characterisation
of F–Borelness from Proposition 2.2.21 (b), we learn that if R ∈ CAlg(SpG) is F–nilpotent,
thenModSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG(R) is an F–Borel G–category.
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Categorified Brauer quotients

Consider a family F of closed subgroups ofG. �e adjunction s∗ : CatG ⇋ CatG,Fc :s∗ from
Construction 2.2.13 does not restrict to an adjunction between presentable or (fibrewise) stable
categories as the adjunction unit does not preserve G-colimits. �e main result of this section
shows that the restriction s∗ : PrL,stG,Fc →֒ PrL,stG (which is fully faithful by Lemma 2.1.32) admits
a symmetric monoidal le� adjoint s̃∗. We do this by showing that it is a smashing localisation.

Construction 2.2.23 ((Co)tensoring over pointed groupoids). Let E be a pointed B–category
admi�ing all parametrised (co)limits. �en E is naturally tensored and cotensored over pointed
B–groupoids B∗ as follows: for ∗ → X in B∗ and E ∈ E , we define

X∧E := cofib

(
E ≃ colim

∗
E → colim

X
E

)
hom∗(X,E) := fib

(
lim
X
E → lim

∗
E ≃ E

)

�ese exhibit E as being tensored and cotensored over B∗, respectively, since for example, for
a fixed F ∈ E , we have

MapE(X ∧ E,F ) ≃ fib
(
MapE(colim

X
E,F )→ MapE (E,F )

)

≃MapB(X,MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapE (E,F )) ×MapB(∗,MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapE(E,F )) {∗}
≃MapB∗(X,MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapE(E,F ))

Observe also that these constructions give us an adjunction X ∧ − : E ⇋ E :hom∗(X,−).
Moreover, it is easy to see that for X,Y ∈ B∗, we have X ∧ (Y ∧ E) ≃ (X ∧ Y ) ∧ E where
X ∧ Y ≃ cofib(X ∨ Y → X × Y ).

Observation 2.2.24. LetF be a family of closed subgroups ofG and s∗ : CatG,∗ ⇋ CatFc,∗ :s∗
the associate Bousfield localisation of the geometric morphism s∗ : SG ⇋ SFc . Let X ∈ SG,∗
and C ∈ CatFc,∗. �en there is an equivalence hom∗(X, s∗C) ≃ s∗hom∗(s

∗X, C) by virtue of
the following computation

hom∗(X, s∗C) ≃ fib(lim
X
s∗C → lim

∗
s∗C) ≃ s∗ fib(lim

s∗X
C → lim

∗
C) ≃ s∗hom∗(s

∗X, C).

Here we have used that s∗ commutes with limits and the equivalence limX s∗C ≃ s∗ lims∗X C
coming from the identifications of adjunctions in Lemma 2.1.18.

We introduce now the key notion of Brauer quotients of categories with respect to a fixed
family. As will be clear from the next terminology, they will be a special case of the standard
categorical construction of Verdier quotients. However, since they will play such a key role
in this article and are so specific to the equivariant situation, we have chosen to dignify them
with a special name, borrowing from the classical theory of Mackey functors.

Terminology 2.2.25 (F–Brauer quotients). For a finite group G, we define the F–Brauer
quotient D/〈F〉 of a small G–stable category D as a G–stable category admi�ing a G–exact
functor ΦF : D → D/〈F〉 which, for all G–stable categories E , induces an equivalence

(ΦF )∗ : Funex(D/〈F〉, E) ≃−−→ Funex,F=0(D, E)
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whereFunex,F=0(D, E) ⊆ Funex(D, E) is the fullG–subcategory ofG–exact functorsF : D →
E such that ResGH F : ResGH D → ResGH E is the zero functor for all H ∈ F . Observe that
D/〈F〉 must be unique if it exists. We denote by CatG−st

G,Fc ⊆ CatG−st
G the full subcategory

given by those G-stable categories lying in the image of s∗ : CatG,Fc →֒ CatG, i.e. those with
value 0 on OF (G).

Analogously in the presentable se�ing, for a compact Lie group G and a family F of closed
subgroups, we may define the F–Brauer quotient of an object C ∈ PrL,stG as a presentable G–
category C/〈F〉 equipped with a parametrised colimit–preserving functor ΦF : C → C/〈F〉
inducing for every fibrewise stable presentableG–category E an equivalence

(ΦF )∗ : FunL(C/〈F〉, E) ≃−−→ FunL,F=0(C, E)

�eorem 2.2.26 (CategorifiedBrauer quotients). LetG be a compact Lie group,H a finite group,
F a family of closed subgroups of G and E a family of subgroups of H . �en the fully faithful
inclusions

s∗ : Pr
L,st
G,Fc →֒ PrL,stG s∗ : Cat

H−st
H,Ec →֒ CatH−st

H

all admit symmetric monoidal le� adjoints s̃∗ which are smashing localisations at the idempotent
algebra ẼF . In the first case, the induced lax symmetric monoidal structure on s∗ agrees with the
one from Lemma 2.1.31. Moreover, s̃∗ satisfies the universal property of the F–Brauer quotient.

Proof. We only prove the first case since the second one can be done entirely analogously.
PrL,stG is a pointed category admi�ing all parametrised (co)limits and is thus tensored over
SG,∗ by Construction 2.2.23 (in the presentable case, this also comes from pointedness being
classified by the idempotent algebra SG,∗ ∈ PrLG).

We claim that the le� adjoint to s∗ is given by ẼF ∧−. To see that this functor does indeed
take values in PrL,stG,Fc →֒ PrL,stG note that for allK ∈ F and C ∈ PrL,stG we have

ResGK(ẼF ∧ C) ≃ ResGK ẼF ∧ ResGK C ≃ ∗ ∧ ResGK C ≃ 0.

To see that it is the le� adjoint to s∗, let D ∈ PrL,stG,Fc . Observe that since s∗ẼF ≃ S0, we
have equivalences hom∗(ẼF , s∗D) ≃ s∗hom∗(S

0,D) ≃ s∗D, where the first equivalence is
by Observation 2.2.24. �us, the computation

Map
PrL,st

G
(ẼF ∧ C, s∗D) ≃ Map

PrL,st
G

(C,hom∗(ẼF , s∗D)) ≃ Map
PrL,st

G
(C, s∗D).

shows that ẼF ∧ − is indeed the le� adjoint to s∗ as claimed.
Next, since ẼF is an idempotent algebra in SG,∗, the le� adjoint s̃∗(−) ≃ ẼF ∧ − is a

smashing localisation and in particular a�ains a canonical symmetric monoidal structure. To
show that the induced lax symmetric monoidal structure on s∗ is equivalent to the one from
Lemma 2.1.31, by Lemma 2.1.32 we only have to show that the map u : s̃∗1

PrL,st
G
→ 1

PrL,st
G,Fc

adjoint to the lax unit 1
PrL,st

G
→ s∗1PrL,st

G,Fc
is an equivalence. But by construction of the lax
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symmetric monoidal structure on s∗, we have for C ∈ PrL,stG,Fc the commutative diagram

FunLF

(
1
PrL,st

G,Fc
, C

)
Γ(C)

FunLF
(
s̃∗1

PrL,st
G
, C

)
FunLG

(
1
PrL,st

G
, s∗C

)
Γ(s∗C)

u∗

≃

≃

≃ ≃

showing that the le� vertical map is an equivalence.
Finally, for the statement about F–Brauer quotients, notice that the unit map C → ẼF ∧ C

has trivial restriction to each group H ∈ F as ResGH ẼF ∧ C ≃ ResGH ẼF ∧ ResGH C ≃
∗∧ResGH C ≃ 0. We have to show that for allD ∈ PrL,stG , the induced map FunL(s∗s̃∗C,D)→
FunL,F=0(C,D) is an equivalence. From the cofibre sequence EF+ → S0 → ẼF in SG,∗ we
obtain the fibre sequence

FunL(ẼF ∧ C,D)→ FunL(C,D)→ FunL(EF+ ∧ C,D)

in PrL,stG . �is shows that FunL(ẼF ∧ C,D) is a full G-subcategory of FunL(C,D) (this is
true for any fibre sequence of stable categories). Now suppose that f : C → D vanishes on F .
Denote by 〈Im(f)〉 ⊆ D the full presentable fibrewise stable G-subcategory generated by the
image of f . �e assumption on f guarantees that ResGH〈Im(f)〉 = 0 whenever H ∈ F , i.e.
〈Im(f)〉 lies in the image of s∗. Consider the commutative diagram

C 〈Im(f)〉 D

ẼF ∧ C ẼF ∧ 〈Im(f)〉

f

≃

f

.

As 〈Im(f)〉 lies in the image of s∗, the first part shows that the middle vertical arrow is an
equivalence from which we obtain the dashed factorisation. �is concludes the proof of the
theorem.

Remark 2.2.27. In the se�ing of finite groups G, for a G–stable category D, since s̃∗D is
the F–Brauer quotient, it satisfies the universal property of the Verdier quotient articulated in
[QS22, �m. 5.23]. �us, by [QS22, Def. 5.21], it may alternatively be described as a fibrewise
Verdier quotient in the nonequivariant sense.

Notation 2.2.28. Now that we have all the fixed points functors that will concern us, let us
collect and summarise them, introducing some new notations along the way. While the no-
tations {s!, s∗, s∗, s̃∗} are compact and lithe, useful to prove results, we believe that the nota-
tions presently introduced have more intuitive appeal. �e starting point will be the inclusion
s : OFc(G)op →֒ O(G)op from Construction 2.2.13.

(a) Recall the notations from Construction 2.2.15 which gives us the top adjunctions in
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SFc SG

CatG,Fc CatG

(−)F̃ :=s!

(−)F̃ :=s∗

(−)F
c
:=s∗

(−)F̃ :=s!

(−)F̃ :=s∗

(−)F
c
:=s∗

and that we have the commuting squares of adjunctions is an easy check using that s∗

commutes with the vertical maps and their adjoints. Since (−)F̃ and (−)F̃ are fully
faithful, we also write (−)F̃ and (−)F̃ for s!s∗ and s∗s∗ respectively. In particular, for
X ∈ SG, the counit gives us a map ǫ : XF̃ = s!s

∗X → X as in Construction 2.2.15.
Moreover, by Construction 2.2.13, we have for C ∈ CatG,Fc the description

CF̃ =

{
C(G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H) if H ∈ Fc;
∗ if H ∈ F .

(b) We also have the following solid commuting squares

PrstG PrstG,Fc CatexG CatexG,Fc

ĈatG ĈatG,Fc CatG CatG,Fc

"

ΦF (−):=s̃∗

"
(−)ΦF̃ :=s∗

"

ΦF (−):=s̃∗

"
(−)ΦF̃ :=s∗

(−)F̃ :=s∗ (−)F̃ :=s∗

where the top maps admit the dashed le� adjoints. Here, the le� diagram holds for
general compact Lie groupsGwhereas the right diagram is only defined for finite groups
G from �eorem 2.2.26. As above, since the functors (−)ΦF̃ are fully faithful, we will
also write (−)ΦF̃ to denote s∗s̃∗. �e adjunction unit id → s∗s̃∗ will be denoted by
ΦF : (−)→ (−)ΦF̃ or just Φ: (−)→ (−)ΦF̃ when the family F is understood.

Stability for quotient groups

Let N ≤ G be a closed normal subgroup of the compact Lie group G and denote by θ : G ։
G/N = Q the quotient map. We will use the categorified Brauer quotient from�eorem 2.2.26
for the family ΓN from Example 2.2.10 to relateG– and Q–stable categories.

Proposition 2.2.29. Suppose that θ : G ։ G/N = Q is a continuous epimorphism of compact
Lie groups. �en there is an adjunction

PrL,G−st
G PrL,Q−st

Q

Coind∼
α

Coinflα

which is a smashing localisation. �e lax symmetric monoidal structure onCoinflα from Lemma 2.2.8
is equivalent to the lax symmetric monoidal structure from this smashing localisation. We thus
may view G/N–stable presentable categories precisely as G–stable categories which vanish for
all subgroups H ≤ G not containing N .
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Proof. By combining Example 2.2.14 and �eorem 2.2.26, Coinflα : PrL,stQ →֒ PrL,stG admits a
symmetric monoidal le� adjoint Coind∼α = Coindα(ẼΓN ∧ −) which is a smashing localisa-
tion. We only have to show that this restricts to an adjunction betweenG- and Q-stable cate-
gories. But this follows by combining Lemma 2.2.6, Lemma 2.2.8 and observing that ẼΓN ∧−
preserves G-stable categories.

Corollary 2.2.30. Writing θ : G։ G/N for the quotient map by a closed normal subgroup, the
symmetric monoidal unit map SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG/N → Coind∼α SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is an equivalence.

Proof. �is is a direct consequence of symmetric monoidality of the adjunction in Proposi-
tion 2.2.29.

Construction 2.2.31 (Geometric fixed points). Let θG : G ։ 1 be the quotient map. �e
symmetric monoidal G-colimit preserving unit map

ΦG : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG −→ CoinflθG Coind∼θG SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG ≃ CoinflθG Sp

restricts to a symmetric monoidal colimit preserving functor ΦG : SpG → Sp. �ere is an
equivalence equivalence ΦG ◦ Σ∞

G (−) ≃ Σ∞(−)G as, by construction, ΦG is SG,∗-linear and
sends the unit to the unit. �is shows that ΦG recovers the classical geometric fixed points
functor which is uniquely determined by these properties.

If H ≤ G is a closed subgroup, we have the symmetric monoidal G-colimit preserving
functor ΦH : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG → CoindGH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH → CoindGH CoinflθH Sp which on global sections recovers
the classical geometric fixed point functors ΦH : SpG → Sp.

Definition 2.2.32. A collection of B–functors {Fs : C → Ds}s∈S is jointly conservative if for
allX ∈ B, the collection {Fs(X) : C(X)→ Ds(X)}s∈S is jointly conservative.

Observation 2.2.33. Let {Fs : C → Ds}s∈S be a jointly conservative collection of B–functors
and X ∈ B. �en the collection {Fs : Fun(X, C)→ Fun(X,Ds)}s∈S is also a jointly conser-
vative collection. �is is an immediate consequence of the definition and that the evaluation
at Y ∈ B for the B–category Fun(X, C) is C(Y ×X).

Remark 2.2.34. If {X i}i∈I is a set of objects generating B under colimits, then a collection
of B–functors {Fs : C → Ds}s∈S is jointly conservative if {Fs(X) : C(X i) → Ds(X i)}s∈S is
jointly conservative for each i. Indeed, letX be an object. �en C(X) ≃ lim(i,f : Xi→X) C(X i)

and the collection T = {C(X)
f∗−→ C(X i) | i ∈ I, f : X i → X} is jointly conservative.

Suppose that h is a morphism in C(X)which maps to an equivalence inDs(X) for each s ∈ S.
For (i, f) ∈ T , we observe that in the commutative diagram

C(X) Ds(X)

C(X i) Ds(X i)

f∗
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the morphism hmaps to an equivalence in the lower right corner for each s ∈ S, so by assump-
tion it mapped to an equivalence in the lower le� corner. As that holds true for each (i, f) ∈ T
and the collection T was jointly conservative, we see that h was an equivalence to start with,
as desired.

Proposition 2.2.35 (Joint conservativity of geometric fixed points). �e collection ofG–functors
{
ΦH : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

η−→ CoindGH ResGH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
CoindG

H ResGH ΦPH

−−−−−−−−−−−→ CoindGH ResGH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpΦP̃H | H ≤ G closed
}

is jointly conservative.

Proof. By Remark 2.2.34, it suffices to show that the collection is a jointly conservative collec-
tion of functors when evaluated at eachG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K ∈ SG. LetH ≤ K be a subgroup. SinceG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H ≃
IndGH∗, by the triangle identity, the counit IndGH ResGH G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H

ǫG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H−−−→ G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H admits a section. Us-
ing this and the map G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K we obtain in total a map h : G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → IndGH ResGH G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K .
Hence, since we have (CoindGH ResGH C)(G/K) ≃ FunG(Ind

G
H ResGH G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K, C) and C(G/H) ≃

FunG(G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H, C) for anyG–category C, we get a transformationh∗ : (CoindGH ResGH C)(G/K)→
C(G/H) natural in C. �erefore, for H ≤ K , evaluating the functor ΦH in the statement at
G/K together with the transformation above gives the following commuting diagram

SpK (CoindGH ResGH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)(G/K) (CoindGH ResGH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpΦP̃H )(G/K)

SpK SpH Sp

η CoindG
H ResGH ΦPH

h∗ h∗

ResKH ΦH

But since the bo�om compositions are jointly conservative when we letH vary over all closed
subgroups of K (this is well–known, see for example [Sch18, Prop. 3.3.10]), we thus get simi-
larly that the top compositions are too. �is completes the proof.

Free actions

Here we review a few geometric facts onG-spaces on which a normal subgroupN acts freely.
It will be needed later on to argue for example, ifX is a G-Poincaré space with freeN -action,
then also the quotientN\X is G/N -Poincaré.

Definition 2.2.36 (Free actions). Consider a groupG togetherwith a normal subgroupN ≤ G.
We say that the action of N on X ∈ SG is free ifX is coBorel with respect to the family FN .

�at is, N acts freely on X if whenever N ∩ H 6= {1} we have XH = ∅ as is shown in
Fact 2.2.19.

Remark 2.2.37 (�otients of freeG–spaces). ConsiderX ∈ SG and isotropy separation with
respect to the trivial family F = 1 (which is the case N = G in Definition 2.2.36). Recalling
the operation of genuine quotients from Notation 2.2.2, note that for this family we obtain
G\b!(−) ≃ (−)hG as the first functor is le� adjoint to the composite b∗ Infl1G : S → SBG
which is the restriction functor along the projection BG→ ∗. In particular, we obtain a map

XhG ≃ G\(b!b∗X)→ G\X.
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�is is an equivalence if G acts freely on X since X ≃ b!Y for some Y ∈ SBG.

We will now prove two lemmas about quotients by free actions. Together, they are useful in
studying the fibres of the mapX → InflQGN\X , as we will see in Corollary 2.2.40.

Lemma 2.2.38. Let G be a group and let N ⊂ G be a closed normal subgroup. Let f : X → Y
be a map of G–spaces, where X and Y have free N -actions. �en the square

X Y

Infl
G/N
G N\X Infl

G/N
G N\Y

(10)

is cartesian.

Proof. We want to check that the square (10) is cartesian and we will do so in three steps2.
First, a computation shows that it is cartesian wheneverX and Y areN -freeG-orbits. Second,
writing Y = colimH≤G, G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H→Y G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H an application of [Lur09, 6.1.3.9.(4)] shows that the
claim is true forX anN -freeG-orbit and Y anN -freeG–space. It is easy to see that the claim
now also holds whenX is a disjoint union ofN -freeG-orbits. For the general statement, note
that by Lemma 2.2.39, we may find a collection of N -free G-orbits G/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/Hi together with maps
qi : G/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/Hi → X such that the map

∐
Infl

G/N
G N\qi :

∐
Infl

G/N
G N\G/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/Hi → Infl

G/N
G N\X

induces a π0-surjection on all fixed points3. In the diagram
∐
G/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/Hi X Y

∐
Infl

G/N
G N\G/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/HiG/Hi Infl

G/N
G N\X Infl

G/N
G N\Y

we know that the outer square and le� square are cartesian. As the bo�om le� map induces a
π0-surjection on all fixed points, this implies that the right square is cartesian as well.

Lemma 2.2.39. Let X be a G–space with free N -action. �en, for each map f : Q/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/H → N\X
there exists a subgroup K ∈ FN and a commutative diagram

G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K X

InflQGQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/H InflQGN\G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K InflQGN\X

2An (arguably shorter) proof is possible if one recalls the model from [Sch18, Prop. B.7.] and observes that given
an N -free topologicalG-CW space X , the map X → Infl

G/N
G N\X is a fibration with point-set fibre N .

3Such morphisms are effective epimorphisms.
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where the lower composition is InflQG(f).

Proof. Using the explicit formula from (9) we compute

MapSQ
(Q/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/H,N\X) ≃ colim

G/K, Q/H→N\(G/K)
MapSG

(G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K,X).

�e map from the le� hand side takes g : G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K → X , applies N\(−) to it and precomposes
with Q/H → N\G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K . �us, f eviently factors through some map N\G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K → N\X that
is of the from N\g for some g : G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → X . Now as Map(G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H,X) can only be nonempty if
H ∈ F , we have proved the assertion.

Corollary 2.2.40. LetX be aG–space on which the closed normal subgroup N ≤ G acts freely.
Consider any map f : G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → InflQGN\X . �en there exists a cartesian diagram

G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H ×
InflQG N\X X G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0

G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1

proj

where K0 ∈ F and G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1 ≃ InflN\G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0.

Proof. Set H ′ = H/(H ∩N) ⊂ Q. �e map f : G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → InflQGN\X factors through the ad-
junction unit G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → InflQGN\G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H ≃ InflQGQ/H

′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′. As the functor InflQG is fully faithful, we
can apply Lemma 2.2.39 to the corresponding map Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′Q/H ′ → N\X and obtain a commutative
diagram

G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K X

G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H InflQGQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/HQ/H InflQGN\G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K InflQGN\X

in which the square is cartesian by Lemma 2.2.38. Completing the cospan involving G/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/K and
G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H to a pullback gives the desired pullback.

3. Parametrised Poincaré duality

In this section we start developing the basic formalism of Poincaré duality within the context
of categories parametrised over a topos as summarised in §2.1. �is general theory will later
be specialised to the equivariant se�ing for compact Lie groups in §4.

As a motivation for the definitions appearing in this section recall that, for a closed smooth
manifoldMd, an embeddingM →֒ RN gives rise to a collapse map

c : SN → Th(νM⊂RN )

where νM⊂RN is the normal bundle ofM in RN . It turns out that neither the stable homotopy
type of the�om spaceTh(νM⊂RN ) nor the stable homotopy class of the collapsemap c depend
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on the choice of embedding. �e collapse map defines a class [c] ∈ HN (Th(νM⊂RN )) ≃
Hd(M ;Oν), where the isomorphism is the�om isomorphism andOν denotes the orientation
local system of ν . Classical Poincaré duality now says that

[c] ∩ − : Hk(M)→ Hk−d(M ;Oν) (11)

is an isomorphism.
We start by axiomatising in §3.1 such stable collapse maps as Spivak data with respect to a

fixed coefficient category, upon which we may demand the further condition of being twisted
ambidextrous and Poincaré in §3.2, generalising the situation sketched above. We then inves-
tigate in §3.3 various operations one can perform on Spivak data, proving along the way the
main results of the section (c.f. �eorems 3.3.5 and 3.3.8) about basechanging coefficient cate-
gories, which will be the key inputs to our equivariant theory. We then end the section with
a discussion of degree theory which will serve as the foundation for our theory of equivariant
degrees in §4.6 and our geometric applications in §5.

3.1. Spivak data

For an object X ∈ B we denote by X : X → ∗ the map to the final object. Recall that a
B–category C admits X–shaped limits (resp. colimits) if X∗ : C ≃ Fun(∗, C) → Fun(X, C)
admits a right adjointX∗ (resp. le� adjointX!).

Definition 3.1.1. LetX ∈ B and C a symmetricmonoidalB–categorywhich admitsX-shaped
colimits. A C–Spivak datum forX consists of

(1) an object ξ ∈ Fun(X, C) called the dualising sheaf;

(2) a map c : 1C → X!ξ in C, called the fundamental class (or collapse map).

�e importance of Spivak data comes from the following construction, which allows us to
compare the X–shaped limit functor with a twisted X–colimit functor. It is a generalisation
of the map (11) given by capping with the fundamental class appearing in classical Poincaré
duality.

Construction 3.1.2 (Capping map). Let C be a symmetric monoidal B–category which admits
X–shaped limits and colimits and satisfies theX–projection formula (c.f. Terminology 2.1.13).
For each C–Spivak datum (ξ, c) on X we can construct a natural transformation

c ∩ξ − : X∗(−) c⊗−−−−→ X!ξ ⊗X∗(−) PFX

←−−−
≃

X!(ξ ⊗X∗X∗(−))
X!(id⊗ǫ)−−−−−→ X!(ξ ⊗−)

which is a morphism in Fun(CX , C) where ǫ : X∗X∗ → id denotes the adjunction counit. To
avoid notational clu�er, we will o�en omit the ξ from c ∩ξ − when the context is clear.

�ere is also a construction in the other direction, which produces a fundamental class for
ξ from a natural transformationX∗(−)→ X!(ξ ⊗−).
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Construction 3.1.3. Given a natural transformation t : X∗(−) → X!(ξ ⊗ −) and writing
η : id→ X∗X∗ for the adjunction unit, we obtain a collapse map as the composite

clpsξ(t) : 1C
η−−→ X∗X∗1C

t−−→ X!(ξ ⊗X∗1C) ≃ X!ξ.

Lemma 3.1.4. �ere is an equivalence clpsξ(c ∩ξ −) ≃ c ∈ MapC(1C ,X!ξ).

Proof. Consider the commutative diagram

1C X∗X∗1C

X!ξ X!ξ ⊗X∗X∗1C

X!(ξ ⊗X∗1C) X!(ξ ⊗X∗X∗X∗1C) X!(ξ ⊗X∗1C) ≃ X!ξ.

η

c c⊗−
−⊗η

≃ PFX

X∗η

≃ PFX

ǫX∗

�e composite 1C → X!ξ going through the upper right corner of the rectangle is by definition
equal to clpsξ(c ∩ξ −). �e composite 1C → X!ξ going through the bo�om le� corner of the
rectangle is equivalent to c using the triangle identity ǫX∗ ◦X∗η ≃ id.

Intertwining capping with module maps

As we shall see throughout the article, the capping maps produced from Spivak data o�en
intertwine the le� and right Beck–Chevalley transformations. Our aim now is to give the first
expression of this principle in the form of Proposition 3.1.9, the other one being Lemma 3.4.6.

Setting 3.1.5 (Module pushforwards from multiplicative basechanges). Suppose we have:

• symmetric monoidal B–categories C,D,

• a symmetric monoidal parametrised colimit–preserving functor U : C → D as well as a
C–linear functor F : C → D using the C–linear structure on D coming from U ,

• a map r : J → K in CatB (to disambiguate notations, we will write ρ := r when we use
it in the context of the category D),

• C and D admit le� Kan extensions along J → K .

For (ξ, c) a C–Spivak datum for r, we define
(
ζ, d

)
:=

(
U(ξ), U(c) : 1D → U(r!ξ) ≃ ρ!ζ

)

as the associated D–Spivak datum for ρ. From the data above, we also obtain symmetric
monoidal functors U : CK → CJ and U : DK → DJ , using which we may upgrade the func-
tors F : CK → DK , F : CJ → DJ to a CK– and a CJ–linear one, respectively. Note that by
virtue of C–linearity in all its guises as explained in the previous sentence, we have for any
A ∈ {C, CJ , CK} a natural map UA ⊗ F (−) → F (A ⊗ −) which is an equivalence. Fur-
thermore, note also that we clearly have equivalences ρ∗F ≃ Fr∗. Since U was parametrised
colimit preserving, we have an equivalence Ur! ≃ ρ!U .
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Example 3.1.6. �e following will be the examples of the abstract Se�ing 3.1.5 that will be
important for us:

(a) In the case F = U , the C–linear structure on F = U will be given by the symmetric
monoidality structure UA⊗ U(−) ≃−→ U(A⊗−);

(b) In the case when D = C, U = idC , and F = a ⊗ − for some fixed object a ∈ C, the
C–linear structure on F is the tautological one given by id(A) ⊗ a ⊗ − ≃ a ⊗ A ⊗ −
coming from the symmetric monoidal structure on C.

Lemma 3.1.7. Suppose we are in the Se�ing 3.1.5. For all A ∈ CJ , writing B := U(A) ∈ DJ ,
we have a commuting diagram

F (−)⊗ ρ!B F (−⊗ r!A)

Fr!(r
∗(−)⊗A)

ρ!(ρ
∗F (−)⊗B) ρ!F (r

∗(−)⊗A)

linearity

≃
F (BC!)

BC!

ρ!(linearity)

≃

BC!

Proof. Let x ∈ CK be an arbitrary object. Consider the diagram

DK

CK CK

DJ

CJ CJ

ρ∗
x⊗−

r∗

Fx⊗U(−)

F

ρ∗Fx⊗U(−)

r∗x⊗−

r∗

F

where the commuting triangles come from the C–linearity of the functor F with the C–linear
structure on D coming from the symmetric monoidal colimit–preserving functor U : C → D.
By passing to the le� adjoints r! ⊣ r∗ and ρ! ⊣ ρ∗ of the vertical functors and Beck–Chevalley
pasting [CSY22, Lem. 2.2.4], we obtain the required commuting diagram.

Observation 3.1.8. A funny consequence of the preceding lemma is that if we supposed that
C satisfied the r–projection formula and D the ρ–projection formula so that the le� vertical
BC! map and F (BC!) are equivalences, then BC! : ρ!F (r

∗(−) ⊗ A) → Fr!(r
∗(−) ⊗ A) is

automatically an equivalence.

Proposition 3.1.9 (Linear intertwining principle). Suppose we are as in Se�ing 3.1.5 and that
C and D admit right Kan extensions along J → K. �en we have a commuting square
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Fr∗ Fr!(ξ ⊗−)

ρ∗F ρ!(ζ ⊗ F−) ρ!F (ξ ⊗−)
BC∗

F (c∩−)

d∩F
≃

linearity

BC!

Proof. Consider the following large commuting diagram

Fr∗(−) F (r∗(−) ⊗ r!ξ) Fr!(r
∗r∗(−)⊗ ξ) Fr!(−⊗ ξ)

ρ!F (r∗r∗(−) ⊗ ξ)

Fr∗(−)⊗ ρ!ζ ρ!(ρ
∗Fr∗(−) ⊗ ζ) = ρ!(Fr

∗r∗(−)⊗ ζ) ρ!F (−⊗ ξ)

ρ∗F (−) ρ∗F (−)⊗ ρ!ζ ρ!(ρ
∗ρ∗F (−)⊗ ζ) ρ!(F (−)⊗ ζ)

BC∗

F (id⊗c)

(A)

F (BC!)

≃
Fr!(ǫ⊗id)

BC!

BC∗⊗id

linearity ≃

ρ!(Fǫ⊗id)

(B)

linearity ≃

≃
BC!

ρ!(ρ
∗BC∗⊗id)

BC!

id⊗d

≃
BC! ρ!(ǫ⊗id)

ρ!(linearity)≃

where three of the squares clearly commute, square (A) commute by Lemma 3.1.7, and triangle
(B) commutes since the le� triangle in the diagram

ρ∗Fr∗ ≃ Fr∗r∗ Fr∗

ρ∗ρ∗F F ρ∗F ρ∗F

ρ∗BC∗ Fǫ BC∗
BC∗

ǫF

is adjoint to the right one, which clearly commutes. Now we may take the outer square of the
large diagram to conclude.

3.2. Twisted ambidexterity and Poincaré duality

Our aim in this subsection is to introduce the notion of Poincaré duality for Spivak data. To
this end, it would be beneficial first to isolate a property that we will demand Poincaré Spivak
data to satisfy, namely that of twisted ambidexterity, i.e. that the associated capping map is an
equivalence. �is notion gives the equivalence of homology with cohomology necessary for
Poincaré duality. While our definition makes sense in more generality – a level of flexibility
we will need for some of our applications – we show in Remark 3.2.6 that our notion of twisted
ambidexterity nevertheless coincides with the one given in [Cno23] for presentably symmetric
monoidal coefficient categories.

For this subsection, we consider X ∈ B and C a symmetric monoidal B–category which
admitsX-shaped limits and colimits and satisfies theX-projection formula. Notice that these
conditions are satisfied whenever C is a presentably symmetric monoidal B–category.

Twisted ambidexterity

Definition 3.2.1. A C–Spivak datum (ξ, c) forX is twisted ambidextrous if the capping trans-
formation c ∩ξ (−) : X∗(−)→ X!(ξ ⊗−) from Construction 3.1.2 is an equivalence.

�ere is also the following relative version of this definition. Recall that associated to an
object Y ∈ B there is the basechange adjunction π∗Y : B ⇋ B/Y : (πY )∗.
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Definition 3.2.2. (Twisted ambidextrous maps) Consider a map f : X → Y in B and a sym-
metric monoidal B–category C such that the B/Y –category (πY )

∗C admits f shaped limits
and colimits and satisfies the f -projection formula. A C-Spivak datum for f is a (πY )∗C-Spivak
datum for f ∈ B/Y . We say that such a Spivak datum exhibits f as a C–twisted ambidextrous
map if it exhibits f ∈ B/Y as (πY )∗C–twisted ambidextrous object.

We will see in Proposition 3.3.14 that f being C–twisted ambidextrous is closely related to
the fibres of f being C–twisted ambidextrous, see also [Cno23, Prop. 3.13].

Next we set out to show that in the presentable case, twisted ambidextrous Spivak data
are unique and demonstrate that our notion of twisted ambidexterity is equivalent to the one
defined in [Cno23, Def. 3.4].

Lemma 3.2.3. Let (ξ, c) be a twisted ambidextrous C–Spivak datum forX ∈ B. �e adjunction
X∗ ⊣ X∗ induces an adjunction X∗ ⊣ X!(ξ ⊗−) whose unit is given by

id(−) id⊗c−−−→ id(−)⊗X!ξ
BC!←−−
≃

X!(X
∗(−)⊗ ξ) = X!(−⊗ ξ) ◦X∗(−),

Proof. �at the equivalence X∗(−) ≃ X!(ξ ⊗ −) induces an adjunction X∗ ⊣ X!(ξ ⊗ −) is
clear. For the description of the adjunction unit, observe that we have the commuting diagram

(−) (−)⊗X!ξ X!(X
∗(−)⊗ ξ)

X∗X∗(−) X∗X∗(−)⊗X!ξ X!(X
∗X∗X∗(−)⊗ ξ) X!(X

∗(−)⊗ ξ)

id⊗c

η η⊗id

≃
BC!

X!(X
∗η⊗id)

id⊗c
≃

BC! r!(ǫX∗⊗id)

where the bo�om composite is the capping equivalence and the right triangle is by the triangle
identity. �is shows that the claimed map is compatible with the unit η : id → X∗X∗ under
the capping equivalence c ∩ − : X∗(−) ≃−→ X!(ξ ⊗−) as required.

Observation 3.2.4. Let C ∈ CAlg(PrLB). If X∗ : C → CX is an internal le� adjoint in
ModC(PrLB), then its right adjoint must be of the form X!(DX ⊗ −) for a unique DX by
�eorem 2.1.37

Proposition 3.2.5 (�e presentable case). Let C ∈ CAlg(PrLB) be a presentably symmetric
monoidal B–category and X ∈ B.

(1) If X∗ is an internal le� adjoint in ModC(PrLB) with right adjoint X!(DX ⊗ −), then the
unit map c : 1C → X!(X

∗1C ⊗ DX) = X!DX forms a C–twisted ambidextrous Spivak
datum (DX , c) forX .

(2) If (ξ, c) is a C-twisted ambidextrous Spivak datum forX , then the map

(−) id⊗c−−−→ (−)⊗X!ξ ≃ X!(X
∗(−)⊗ ξ)

is the unit map of a C-linear adjunction X∗ ⊣ X!(−⊗ ξ).
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In particular, if (ξ, c) and (ξ′, c′) are twisted ambidextrous Spivak data, then there is an equiva-
lence ξ ≃ ξ′ so that the composition 1C

c−→ X!ξ ≃ X!ξ
′ is equivalent to c′.

Proof. For point (1), suppose that X∗ is an internal le� adjoint in ModC(PrLB). �is means
that X∗ has a C-linear structure making the adjunction X∗ ⊣ X∗ into a C-linear one. By
�eorem 2.1.37, there is an objectDX ∈ CX togetherwith a C-linear equivalenceφ : X∗ ≃ X!(-
−⊗DX). In light of the C–linearity of the adjunctionX∗ ⊣ X∗ andX! ⊣ X∗, we see that the
capping transformation

c ∩ (−) : X∗(−) −⊗c−−−→ X∗(−)⊗X!DX
≃←− X!(X

∗X∗(−)⊗DX)→ X!(−⊗DX) (12)

refines to a C–linear transformation because each constituent map refines canonically to a C–
linear transformation: the first map is clear; the second map is so since the Beck–Chevalley
equivalence X!(X

∗(−) ⊗ −) → − ⊗ X!(−) is canonically a C-linear equivalence; the third
map is so since it is the counit to a C-linear adjunction X∗X∗ → id. We claim that c ∩ (−)
is equivalent to the equivalence φ, which would prove the statement. By standard adjunction
arguments, it suffices to show that the transformations (−) η−→ X∗X∗(−) c∩X∗(−)−−−−−−→ X!(X

∗(-
−) ⊗ DX) and (−) η−→ X∗X∗(−) φ(X∗(−))−−−−−−→ X!(X

∗(−) ⊗ DX) are equivalent. Employing
�eorem 2.1.37, we can test this a�er evaluating at 1C . Now the composite 1C → X∗X∗1C

φ−→
X!DX is by definition the collapse map c. �e composite 1C → X∗X∗1C

c∩X∗1C−−−−−→ X!DX is
also equivalent to c by Lemma 3.1.4.

Next, for point (2), suppose that (ξ, c) is a C-twisted ambidextrous Spivak datum for X .
�en X∗ is B-colimit preserving. First, we check the condition in [Cno23, Prop. A.5] which
guarantees that the adjunction X∗ ⊣ X∗ is C–linear. For this, we need to show that for a ∈ C
andE ∈ CX , the Beck–Chevalley map BC∗ : a⊗X∗E → X∗(X∗a⊗E) is an equivalence. By
the intertwining square in Proposition 3.1.9 applied to Example 3.1.6 (b), we see thatBC∗ is an
equivalence becauseBC! : X!(X

∗a⊗E⊗ξ)→ a⊗X!(E⊗ξ) is an equivalence by presentably
symmetric monoidality of C. As in part (1) we see that the capping equivalence (12) refines to a
C-linear equivalence from which we obtain a C-linear adjunctionX∗ ⊣ X!(−⊗ ξ)�e claimed
description of the adjunction unit comes from Lemma 3.2.3.

For the final statement, since both X!(ξ ⊗ −) and X!(ξ
′ ⊗ −) are C-linear right adjoints to

X∗ by (2),we see by (1) that there is an equivalence ξ ≃ DX ≃ ξ′. To see the coincidence of c
and c′, we use Lemma 3.1.4 to obtain the two commuting triangles in

X!ξ
′ X∗X∗1 X!ξ

1

c∩ξX
∗1

≃
c′∩ξ′X

∗1

≃
η

cc′

witnessing that c ≃ c′ as required.

Remark 3.2.6. By combining Proposition 3.2.5 and [Cno23, Prop. 3.8], we see that X is C-
twisted ambidextrous in the sense of Definition 3.2.1 if and only if it is so in the sense of
[Cno23, Def. 3.4]. If that is the case, the twisted norm map ÑmX : X!(− ⊗ DX) → X∗(−)
constructed in [Cno23, Def. 3.3] is an equivalence with inverse the map Ñm

−1

X (1) ∩DX
(−).
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Definition 3.2.7. Let C be a presentably symmetric monoidal B–category. An object of B is
called C–twisted ambidextrous if it admits a (necessarily unique) twisted ambidextrous Spivak
datum with coefficients in C .
Notation 3.2.8. �e twisted ambidextrous Spivak datum of a twisted C-ambidextrous object
X ∈ B will be denoted by (DC

X , c). If C is clear from the context, we will sometimes abbreviate
this to (DX , c).

Poincaré duality

We now come to the definition of Poincaré duality in the parametrised se�ing.

Definition 3.2.9. A Spivak datum (ξ, c) forX with coefficients in C is Poincaré if it is twisted
ambidextrous and ξ takes values in Pic(C).
Definition 3.2.10. Let C be a presentably symmetric monoidal B–category. An objectX ∈ B
is calledC–Poincaré if it is twisted C–ambidextrous and the unique twisted ambidextrous Spivak
datum (DX , c) from Proposition 3.2.5 is Poincaré.

Remark 3.2.11. In [�i72], �inn defines the notion of a normal space to be a space together
with (the unstable analog of) a Spivak datum (ξ, c), where ξ takes values in Pic(Sp). He does
not require the Spivak datum to be twisted ambidextrous though.

We again have the following relative version.

Definition 3.2.12. (Poincaré duality maps) Consider a map f : X → Y in B and a symmetric
monoidal B–category C such that the B/Y –category (πY )

∗C admits f -shaped limits and col-
imits and satisfies the f -projection formula. We say that a C-Spivak datum for f exhibits f as
a C–Poincaré duality map if it exhibits f ∈ B/Y as a (πY )∗C–Poincaré duality object.

Using Costenoble-Waner duality, one can show the following standard result saying that
dualisability of the dualising object implies its invertibility. We will not use it anywhere in the
rest of this article but include it for completeness. In the se�ing of B-categories, Costenoble-
Waner duality was introduced in [Cno23, Section 3.3] and we follow the notation used there.
In the nonparametrised context, the following result appears in [Lan22, Remark A.9].

Proposition 3.2.13 (Invertibility of dualising objects). Let C be a presentable symmetric monoidal
B–category. Suppose that X ∈ B is C-twisted ambidextrous and that DX ∈ CX is dualisable.
�en DX is invertible, i.e. X is Poincaré.

Proof. By [Cno23, Proposition 3.29], the unit 1X ∈ C(X × ∗) is le� Costenoble-Waner du-
alisable with le� dual DX ∈ C(∗ × X). By [Cno23, Proposition 3.30], this implies that for
F ∈ C(X × Y ) and E ∈ C(Y ) we have equivalences

Hom(E,X!F ) ≃ Hom(E,F ⊙ 1X) ≃ Hom(E ⊙DX , F )

= Hom(X∗E ⊗DX , F ) ≃ Hom(X∗E,D∨
X ⊗ F )

≃ Hom(E,X∗(D∨
X ⊗ F )) ≃ Hom(E,X!(DX ⊗D∨

X ⊗ F )).
giving a C–linear equivalenceX!(−) ≃ X!(−⊗DX⊗D∨

X). It now follows from�eorem 2.1.37
thatDX ⊗D∨

X ≃ 1X so thatDX is invertible.
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Example 3.2.14. �e phenomenon of higher semiadditivity introduced by [HL13] provides
many instances of Poincaré duality with trivial dualising sheaf.

(1) For any topos B and any symmetric monoidal B–category C, the terminal object ∗ has
the tautological Poincaré C–Spivak datum (1, id1).

(2) If C is pointed, then by [HL13, Rmk. 4.4.6], the map ∅→ X in B is C–Poincaré.

(3) If C is semiadditive, then by [HL13, Prop. 4.4.9], any finite fold map ∇ :
∐n
i=1X → X

is C–Poincaré.

(4) More generally, a good supply of Poincaré spaces with trivial dualising sheaf comes from
the theory of higher semiadditivity of [HL13; CSY22], as worked out in [Cno23].

Example 3.2.15 (Wall’s Poincaré complexes). Next, we recount some parts of the classical
story that began from Wall’s seminal paper [Wal67]. In this se�ing, our base topos B will
be the category S of spaces. Wall defined a Poincaré complex (he used the word complex,
because he worked with CW-complexes) to be a compact space X together a Spivak datum
(ξ ∈ Pic(ModHZ)

X , c : HZ→ X!ξ) such that for each ψ ∈ (Mod♥HZ)
X the map

c ∩ξ ψ : X∗ψ −→ X!(ξ ⊗ ψ) (13)

is an equivalence. As X was assumed to be compact, both sides of (13) commute with all
(co)limits and so this also implies that the same transformation is an equivalence for arbitrary
ψ ∈ ModZ. On the other hand, to compute the value of the Sp–dualising sheafDX of a space
X at a point x : ∗ → X , one calculates

DX(x) = x∗DX ≃ X!x!x
∗DX ≃ X!(DX ⊗ x!S) ≃ X∗x!S.

Note that x! preserves connective objects while X∗ preserves bounded below objects if it is a
retract of a space admi�ing a finite-dimensional cell structure . So we see that ifX is compact
(i.e. a retract of a space having a finite cell structure), then DX is pointwise bounded below.
�is implies that if DX ⊗ Z ∈ Pic(ModZ)

X , then DX is pointwise given by shi�s of spheres
and in particular, DX ∈ Pic(Sp)X . In conclusion, by combining the points above, a space X
is a Poincaré complex in the sense of Wall if and only if it is compact and Sp–Poincaré in the
sense of Definition 3.2.10. See also [Lan22, Prop. A.12] for a proof in the case of finite spaces.

Example 3.2.16 (Weak Poincaré spaces). A�er Wall, some authors subsequently relaxed the
compactness condition in the definition of Poincaré complexes. For example, in group theory
it is not unusual to completely drop it. We say that a space X is weakly Poincaré if it admits
a Spivak datum (ξ ∈ Pic(ModHZ)

X , c : HZ → X!ξ) such that for each ψ ∈ Mod♥HZ the map
in (13) is an equivalence. AsX∗ preserves coconnectivity,X! preserves connectivity, and both
preserve fibre sequences, we see that they restrict to functors

X∗,X!(−⊗ ξ) : (ModbHZ)
X → ModbHZ

where ModbZ denotes the category of bounded Z–chain complexes. Being weakly Poincaré is
seen to be equivalent to admi�ing a Poincaré Spivak datum in the sense of Definition 3.2.9 with
respect to the symmetric monoidal stable categoryModbHZ.
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Remark 3.2.17. Having now established the three notions and implications

Sp–Poincaré and compact =⇒ Sp–Poincaré =⇒ weakly Poincaré,

we cannot give a conclusive answer about their precise relation. In [Bro72], Browder notes that
if X is weakly Poincaré with finitely presented fundamental group, then it is even compact,
and so by Example 3.2.15, also Sp–Poincaré. On the other hand, Davis shows in [Dav98] that
there are weakly Poincaré spaces whose fundamental groups do not admit a finite presentation.

From here on, we will reserve the term Poincaré space for what we referred to as Sp-Poincaré
spaces above. In particular, we slightly deviate from Wall’s definition. It is useful to try and
port concepts from manifold theory to the theory of Poincaré spaces. One concept that has a
straighforward analog for Poincaré spaces is the dimension of a manifold.

Terminology 3.2.18 (Formal dimensions). LetX ∈ S be a Poincaré space. We say that it has
formal dimension d if for every point x : ∗ → X , we have x∗DX ≃ Σ−dS ∈ Pic(Sp). If for
every point x : ∗ → X , we have x∗DX ≃ Σ−kS for some 0 ≤ k ≤ d, then we will say that it
has formal dimension at most d.

Fact 3.2.19. Here are some classical facts about nonequivariant Poincaré spaces that will be
relevant to our investigations later.

(1) LetX ∈ Sω be a connected Poincaré space of formal dimension d = 0. �en by [Wal67,
�m. 4.2], we have X ≃ ∗. In fact, in the aforementioned theorem, Wall even provided
classifications of Poincaré spaces up to formal dimension 3.

(2) Every connected Poincaré space has formal dimension a nonnegative number. �is is
since if X has formal dimension d, then taking F2–homology, we get H0(X;F2) ∼=
Hd(X;F2). �us if d < 0, thenH0(X;F2) = 0, i.e. X was the empty space.

3.3. Constructions with Spivak data

�is subsection constitutes the heart of our parametrised Poincaré duality theory. We begin by
studying compositions of Spivak data. Next, we shall study two types of basechange results,
namely basechanging coefficient categories (�eorems 3.3.5 and 3.3.8) and basechanging the
underlying topos �eorem 3.3.12. �ese are the main abstract results of this article and they
will play a fundamental role in much of our equivariant work in §§4 and 5. We then end this
subsection by proving a descent result for Poincaré duality.

Compositions

Construction 3.3.1 (Compositions of Spivak data). Let f : X → Y and g : Y → Z be maps
in B equipped with Spivak data

(
ξf ∈ CX , 1CY

cf−−→ f!ξf

) (
ξg ∈ CY , 1CZ

cg−−→ g!ξg

)

We may then define the composition Spivak datum for the map gf : X → Z as
(
ξgf := ξf ⊗f∗ξg ∈ CX , cgf : 1CX

cg−−→ g!ξg
g!(cf⊗id)−−−−−−→ g!(f!ξf ⊗ξg) BC←−−

≃
(gf)!(ξf ⊗f∗ξg)

)
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Lemma 3.3.2 (Capping map for compositions). �e capping map for the composition Spivak
datum is equivalent to the composition of the constituent capping maps. �at is, in the situation
of Construction 3.3.1, we have a commuting diagram

(gf)∗(−) (gf)!(ξf ⊗ f∗ξg)

g!(f∗(−)⊗ ξg) g!(f!(− ⊗ ξf )⊗ ξg)

cgf∩(−)

cg∩f∗(−) BC≃

g!((cf∩(−))⊗id)

Proof. First note that we have the commuting diagram

g∗f∗(−)

g!ξg ⊗ g∗f∗(−) g!
(
ξg ⊗ g∗g∗f∗(−)

)
g!
(
ξg ⊗ f∗(−)

)

g!(ξg ⊗ f!ξf )⊗ g∗f∗(−) g!
(
ξg ⊗ f!ξf ⊗ g∗g∗f∗(−)

)
g!
(
ξg ⊗ f!ξf ⊗ f∗(−)

)

g!f!
(
f∗ξg ⊗ ξf ⊗ f∗g∗g∗f∗(−)

)
g!f!

(
f∗ξg ⊗ ξf ⊗ f∗f∗(−)

)

g!f!(f
∗ξg ⊗ ξf ⊗−).

cg⊗id

g!(cf⊗id)

≃
BC

g!(cf⊗id)

g!(id⊗ǫ)

g!(cf⊗id)

≃
BC g!(id⊗ǫ)

g!(BC) ≃
g!f!(id⊗ǫ)

g!f!(id⊗ǫ)

g!(BC)≃

g!f!(id⊗ǫ)

�e required commuting square is then obtained by taking the outer diagram.

Proposition 3.3.3 (Duality composition formula). Let f : X → Y and g : Y → Z be maps
in B and C be a symmetric monoidal B–category satisfying the f– and g–projection formulas.
Suppose f and g are equipped with Spivak data (ξf , cf ) and (ξg, cg) respectively. �en under the
composition Spivak datum on gf : X → Z from Construction 3.3.1 with dualising sheaf

ξgf := ξf ⊗ f∗ξg,
we have that:

(1) if f and g are twisted ambidextrous, then so is gf ,

(2) if f, g, gf are all twisted ambidextrous and g is furthermore Poincaré duality, then f is
Poincaré duality if and onlf if gf is.

Proof. By Lemma 3.3.2, we have the commuting square

(gf)∗(−) (gf)!(ξf ⊗ f∗ξg)

g!(f∗(−)⊗ ξg) g!(f!(−⊗ ξf )⊗ ξg).

cgf∩(−)

cg∩f∗(−) g!BC!≃

g!((cf∩(−))⊗id)

Hence, if the le� vertical and bo�om horizontal maps are equivalences, then so is the top
horizontal map. It is also clear that from the formula ξgf = ξf⊗f∗ξg that if two ξg is invertible
(and so also f∗ξg), then ξgf is invertible if and only if ξf is.
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Change of coefficients

Construction 3.3.4 (Basechanging Spivak data). Let C,D beB–categories admi�ingX-shaped
(co)limits and satisfying theX-projection formula. SupposeF : C → D is a symmetricmonoidal
functor of B–categories which preserves X–shaped colimits. We define a new D–Spivak da-
tum forX as follows

F (ξ, c) :=
(
Fξ : X

ξ−→ C F−→ D, F c : 1D ≃ F (1C)
Fc−→ F (r!ξ) ≃ r!Fξ

)
.

�eorem 3.3.5 (Poincaré basechange - presentable version). Let F : C → D be a functor of pre-
sentably symmetric monoidal B–categories. Suppose that (ξ, c) is a twisted ambidextrous Spivak
datum with coefficients in C for the objectX ∈ B. �en F (ξ, c) is a twisted ambidextrous Spivak
datum with coefficients in D forX . In particular, ifX is C–Poincaré, then X is also D–Poincaré.

Proof. Recall from Proposition 2.1.38 that −⊗C D : ModC(Pr
L
B)→ ModD(Pr

L
B) is symmetric

monoidal B-colimit preserving. Using that CX ∈ ModC(PrL(B)) is self dual (see [Cno23,
Corollary 2.27]), one sees that the coassembly map (limX C) ⊗C D → (limX C) ⊗C D is an
equivalence (even a symmetric monoidal one). �e commutative diagram

CX CX ⊗ CX CX

DX DX ⊗DX DX

−⊗Cξ

F F

−⊗C−

F

−⊗DFξ −⊗C−

together with the equivalenceFunD(DX ,DX) ≃ FunC(CX ,DX) then gives us an equivalence
(−⊗ ξ)⊗C D ≃ (−⊗ Fξ).

By standard arguments, the functor−⊗CD : ModC(PrLB)→ ModD(PrLB) preserves internal
adjunctions. Hence, we see that (XC)!⊗CD : CX⊗CD ≃ DX → C⊗CD ≃ D is an internal le�
adjoint of (XD)∗ = (XC)∗ ⊗C D from which we obtain an equivalence (XC)! ⊗C D ≃ (XD)!.
Together with the first part, the internal right adjoint (XC)!(ξ ⊗ −) to (XC)∗ basechanges to
an internal right adjoint

(XC)!(ξ ⊗−)⊗C D ≃ (XD)!(Fξ ⊗−) : DX −→ D

of (XD)∗. Because the internal adjunction (XD)∗ ⊣ (XD)!(Fξ⊗−) onD is basechanged from
the internal adjunctionX∗

C ⊣ (XC)!(ξ ⊗−) on C , we see that the D–fundamental class, which
is the unit of the former internal adjunction, is given by the composite

1D ≃ F (1C)
Fc−−→ F (XC)!ξ ≃ (XD)!Fξ.

�e final statement about Poincaré duality is clear since F is symmetric monoidal and so pre-
serves invertibility.

Corollary 3.3.6. Let Φ: C → D be a symmetric monoidal functor of presentably symmetric
monoidal B–categories and let X ∈ B be a C–twisted ambidextrous space. �en the Beck–
Chevalley transformation BC∗ : ΦX∗(−)→ X∗Φ(−) is an equivalence.

46



Proof. To disambiguate notations, we will denote byX! andX∗ for theX–colimit and limit for
the category D. Now, by Proposition 3.1.9 applied to the case of Example 3.1.6 (1), we obtain a
commuting square

ΦX∗(−) ΦX!(DX ⊗−)

X∗Φ(−) X!Φ(DX ⊗−) ≃ X!(ΦDX ⊗ Φ(−))

Φ(c∩DX
−)

≃
BC∗

Φc ∩ΦDX
Φ−

≃
BC! ≃

where the top map is an equivalence by C–twisted ambidexterity, the bo�om an equivalence by
�eorem 3.3.5, and the right vertical is an equivalence since Φ preserves parametrised colimits
by hypothesis. �us the le� vertical map is an equivalence too, as desired.

In a limited sense, it is possible to exploit that an object X ∈ B admits a Poincaré Spivak
datum with coefficients in C to get a Spivak datum with coefficients in D with interesting
properties. To this end, it would be convenient to establish the following terminology:

Terminology 3.3.7. LetX ∈ B,D ∈ CMon(CatB) satisfying theX–projection formula, and
Φ: C → D a functor of B–categories. Suppose we have a D–Spivak datum (ζ, d) for X . We
say that the Spivak datum (ζ, d) is:

(a) Φ–twisted ambidextrous if the capping transformation

X∗Φ(−)
d∩ζΦ−−−−−→ X!

(
ζ ⊗ Φ(−)

)

of functors CX → D is an equivalence,

(b) Φ–Poincaré duality if it is Φ–twisted ambidextrous and ζ takes values in invertible ob-
jects.

�eorem 3.3.8 (Poincaré basechange - general version). Suppose Φ: C → D is a symmetric
monoidal functor of B–categories such that

• the B–categories C,D admit X-shaped (co)limits and satisfy the X-projection formula;

• the B-functor Φ preserves X-shaped limits and colimits.

If (ξ, c) is a twisted ambidextrous C–Spivak datum forX , then Φ(ξ, c) is a twisted ambidextrous
Φ–Spivak datum forX . In particular, if (ξ, c) is a Poincaré duality C–Spivak datum forX , then
Φ(ξ, c) is a Poincaré duality Φ–Spivak datum forX .

Proof. To distinguish from the Kan extensions X∗,X! associated to the category C, we will
writeX∗,X! for the functors DX → D. By Proposition 3.1.9, we have a commuting square

ΦX∗(−) ΦX!(ξ ⊗−)

X∗Φ(−) X!Φ(ξ ⊗−) ≃ X!(Φξ ⊗ Φ(−))

Φ(c∩ξ−)

≃
BC∗≃

Φc ∩ΦξΦ−

BC! ≃
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from which the desired result is immediate. �e final statement about Poincaré duality is an
immediate consequence of the fact that Φ is symmetric monoidal and so preserves invertible
objects.

We will exploit this later to reprove an injectivity result of Bredon and Browder as �eo-
rem 5.1.1.

Change of base topoi

Notation 3.3.9. To state the next construction and result, it will be convenient to adopt the
following notation: let f∗ : B ⇋ B′ :f∗ be a geometric morphism of topoi. If C F−→ D G−→ E are
functors of B′–categories, we write f∗[G ◦ F ] to mean the composite f∗C

f∗F−−→ f∗D
f∗G−−→ f∗E

and similarly for f∗. Furthermore, since both f∗ and f∗ are product–preserving functors and
so enhance to symmetric monoidal functors, we see that for an object A ∈ D, writing f∗A ∈
f∗D under the equivalenceMapCatB(constB ∗, f∗D) ≃ MapCatB′ (constB′ ∗,D), the map−⊗
A : D → D is sent to −⊗ f∗A : f∗D → f∗D, and similarly in the case when we apply f∗.

Construction 3.3.10 (Pushing Spivak data along geometric morphisms). Let f∗ : B ⇋ B′ :f∗
be a geometric morphism of topoi and consider X ∈ B and C a symmetric monoidal B′–
category which admits f∗X–indexed colimits. By Lemma 2.1.18, we know that f∗C admits
X–colimits.

Suppose we are given a C-Spivak datum (ξ, c) for f∗X and a f∗C–Spivak datum (ζ, d) for
X . Using the symmetric monoidal identification from Lemma 2.1.16, we obtain a f∗C–Spivak
datum f∗(ξ, c) for X and a C–Spivak datum f∗(ζ, d) for f∗X . Observe in particular that, by
construction, we have f∗f∗(ξ, c) ≃ (ξ, c) and f∗f∗(ζ, d) ≃ (ζ, d).

Here, for instance, f∗ξ corresponds to ξ under the equivalence f∗Fun(f∗X, C) ≃ Fun(X, f∗C)
and f∗c : 1f∗C → X!f∗ξ corresponds to c under the identification of adjunctions in (6). Explic-
itly, these new Spivak data are given by

f∗(ξ, c) :=
(
f∗ξ : X

η−→ f∗f
∗X

f∗ξ−−→ f∗C, f∗c : 1f∗C = f∗[1C]→ X!f∗ξ = f∗[(f
∗X)!ξ]

)
,

f∗(η, d) :=
(
f∗X

f∗ζ−−→ f∗f∗C ǫ−→ C, f∗d : 1C = f∗[1f∗C ]→ (f∗X)!f
∗ζ = f∗[X!ζ]

)
.

Construction 3.3.11 (Pushing Spivak data along étale morphisms). Let f∗ : B ⇋ B′ :f∗ be an
étale morphism of topoi, C ∈ CMon(CatB), and X ∈ B. Suppose (ξ, c) is a C–Spivak datum
for X . �en we can construct a f∗C–Spivak datum f∗(ξ, c) for f∗X given by

(
f∗ξ : f∗X

f∗ξ−−→ f∗C, f∗c : 1f∗C ≃ f∗[1C]
f∗[c]−−−→ (f∗X)!f

∗ξ ≃ f∗[X!ξ]
)

where in the last equivalence, we have used f∗[X!] ≃ (f∗X)! from Lemma 2.1.19.

For part (e) of the next result, see Terminology 3.3.7.

�eorem 3.3.12 (Omnibus geometric basechange of Spivak data). Let f∗ : B ⇋ B′ :f∗ be a
geometric morphism of topoi,X ∈ B,D ∈ CMon(CatB′) satisfying the f∗X–projection formula,
and E ∈ CMon(CatB) satisfying theX–projection formula. Let (ξ, c) be a D–Spivak datum for
f∗X and (ζ, d) a f∗D–Spivak datum forX . �en:
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(a) �ere is a commuting square of capping maps

X∗(−) X!(f∗ξ ⊗−)

f∗
[
(f∗X)∗(−)

]
f∗
[
(f∗X)!(ξ ⊗−)

]

f∗c∩f∗ξ−

≃ ≃
f∗[c∩ξ−]

of functors Fun(X, f∗D) ≃ f∗Fun(f∗X,D)→ f∗D

(b) Suppose that f∗ : CatB′ → CatB is fully faithful (resp. that f∗ : B ⇋ B′ :f∗ is étale). �en
there is a commuting square

f∗
[
X∗(−)

]
f∗

[
X!(ζ ⊗−)

]

(f∗X)∗(−) (f∗X)!(f
∗ζ ⊗−)

f∗[d∩ζ−]

≃ ≃
f∗d∩f∗ζ−

of functors Fun(f∗X,D) ≃ f∗Fun(X, f∗D)→ D (resp. Fun(f∗X, f∗E)→ f∗E),

(c) If (ξ, c) is a twisted ambidextrous (resp. Poincaré) D–Spivak datum for f∗X , then f∗(ξ, c)
is a twisted ambidextrous (resp. Poincaré) f∗D–Spivak datum forX .

(d) Suppose either that f∗ is fully faithful or that D is presentably symmetric monoidal. If
(ζ, d) is a twisted ambidextrous (resp. Poincaré) f∗D–Spivak datum for X , then f∗(ζ, d)
is a twisted ambidextrous (resp. Poincaré) D–Spivak datum for f∗X .

(e) More generally: suppose f∗ is fully faithful. Let C ∈ CatB and Φ: C → f∗D be a functor
between B–categories. �en (ζ, d) isΦ–twisted ambidextrous (resp. –Poincaré) forX if and
only if f∗(ζ, d) is (f∗Φ: f∗C → D)–twisted ambidextrous (resp. –Poincaré) for f∗X ,

(f) Suppose the geometric morphism f∗ : B ⇋ B′ :f∗ is étale. If (ζ, d) is a twisted ambidex-
trous (resp. Poincaré) E–Spivak datum forX , then f∗(ζ, d) is a twisted ambidextrous (resp.
Poincaré) f∗E–Spivak datum for f∗X .

Proof. First note by Proposition 2.1.24 (1, 3) that f∗D satisfies the X–projection formula and
f∗E satisfies the f∗X–projection formula, and so the squares in (a) and (b) make sense. Now
to prove part (a), we have the commutative diagram

X∗(−) f∗
[
(f∗X)∗(−)

]

X∗(−)⊗X!f∗ξ f∗
[
(f∗X)∗(−)⊗ (f∗X)!ξ

]

X!(X
∗X∗(−)⊗ f∗ξ) f∗

[
(f∗X)!((f

∗X)∗(f∗X)∗(−)⊗ ξ)
]

X!(−⊗ f∗ξ) f∗
[
(f∗X)!(−⊗ ξ)

]

≃

id⊗f∗c f∗[id⊗c]

≃

≃

ǫ∗

BC! ≃

f∗ǫ∗

f∗BC!≃

≃

49



�e horizontal arrows come from the identification in Lemma 2.1.18; the top square commutes
by symmetric monoidality of the identification; the middle and bo�om squares commute as
the respective adjunction (co-)units are identified by (6). �e required square is now obtained
by extracting the outer square of the diagram above.

�e proof for (b) in the case that f∗ is fully faithful is done similarly as for (a), but using now
the commuting squares of adjunctions obtained by applying f∗ to Lemma 2.1.18 (f∗ preserves
adjunctions by [MW24, Cor. 3.1.9]) and that f∗f∗ ≃ id. �e case of étale morphisms is also
done similarly, using instead the squares of adjunctions from Lemma 2.1.19.

Next, we prove part (c). If (ξ, c) is twisted ambidextrous, then by Lemma 2.1.20, the bo�om
map in the square from (a) is an equivalence, and so the top map is an equivalence too, i.e.
f∗(ξ, c) is twisted ambidextrous. �e statements about being Poincaré is a straightforward
consequence of the twisted ambidexterity statements we just proved and the characterisation
of factoring through invertible objects in Corollary 2.1.23 (1).

For the proof of (d), suppose now that f∗ is fully faithful and that (ζ, d) is twisted ambidex-
trous. �en since f∗f∗ ≃ id, the top map in the square from (b) is an equivalence, and so the
bo�om map is an equivalence too, i.e. f∗(ζ, d) is twisted ambidextrous. Poincaré duality is
then handled similarly as in (c).

Next, assume that D is presentably symmetric monoidal. We show that the capping trans-
formation f∗d ∩f∗ζ (−) : Fun(f∗X,D) → D∆1 is a natural equivalence in unparametrised
categories when evaluated at everyW ∈ B′. Firstly, note that theD–Spivak datum for f∗X at
levelW is obtained via the symmetric monoidal biadjoint B′–functorW ∗ : D → DW , and so
the transformation evaluated atW ∈ B′ is given by applying global sections ΓB′ to

W ∗(f∗d) ∩W ∗◦f∗ζ (−) : Fun(f∗X,DW ) −→ (DW )∆
1
. (14)

Next, applying �eorem 3.3.5 along f∗[W ∗] : f∗D → f∗(DW ) shows that the f∗(DW )–Spivak
datum f∗[W ∗](ζ, d) is twisted ambidextrous, i.e.

f∗[W ∗](d) ∩f∗[W ∗]◦ζ (−) : Fun(X, f∗(DW ))→ (f∗(DW ))∆
1

is a natural equivalence. But then by the square in part (a), this capping transformation is
equivalent to f∗[W ∗(f∗d) ∩W ∗◦f∗ζ (−)] : f∗Fun(f∗X,DW ) → f∗((DW )∆

1
), where we have

also used that f∗f∗(ζ, d) ≃ (ζ, d) from Construction 3.3.10. �us, by using that ΓBf∗ ≃ ΓB′

from Example 2.1.9, we may apply ΓB to f∗[W ∗(f∗d) ∩W ∗◦f∗ζ (−)] to get that applying ΓB′

to (14) yields a natural equivalence, as desired. And as usual, Poincaré duality is handled by
Corollary 2.1.23 (1).

Now, the proof of parts (c, d) clearly goes through straightforwardly to yield a proof of (e).
Finally, the proof of (f) in the twisted ambidexterity case is done similarly as in the proof of (c)
using the square from (b), and the Poincaré duality case is handled by Corollary 2.1.23 (2).

Descent

For the next result, we briefly recall the notion of effective epimorphisms in a topos B. Given
a morphism f : X → Y in B, its Čech nerve is the simplicial object

Č(f) : ∆op → B, [n] 7→ X ×Y X ×Y · · · ×Y X (n+ 1 factors).
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Now f is called an effective epimorphism if the canonical map colim∆op Č(f)→ Y is an equiv-
alence.

Example 3.3.13. A map in the topos S of spaces is an effective epimorphism if and only if it
is a π0-surjection (see e.g. [Lur09, Corollary 7.2.1.15]). Applying this criterion pointwise, one
sees that a map f : X → Y in a presheaf topos PSh(T ) over some category T is an effective
epimorphism if and only if for all t ∈ T the map f(t) : X(t) → Y (t) is a π0-surjection. For
example, a map of G–spaces f : X → Y is an effective epimorphism if and only if for each
closed subgroup H ≤ G the map fH : XH → Y H is a surjection on path components.

Proposition 3.3.14 (Poincaré duality and descent). Let C be a presentably symmetric monoidal
B–category. Consider a pullback square

P Z

X Y.

f ′

g′
y

g

f

in B. If f is C-twisted ambidextrous, then f ′ is C-twisted ambidextrous. Furthermore, there is an
equivalence (g′)∗Df ≃ Df ′ where Df ∈ C(X) denotes the dualising object. In particular, if f is
a C–Poincaré duality map, then f ′ is a C–Poincaré duality map.

�e converse to both statements is true if g is an effective epimorphism.

Proof. Basechange along g defines an étale morphism of topoi g∗ : B/Y → B/Z : g∗ where g∗
is given by pullback along g. Now suppose that f is C-twisted ambidextrous. �is means that
f ∈ B/Y is (πY )∗C-twisted ambidextrous. Applying�eorem3.3.12 shows that g∗f = f ′ ∈ B/Z
is g∗π∗Y C = π∗ZC-twisted ambidextrous with Spivak datum (g∗ξ, g∗c).

If f is a C–Poincaré duality map, then Df is invertible. By symmetric monoidality of the
restriction map (g′)∗ : C(X)→ C(P ) we obtain thatDf ′ = (g′)∗Df is invertible.

Now suppose that g is an effective epimorphism and that f ′ is C-twisted ambidextrous. It is
shown in [Cno23, Proposition 3.13 (5)] that f is C-twisted ambidextrous. As g′ : P → X is an
effective epimorphism and the map ∆op

inj → ∆op is colimit cofinal, the map colim∆op
inj

Č(g′) →
X is an equivalence from which we obtain the symmetric monoidal equivalence C(X)

≃−→
lim∆inj

C(Č(g′)). Next, suppose furthermore that f ′ is a Poincaré duality map. As invertibility
in limits can be checked pointwise, we have to show that each restriction ofDf to C(Čn(g′)) is
invertible. Note that a restrictionmap C(X)→ C(Čn(g′)) factors into the symmetric monoidal
restriction maps C(X) → C(P ) → C(Čn(g′)) and the first part shows the restriction Df ′ =
(g′)∗Df to P is invertible.

Corollary 3.3.15 (Finite products). Let X,Y ∈ B and C be a presentably symmetric monoidal
B–category. IfX and Y are C–Poincaré, then X × Y is C–Poincaré and there is an equivalence

DX×Y ≃ pr∗X DX ⊗ pr∗Y DY

where prX : X × Y → X and prY : X × Y → Y denote the projections.
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Proof. As X is C–Poincaré, it follows from Proposition 3.3.14 that the map prY : X × Y →
Y is a C–Poincaré map. Since Y is C–Poincaré, Proposition 3.3.3 implies that the composite
X × Y → Y → ∗ is a C–Poincaré map showing thatX × Y is C–Poincaré. Propositions 3.3.3
and 3.3.14 then give the identificationsDX×Y ≃ pr∗Y DY ⊗DprY ≃ pr∗Y DY ⊗ pr∗X DX .

Lemma 3.3.16. Let C ∈ CAlg(PrLB) be a symmetric monoidalB–category and (fi : X i → Y i)i∈I
be a collection of maps in B. �en the map f =

∐
i fi :

∐
iX i →

∐
i Y i is C-twisted ambidex-

trous (or C–Poincaré duality) if and only if for all i ∈ I the map fi is C-twisted ambidextrous (or
C–Poincaré duality). If this is so, then under the identification C(∐iXi) ≃

∏
i C(Xi), we have

an equivalence Df ≃ (Dfi)i.

Proof. �e “only if”-direction follows from Proposition 3.3.14. �e “if”-direction in the twisted
ambidexterity case is [Cno23, Proposition 3.13(3)]. If in addition all fi are Poincaré duality
maps, then

∐
i fi is a Poincaré duality map asDf = (Dfi)i under the equivalence C(

∐
iXi) =∏

i C(X i).

Corollary 3.3.17. Let C ∈ CAlg(PrLB) be a symmetric monoidal B–category which is semiad-
ditive and {X i}i a finite collection of objects in B. �en

∐
iX i is C–Poincaré duality if and only

if each Xi is C–Poincaré duality. In this case, under the identification C(∐iXi) ≃
∏
i C(Xi), we

have an equivalence D∐
iXi
≃ (DXi

)i.

Proof. Suppose
∐
iX i is C–Poincaré duality. By Example 3.2.14 (1) and Lemma 3.3.16, we see

that the inclusion Xj →֒
∐
iX i is Poincaré duality for each j. An immediate application of

Proposition 3.3.3 using the triple of mapsXj →֒
∐
iXi,

∐
iXi → ∗, andXj → ∗ then shows

thatXj is also Poincaré duality. Next, suppose eachXj is Poincaré duality. By semiadditivity
and Example 3.2.14 (2), the map ∇ :

∐
i ∗ → ∗ is C–Poincaré duality with dualising sheaf

(1C)i ∈
∏
i C(∗). �us, a simple combination of Proposition 3.3.3 and Lemma 3.3.16 using the

triple of maps ⊔ri :
∐
iX i →

∐
i ∗,∇, and ∇ ◦ (⊔iri) yields the desired conclusion.

3.4. Degree theory

In this subsection we introduce the notion of the degree of a map between Poincaré spaces (or
more generally objects with Spivak data). We use this to construct Umkehr squares which will
important for our geometric applications. In §4.6 we will specialise this to the case ofG–spaces
for a finite group G which generalises classical constructions of the equivariant degree.

As a motivation for the definition, recall that given a map f : X → Y between closed con-
nected manifolds of the same dimension, one can assign to it a degree if f is compatible with
the orientation behaviour ofX and Y : given an identificationOX ≃ f∗OY of orientation local
systems, the degree is given by the image of [X] under f∗ : Hn(X;OX ) → Hn(Y ;OY ) ≃ Z.
In our se�ing, we will replace orientation local systems and the fundamental classes [X] above
with the dualising sheaves and fundamental classes from Definition 3.1.1.
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The definition

Construction 3.4.1 ((Co)homological functoriality). Consider a map f : X → Y in B and a
B–category C which admitsX- and Y -shaped limits and colimits. We obtain transformations

BCf! : X!f
∗ −→ Y! BCf∗ : Y∗ −→ X∗f∗

of functors CY → C coming from the le� and right Beck–Chevalley transformations, respec-
tively, associated to the commuting triangle

CX CY

C

f∗

X∗
Y ∗

We call BCf! the homological functoriality map and BCf∗ the cohomological functoriality map.

Definition 3.4.2 (Degree of a map). Consider a map f : X → Y in B and a symmetric B–
category C which admits X- and Y -shaped limits and colimits and satisfies the X- and Y -
projection formula. Suppose we are given Spivak data (ξX , cX) for X and (ξY , cY ) for Y . A
C-degree datum for f is an equivalence α : ξX

≃−→ f∗ξY in FunB(X, C). We define the C-degree
of (f, α) as the point degC(f, α) ∈ Map(1C , Y!ξY ) given by the composite

1C
cX−−→ X!ξX

α−→ X!f
∗ξY

BCf
!−−−→ Y!ξY .

We say that an equivalence cY ≃ degC(f, α) exhibits f as a map of C-degree one.

Remark 3.4.3. Note that an equivalence cY ≃ degC(f, α) is the same datum as a homotopy
rendering the following diagram commutative

1C X!ξX X!f
∗ξY

Y!ξY .

cX

cY

X!α

≃

BCf
!

Construction 3.4.4. If the Spivak datum (ξY , cY ) is C-twisted ambidextrous, then the equiv-
alence cY ∩ξY 1C : Y∗Y ∗1C ≃ Y!ξY endows Y!ξY with the structure of a commutative algebra
in C. �is givesMap(1C , Y!ξY ) the structure of a commutative monoid in S with unit cY . �is
explains the name “degree one” in the previous definition.

Example 3.4.5. Here are some well-known sources of degree data in the case B = S with
respect to a presentably symmetric monoidal coefficients C. Let f : X → Y be a map of con-
nected Poincaré spaces of the same formal dimension d (c.f. Terminology 3.2.18). We consider
situations when a degree datum exists for the map f with the Poincaré Spivak data (DX , cX)
and (DY , cY ) forX resp. Y .
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(1) For C = ModF2 , a degree datum exists uniquely since Pic(ModF2) ≃ Z×BAut(F2) ≃
Z× ∗ has contractible components.

(2) For C = ModZ, writing w1(−) for the first Stiefel–Whitney class of a space, a degree
datum exists if and only if f∗w1(Y ) = w1(X) ∈ H1(X;F2). On homotopy groups, the
compositeX!DX ≃ X!f

∗DY → Y!DY then identifies with

f∗ : Hd+∗(X;OX )→ Hd+∗(Y ;OY )

whereOX andOY denote the orientation local systems. �e degree defined above is then
given by f∗[X] ∈ Hd(Y ;OY ) ≃ π0(Map(1ModZ, Y!DY )) and agrees with the classical
definition of the degree.

(3) In surgery theory, one is o�en provided with a normal map, i.e. a commuting diagram

X Y

BO × Z

Pic(Sp)

DX

f

DY
J

and of course restricting to the outer commutative triangle gives rise to a degree datum.

Homological Umkehr squares

Classically, given a map f : M → N of degree one between closed orientedmanifolds, one can
construct a “homological Umkehr map” f ! : H∗(N) → H∗(M) going the “wrong way” using
Poincaré duality. �e following result is a generalisation of this.

Lemma 3.4.6 (Umkehr square). Consider a map f : X → Y in B and a symmetric monoidal
B–category C which admits X- and Y -shaped limits and colimits and satisfies the X- and Y -
projection formula. Suppose that there is a degree datum α for f which is of degree one. �en the
diagram

Y∗(−) X∗f∗(−)

Y!(ξY ⊗ (−)) X!(f
∗ξY ⊗ f∗(−)) X!(ξX ⊗ f∗(−))

BCf
∗

cY ∩ξY
(−) cX∩ξX

f∗(−)

BCf
!

α

commutes.

54



Proof. Consider the diagram

Y∗(−) X∗f∗(−)

Y!ξY ⊗ Y∗(−) X!f
∗ξY ⊗ Y∗(−) X!f

∗ξY ⊗X∗f∗(−)

Y!(ξY ⊗ Y ∗Y∗(−)) X!(f
∗ξY ⊗X∗Y∗(−)) X!(f

∗ξY ⊗X∗X∗f∗(−))

Y!(ξY ⊗ (−)) X!(f
∗ξY ⊗ f∗(−))

BCf
∗

cY ⊗−
αcY ⊗− αcY ⊗−

BCf
! ⊗id

id⊗BCf
∗

PF
Y
!

≃

ǫY

PF
X
!

≃

BCf
!

BCf
∗

ǫY

PF
X
!

≃

ǫX

BCf
!

�e degree one datum makes the top le� triangle commute. �e bo�om right triangle com-
mutes using the definition of the restriction map and the triangle identities. �e top right
and bo�om le� squares commute by naturality of BC. �e middle two squares commute by
naturality of By definition, the composite of the blue arrows is given by cY ∩ξY (−) and the
composite of the red arrows is given by αcX ∩f∗ξY (−). To finish, observe that the diagram

X∗(−)

X!(f
∗ξY ⊗ (−)) X!(ξX ⊗ (−))

αcX∩f∗ξY (−)
cX∩ξX

(−)

α

commutes.

Basechange

Construction 3.4.7. Suppose that F : C → D is a symmetric monoidal colimit preserving
functor of presentably symmetric monoidal B–categories. Consider a map f : X → Y in B
and consider a C-degree datumα for f . We obtain aD-degree datumF (α) : FξX

≃−→ Ff∗ξY ≃
f∗FξY for f and the Spivak data F (ξX , cX) and F (ξY , cY ) from Construction 3.3.4.

Lemma 3.4.8. In the situation of Construction 3.4.7, the image of degC(f, α) under the map

Map(1C , Y!ξY )
F−→ Map(1D, Y!FξY ) (15)

is equivalent to degD(f, F (α)). Furthermore, if (ξY , cY ) is C-twisted ambidextrous, then the
map (15) refines to a map of commutative monoids for the commutative monoid structures from
Construction 3.4.4 and we have a commutative diagram

Map(1C , Y!ξY ) Map(1D, Y!FξY )

Map(1C , Y∗Y ∗1C) Map(1D, Y∗Y ∗1D).

F

cY≃ F (cY )≃
F
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Proof. Note that as F is colimit preserving, it commutes with the homological functoriality
constructed in Construction 3.4.1. �us it sends

degC(f, α) : 1C
cX−−→ X!ξX

α−→
≃
X!f

∗ξY
BC!−−→ Y!ξY

to degD(f, F (α)) : 1D
F (cX)−−−−→ X!FξX

α−→
≃
X!f

∗FξY
BC!−−→ Y!FξY

as desired. Next, suppose that (ξY , cY ) is C-twisted ambidextrous. By Proposition 3.1.9 ap-
plied to Example 3.1.6 (1), F sends the equivalence Y∗Y ∗1C ≃ Y!ξY induced by (ξY , cY ) to the
equivalence Y∗Y ∗1D ≃ Y!F (ξY ) induced by F (ξY , cY ). �us Y!FξY ≃ FY!ξY as commuta-
tive algebras in D.

Construction 3.4.9. Let f : X → Y be a map in B and consider a symmetric monoidal B–
category C which admitsX-shaped limits and colimits and satisfies theX-projection formula.
Furthermore, assume that the map f∗ : Fun(Y , C) → Fun(X, C) is an equivalence. It canon-
ically refines to a symmetric monoidal equivalence. Hence, by Construction 3.4.1, we obtain
canonical equivalencesBCf! : X!f

∗ ≃−→ Y! and BCf∗ : Y∗
≃−→ X∗f∗. �us, for any Spivak datum

(ξX , cX) forX we obtain the Spivak datum
(

1C
cX−−→ X!ξX ≃ Y!(f∗)−1ξX

)

for Y . It is twisted ambidextrous (or Poincaré) if and only if (ξX , cX) is. Furthermore, note
that with respect to these Spivak data, the map f is clearly of degree one.

Lemma 3.4.10. Consider a geometric morphism f∗ : B ⇋ B′ :f∗ of topoi and C be a symmetric
monoidal B′-category. Suppose that we are given a map g : X → Y in B together with C-Spivak
data for f∗X and f∗Y . �en a C-degree (one) datum for f∗g : f∗X → f∗Y is equivalent to a
f∗C-degree (one) datum for g, where we endow X and Y with the f∗C-Spivak data from Con-
struction 3.3.10.

Proof. �e equivalence of degree data follows from Lemma 2.1.16. �e statement about degree
one data being equivalent follows from Lemma 2.1.18.

4. Equivariant Poincaré duality: elements

In this section we will apply the abstract theory of parametrised Poincaré duality developed
in §3 to the topos SG of G–spaces for a compact Lie group G and use this as our definition of
equivariant Poincaré duality spaces. We begin in §4.1 by explaining the definition in this special
case in more detail, and then come to one of the key components of the theory in §4.2, namely
fixed points methods. A�er that, in §4.3 we study how Poincaré duality interacts with various
kinds of equivariant and homotopical operations such as restrictions, inflations, (co)inductions,
fibre sequences, and quotients, andwe then give natural examples ofG–Poincaré spaces in §4.4.
Lastly, we will round off this section by explaining some geometrically meaningful ramifica-
tions of the theory of fundamental classes in §§4.5 and 4.6.
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�e reader who is not too familiar with the abstract categorical language can in most situ-
ations safely replace G by a finite group and a presentably symmetric monoidal G–category
C by the G–category SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp of genuine G–spectra or even ModA(G)(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) ≃ D(MackG(Ab)) (c.f.
[GS14, §5.2] or [PSW22, §5] for this equivalence), the derived category of G-Mackey functors
with values in abelian groups. As a sanity check for constructions not involving a change of
groups, it might also be helpful to first read the statements for G = 1.

4.1. Se�ing the stage

We specialise the definitions in §§3.1 and 3.2 from the abstract parametrised se�ing to the
equivariant situation for a compact Lie group G. A�er giving the formal definitions, we will
provide more intuition for them by unraveling what these notions mean in Remark 4.1.5.

Definition 4.1.1. LetX ∈ SG and C a symmetric monoidalG–category admi�ingX–shaped
colimits. A C–Spivak datum forX is a pair (ξ, c) where ξ ∈ FunG(X, C) is called the dualising
sheaf and c : 1C → X!ξ is a morphism in C called the fundamental class.

Now let C be a symmetric monoidal G–category and X ∈ SG a G–space. Suppose that
C admitsX–shaped limits and colimits and satisfies theX–projection formula (c.f. Terminol-
ogy 2.1.13). For example, if either: (a) theG–category C were presentably symmetric monoidal,
i.e. an object in CAlg(PrLG), or (b) if G were a finite group, X ∈ SG were compact, and C
were a smallG–stably symmetric monoidal category, i.e. an object inCAlg(CatexG ), then these
conditions are satisfied. Under these conditions, given a C–Spivak datum, Construction 3.1.2
provides a a morphism in Fun(CX , C)

c ∩ξ − : X∗(−) −→ X!(− ⊗ ξ) (16)

called the capping transformation. We refer the reader to the preamble of §3 for the motivation
for these notations.

Definition 4.1.2. A C–Spivak datum (ξ, c) for X is twisted ambidextrous if the capping map
(16) is an equivalence. It is Poincaré if additionally, ξ takes values in the subcategory Pic(C).

If we take a presentably symmetric monoidal G–category C ∈ CAlg(PrLG) as coefficient
system, then the situation again simplifies a li�le, for example because a twisted ambidextrous
Spivak datum is unique, if it exists, by Proposition 3.2.5.

Definition 4.1.3. If X is a G–space and C is a presentably symmetric monoidal G–category,
we say that X is C–twisted ambidextrous if it admits a twisted ambidextrous C–Spivak datum
(DX , c). Furthermore,X is C–Poincaré if additionallyDX takes values in Pic(C).

Terminology 4.1.4. In the special case where C = SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp, we just say that X is G–twisted am-
bidextrous or G–Poincaré.

Understanding the case of SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp–Poincaré duality is our main motivation for this article. Be-
cause of its importance, we give a few explanations about this particular space.
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Remark 4.1.5 (Unraveling the definition of SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp-Poincaré duality). To set up a good formalism,
we needed to work in a generality that runs the risk of seeming overly abstract. We stress that
the task of checking if a space X is G–Poincaré closely resembles classical Poincaré duality.

First, one has to find the correct analog of a local systemwith respect to whichX is supposed
to satisfy Poincaré duality. We required a ξ ∈ FunG(X,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) that lands in Pic(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp), which
unravels to providing for each closed subgroup H ≤ G a local system of invertibleH–spectra
ξH : XH → Pic(SpH) together with compatibilities that amount to providing for each map
G/K → G/H a homotopy in the diagram

XK Pic(SpK)

XH Pic(SpH)

ξK

ResKH ResKH

ξH

plus higher coherences between these homotopies. Additionally, we required a fundamental
class c : SG → X!(ξ) which the reader should think of as an equivariant homology class of X
with coefficients in the local system ξ. �e capping map c ∩ξ − : X∗(−)→ X!(−⊗ ξ) should
then be thought of as the cap product with the homology class c. Recall from the preamble
to §3 that classical Poincaré duality is the statement that capping with a certain “fundamental
class” induces an isomorphism between cohomology and homology, and what we ask here is
exactly the same condition.

In the presentable se�ing, we are in the pleasant situation where we can identify a large
class of twisted ambidextrous objects.
Proposition 4.1.6. Every compactG–spaceX is SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp–twisted ambidextrous. Consequently, every
compactG–spaceX is C–twisted ambidextrous for anyG-stable presentably symmetric monoidal
G–category.

Proof. �e first part is an immediate consequence of [Cno23, �m. 4.8 (5)] and Remark 3.2.6,
and the second part is by �eorem 3.3.5.

Next, as may be expected of a well–behaved equivariant notion, equivariant Poincaré duality
is preserved under restrictions. To show this, first recall from Recollection 2.2.1 that for a
closed subgroupH ≤ G there is an identificationO(H) ≃ O(G)//(G/H) so that the induction
SH → SG can be identified with the étale geometric morphism SG ⇋ (SG)/(G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H).
Construction 4.1.7 (Pushing Spivak data along restrictions). LetX ∈ SG, C ∈ CMon(CatG),
and (ξ, c) a C–Spivak datum for X . �en by Construction 3.3.11, we obtain a ResGH C–Spivak
datum ResGH(ξ, c) for ResGH X given by

(
ResGH ξ : ResGH X

ResGH ξ−−−−→ ResGH C, ResGH c : ResGH 1C
ResGH [c]−−−−−→ (ResGH X)!Res

G
H ξ

)

Proposition 4.1.8 (Restriction stability of Poincaré duality). Let X ∈ SG, C be a symmetric
monoidal G–category, and (ξ, c) be a Poincaré C–Spivak datum. �en for all closed subgroups
H ≤ G, ResGH(ξ, c) is a Poincaré ResGH C–Spivak datum for the H-space ResGH X .

Proof. �is is a direct consequence of part (e) of �eorem 3.3.12 applied to étale the geometric
morphism SG ⇋ (SG)/(G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H) ≃ SH .
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4.2. Fixed points methods

Let G be a compact Lie group. In this subsection, we study how G–Poincaré duality for a G–
space X relates to Poincaré duality for its fixed points. In fact, we shall build upon the theory
set up in §2.2 and discuss these questions in the generality of isotropy separations with respect
to a family of subgroups, of which the case of fixed points against a subgroup is a special case.
�erefore, let us fix a familyF of closed subgroups ofG throughout this subsection. Recall the
notational package from Notation 2.2.28.

An important family to keep in mind as an intuitional guide is the following:

Example 4.2.1 (Proper family). Denote by P the family of proper closed subgroups of G, so
that Pc = {G} and s : ∗ ≃ OPc(G)op →֒ O(G)op is the inclusion of the orbitG/G. Note that
for any J ∈ CatG, we thus have JPc

= s∗J ≃ JG ∈ Cat. In this special case, we know that
the adjunction unit Φ: SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpΦP̃ ≃ s∗s̃∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp adjoints to the geometric fixed points functor
ΦG : s∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp = SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpP

c ≃ SpG → ΦPSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp ≃ Sp.

Observation 4.2.2. Consider the case of the family of proper closed subgroups P of G. In
particular, we have that Fun(−,−)Pc ≃ Fun(−,−)G ≃ FunG(−,−). For a fixed C ∈ Cat
having the approparite (co)limits and aG-spaceX , applying (−)Pc to the commuting diagram
in Lemma 2.1.18 and using that (−)P̃ is fully faithful yields the le� commuting diagram

Fun(XG, C) C FunG(X,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) SpG

FunG(X, CP̃) C Fun(XG,Sp) Sp.

XG
!

XG
∗

ΦG

X!

ΦG

X!

X∗

XG
!

�at is, parametrised (co)limits inG–categories of the formCP̃ is given by the ordinary (co)limits
of the fixed points of the indexing diagram. In particular, since ΦG : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpΦP̃ preserves
parametrised colimits, the identifications above yield the right commuting square in the dia-
gram above.

Lemma 4.2.3. Let X ∈ SG and consider a family F of subgroups of G. Let C ∈ CatG,Fc . �en
the map ǫ∗ : Fun(X, CF̃ )→ Fun(X F̃ , CF̃ ) is an equivalence.

Proof. By Lemma 2.1.16, the equivalenceFunG(X, s∗C) ≃ s∗FunFc(s∗X, C) identifies restric-
tion along ǫ : s!s∗X → X on the le� side with restriction along s∗ǫ : s∗s!s∗X → s∗X on the
right side. But s∗ǫ is an equivalence.

Construction 4.2.4 (Isotropy separation for Spivak data). Let X ∈ SG and C a symmetric
monoidal Fc–category which admitsXFc–indexed colimits. By Lemma 2.1.18, we know that
CF̃ admits X–colimits. Suppose we are given a C-Spivak datum (ξ, c) for XFc and a CF̃–
Spivak datum (ζ, d) for X . By Construction 3.3.10, we obtain a CF̃–Spivak datum (ξ, c)F̃ for
X and a C–Spivak datum (ζ, d)F

c for XFc . Observe in particular that, by construction, we
have ((ξ, c)F̃ )Fc ≃ (ξ, c) and ((ζ, d)F

c
)F̃ ≃ (ζ, d).

59



Corollary 4.2.5 (Inclusion of singular part is degree one). Let D be a symmetric monoidal Fc–
category andX ∈ SG. SupposeX is equipped with aDF̃–Spivak datum. �enX F̃ ∈ SG inherits

a DF̃–Spivak datum under which the inclusion ǫ : X F̃ → X is of DF̃–degree one.

Proof. By Lemma 4.2.3, the map ǫ∗ : Fun(X, s∗D) ≃−→ Fun(s!s
∗X, s∗D) is an equivalence. �e

result now follows immediately from Construction 3.4.9.

Lemma 4.2.6. LetX ∈ SG,F be a family of closed subgroups ofG, andD a symmetric monoidal
Fc–category. �en aDF̃–Spivak datum (ξ, c) forX is Poincaré if and only if theD–Spivak datum
(ξ, c)F

c
forXFc is Poincaré.

Proof. �is is a special case of �eorem 3.3.12 (c).

We now come to the main result of this subsection which says that we may perform isotropy
separation on equivariant Poincaré spaces by appropriately isotropy–separating the coefficient
category. For the second part of the result, we will need to recall Terminology 3.3.7.

�eorem 4.2.7 (Poincaré isotropy basechange). LetX ∈ SG, Y ∈ SωG, C be a presentably sym-
metric monoidal fibrewise stableG–category, andD be aG–stably symmetric monoidal category.

(1) If X is C–Poincaré, then XFc
is ΦFC–Poincaré;

(2) If (ξ, c) is a Poincaré D–Spivak datum for Y , then the Spivak datum (Φξ,Φc)F
c
is a

Poincaré (Φ: DFc → ΦFD)–Spivak datum for Y Fc
.

Proof. For (1), applying the basechange result �eorem 3.3.5 along the symmetric monoidal
G-colimit preserving unit map C → CΦF̃ shows that X is CΦF̃–Poincaré. �us Lemma 4.2.6
shows thatXFc isΦFC–Poincaré. Point (2) is an immediate consequence of�eorem 3.3.8 and
Lemma 4.2.6.

Having set up a general theory of equivariant fixed points for Poincaré spaces, we now spe-
cialise to the most important coefficient category, namely the presentably symmetric monoidal
G–stable category SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp of genuine G–spectra.

Construction 4.2.8 (Pushing Spivak data along geometric fixed points). Let X ∈ SG, (ξ, c)
a SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG–Spivak datum for X , and H ≤ G a closed subgroup. By Construction 4.1.7, we ob-
tain a SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH–Spivak datum ResGH(ξ, c) for ResGH X . On the other hand, we may apply Con-
struction 4.2.4 to ResGH(ξ, c) along the symmetric monoidal map ΦH : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH → s∗Sp to get a
nonequivariant Sp–Spivak datum ΦH(ξ, c) forXH . Explicitly, this is given by

(
ΦHξ : XH ξH−−→ SpH

ΦH

−−→ Sp, ΦHc : 1Sp = ΦH1SpH

ΦHc−−−→ ΦH(ResGH X)!Res
G
H ξ ≃ XH

! ΦHξ
)

where the last equivalence is by Observation 4.2.2.

Next, we unwind the general �eorem 4.2.7 (1) for the geometric fixed points functor on
spectra to show that the fixed points of an equivariant Poincaré space are Poincaré with the
residual Weyl group action (c.f. [CW17, Prop. 2.4] for the homological shadow of this).
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�eorem 4.2.9 (Fixed points of Poincaré spaces). Suppose X ∈ SG is G–Poincaré. �en for
any closed H ≤ G, XH ∈ SWGH is a WGH–Poincaré space. In particular, XH ∈ S is a

nonequivariant Poincaré space with dualising sheaf XH
DX−−→ SpH

ΦH

−−→ Sp.

Proof. First consider the case whereH is normal in G. We apply �eorem 4.2.7 (1) in the case
C = SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG and for the family ΓH := {K ≤ G |H � K} of subgroups of G not containing H .
�us, if X is a G–Poincaré space, then s∗X is a s̃∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG Poincaré space. In Proposition 2.2.29
we saw that Coind: SG/H → SG induces an equivalence SG/H ≃ SΓc

H
endowing s∗X with a

G/H action. It also follows from Corollary 2.2.30 that s̃∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG/N which completes the
proof of this case.

Now suppose that H ≤ G is a general subgroup. We can apply Proposition 4.1.8 to obtain
thatResGNGH

X is aNGH–Poincaré duality space. �en the normal subgroup case from above
shows that ResGH X = ResNGH

H ResGNGH
X is aWGH = NGH/H–Poincaré duality space.

�e first part in particular shows that XG is a Sp–Poincaré duality space. Applying this to
XH ∈ SWGH , we see thatXH is a nonequivariant Sp–Poincaré duality space.

To end our discussion on general fixed points methods, we provide a sort of converse to the
previous statement. By Proposition 3.2.5, we know that in the presentable se�ing, a twisted
ambidextrous Spivak datum is unique if it exists. Via the geometric fixed points functors, the
following result gives a full characterisation for a candidate invertible Spivak datum to be the
unique one for a twisted ambidextrous space in terms of nonequivariant Poincaré duality. It
will be essential for constructing examples of equivariant Poincaré duality spaces in §4.4.

�eorem 4.2.10 (Fixed point recognition principle of Poincaré spaces). Suppose that X ∈ SG
is a twisted ambidextrousG–space (e.g. a compactG–space) and let (ξ, c) be a SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG-Spivak datum
forX such that ξ : X → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG takes values in Pic(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG). �en (ξ, c) exhibits X as a G–Poincaré
duality space if and only if for all closed subgroups H ≤ G, the Spivak datum ΦH(ξ, c) from
Construction 4.2.8 exhibits XH as a nonequivariant Sp–Poincaré space.

Proof. �e “only if” direction is a consequence of �eorem 4.2.9. For the other direction, we
have to show that the Spivak datum (ξ, c) is twisted ambidextrous as ξ is invertible by assump-
tion. By Observation 2.2.33 and Proposition 2.2.35, the collection

{
Fun(X, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)

ΦH

−−→ Fun(X,CoindGH s∗s̃
∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) ≃

G∏

H

s∗ Fun(X
H , Sp) |H ≤ G closed subgroups

}

is jointly conservative. �us, it suffices to show that the transformations

ΦH(c ∩ξ −) : ΦHX∗(−)→ ΦHX!(− ⊗ ξ) (17)

are equivalences. By passing to the adjoint Fun(ResGH X,ResGH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)
ΦH

−−→ s∗ Fun(XH ,Sp) to
consider everything asH–categories, we may without loss of generality just consider the case
ΦG. By Proposition 3.1.9 applied to the case of Example 3.1.6 (1), the symmetric monoidal
functor of presentably symmetric monoidalG–categories ΦG : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp→ s∗Sp yields a square
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ΦGX∗(−) ΦGX!(ξ ⊗−)

X∗ΦG(−) X!Φ
G(ξ ⊗−) ≃ X!(Φ

Gξ ⊗ ΦG(−))

ΦG(c∩ξ−)

BC∗≃

ΦGc ∩
ΦGξ

ΦG−

BC! ≃

where the vertical Beck–Chevalley maps are equivalences, the right one by Observation 4.2.2
and the le� one by Corollary 3.3.6 sinceX was assumed to be twisted ambidextrous. By Obser-
vation 4.2.2, the bo�ommap identifieswithΦGc∩ΦGξΦ

G− : XG
∗ ΦG(−)→ XG

! (ΦGξ⊗ΦG−),
which is an equivalence by hypothesis. �us, in total, we see that the top horizontal map in
the square above is an equivalence, as was to be shown.

4.3. Construction principles

In this section we will study various results on how to build new Poincaré duality spaces out
of old ones.

Change of groups

We begin by studying the effect of standard equivariant operations onX . Recall the construc-
tions and notations from Notation 2.2.2 and Construction 2.2.13.

Proposition 4.3.1 (Poincaré duality and restriction). Suppose that α : H → G is a continuous
homomorphism of compact Lie groups andX ∈ SG. If X is a G–Poincaré space, then ResαX is
a H–Poincaré space with Spivak datum (Resα c,ResαDX) where

1. the local system ResαDX is ResαX → Resα SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH and

2. the collapse Resα c is 1SpH = Resα 1SpG → ResαX!DX ≃ rResαX
! ResαDX .

Proof. If X is SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG–Poincaré, then applying �eorem 3.3.5 for the symmetric monoidal G-
colimit preserving functor Resα : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG → Coindα SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH from Construction 2.2.9 shows thatX
is Coindα SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH–Poincaré. By �eorem 3.3.12 (d) we see that ResαX is SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH–Poincaré with
claimed Spivak datum.

Proposition 4.3.2 (Poincaré duality and inflation). Consider a closed normal subgroup N ≤ G
and a G/N -space X . �en X is a G/N–Poincaré duality space if and only if InflG/NG X is a
G–Poincaré duality space.

Proof. One direction is a consequence of Proposition 4.3.1 while the other one follows from
�eorem 4.2.9.

Proposition 4.3.3 (Poincaré duality and induction). Let ι : H → G be an injective homomor-
phism of compact Lie groups. If X is a H–Poincaré space, then IndGHX is G–Poincaré space.
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Proof. We first claim that the map IndGHX → G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H is a G–Poincaré map. Using the equiva-
lence (SG)/G/H ≃ SH , this is equivalent to ResGH IndGHX being aH–Poincaré space. Observe
that ResGH IndGHX ≃ X × ResGH G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H . As G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H is a G–Poincaré space, the claim follows
from Corollary 3.3.15 and Proposition 4.3.1. Now Proposition 3.3.3 implies that the composite
IndGHX → G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → ∗ is a G–Poincaré map meaning that IndGHX is a G–Poincaré space.

For the next result, we will need to restrict to the case of finite groups since we will need to
invoke the theory of G–symmetric monoidal structures as introduced in [Nar17] and further
developed in [NS22].

Recollections 4.3.4 (Multiplicative norms). Nardin constructed in [Nar17] a G–symmetric
monoidal structure for theG–category of genuineG–spectra SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp, packaging the multiplicative
norms of [GM97; HHR16] coherently. For a finite G–set, U =

∐
iG/Hi, we write CatU :=∏

iCatHi and write SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpU := (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpHi)i ∈ CatU . For a map of finite G–sets f : U → V , we
get an adjunction f∗ : CatV ⇋ CatU :f∗ where f∗ is given by restrictions and f∗ is given
by coinductions. As part of the G–symmetric monoidal structure on SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp, we have a map
f⊗ : f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpU → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpV encoding the multiplicative norm along f . For example, when f is the
map f : G/H → G/G, this encodes a map f⊗ : CoindGH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG, upon applying the
functor (−)G to which yields the multiplicative norm NGH : SpH → SpG. By [NS22, §3.3], for
a fixed X ∈ SG, we may obtain a pointwise G–symmetric monoidal structure on the functor
category Fun(X,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp). From this, we ma for example extract the pointwise multiplicative norm
functor

f⊗ : f∗Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) −→ f⊗Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) ≃ Fun(f∗X,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)

where the equivalence is by [Hil24, Cor. 2.2.20].

Proposition 4.3.5 (Poincaré duality and coinductions). Let G be a finite group and {Hi}i a
finite collection of subgroups of G. Suppose for each i, we have a Hi–Poincaré space X i ∈ SHi

with dualising sheafDXi
. �en

∏
iCoind

G
Hi
X i ∈ SG is aG–Poincaré space with dualising sheaf⊗

iN
G
Hi
DXi

∈ Fun(
∏
i Coind

G
Hi
XXXXXXXXXXXXXXXXX,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp).

Proof. We consider a map of finite G–sets f : U =
∐
iG/Hi → V = G/G as in Recollec-

tion 4.3.4. WritingX := (Xi)i ∈ CatU , we have an equivalence of the two functors

Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
DX⊗−

X∗

X!
(18)

by our hypothesis. Now writing f∗X : f∗X → ∗ for the unique map, note that since X∗
itself has a right adjoint, we may use [Hil22, Lem. 4.4.3] to see that applying f⊗ preserves the
adjunctionsX! ⊣ X∗ ⊣ X∗ in the sense that we have the adjunctions

f⊗Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) f⊗f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

f⊗(X!)

f⊗(X∗)

f⊗(X∗)
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But then, since Fun(−,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp): Cat×G → Pr
⊗
L,st functorial in le� Kan extensions is ⊗–symmetric

monoidal by [NS22, A�er Cor. 6.0.11] together with [Hil24, Cor. 2.2.20], we get

f⊗(X!) ≃ (f∗X)! : f⊗Fun(X, f
∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) ≃ Fun(f∗X,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) −→ f⊗f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

and thus consequently, also that f⊗(X∗) ≃ (f∗X)∗ and f⊗(X∗) ≃ (f∗X)∗. Next, note that
the functor DX ⊗− may be wri�en as

f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp⊗ Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)
DX⊗id−−−−−→ Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)⊗ Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)

⊗−−→ Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)

�us applying f⊗ to this composite and using that f⊗ is itself a symmetric monoidal functor,
we get the identification of f⊗(DX ⊗−) as

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp⊗f⊗Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)
f⊗DX⊗id
−−−−−−→ f⊗Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)⊗f⊗Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) ⊗−−→ f⊗Fun(X, f∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)

�at is, that f⊗(DX ⊗−) ≃ f⊗DX ⊗−. �erefore, all in all, applying f⊗ to the identification
in (18), we obtain an equivalence

(f∗X)∗ ≃ f⊗(X∗) ≃ f⊗
(
X!(DX ⊗−)

)
≃ (f∗X)!(f⊗DX ⊗−)

as was to be shown.

Proposition 4.3.6 (Poincaré duality and Borelification). Let C ∈ CAlg(PrL) and X ∈ SG
such that Xe is nonequivariantly a C–twisted ambidextrous (resp. Poincaré) space. �en X is a
Bor(C)–twisted ambidextrous (resp. Poincaré) space.

Proof. Since ∗ → BG is an effective epimorphism, we may apply Proposition 3.3.14 to the fibre
sequence Xe → XhG

π−→ BG to get that π is a C–twisted ambidextrous (resp. Poincaré) map.
Writing s : BG → O(G) for the inclusion and using the identification S/BG = Fun(BG,S)
under which π corresponds to s∗X , this means by Definition 3.2.12 that s∗X is π∗BGC–twisted
ambidextrous (resp. Poincaré), where π∗BG : Cat → CatBG denotes the restriction functor.
Now the basechange result �eorem 3.3.12 shows that X is s∗π∗BGC = Bor(C)–twisted am-
bidextrous (resp. Poincaré).

Lemma 4.3.7 (Degree one data and Borelification). Let C ∈ CAlg(PrL) be a presentably sym-
metric monoidal category and f : X → Y a map ofG–spaces such thatXe and Y e are nonequiv-
ariantly C–twisted ambidextrous. Suppose that α : DXe ≃ f∗DY e is a G–equivariant C–degree
datum for f e : Xe → Y e, i.e. α is an equivalence inFun(Xe, C)hG. �en there is aBor(C)–degree
datum for f : X → Y . If in addition theG–equivariant degree datum for f e isG-equivariantly of
degree one, i.e. there is an equivalence cY e ≃ f!cXe inMap(1C, (Y e)!DY e)hG, then the Bor(C)–
degree datum for f is of degree one.

Proof. With the notation from Proposition 4.3.6, the assumption on G-equivariance of the de-
gree datum implies that means that α is a π∗BGC-degree datum for the map f e : Xe → Y e in
SBG. If α is G-equivariantly of degree one, then the π∗BGC-degree datum for f e is of degree
one. Now Lemma 3.4.10 provides us with a Bor(C) degree datum for f : X → Y (which is of
degree one if α was G-equivariantly of degree one).
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Family nilpotence

We now study how Poincaré duality interacts with the F–nilpotence theory of [MNN17].

Proposition 4.3.8. Let F be a family of subgroups of G, C a presentably symmetric monoidal
G–category which is F–Borel complete, andX ∈ SG. �enX satisfies C–Poincare duality if and
only if ResGH X satisfies ResGH C–Poincare duality for all H ∈ F .

Proof. Using that C isF-Borel complete,�eorem 3.3.12 shows thatX is a C ≃ b∗b∗C–Poincaré
space if and only if b∗X is a b∗C–Poincaré space. But by definition, this is equivalent to the
mapX → EF being a C–Poincaré duality map.

�ere is an effective epimorphism
∐
H∈F G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → EF . �e descent result Proposition 3.3.14

together with Lemma 3.3.16 now shows that X → EF is a C–Poincaré duality map if and
only if G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H ×EF X → G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H is a C–Poincaré duality map for all H ∈ F . Note that under
the equivalence (SG)/G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H ≃ SH the map G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H ×EF X → G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H corresponds to ResGH X .
Similarly, this equivalence identifies π∗G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HC and ResGH C.

Recall the notion of F–nilpotent ring G–spectra from [MNN17, Def. 6.36].

Corollary 4.3.9. Let G be a finite group, F a family of subgroups, R ∈ CAlg(SpG) an F–
nilpotent ring G–spectrum, and X ∈ SG. �en X is an R–Poincaré space if and only if for all
H ∈ F , ResGH X is ResGH R–Poincaré.

Proof. By Example 2.2.22, we know that the presentably symmetric monoidal G–stable cate-
gory ModR(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) is F–Borel and so we may apply Proposition 4.3.8 to conclude.

Example 4.3.10. We collect here a small list of potentially interesting consequences of Corol-
lary 4.3.9 using known nilpotence results from [MNN19, Table 2] for finite groupsG. We invite
the reader to consult the cited table for a quite exhaustive list of possibly interesting examples
of coefficient ring G–spectra to consider.

(1) WritingKOG andKUG for Segal’s equivariant topological K–theories, we see that aG–
space X is KOG– or KUG–Poincaré if and only if ResGC X is KOC– or KUC–Poincaré
for all cyclic subgroups C ≤ G.

(2) A G–space X is BorG(HZ)–Poincaré if and only if ResGE X is BorE(HZ)–Poincaré for
all elementary abelian p–subgroups E ≤ G for all primes p.

(3) AG–spaceX is BorG(MU)–Poincaré if and only ifResGAX is BorA(MU)–Poincaré for
all abelian p–subgroups A ≤ G for all primes p.

(4) AG–spaceX isBorG(MO)–Poincaré if and only ifResGAX isBorA(MO)–Poincaré for
all elementary abelian 2–subgroups A ≤ G.
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Poincaré integration

In this section we study the equivariant generalisation of a well known result of Klein [Kle01,
Corollary F]4 which says that in a fibration F → E → B of finitely dominated spaces, E
is a Poincaré space if F and B are Poincaré spaces. Since we have E ≃ colimB F by the
straightening–unstraightening equivalence, the aforementioned result may be viewed as say-
ing that integrating a Poincaré space along a diagramwhich is itself Poincaré yields a Poincaré
space.

Terminology 4.3.11 (Fibrewise twisted ambidextrous and Poincaré maps). Let f : X → Y
be a map of G–spaces for G a compact Lie group and C a presentably symmetric monoidal
G-category. We say that it is a fibrewise C–twisted ambidextrous (resp. Poincaré) map if for all
closed subgroupsH ≤ G and all maps y : G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → Y , writing Fy for the pullbackG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H×Y X ,
the map Fy → G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H is C–twisted ambidextrous (resp. Poincaré). Expanding Definitions 3.2.2
and 3.2.12, this means that viewed as an object in SH ≃ (SG)/G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H , Fy is ResGH C–twisted
ambidextrous (resp. Poincaré).

In the case where C = SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG this means that Fy is ResGH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG = SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH–twisted ambidextrous
(resp. Poincaré). Since G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H is G–Poincaré, we see by Proposition 3.3.3, Corollary 3.3.17, and
Proposition 4.1.8 that in this case the preceding condition is also equivalent to Fy being G–
twisted ambidextrous (resp. Poincaré).

�eorem 4.3.12 (Equivariant Poincaré integration). Let f : X → Y be a map of G–spaces
and C a presentably symmetric monoidal G-category. If Y is a C–Poincaré space and f is a
fibrewise C–Poincaré map, then X is a C–Poincaré space. Furthermore, there is an equivalence
DX ≃ f∗DY ⊗Df , where Df ∈ FunG(X, C) such that y∗Df ≃ DFy is the dualising sheaf of
the fibres.

Conversely, suppose that Y is C–twisted ambidextrous and that f is fibrewise C-twisted am-
bidextrous. Furthermore assume that for all closed subgroups H ≤ G the map fH : XH → Y H

is a π0-surjection. IfX is a C–Poincaré space, then Y is also a C–Poincaré space and f is a fibrewise
Poincaré map.

Proof. �e map
∐
H≤G

∐
π0(Y H )G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → Y is a π0 surjection on each fixed point space

and thus an effective epimorphism in SG (see Example 3.3.13). It then follows from Propo-
sition 3.3.14 and Lemma 3.3.16 that f is a C–Poincaré map if and only if the map Fy → G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H
is C–Poincaré for all closed subgroups H ≤ G and all y : G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → Y . �is is precisely what it
means that f was fibrewise C–Poincaré. Moreover, Proposition 3.3.14 also provides an equiva-
lence y∗Df ≃ DFy . Since in addition Y is a C–Poincaré space, it follows from Proposition 3.3.3
thatX is a C–Poincaré space and there is an equivalenceDX ≃ y∗DY ⊗DFy as desired.

For the converse, as in the first we conclude from Proposition 3.3.14 and Proposition 3.3.3
that there is an equivalence DX ≃ f∗DY ⊗Df . If X is a C–Poincaré, then DX is invertible
which implies that f∗DY and Df are invertible. �e π0 surjectivity hypothesis on f implies
that DY is invertible so Y is a C–Poincaré space. From the equivalence y∗Df ≃ DFy we see
that (Fy → G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H) is a ResGH C–Poincaré space.
4In [Kle01], Klein mentioned that the result answered a question of Wall and also a�ributed the result to �inn
from an unpublished announcement and Go�lieb [Got79] who proved it in the manifolds se�ing.
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We now use the theorem above to obtain a characterisation ofG–Poincaré duality for spaces
with free actions in terms of Poincaré duality for a quotient group.

Corollary 4.3.13 (Poincaré duality and quotients by free actions). LetG be a compact Lie group,
N ≤ G a closed normal subgroup and Q := G/N . If X is a G–space such that the action of N
on X is free in the sense of Definition 2.2.36, then X is G–Poincaré duality space if and only if
N\X is a Q–Poincaré duality space.

Proof. We will show that this follows from �eorem 4.3.12. To do so, it suffices to check that
for each mapG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → InflQGN\X the spaceG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H ×

InflQ
GN\X X is a G–Poincaré space. But in

Corollary 2.2.40 we have seen that there exists a cartesian square of the following form.

G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H ×
InflQG N\X X G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0G/K0

G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1G/K1

proj f

Let S denote the point-set fibre of the map of topologicalG–spaces f : G/K0 → G/K1. �en
S is a homogenousK1-space, and f = IndGK1

(S → ∗). Now note that since the right map is a
Poincaré duality map, so is the le� one, and as G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H is G–Poincaré, Proposition 3.3.3 implies
that G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H ×

InflQGN\X X is G–Poincaré, as desired.

4.4. Examples

�e next paragraphs will introduce two different sources of equivariant Poincaré spaces. First,
we show that smooth G-manifolds are equivariantly Poincaré. �eir study is one of the main
motivations for a theoryof equivariantPoincaré duality, and equivariantPoincaré spaces should
be viewed as their homotopical analogue. Let us mention that while the proofs given here de-
pend on theWirthmüller isomorphism, theWirthmüller isomorphism can also be proven using
a different version of equivariant Poincaré duality, as is done for example in [MS06].

Our second source of examples are tom Dieck–Petrie’s generalised homotopy representa-
tions. Here we will find what we consider to be the strangest equivariant Poincaré space we
know: a Cp–Poincaré spaceX such thatXCp andXe are Poincaré of the same dimension, yet
the mapXCp → Xe is not an equivalence, see Example 4.4.10.

A general principle here is that �eorem 4.2.10 provides us with a clear strategy to deduce
equivariant Poincaré duality from nonequivariant Poincaré duality of fixed points, provided an
appropriate Spivak datum has been constructed.

Smooth G-manifolds

Let G be a compact Lie group. A smooth G-manifold is a smooth manifold on which G acts
such that the action mapG×M →M is a smooth map. An equivariant embedding of smooth
G-manifolds is a smooth embedding between smoothG-manifolds that is also equivariant. An
equivariant vector bundle on M is a tuple ξ = (E, p), where E is a smooth G–manifold and
p : E → M is an equivariant map which is a vector bundle where G acts by bundle maps.
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For x ∈ MH , the vector space Ex := p−1(x) carries an H-action by restriction. Smooth G-
manifolds port nicely into our homotopical context by virtue of [Ill83, Cor. 7.2.] which guaran-
tees that smooth G–manifolds admit the structure of G–CW complexes which is necessarily
finite for compact manifolds. We recommend [Bre72, Chapter IV] for an introduction to the
theory of smooth G-manifolds.
Fact 4.4.1. We collect here some basic facts from equivariant smooth manifold theory that we
will need for our purposes.

(i) �e tangent bundle of a smoothG-manifold can naturally be considered as an equivariant
vector bundle [Bre72, p. 303]. If f : M → N is an equivariant embedding of smooth
G-manifolds, then the equivariant tubular neighborhood theorem provides a smooth
equivariant embedding of ν(f) = f∗TN/TM into N [Bre72, �m. VI.2.2.].

(ii) Let us denote the underlying G-homotopy type of M by M . Any G-vector bundle
p : E →M overM defines a stable equivariant spherical fibration of theG-vector bun-
dle p : E → M . Furthermore, we can choose a G–invariant Riemannian metric for p
from which we obtain an associated unit disc bundle D(p) ⊂ E and unit sphere bundle
S(p) ⊂ E. �e fibrewise collapse maps SEx → cofib(S(p)

x
→ D(p)

x
) for each x ∈M

then assemble into a G-equivalence

M!(J(p))
≃−−→ Σ∞ cofib

[
S(p)→ D(p)

]
.

(iii) For eachG-manifoldM , there exists an equivariant embedding into someG-representation
V . �is is the content of the Mostow-Palais theorem, see [Pal57].

Proposition 4.4.2. LetM be a closed smooth G–manifold. �en the underlying G–spaceM is
a G–Poincaré space with dualizing object J(TM)−1.

Proof. Choose an embedding f : M → V into some G-representation. Denote the normal
bundle of f by ν = (p : E →M) and pick a tubular neighborhood ofM in V .

Consider the Pontryagin-�om collapse map

c : S
≃−→ SV ⊗ S−V → Σ∞ cofib

[
SV \ (D(ν) \ S(ν))→ SV

]
⊗ S−V

≃ Σ∞ cofib
[
S(ν)→ D(ν)

]
⊗ S−V ≃M!(J(ν) ⊗ S−V ).

We claim that the Spivak datum (J(ν) ⊗ S−V , c) is Poincaré. SinceM is a G–compact space
and J(ν) is invertible, by�eorem 4.2.10, it suffices to check that for everyH ⊂ G, the Spivak
datum (ΦHJ(ν),ΦHc) is a Poincaré Spivak datum forMH . Recall that ΦHJ(ν) is

ΦHJ(ν) : MH → Pic(Sp), x 7→ ΦH(J(ν)(x)) = ΦHΣ∞SEx ≃ Σ∞SE
H
x .

But this is just the underlying stable spherical fibration of the normal bundle ofMH in V H . �e
collapse map ΦHc identifies with the geometric Pontryagin-�om collapse map of the smooth
manifoldMH embedded in V H . �us, by [Lan22, Cor. A.11] the Spivak datum (ΦHJ(ν),ΦHc)
is Poincaré.
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Now note that the equivalence constV = TV |M ≃ ν ⊕ TM shows that

J(ν)⊗ S−V ≃ J(ν)⊗ J(constV )−1 ≃ J(constV )⊗ J(TM)−1 ⊗ J(constV )−1 ≃ J(TM)−1

as claimed.

Remark 4.4.3. Wewant to mention that versions of Proposition 4.4.2 are already contained in
the literature so we do not claim any originality. In particular, May–Sigurdsson give an account
of equivariant Poincaré duality and show that closed smoothG-manifolds satisfy Poincaré du-
ality in their sense [MS06, Chapter 18.6.]. Depending on which proof of the Wirthmüller iso-
morphism the reader has in mind, the reader might complain that the proof of Proposition 4.4.2
is circular, as the Wirthmüller isomorphism for compact Lie groups itself was proved by show-
ing that smooth G-manifolds are G-Poincaré. Another variant of Proposition 4.4.2 was given
by Costenoble–Waner, see [CW17].

Generalised homotopy representations

We now turn our a�ention to another interesting source of equivariant Poincaré duality spaces,
namely the class of generalised homotopy representations of tom Dieck–Petrie [DP82].

Definition 4.4.4. A generalised homotopy representation of a compact Lie group G is a com-
pact G–space V such that for each closed subgroup H ≤ G the space VH is equivalent to
Sn(H) for some n(H) ∈ N. �e function H 7→ n(H) associated to a generalised homotopy
representation is called its dimension function.5

Examples of generalised homotopy representations are unit spheres of finite dimensional
orthogonal G-representations or one–point compactifications of finite dimensional linear G-
representations.

Remark 4.4.5. While it will not play a role in this article, let us mention that [DP82; Die86]
have also studied what are called homotopy representations, namely generalised homotopy rep-
resentations for which the fixed points have CW–dimensions those of the respective spheres.
A special feature of homotopy representations is that they satisfy an equivariant Hopf degree
theorem, i.e. G-homotopy classes of self maps are classified by their degree, an element in a
Burnside ring.

To show that generalisedG-homotopy representations are indeedG–Poincaré, we first recall
a construction of a Poincaré Spivak datum for the nonequivariant spheres.

Observation 4.4.6 (Spivak data for spheres). We construct a Spivak datum for Sd ∈ S . Let
E := fib(Σ∞

+ S
d → Σ∞

+ ∗ ≃ S). �en E ≃ Sd ∈ Pic(Sp). Consider the composition

c : S
≃−→ E ⊗ E∨ → Σ∞

+ S
d ⊗ E∨ ≃ Sd! (Sd)∗E∨.

We argue now that ((Sd)∗E∨, c) is a Poincaré Spivak datum for Sd. As Sd is stably paral-
lelisable, we know that its dualising sheaf is constant with value S−d ≃ E∨. Assume d ≥ 1,
5Beware that it is also common in the literature to shi� the dimension function by one.
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the case d = 0 being easier. Now π0S
d
! (S

d)∗E∨ ≃ Z, and c ∈ π0Sd! (Sd)∗E∨ ≃ Z gives the
collapse map of a Poincaré Spivak datum if and only if it corresponds to a generator. �is is
indeed the case for ((Sd)∗E, c), so it is Poincaré as claimed.

Having this in mind, we can make an educated guess for the a Spivak datum of a generalised
homotopy representation. To this end, the following terminology will be useful.

Definition 4.4.7. A homotopical framing for ξ ∈ Fun(X,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) is a G–spectrum E together
with an equivalence ξ ≃−→ X∗E. A compact G–space X is homotopically parallelisable if its
dualising sheaf DX ∈ Fun(X,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) admits a homotopical framing.

�eorem 4.4.8. �e dualising sheaf of a generalised homotopy representation V admits a canon-
ical homotopical framing DV

≃−→ V∗ fib(Σ∞
+ V∨ → Σ∞

+ ∗ ≃ S)∨. In particular, generalised
homotopy spheres are homotopically parallelisable G–Poincaré spaces.

Proof. To prove the theorem, we will construct a Poincaré Spivak datum whose underlying
parametrised spectrum is constant with value E∨ := fib(Σ∞

+ V∨ → Σ∞
+ ∗ ≃ S)∨. As in Obser-

vation 4.4.6, we have a map c : S→ E⊗E∨ → Σ∞
+ V⊗E∨ ≃ V!V∗E∨. Upon taking geometric

fixed points, Observation 4.4.6 identifies the composition

ΦHc : ΦHS→ ΦHE ⊗ΦHE∨ → ΦHΣ∞
+ V ⊗ ΦHE∨ ≃ VH! (VH)∗ΦHE∨.

as a Poincaré Spivak datum for VH . �us, by �eorem 4.2.10, we get that V∗E∨ is a Poincaré
G–Spivak datum for V and by Proposition 3.2.5 we getDV ≃ V∗E∨ as claimed.

Lemma 4.4.9. Suppose that X ∈ SωG is homotopically parallelisable and that XH is a Poincaré
space for all H ≤ G. �en X is a G–Poincaré space.

Proof. Since X was compact, note that X!DX ≃ X∗X∗SG is a compact G–spectrum. Now
suppose that there isE ∈ SpG such thatDX ≃ X∗E. As E is a retract ofX!DX ≃ Σ∞

+X⊗E
this implies that E is compact itself. If all fixed points of X are Poincaré spaces, then all
geometric fixed points of E are invertible. Together this shows that E is invertible so that X
is a G–Poincaré space.

Example 4.4.10. In [Bre72, p. 391], Bredon constructs a curious example of a generalised
homotopy representation. Namely, he constructs examples of compact Cp-spaces X which
satisfy that XCp ≃ Xe ≃ S2 such that the map XCp → Xe has degree q = kp + 1 for
k ∈ Z arbitrary. Taking the unreduced suspension, examples of this type exist in arbitrary
dimensions. From Smith theory we know that each generalised Cp-homotopy representation
has the property that the dimension of the fixed point sphere does not exceed the dimension
of the underlying space.

4.5. Gluing classes

Our next goal is to hint at nontrivial ways in which the fixed points interact. For this, we
construct a certain homology class, the gluing class, that should be thought of as passing infor-
mation between the fundamental class of a Poincaré space and fundamental classes of various
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fixed point spaces. �e gluing class will be one of the main tools for our geometric applica-
tions. It is inspired by Lück’s work on the Nielsen realisation problem, specifically by [Lüc22,
Notation 1.8 (H) and Lemma 1.8 (5)]. Much of what we will present here will work for compact
Lie groups too, but we nevertheless restrict our a�ention to finite groups G for this subsection
which is sufficient for our geometric purposes later.

Construction 4.5.1 (Nonsingular part). Fix X ∈ SG, F a family of subgroups of G, and C a
G–stable category. Recall the adjunction counit ǫ : XF̃ → X from Construction 2.2.15. �is
map then itself induces the adjunction ǫ! : Fun(X F̃ , C) ⇋ Fun(X, C) :ǫ∗. �e adjunction
(co)unit of this adjunction then gives us functors

Fun(X, C) c−−→ Fun(X, C)∆1

:: ξ 7→ (ǫ!ǫ
∗ξ → ξ), Fun(X, C) u−−→ Fun(X, C)∆1

:: ξ 7→ (ξ → ǫ∗ǫ
∗ξ).

All in all, we can consider the compositions

α : Fun(X, C) c−→ Fun(X, C)∆1 X!−→ C∆1 cofib−−−→ C, β : Fun(X, C) u−→ Fun(X, C)∆1 X∗−−→ C∆1 fib−−→ C.

Concretely, these take ξ to the objects

α(ξ) ≃ cofib
(
(XF̃ )!ǫ

∗ξ −→ X!ξ
)
, β(ξ) ≃ fib

(
X∗ξ −→ (XF̃ )∗ǫ

∗ξ
)
.

Corollary 4.5.2 (Nonsingular vanishing). Let X ∈ SωG and F a family of subgroups of G.
Let ν : C → D be a G–exact functor of G–stable categories such that for all H ∈ F , functor
ResGH ν : ResGH C → ResGH D is the zero map. �en the compositions

Fun(X, C) α−−→ C ν−−→ D Fun(X, C) β−−→ C ν−−→ D

have the property of being the zero functors.

Proof. First of all, since ν was G–exact, we have a commuting square

Fun(X, C) Fun(X,D)

C D.
α

ν

α

ν

�us it suffices to show that α : Fun(X,D) → D is the zero functor. By replacing D by
the G-stable subcategory generated by the image of ν we can assume that that DH = 0 for
all H ∈ F . �erefore, we have that D ≃ DΦF̃ and Lemma 4.2.3 shows that the functor
ǫ∗ is an equivalence, and so the counit ǫ!ǫ∗ → id and unit id → ǫ∗ǫ∗ are equivalences in
Fun(X,D) = Fun(X,DΦF̃ ). From this the claim directly follows.

Notation 4.5.3. �e family of relevance to us in this subsection will be the singleton family
T consisting of the trivial subgroup. To reduce our notational clu�ering, we will also write
X>1 for X T̃ , so that for example, for X ∈ SG, we have the inclusion of the singular part
ǫ : X>1 ≃ X T̃ → X . �e gluing class of X will live in π−1(X

>1
! ǫ∗DX)hG.
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Construction 4.5.4. Let ξ ∈ FunG(X,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) and writeQ := cofib
(
X>1

! ǫ∗ξ → X!ξ
)
. Consider

(X>1
! ǫ∗ξ)hG (X>1

! ǫ∗ξ)hG (X>1
! ǫ∗ξ)tG Σ(X>1

! ǫ∗ξ)hG

(X!ξ)hG (X!ξ)
hG (X!ξ)

tG

QhG QhG

Σ(X>1
! ǫ∗ξ)hG

p
≃

≃

(19)

where the equivalence QhG → QhG is since QtG ≃ 0 by virtue of Corollary 4.5.2 applied
to the functor ν : C → D given by ẼG ⊗ F (EG+,−) : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp→ Mod

ẼG⊗F (EG+,S)
(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) and the

identification (ẼG⊗F (EG+, A))
G ≃ AtG. Observe that by Lemma B.0.1, up to a sign change,

the red composite is equivalent to the blue composite in (19).

Construction 4.5.5 (Gluing classes). LetX ∈ SωG andDX ∈ FunG(X, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) its dualising sheaf
(which in this generality, need not be invertible). From the fundamental class SG

c−→ X!DX in
SpG, we may extract a nonequivariant fundamental class S

can−−→ ShGG
chG−−→ (X!DX)

hG in Sp
which we also denote by c. �e gluing class is defined to be the composition

S
c−−→ (r!DX)

hG −→ Σ(X>1
! ǫ∗DX)hG

obtained by postcomposing c with the blue route from (19).

Our goal now is to show Corollary 4.5.7 which says that under certain orientability assump-
tions, the gluing class “adds up to zero” in group homology. �is supplies us with a useful
obstruction class which will have meaningful geometric consequences as we shall in our ap-
plications in §5.2.

Lemma 4.5.6. Let X ∈ SG and ξ ≃ X∗W ∈ FunG(X, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) for some W ∈ SpG. �en the

composition in Q −→ Σr>1
! ǫ∗ξ ≃ ΣX>1

! (X>1)∗ξ
BCX>1

!−−−−−→ ΣW in SpG is nullhomotopic.

Proof. By functoriality of colimits, we have the following map of cofibre sequences

X>1
! ǫ∗X∗W X!X

∗W Q

W W 0

BCǫ
!

BCX>1

!
BCX

!

�us taking the cofibre of the right horizontal maps gives a factorisation of the composition of
interest through 0.
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Corollary 4.5.7. Let X ∈ SG andW ∈ SpG. �en the composition

(X!X
∗W )hG

red composite in (19)−−−−−−−−−−−→ Σ(X>1
! (X>1)∗W )hG

BCX>1

!−−−−−→ ΣWhG

is nullhomotopic.

Proof. �is is an immediate combination of the fact from Construction 4.5.4 that the red and
blue routes in (19) agrees up to a sign with Corollary 4.5.7.

Remark 4.5.8. �e gluing class really is an essential feature of equivariant Poincaré duality.
It provides some information on how the “free part” of an equivariant Poincaré space is glued
to the singular part. We will exploit it in the proof of �eorem 5.2.2 and plan on clarifying it
and its role in relation to Lück’s work [Lüc22] in the future.

4.6. Equivariant degree theory

A nice application of equivariant Poincaré duality is a theory of equivariant mapping degrees,
as developed in [Lüc88]. For simplicity, we will assume thatG is a finite group throughout this
section.

Recollections on the Burnside ring

Our aim is to remind the reader of the classical connection between Burnside rings and the
equivariant sphere spectrum.

Recollections 4.6.1 (Character maps on the Burnside ring). �e Burnside ring of finite G-sets
A(G) is the group–completion of the semiring of isomorphism classes of finite G-sets, with
disjoint union as addition and the cartesian product as product. For each H ≤ G, there is a
unique ring homomorphism χH : A(G)→ Z sending a finiteG-set S to the order of the finite
set SH , and these assemble into a ring map, called the character map,

χ : A(G)→
∏

(H)≤G
Z (20)

where (H) runs through all conjugacy classes of finite subgroups.

�e following classical theorem may be found for instance in [Die79, Prop. 1.3.5.].

�eorem 4.6.2. �e character map (20) is an injective ring homomorphism with finite cokernel.
�e image can be described through explicit congruences, the Burnside congruences.

We abstain from recalling the Burnside congurences in full generality, the reader may find
them in the reference mentioned above. To give some intuition, and as we use it later in the
proof of Lemma 5.1.12, we describe them in the case of the group Cp.

73



Example 4.6.3. If G = Cp then the image of the character homomorphism consists of those
pairs (a, b) ∈ Z× Z that satisfy the congruence

a ≡ b mod p.

Indeed, for a finite G-set S, the orders of S and SH agree modulo p. On the other hand, if
a+ kp = b for integers a, b, c, then a copies of the point and k copies of Cp define an element
in A(G) mapping to (a, b).

Construction 4.6.4. We may obtain a similar character map for the ring πG0 SG: for each
subgroup H ≤ G, using that ΦHSG ≃ S ∈ Sp, we may assemble the geometric fixed points
functors ΦH together with the identification deg: π0MapSp(S,S)

∼=−→ Z to obtain a ring map

πG0 SG ∼= π0MapSpG
(SG,SG) −→

∏

(H)

Z, f 7→ deg(ΦHf) (21)

�eorem 4.6.5 (Segal). Let G be a finite group. �e map (21) is an injective ring homomor-
phism whose image agrees with the image of the character map χ : A(G)→∏

(H) Z, yielding an
identification πG0 SG ∼= π0MapSpG

(SG,SG) ∼= A(G) as commutative rings.

Of course, this implies that the set of path components of the selfmaps of anyE ∈ Pic(SpG)
is equivalent to A(G) by the equivalenceMapSpG(E,E) ≃ MapSpG

(SG,SG).

The equivariant degree

We now want to specialise the abstract definition of the degree from §3.4 to the case of maps
of G–Poincaré spaces which should roughly encode the mapping degrees on the various fixed
points spaces. Recall that the definition of the degree of a map betweenG–spaces f : X → Y

with Spivak data (ξX , cX) and (ξY , cY ) depends on an equivalence ξX
≃−→ f∗ξY . �e existence

of such an equivalence is unreasonable to expect with coefficients in SpG but becomes more
likely a�er linearising. Here we choose to work with coefficients in the Burnside Mackey
functorA(G). Recall that for each subgroupH ⊂ G, restriction defines a ring homomorphism
A(G)→ A(H) and induction a transfer map A(H) → A(G). �ese assemble into a Mackey
functor, and hence a G–spectrum A(G) which has values A(G)H = A(H).

Definition 4.6.6. LetX and Y be PoincaréG–spaces. An A(G)–degree datum is a pair (f, ψ)
where f : X → Y is amap ofG–spaces andψ : DX⊗A(G) ≃−→ f∗DY⊗A(G) is an equivalence
of the A(G)–linearised dualising sheaves.

In other words, aA(G)–degree datum is aModA(G)(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)–degree datum in the sense of Def-
inition 3.4.2.

Definition 4.6.7. LetX,Y ∈ SG beG–Poincaré and (f, ψ) aA(G)–degree datum. We define
the equivariant degree degG(f, ψ) ∈ π0Map(SG, Y∗Y ∗A(G)) =: H0(Y ;A) as the composite

SG
cX−−→ X!(DX ⊗A(G)) ψ−→ X!(f

∗DY ⊗A(G))
BCf

!−−−→ Y!(DY ⊗A(G)) cY ∩−←−−−−
≃

Y∗Y ∗A(G).
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As explained inConstruction 3.4.4, the commutative algebra structure onY∗Y ∗A(G) endows
H0(Y ;A) with the structure of a commutative ring with unit cY .

Our goal for the rest of this discussion is to relate the equivariant degree of a map, which
lives inH0(X;A), to the various degrees induced on fixed points via a character map similar to
(20) constructed from the geometric fixed points functors. To this end, first recall the Bousfield
localisation π0 : SG ⇋ SetG : incl from Construction 5.2.10. Notice that Ω∞A(G) is levelwise
0–truncated with fixed points (Ω∞A(G))H = A(H).

Lemma 4.6.8. ForX ∈ SG, we have an equivalenceH0(X ;A) ≃ π0MapSG
(τ≤0X,Ω

∞A(G)).

Proof. Consider the computation ofH0(X;A) as

π0MapSpG
(SG,X∗X

∗A(G)) ≃ MapSpG(Σ
∞
+X,A(G)) ≃ MapSG

(τ≤0X,Ω
∞A(G))

where the last equivalence uses that Ω∞A(G) is levelwise 0-truncated.

Remark 4.6.9. �is turns out to be quite simple to compute. Note that for two 0-truncated
G–spaces S and T , the map

MapSG
(S, T ) −→

∏

(H)≤G
MapS(S

H , TH) ≃ MapSet(S
H , TH),

is injectivewith image given by all collections ofmaps (fH)(H) compatiblewith the restrictions
coming from inclusions K ≤ H or inner automorphsim K ≃ H . Specialising this to the case
of interest, we obtain an injection

H0(X;A) →֒
∏

(H)

(
A(H)π0(X

H )
)WGH

.

For example, we haveMap(τ≤0X,Ω
∞A(G)) ≃ A(G) if all fixed point sets ofX are nonempty

and connected. For a more complicated example, consider the C2-action on S1 given by com-
plex conjugation. �en (τ≤0X)C2 ≃ ∗∐ ∗ while (τ≤0X)e ≃ ∗. �e set of equivalence
classes of maps above identifies with the pullback A(C2) ×A(1) A(C2) where the two maps
A(C2)→ A(1) are given by restriction along the group homomorphism 1→ C2.

Recovering degrees on fixed points

Now we want to recover different degrees on fixed point spaces from the equivariant degree
by base changing along the geometric fixed points functor. As it is not true thatΦGA(G) = Z,
we need a small preparatory lemma. For this, denote by Sp≥0

G (resp. Sp≤0
G ) the full subcategory

of all G–spectra X for which XH ∈ Sp is connective (resp. coconnective) for each H ≤ G.
�e pair (Sp≥0

G , Sp≤0
G ) forms a t-structure on on SpG.

Lemma 4.6.10 (Geometric fixed points of Mackey functors). LetX ∈ Sp≥0
G . �en the canonical

map X → τ≤0X induces an isomorphism π0Φ
GX

∼=−→ π0Φ
Gτ≤0X of abelian groups.
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Proof. Recall that the geometric fixed points participates in an adjunctionΦG : SpG ⇋ Sp :ΞG

where the right adjoint ΞG is fully faithful and is given by the formula

(ΞGY )H =

{
Y ifH = G;

0 ifH � G.

Observe that ΦG preserves connective objects. �is is because ΦG sends Σ∞
+G/G to S and

Σ∞
+G/H to 0 for H � G. Since connective G–spectra are built as colimits of the orbits
{Σ∞

+G/H}H≤G and ΦG preserves colimits, we see that connectiveG–spectra are sent to con-
nective spectra. �e formula for ΞG shows that it preserves connective and coconnective ob-
jects. In particular, both restrict to functors ΞG : Sp♥ →֒ Sp♥G and τ≤0Φ

G : Sp♥G → Sp♥ and
we claim that those are adjoint. To see this, letM ∈ Sp♥G and N ∈ Sp♥, and consider

MapSp♥(τ≤0Φ
GM,N) ≃ MapSp(Φ

GM,N) ≃MapSpG
(M,ΞGN) ≃ MapSp♥

G
(M,ΞGN).

To conclude, since the solid square in

Sp≥0
G Sp≥0

Sp♥G Sp♥

τ≤0

ΦG

τ≤0

ΞG

τ≤0Φ
G

ΞG

commutes, so does the dashed square of le� adjoints, as was to be shown.

Remark 4.6.11. �eorem 4.6.5 gives an equivalence τ≤0SG = A(G). By Lemma 4.6.10, we
have π0ΦGA(G) = π0Φ

Gτ≤0SG ∼= π0Φ
GSG ∼= π0S ∼= Z. Now note that the diagram

π0(SG)G π0Φ
GSG π0τ≤0Φ

GSG ≃ Z

π0A(G)
G π0Φ

GA(G) π0τ≤0Φ
GA(G) ≃ Z

χH

∼=

≃

≃ ≃ (22)

commutes. �e lower horizontal composition thus agrees with the character map.

Now we come back to the problem of relating the equivariant degree to the degree on each
fixed point space. We have the symmetric monoidal colimit preserving functor

φH : ModA(G)(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)
ΦH

−−→ CoindGH Coinfl1H ModΦHA(H)(Sp)

−→ CoindGH Coinfl1H ModZ(Sp)

whereΦH is the parametrised geometric fixed point functor constructed in Construction 2.2.31
and the second map is induced by the ring map ΦHA(H)→ τ≤0Φ

HA(H) ≃ Z.
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Proposition 4.6.12. For a G–Poincaré Y ∈ SG, basechange along φH induces a ring map

χH : H0(Y ;A) −→ H0(Y H ,Z).

Given a degree datum (f : X → Y , ψ), we have

χH(degA(G)(f, ψ)) = degZ(f
H : XH → Y H , ψH).

For Y = ∗, χH agrees with the character map from (20).

Proof. Note that we have identifications

FunG(Y ,Coind
G
H Coinfl1H ModZ(Sp)) ≃ FunH(Res

G
H Y ,Coinfl

1
H ModZ(Sp))

≃ Fun(Y H ,ModZ(Sp)).

Recall from Observation 4.2.2 that this identifies Y! with Y H
! (and also Y∗ with Y H

∗ as Y is
Poincaré). Now applying Lemma 3.4.8 to basechange along φH , we obtain a ring map

H0(Y ;A) = π0 MapModA(G)(SpG)(1, Y∗Y
∗1)→ π0 MapModZ(Sp)(1, Y

H
∗ Y H∗

1) ≃ H0(Y H ,Z).

�estatment about the degrees follows fromLemma 3.4.8. In the caseY = ∗, thismap identifies
with the character map by (22).

In the next corollary, we unravel Proposition 4.6.12 in a special case to illustrate how it can
be used to deduce condruences between (nonequivariant) degrees between fixed point sets.

Corollary 4.6.13 (Congruences between degrees on fixed point sets). Suppose that Y is a G–
Poincaré space and assume that Y H is nonempty connected for allH ≤ G. Given a degree datum
(f : X → Y , ψ), the collection (degZ(f

H , ψH))(H) lies in the image of the character map

χ : A(G)→
∏

(H)

Z.

Proof. Any map f : X → Y of G–Poincaré spaces induces a commutative diagram

π0 MapModA(G)(SpG)(1, Y∗Y
∗1) π0 MapModZ(Sp)(1, Y

H
∗ Y H∗

1)

π0 MapModA(G)(SpG)(1,X∗X∗1) π0 MapModZ(Sp)(1,X
H
∗ X

H∗
1).

χH

BC∗ BC∗

χH

Applying this to the unique map Y → ∗, the vertical maps become equivalences by the as-
sumption on the fixed points of Y . By Proposition 4.6.12, this χH : H0(Y ;A) → Z identi-
fies with the character map χH : A(G) = H0(G/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/G;A) → Z. By Proposition 4.6.12, this
χH : H0(Y ;A) → Z identifies with the character map χH : A(G) = H0(G/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/GG/G;A) → Z. �e
statement about the degrees is now a consequence of Proposition 4.6.12.
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5. Equivariant Poincaré duality: applications

In this section, we employ the general theory developed in the article to investigate some
problems of an equivariant geometric topological nature. In §5.1, we study cohomological
injectivity statements for degree one maps and prove �eorem 5.1.1 along these lines; we then
use it to obtain a rigidity result of equivariant Poincaré spaces in�eorem 5.1.14. Next, in §5.2,
we prove the equivariant Poincaré generalisation of Atiyah–Bo� and Conner–Floyd’s theorem
on single fixed points for group actions on smooth manifolds.

5.1. Pulling back twisted fixed points

Let f : M → N be a map closed, connected, oriented manifolds of the same dimension d. If
the degree of f is nonzero, then f is surjective. �e theory of equivariant degrees immediately
gives an equivariant application: if f : M → N is a map of closed, conneced, smooth, oriented
Cp-manifolds with connected fixed point sets of the same dimension, then if f is of degree
coprime to p (when considered as a nonequivariantmap), then also the degree of fCp is coprime
to p. �us, fCp is surjective as well.

To detect if the degree of f is coprime to p it of course suffices to check thatH∗(fCp ;Fp) is
nonzero in the top degree. �is line of thought led Browder [Bro87] to interpret results about
the injectivity ofH∗(fCp ;Fp) as the “ability to pull back fixed points fromN to fixed points of
M”. Browder’s strategy is very successful to show actual surjectivity results on fixed points,
even if one relaxes the conditions like smoothness, or takesG to be amore general group like an
abelian p-group. Let us mention [HP06] for more information, and many interesting variations
on this approach. In particular, see [HP06, �m. 4] to see how to pass from cohomological
injectivity results to surjectivity on fixed points. We will content ourselves with showing how
our methods can be used to derive cohomological injectivity results of the following type,
which was first studied by Bredon [Bre73] and generalised by Browder [Bro87] under stronger
manifold assumptions:

�eorem 5.1.1 (Twisted Bredon–Browder injection). Let A be an elementary abelian p–group
C×r
p . Let f : X → Y be a map of compact A–spaces. Suppose Xe, Y e are ModHFp–Poincaré

spaces such that f e : Xe → Y e is of ModHFp–degree one (c.f. Definition 3.4.2). �en for any
ζ ∈ Fun(Y A,PerfHFp), the map induces an injection H∗(Y A; ζ)→ H∗(XA; f∗ζ).

Our approach is by default homotopical, and point-set techniques are avoided. As our sys-
tematic treatment of Poincaré duality allows us to also derive consequences for homology with
twisted coefficients, orientability assumptions may even be relaxed. We will also illustrate the
usefulness of Browder’s cohomological injectivity results to prove a structural result for G-
Poincaré spaces where G is a solvable finite group as �eorem 5.1.14: if Xe is contractible,
then so is XH for any H ≤ G. �is in turn can be applied to give an example of a compact
Cp-space all of whose fixed points are Poincaré spaces, while itself not being Cp-Poincaré.

�e basic philosophy of our proof is similar to that of [HP06], namely, we proceed via equiv-
ariant localisations using the proper Tate construction. To this end, we first show that the fixed
points of an equivariant space which is underlying Poincaré may most naturally be viewed as
a Poincaré space with coefficients in the stable module category, which we now recall.
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Construction 5.1.2 (Proper stable module categories). Let R ∈ CAlg(Sp) and G be a finite
group. Consider the G–stable category Bor(PerfR) ∈ CatG−st

G with value Fun(BH,PerfR)
at G/H . Recall the notion and notations of Brauer quotients from §2.2. Using the family of
proper subgroups P of G, we may construct a newG–stable category stmodP(R) ∈ CatG−st

G

defined as s∗s̃∗Bor(Perf). �is G–category has value

stmodPG(R) := Fun(BG,PerfR)/〈R[G/H] |H � G〉

at G/G and is trivial elsewhere. Furthermore, there exists a G–exact symmetric monoidal
functor Φ: Bor(PerfR) −→ stmodP(R).

Construction 5.1.3 (Descending Poincaré duality from large to small coefficients). Let X ∈
SωG such that Xe is an R–Poincaré space. Since X was a compact G–space, the adjunctions
X! ⊣ X∗ ⊣ X∗ : Fun(X,Bor(ModR)) ⇋ Bor(ModR) restrict to adjunctions X! ⊣ X∗ ⊣
X∗ : Fun(X,Bor(PerfR)) ⇋ Bor(PerfR) on the full subcategories. Now by Proposition 4.3.6,
we know that X is Bor(ModR)–Poincaré and we write DX ∈ Fun(X,Bor(PicR)) for the
dualising sheaf. Since DX ∈ Bor(PerfR), we even obtain an equivalence

X∗(−) ≃ X!(DX ⊗−) : Fun(X,Bor(PerfR)) −→ Bor(PerfR)

and so X is also Bor(PerfR)–Poincaré. We writeDG
X : XG → PerfBGR for the dualising sheaf

evaluated at the fixed points.

Via this construction, we may now prove the following as a simple consequence.

Proposition 5.1.4 (Proper stable module Poincaré duality). Let G be a finite group and R ∈
CAlg(Sp). If X ∈ SωG such that the underlying space Xe is an R–Poincare duality space, then
XG is a partial stmodPG(R)–Poincare duality space, i.e. for any ζ ∈ Fun(XG,PerfBGR ), we have
an equivalence in stmodPG(R)

Φc ∩ΦDG
X
Φζ : XG

∗ (Φζ)
∼−→ XG

! (ΦDG
X ⊗Φζ)

Proof. By Construction 5.1.3, we know thatX is Bor(PerfR)–Poincaré duality. �e statement
of the proposition is now an immediate consequence of �eorem 4.2.7 (2).

Remark 5.1.5. While the proposition above looks restrictive and artificial, it already contains
some interesting content since the map Φ: FunG(X,Bor(PerfR))→ Fun(XG, stmodPG(R))
is symmetric monoidal. In particular, it holds when ζ is the tensor unit 1. �is will then recover
the usual untwisted cohomology of XG.

Example 5.1.6 (Underlying Poincaré duality does not imply Poincaré duality of the fixed
points). �ere exist piecewise linear C2-actions on the sphere Sd whose fixed point sets are
submanifoldsM which are not homology spheres, see e.g. [FL04, p.5] for an exposition. LetX
be the (unreduced) suspension of such an action. �en Xe ≃ Sd+1 which is a Poincaré dual-
ity space. However, XC2 is the unreduced suspension of a manifold which is not a homology
sphere, and hence clearly not Poincaré as Poincaré duality with integer coefficients must fail.
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Next, we recall the proper Tate construction. �e significance of this to our proof is that
combining Proposition 5.1.4 with the degree theory from §3.4, we may obtain a version of the
cohomological injection in proper Tate cohomology. We then extract the desired injection from
this version by “finding” Fp–cohomology inside proper Tate cohomology.

Recollections 5.1.7 (Proper Tate). Let G be a finite group and R ∈ CAlg(Sp). One way to
define the R–based proper Tate functor is as the lax symmetric monoidal composite

(−)tPG : Fun(BG,ModR)
b∗−֒→ MackG(ModR)

ΦG

−−→ ModR

�is functor kills the proper induced terms, i.e. thoseM ∈ ModBGR such thatM ≃ IndGHN for
some H � G and N ∈ ModBHR since ΦG does. Furthermore, since (−)tPG is a lax symmetric
monoidal functor, RtPG canonically a�ains an R–algebra structure.

Now let A be an elementary abelian p–group A = C×r
p . With the trivial action of A on

HFp, the A–proper Tate HFtPAp is a nontrivial HFp–algebra by [MNN19, Prop. 5.16]. Now let
T : stmodPA(HFp) −→ ModHFp be the universal functor making the triangle

Fun(BA,PerfHFp) stmodPA(HFp)

ModHFp

can

(−)tPA
T

commute, coming from the universal property of stmodPA(HFp).

Lemma 5.1.8 (Projection formula at dualisables). Let A, C,D be stably symmetric monoidal
categories and u : A → C and L : C → D be symmetric monoidal exact functors. Suppose L
admits a right adjoint R. �en for every a ∈ A dualisable and d ∈ D, the canonical map
ua⊗Rd→ R(Lua⊗ d) is an equivalence.

Proof. Let c ∈ C. By considering the equivalences

MapC(c, ua⊗Rd) ≃ MapC(c⊗ua∨, Rd) ≃ MapD(Lc⊗Lua∨, d) ≃ MapD(c,R(Lua⊗ d)),

we obtain the desired conclusion by an application of Yoneda’s lemma.

Lemma 5.1.9. LetX ∈ Sω ,R ∈ CAlg(Sp), and ζ ∈ Fun(X,PerfR). �en viewing ζ as having
the trivial G–action, we have an equivalence (X∗ζ)tPG ≃ RtPG ⊗R X∗ζ .

Proof. Since X was compact, we know that X∗ζ ∈ PerfR, i.e. X∗ζ is a dualisable R–module.
Se�ing Infl: ModR → MackG(ModR) and b∗ : MackG(ModR) → Fun(BG,ModR) for the
functors u and L in Lemma 5.1.8 (and writing trivG : ModR → Fun(BG,ModR) for the com-
posite), we see that by the lemma that

(trivGX∗R)tPG = ΦGb∗
(
(trivGX∗R)⊗RR

)
≃ ΦG

(
(InflX)∗R⊗R b∗R

)
≃ (X∗R)⊗RRtPG

as was to be shown.
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We now come to the main general proposition.

Proposition 5.1.10 (Injection a�er basechanging to proper Tate). Consider a finite group G,
R ∈ CAlg(Sp), and f : X → Y a map of compact G–spaces. Suppose Xe, Y e are ModR–
Poincaré spaces and f : X → Y is equipped with a Bor(ModR)–degree one datum (c.f. Defini-
tion 3.4.2). �en for any ζ ∈ Fun(Y G,PerfR), the cohomological functoriality map in ModR

RtPG ⊗R Y G
∗ ζ −→ RtPG ⊗R XG

∗ f
∗ζ

is a π∗–split injection.

Proof. By Proposition 5.1.4 we know that XG and Y G are stmodPG(R)–partial Poincaré dual-
ity. In particular, viewing ζ as an object in Fun(Y A,PerfBGR ) under the symmetric monoidal
functor trivA : PerfR → PerfBGR , we obtain using Lemma 3.4.6 the le� commuting square

Y A
∗ (ζ) XA

∗ (f
∗ζ)

Y A
! (ΦDY e ⊗Φζ) XA

! (Φf
∗DY e ⊗ Φf∗ζ)

BCf
∗

PD≃ PD≃
BCf

!

in stmodPG(R). Hence, the map BCf∗ : Y G
∗ ζ → XG

∗ f
∗ζ is a split inclusion. Finally, applying T

to this map and using that T ◦Φ ≃ (−)tPG, we conclude from Lemma 5.1.9 that the map stated
in the proposition is a split inclusion inModR and in particular is a π∗–split injection.

We would like to apply Proposition 5.1.10 to prove �eorem 5.1.1, and for this, a small pre-
liminary calculation will be needed.

Lemma 5.1.11. Let G be a p–group, f : X → Y a morphism in SG. Suppose that Xe and Y e

are HFp–Poincaré and that f : Xe → Y e is equipped with an HFp–degree one datum. �en this
degree one datum li�s to yield a Bor(ModHZ)–degree one datum for the map f : X → Y .

Proof. First recall from Proposition 4.3.6 thatX and Y are indeedBor(ModHFp)–Poincaré. So
by Lemma 4.3.7, we just need to findG–equivariant li�s of the equivalencesDXe

α−→
≃
f∗DY e ∈

Fun(Xe,Pic(HFp)) ≃ Map(Xe,Pic(HFp)) and cY ≃ BCf! ◦ α ◦ cX ∈ Y e
! DY e . �at is,

we would like to li� these equivalences to ones in Map(Xe,Pic(HFp))hG and (Y e
! DY e)hG

respectively. For the first problem, note that Pic(HFp) ≃ Z×BAut(Fp) ≃ Z×BZ/(p− 1).
�us, by a standard analysis of the (−)hG–spectral sequence

Hs(G;πtMap(X,Pic(HFp)))⇒ πt−sMap(X,Pic(HFp))
hG,

applying π0 yields

π0 Map(X,Pic(HFp))
hG ∼= (π0 Map(X,Pic(HFp)))

G −→ π0Map(X,Pic(HFp))

which in particular is an injection. �us, since theG–equivariant li�sDX , f∗DY in the source
get mapped to DXe = f∗DY e ∈ π0Map(X,Pic(HFp)), we get that DX = f∗DY in the set
π0 Map(X,Pic(HFp))hG. �at is, the equivalence α li�s to a G–equivariant one, as required.
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Next, note by Poincaré duality that Y e
! DY e ≃ Y e

∗ 1HFp , and so since Y e
∗ preserves co-

connectivity, we learn that Y e
! DY e is coconnective. Again, by looking at the spectral se-

quence Hs(G;πtY
e
! DY e) ⇒ πt−s(Y e

! DY e)hG, since no higher cohomologies may contribute
to π0(Y e

! DY e)hG by coconnectivity, on π0 the map (Y e
! DY e)hG → Y e

! DY e induces the map
(π0Y

e
! DY e)G → π0Y

e
! DY e , which is an injection. �us by a similar argument as above, we

obtain a G–equivariant li� of the equivalence cY ≃ BCf! ◦ α ◦ cX , as wanted.

We are now ready to assemble the pieces to prove the theorem.

Proof of �eorem 5.1.1. Since HFp was a field, we have the Künneth isomorphisms

π−∗
(
Y A
∗ ζ ⊗HFp HFtPAp

) ∼= H∗(Y A; ζ)⊗Fp π−∗(HFtPAp )

π−∗
(
XA

∗ f
∗ζ ⊗HFp HFtPAp

) ∼= H∗(XA; f∗ζ)⊗Fp π−∗(HFtPAp ).

Now consider the commuting square

H∗(Y A; ζ)⊗Fp π−∗(HFtPAp ) H∗(XA; f∗ζ)⊗Fp π−∗(HFtPAp )

H∗(Y A; ζ) H∗(XA; f∗ζ)

f∗

f∗

Here, the vertical arrows are induced by the injection Fp = π−∗(HFp)→ π−∗(HFtPAp ) and so
are themselves injections: this is since we are tensoring over a field and so all modules are flat.
�e top horizontal map is an injection by Proposition 5.1.10 and the fact that, by Lemma 5.1.11,
we have a li� of the given nonequivariant degree one datum to a Bor(ModHFp)–degree one
datum for the map f : X → Y . �erefore all in all, we see that the bo�om map f∗ is injective
as desired.

We end this subsection with an application of �eorem 5.1.1 where we show�eorem 5.1.14
that, when G is a p–group for an odd prime p, equivariant Poincaré spaces with contractible
underlying spaces must already by G–contractible. Apart from perhaps being interesting in
its own right, this result will also be a crucial ingredient in the inductive proof of the main
theorem in the next subsection. We will need several preliminaries on orientations.

Lemma 5.1.12. Let X be a Cp–Poincaré duality space, where p is an odd prime. Assume Xe is
Z–orientable. �en also XCp is Z–orientable.

Proof. We check that a class w1(X
Cp) ∈ H1(XCp ;Z/2) ∼= hom(π1(X

Cp),Z/2), the first
Stiefel-Whitney class of XCp , vanishes. Let γ : S1 → XCp be a loop. �e value of w1 at the
loop γ can be computed as the degree of MdrmyXγ : DXCp (γ(1)) → DXCp (γ(1)) ∈ Pic(Sp),
the induced monodromy automorphism map.

We also have the automorphism MdrmyXγ : DX(γ(1)) → DX(γ(1)) ∈ Pic(SpG). Using
�eorem 4.2.9, we see that ΦCpMdrmyXγ ≃ MdrmyX

Cp

γ . Now we know that

degΦCpMdrmyXγ ≡ degΦeMdrmyXγ mod p
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by �eorem 4.6.5 and Example 4.6.3. But we also know that both degrees are ±1, asMdrmyXγ
is invertible. �us, in fact we even have degΦCpMdrmyXγ = degΦeMdrmyXγ since pwas odd.
But degΦeMdrmyXγ is the value of the first Stiefel Whithney class of the Poincaré space Xe

at the loop S1 γ−→ XCp → Xe, which is 1 asXe was assumed to be Z–orientable.

Proposition 5.1.13 (Rigidity of orientability). Let p be an odd prime and G be a p–group. Let
X be a G–Poincaré space. Suppose that Xe ∈ S is nonequivariantly Z–orientable. �en for each
subgroup H ≤ G, the Poincaré space XH is also nonequivariantly Z–orientable.

Proof. We shall prove this by induction on the order of the subgroup, where the base case
|H| = 1 is given by the hypothesis thatXe is nonequivariantly orientable. Suppose we know
the statement for all subgroups of order pk−1 and considerH ≤ Gwith |H| = pk . SinceH is a
p–group, we may find a normal subgroup N � H such thatH/N ∼= Cp. By Proposition 4.1.8
and �eorem 4.2.9, we know that (ResGH X)N is a H/N ∼= Cp–Poincaré duality space and
by induction, we know that (XN )e is orientable. �us, by Lemma 5.1.12, we see that XH ≃
(XN )H/N ≃ (XN )Cp is also orientable as required.

�eorem 5.1.14 (Poincaré rigidity of contractible underlying spaces). LetG be a solvable group
and X ∈ SωG a compact G–Poincaré space with Xe ≃ ∗. �en X ≃ ∗.

Proof. We prove this reducing to the case of G = Cp using the solvability assumption. To wit,
let us suppose we know the statement to be true for all solvable groups with size smaller than
|G|. Choose a normal subgroup N of G such that G/N = Cp. By Proposition 4.1.8, we know
thatResGN X isN–Poincaré with (ResGN X)e ≃ Xe ≃ ∗, and so by induction, ResGN X ≃ ∗. In
particular,XN ≃ ∗. �erefore, by �eorem 4.2.9, we have that XN is a G/N = Cp–Poincaré
space with (XN )e ≃ XN ≃ ∗. �us, we are le� to prove that for a Cp–Poincaré space X ,
Xe ≃ ∗ impliesXCp ≃ ∗.

Observe that XCp 6= ∅ as ECp is not compact. Now pick a map f : ∗ → X . It is an
equivalence on undelying spaces with Cp-action. By �eorem 5.1.1, f induces an injection

f∗ : H∗(XCp ;Fp)  H∗(∗;Fp). (23)

In degree 0, this shows that XCp is connected. Furthermore, again by �eorem 4.2.9, XCp

is a Poincaré space. To conclude, by the classification of zero-dimensional Poincaré spaces
(Fact 3.2.19) it suffices to show that the formal dimension of XCp is zero. Note that XCp is
Fp-orientable. In the case p = 2 this is clear while in the case p 6= 2 this follows from Propo-
sition 5.1.13. Now, injectivity of (23) implies that the formal dimension ofXCp is zero, as zero
is the highest degree in whichH∗(XCp ;Fp) does not vanish.

Remark 5.1.15. By Feit–�ompson’s celebrated result, all finite groups of odd order are solv-
able. Hence, the Poincaré rigidity result above holds unconditionally for all odd finite groups.

Corollary 5.1.16. Let p be an odd prime. �ere exists a compact Cp-space X with

1. the underlying space Xe is contractible and

2. the fixed point space XCp is Poincaré and
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3. the Cp-space X is not Cp–Poincaré.

Proof. Pick a noncontractible Fp-acyclic Poincaré space K that is homotopy equivalent to a
finite CW complex, for example RPd for d > 0 an even number. By [Jon71, �m. 1.1], we may
pick a finite Cp–CW complexX with Xe ≃ ∗ and XCp ≃ K . By �eorem 5.1.14, we see that
X can not be Cp–Poincaré, as then we would haveK ≃ ∗.

5.2. The theorem of single fixed points

�roughout this subsection, we will fix an odd prime p.
In [CF64], Conner-Floyd conjectured that a smooth action by a cyclic group of odd prime

power on a smooth, closed, orientable, positive–dimensional manifold cannot have exactly
one fixed point. �e first proof of this statement (in fact, a slightly more general version) was
given by Atiyah-Bo� in [AB68] and soon a�er by [CF66] themselves. Many variations have
been proven since then, and we mention [Lüc88; ABK92] as further examples. Atiyah-Bo�’s
argument uses Atiyah–Singer’s index theory, whereas Conner–Floyd’s proof used a particular
bordism spectrum. In either case, and also in [Lüc88], local structures of smooth manifolds
were used in essential ways. We exemplify such local arguments with the following corollary
of �eorem 5.1.1 which answers the Conner–Floyd question for elementary abelian p–groups.
As will be clear from the proof, the result holds more generally for locally smooth manifolds.

Corollary 5.2.1 (Conner–Floyd for elementary abelian groups). LetA be an elementary abelian
p–group, andM a closed, orientable, positive–dimensional, smooth A–manifold. �enMA 6= ∗.

Proof. Suppose MA = ∗. Writing x ∈ M for this single fixed point, we may thus find an
A–representation V equipped with a codimension zero equivariant embedding V ⊆M which
sends 0 ∈ V to x ∈ M . Consider the collapse map c : M −→ M/(M \ Y ) ≃ SV . It
is a map of A–Poincaré spaces with DMe ⊗ HZ ≃ c∗D(SV )e ⊗ HZ as both are orientable.
�us by �eorem 5.1.1, we have an injection H∗((SV )A;Fp) → H∗(MA;Fp). But note that
H∗((SV )A;Fp) ≃ H∗(∗ ∐ ∗;Fp)whileH∗(MA;Fp) ≃ H∗(∗;Fp). �is is a contradiction.

In this subsection, we will employ the theory of fundamental classes developed in this ar-
ticle to give a fully homotopical and global proof of the following generalisation of Atiyah–
Bo� and Conner–Floyd’s theorem for Cpk–Poincaré spaces. Philosophically, this says that the
equivariant fundamental class packages enough structures so as to be able to provide a global
obstruction to some naturally interesting geometric questions.

�eorem 5.2.2 (Generalised Atiyah–Bo�–Conner–Floyd). Let p be an odd prime, G = Cpk for
some k, and supposeX ∈ SωG isG–Poincare such that the underlying spaceXe ∈ Sω is connected,
Z–orientable, and has formal dimension d > 0. �en XG 6≃ ∗.

We obtain the theorem of Atiyah–Bo� and Conner–Floyd as an immediate consequence.

Corollary 5.2.3 ([AB68, �m. 7.1], [CF66, p. 8.3]). Let p be an odd prime and G = Cpk . LetM
be a closed connected orientable smooth manifold of positive dimension equipped with a smooth
G–action. �enMG 6= ∗.
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�e orientability assumption is crucial, as illustrated by the following:

Example 5.2.4. For p odd, consider the suspension of the action of Cp ⊂ S1 on S2 which
descends to an action of Cp on RP2 with a single fixed point.

Consequently, we see that these no–go results for single fixed points cannot purely be a
product of classical Smith theory since theymust incorporate orientations in some fundamental
way. From this perspective, our approach may be seen as a way to encode orientations by
enconcing the discussion within the formalism of equivariant Poincaré duality, where Smith–
theoretic fixed points methods are also available as afforded by §4.2.

Restricting to odd prime powers is essential as well, as the following example illustrates.

Example 5.2.5 ([CF64], Chapter 45). �e group C4 acts on CP2 with a single fixed point, by
le�ing a generator act via [z0 : z1 : z2] 7→ [z0 : −z2 : z1].

To start work on �eorem 5.2.2, we record some preliminaries on Tate cohomology which
will be the computational input to our proof.

Recollections 5.2.6 (Group (co)homologies). Let n ≥ 2 be an integer and A an abelian group
equipped with the trivial Cn–action. �en by definition, we have

πdHA
hCn ∼= H−d(Cn;A), πdHA

tCn ∼= Ĥ−d(Cn;A), πdHAhCn
∼= Hd(Cn;A).

Moreover, using the fibre sequence of spectraHAhCn −→ HAhCn −→ HAtCn , we get a long
exact sequence

· · · → H−d(Cn;A) −→ Ĥ−d(Cn;A) −→ Hd−1(Cn;A) −→ H−(d−1)(Cn;A)→ · · ·

giving us

Ĥ−d(Cn;A) =





H−d(Cn;A) ∼= A/n if d ≤ −1 and d even;
H−d(Cn;A) ∼= 0 if d ≤ −1 and d odd;
A/n if d = 0;

Hd−1(Cn;A) ∼= A/n if d ≥ 1 and d even;
Hd−1(Cn;A) ∼= 0 if d ≥ 1 and d odd.

It will be convenient to recall the notations of [GM95] to manipulate the various forms of
the Tate constructions.

Lemma 5.2.7. Let H ≤ G be a subgroup of a finite group G and A ∈ SpH . �en we have
(IndGHA)

tG ≃ AtH .

Proof. First observe that ResGH ẼG ≃ ẼH and ResGH EG+ ≃ EH+. �e required result is
now obtained from the computation of (IndGHA)tG as
(
ẼG⊗ F (EG+, Ind

G
HA)

)G ≃
(
IndGH ResGH ẼG⊗ F (EG+, A)

)G ≃
(
ẼH ⊗ F (EH+, A)

)H
= AtH

where the equivalence (IndGH−)G ≃ (−)H is since IndGH ≃ CoindGH and we have an equiva-
lence of their le� adjoints Infl1H ≃ ResGH Infl1G.
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Lemma 5.2.8. Let Y ∈ SωC
pk

such that Y C
pk ≃ ∅. �en the change of coefficients map (Y+ ⊗

HZ)tCpk → (Y+⊗HZ/pk−1)
tC

pk is an equivalence. In particular, the groups πn(Y+⊗HZ)tCpk

are pk−1–torsion for all n.

Proof. Note that the map being an equivalence is stable under retracts and finite colimits in
the Y –variable. As any compact Cpk space Y with Y C

pk = ∅ is a retract of a finite sequence
of pushouts of orbits Cpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/CplCpk/Cpl with l < k, it thus suffices to show the desired equivalence for
each of these orbits. By Lemma 5.2.7, we obtain for anyR ∈ CAlg(Sp) the natural equivalence

(
(Cpk/Cpl)+ ⊗R

)tC
pk =

(
Ind

C
pk

C
pl
R
)tC

pk ≃ RtCpl .

�us, the claim follows from the fact that the quotient map HZtCpl →
(
HZ/pk−1

)tC
pl is an

equivalence for l < k, see e.g. Recollection 5.2.6.

For the next lemma, recall the cofibre sequence EG+ → SG → ẼG in SpG.

Lemma 5.2.9. Let G be an odd finite group and P ∈ Pic(SpG) with P e ≃ ΣkS. �en there is
a canonical equivalence F (EG+,HZ)⊗ P ≃ ΣkF (EG+,HZ) ∈ SpG. Consequently, the map

(
ẼG⊗ F (EG+,HZ)⊗ P

)G −→
(
ΣEG+ ⊗ F (EG+,HZ)⊗ P

)G

from the cofibre sequence EG+ → SG → ẼG may be identified with the usual connecting map
ΣkHZtG −→ Σ1+kHZhG.

Proof. We first show that the Borelification map F (EG+,HZ) ⊗ P → F (EG+,HZ ⊗ P e) is
an equivalence. To wit, let Y ∈ SpG. �en

MapSpG(Y, F (EG+,HZ)⊗ P ) ≃ MapSpG
(
Y ⊗ P−1, F (EG+,HZ)

)

≃ MapSpBG(Y e ⊗ (P e)−1,HZ)

≃ MapSpBG(Y e,HZ⊗ P e)
≃ MapSpG

(
Y, F (EG+,HZ ⊗ P e)

)

as claimed. But then, since HZ⊗ P e ∈ Fun(BG,Pic(ModSp(HZ))) and G was an odd group
and BAut(HZ) ≃ BC2, we know that HZ ⊗ P e ≃ trivGΣ

kHZ, whence the first statement.
�e second statement is then immediate from the equivalences

(
ẼG⊗F (EG+, E)

)G ≃ EtG
and

(
EG+ ⊗ F (EG+, E)

)G ≃ EhG for all E ∈ SpG.

For the proof of the theorem, it will also be helpful to record the following:

Construction 5.2.10 (Orbit–component decompositions). Let X ∈ SG. By an easy adjunc-
tion computation, we have that (π0Xe)/G ∼= π0(XhG). Let S ⊔ T be a decomposition of
(π0X

e)/G ∼= π0(XhG). By considering the triple of adjunctions

SG SetG = Fun(O(G)op,Set) Fun(BG,Set) Set,
π0 b∗

incl b∗

r!

r∗
(24)

we may obtain a decompositionX ≃ Y ⊔ Z ∈ SG such that π0YhG ∼= S and π0ZhG ∼= T .
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We now come to the proof of our generalisation of Atiyah–Bo� and Conner–Floyd’s theo-
rem. For this, recall the notion of formal dimensions from Terminology 3.2.18.

Proof of �eorem 5.2.2. We prove this by induction on k, where the base case of k = 0 is trivial.
Now suppose we know that it is true for k − 1. To prove the inductive step for the case of k,
the strategy is to obtain a contradiction using the gluing class. For this, note first thatXCp is a
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG/Cp

–Poincaré space by�eorem 4.2.9. We claim that there is a decompositionXCp = ∗⊔Y
of G/Cp-spaces, where Y G/Cp ≃ ∅ necessarily since ∗ ≃ XG = (XCp)G/Cp ≃ ∗ ⊔ Y G/Cp . If
the component of XCp containing ∗ is of formal dimension larger than 0, then the induction
hypothesis and Construction 5.2.10 gives such a decomposition as the G/Cp-space XCp also
satisfies the conditions of the theorem. If the component of XCp containing ∗ is of formal
dimension 0, then it must be G/Cp–contractible by Fact 3.2.19 (1) and �eorem 5.1.14. �us,
again by Construction 5.2.10, we obtain the desired decomposition.

Wewill derive the contradiction by basechanging along SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp→ ModF (EG+,HZ). Observe first
that we may assume that d > 0 is even since we may replaceX withX ×X if necessary: this
will still be a SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp–Poincaré space satisfying the hypotheses of the theoremwith (X×X)G ≃ ∗
and Xe ×Xe having formal dimension 2d > 0.

To set up notation, recall the map X>1 ǫ−→ X from Construction 2.2.15 and write W :=

Σ−dHZ ∈ ModHZ. WewriteDZ
X := F (EG+,HZ)⊗DX ∈ Mod

X
F (EG+,HZ). By the hypothesis

of Z–orientability, we get DZ
Xe ≃ HZ ⊗DXe ≃ X∗W ∈ ModX

e

HZ. By Proposition 5.1.13, the
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG/Cp

–Poincaré spaceXCp has Z–orientable underlying dualising sheaf. By Corollary 4.5.7,
the composition giving the gluing class

HZ (X>1
! ǫ∗DZ

X)tG ≃ (X>1
! (X>1)∗W )tG Σ(X>1

! ǫ∗DZ
X)hG ≃ Σ(X>1

! (X>1)∗W )hG

(X!D
Z
X)hG (X!D

Z
X)tG ΣWhG

c

can

≃ can

can

(25)
is nullhomotopic. To achieve a contradiction, we show that this composition is alsoπ0–surjective
onto a nontrivial group, assuming thatXG ≃ ∗. We do this in three steps.

(1) To this end, first note that since the composite ∗ →֒ X>1 ǫ−→ X → ∗ is equivalent to the
identity, by functoriality of colimits, the map in Fun(BG,ModHZ)

W −→ X>1
! ǫ∗DZ

Xe ≃ X>1
! (X>1)∗W −→W

is also equivalent to the identity. �us the rightmost vertical map can in (25) is (split) sur-
jective on homotopy groups coming from the summandΣWhG insideΣ(X>1

! ǫ∗DZ
X)hG ≃

ΣWhG⊕Σ(Y!Y
∗W )hG, where we have used thatX>1 ≃ Infl

G/Cp

G XCp ≃ ∗⊔InflG/Cp

G Y
from the first paragraph of the proof.

(2) Next, the Tate–to–orbit canonical map breaks up to become

(X>1
! ǫ∗DZ

X)
tG ≃W tG ⊕ (Y!Y

∗W )tG
can⊕can−−−−−→ ΣWhG ⊕ Σ(Y!Y

∗W )hG
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By Recollection 5.2.6 and since d− 1 is odd by our assumption, can: W tG → ΣWhG ≃
Σ1−dHZhG is a π0–isomorphism onto Z/pk. Moreover, by Lemma 5.2.8, the image of
can : π0(Y!Y

∗W )tG → π0Σ(Y!Y
∗W )hG is pk−1–torsion since Y G/Cp ≃ ∅.

(3) Finally, consider the commuting diagram
HZ

(
ẼG⊗X!D

Z
X

)G (
ẼG⊗X>1

! ǫ∗DZ
X

)G

(
X!D

Z
X

)tG (
X>1

! ǫ∗DZ
X

)tG ≃
(
ẼG⊗ F (EG+, X

>1
! ǫ∗DZ

X)
)G

c
c

ǫ!
≃

ǫ!
≃

where the top right triangle involving the fundamental classes commutes since by Corol-
lary 4.2.5 and Lemma 4.2.6, the map ǫ : X>1 → X is Mod

ẼG⊗F (EG+,HZ)
–degree one.

Note importantly that the map

HZ
c−−→

(
ẼG⊗X>1

! ǫ∗DZ
X

)G ≃ (ẼG⊗ ∗!ǫ∗DZ
X)

G ⊕ (ẼG⊗ Y!ǫ∗DZ
X)

G

is the fundamental class of the ẼG⊗F (EG+,HZ)–Poincaré space ∗ ⊔ InflGG/Cp
Y , and

so by Lemma 3.3.16, it hits the algebra unit 1 of π0(ẼG⊗ ∗!ǫ∗DZ
X)

G. Next, consider
(
ẼG⊗ ∗!ǫ∗DZ

X

)G (
ΣEG+ ⊗ ∗!ǫ∗DZ

X

)G

W tG ≃
(
ẼG⊗ F (EG+, ∗!ǫ∗DZ

X)
)G (

ΣEG+ ⊗ F (EG+, ∗!ǫ∗DZ
X)

)G

≃ ΣWhG.

≃ ≃

where the vertical equivalences are by Lemma 5.2.9. Since the bo�om horizontal map is
a π0–isomorphism onto Z/pk as in step (2), the composition HZ

c−→W tG → ΣWhG is a
π0–surjection onto the abelian group Z/pk .

All in all, pu�ing the three steps together, we see that the image of 1 ∈ π0HZ under the
composition map π0HZ→ π0ΣWhG

∼= Z/pk in (25) is of the form 1 + p · a for some element
a ∈ Z/pk, and hence is nonzero. �is finishes the proof of the claim, and thus also of the
theorem.

Remark 5.2.11. Step (3) in the proof above might seem labyrinthine at first glance, but the
basic idea leading to it is quite simple. Namely, we know always from Corollary 4.5.2 that the
map ǫ! : (X>1

! ǫ∗DZ
X)

tG → (X!D
Z
X)

tG is an equivalence. However, this equivalence has no
control over the fundamental class c : HZ → (X!D

Z
X)

tG, essentially because (−)tG is only a
lax symmetric monoidal functor. In contrast, the functor ẼG ⊗ − is a symmetric monoidal
one, and so it is more suited to li� the fundamental class by virtue of the theory of degree one
maps as encapsulated in Corollary 4.2.5.
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A. G–stability for presentable G-categories

In this section we study presentable G-stable categories for compact Lie groups. In [Nar17],
Nardin defines for a finite groupG-stability as a property of fibrewise stableG–categories, that
roughly translates to requiring certain Wirthmüller isomorphisms to hold. Instead of develop-
ing his theory for compact Lie groups in full generality, we take a different approach following
the general phenomenon that certain properties of categories can be classified through idem-
potent algebras. For example, a presentable category is stable if and only if it is a module over
the category of spectra, see [GGN15; CSY21] for more examples of this type. We define pre-
sentable G-stable categories as those presentable G–categories which are modules over the
G–category SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG of G–spectra.

Recall that we say that a map u : 1 → A exhibits an object A in a symmetric monoidal
category C as an idempotent object if the map A ≃ 1 ⊗ A u⊗A−−−→ A ⊗ A is an equivalence.
An idempotent object admits a unique structure of a commutative algebra in C with u as its
unit map, see [Lur17, Proposition 4.8.2.9]. Now given an idempotent algebra A in a symmetric
monoidal category C, it is a property of an objectX ∈ C to be amodule overA, in the sense that
the forgetful functorModA(C)→ C is fully faithful. Its image is characterised by thoseX ∈ C
for which the unit mapX → A⊗X is an equivalence, or equivalently admits a right inverse,
see [Lur17, Proposition 4.8.2.10]. Taking this point of view, we observe that the G–category
of G–spectra is an idempotent algebra in PrLG and use this for the definition of presentable
G-stable categories.

Definition A.0.1 ([GM23, Definition C.1, Corollary C.7], [Cno23, Definition 4.1]). �e cate-
gory of G–spectra is defined as the formal inversion

SpG = SG,∗[{SV }−1].

Here {SV }−1 denotes the collection in SG,∗ consisting of representation spheres of all finite
dimensional G-representations V .

�is means that it comes together with a symmetric monoidal colimit preserving functor
Σ∞
G : SG,∗ → SpG sending all representation spheres SV to invertible objects and is inital

among those. More details on formal inversions of presentably symmetric monoidal categories
can be found in [Rob15, Section 2] and [Hoy17, Section 6.1]. By [GM23, Corollary C.7], the
canoncial map

Stab{SV }(SG,∗)→ SG,∗[{SV }−1] (26)
is an equivalence. Here, we denote for a presentably symmetric monoidal category C to-
gether with a small collection of objects S ⊆ C the stablisiation of C at S by StabS(C) =
colimF⊆S finite Stab

⊗
F (C), where for an element x ∈ C we denote

Stabx(C) = colim
(
C −⊗x−−−→ C −⊗x−−−→ . . .

)
.

Definition A.0.2 ([Cno23, Definition 4.2]). We define the G–categories of pointed G–spaces
and of (genuine) G–spectra as

SG,∗ = SG,∗ ⊗SG
Ω and SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG = SpG ⊗SG

Ω,
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where −⊗SG
Ω: ModSG

(PrL)→ PrLG is the symmetric monoidal colimit preserving embed-
ding from Proposition 2.1.30.

Lemma A.0.3. �e G–categories SG,∗ and SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG are idempotent algebras in PrLG.

Proof. First note that SG,∗ ∈ ModSG
(PrL) is an idempotent algebra as the image of the idem-

potent algebra S∗ ∈ PrL under the symmetric monoidal functor − ⊗ SG : PrL → ModSG
. It

now follows from the definition of formal inversion that SpG ∈ ModSG
(PrL) is an idempotent

algebra. �is proves the claim as the symmetric monoidal functor −⊗SG
Ω: ModSG

(PrL)→
PrLG preserves idempotent algebras.

Having this at hand, we can now give our definition of G-stability.

Definition A.0.4. We say that a presentableG–category C isG-stable if it is a module over the
idempotent algebra SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG ∈ CAlg(PrLG). We denote by PrL,G−st

G ⊆ PrLG the full subcategory
on G-stable presentable G–categories. It is closed under all limits and colimits.

Our goal is to prove the following characterisation of presentable G-stable categories.

�eorem A.0.5 (Characterisation ofG-stability). For a presentable G–category C the following
are equivalent:

1. C is G-stable.

2. C is fibrewise pointed and for all closed subgroups H ≤ G and all finite dimensional H-
representations V tensoring with SV ∈ SH,∗ induces an equivalence −⊗SV : CH ≃−→ CH .

3. C is fibrewise pointed and for all finite dimensionalG-representation V tensoring withSV ∈
SG,∗ induces an equivalence −⊗ SV : C ≃−→ C.

To clarify the statement, recall that the SG-module structure on C restricts to a SH -module
structure on CH which refines to a SH,∗-module structure as CH is pointed. �e map − ⊗
SV : CH ≃−→ CH is now just the multiplication map induced by this module structure.

For the proof of �eorem A.0.5, we need the following preliminary result.

Lemma A.0.6. Suppose that D is a presentable G–category such that DG is pointed and -
− ⊗ SV : DG → DG is an equivalence for any finite dimensional G-representation V . �en
the restriction map FunLG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG,D)→ FunLG(SG,D) is an equivalence.

Proof. Using that −⊗ SG : PrL → PrLG is le� adjoint to Γ, we obtain an equivalence

FunLG(SG,∗,D) ≃ FunL(S∗,DG) ≃−→ FunL(S,DG) ≃ FunLG(SG,D)

where the middle equivalence uses that DG is pointed. Similarly, the restriction map

FunLG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG,D) ≃ FunLSG,∗(SpG,D
G)

≃−→ FunLSG,∗(SG,∗,D
G) ≃ FunLG(SG,∗,D)

is an equivalence by employing the colimit description of SpG = SG,∗[{SV }−1] from (26).
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Proof of �eorem A.0.5. 1 =⇒ 2: Observe that SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is fibrewise pointed and satisfies the as-
sumption on invertible actions of representations spheres as SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG(G/H) = SpH is the formal
inversion of SH,∗ at representation spheres of finite dimensional H-represenations. But this
also holds for any G-stable category C as CH then is a module over SpH .

2 =⇒ 3: Recall that, by the Peter-Weyl theorem, for any finite dimensionalH-represenation
W there is a finite dimensionalG-representation V such thatW is a summand of ResGH V . In
particular, if−⊗SV : CH ≃−→ CH is an equivalence, this implies that−⊗SResGH V : CH ≃−→ CH
is an equivalence. But then also −⊗ SW is an equivalence

3 =⇒ 1: We want to construct a right inverse C⊗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG → C to the unit map. By adjunction,
this is equivalent to finding a factorisation of the unit map SG → FunLG(C, C) through the unit
map SG → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG. For this, we apply Lemma A.0.6 forD = FunLG(C, C). It thus remains to show
that FunLG(C, C) = DG is pointed and tensoring with representation spheres is invertible. �e
assumption on C being fibrewise pointed implies that FunLG(C, C) is pointed. Furthermore, SV
acts invertibly on FunLG(C, C) as it does so on C.

B. Reflecting pushout squares

Let A → B → B/A be a cofibre sequence in a stable category. Recall that there is a natural
identification of the cofibre of B → B/A as follows, constructed as follows. Consider the
diagram

A B B/A cofib(B → B/A)

≃0

≃0

(27)

and note that the two nullhomotopies of bent arrows - coming from them being the structure of
the cofibre sequences - define a mapΣA→ cofib(B/A), which turns out to be an equivalence.
�is equivalence is natural in maps of cofibre sequences, and we will always use it to identify
cofib(B → B/A) with ΣA.

Lemma B.0.1. Consider a pushout square

A B

C D

in a stable category. �en the two composites

φC : D → D/C ≃ B/A→ ΣA and φB : D → D/B ≃ C/A→ ΣA
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coming from the following diagram satisfy φB ≃ ±φC .

A B B/A ΣA

C D D/C

C/A D/B

ΣA

≃

≃

Proof. To prove this, we consider the universal example of a span in a stable category. Denote
by Span(C) = Fun(• ←− • −→ •, C) the category of spans in the stable category C. Note that
there is an equivalence

Span(C) = Fun(• ←− • −→ •, C)
≃ Fun(• ←− • −→ •,Funex(Spω, C))
≃ Funex(Spω ⊗ (• ←− • −→ •), C),

where Spω ⊗ (• ←− • −→ •) denotes the tensoring of Catex over Cat. �e construction of
the tensoring in [CDH+23, Section 6.4] shows that Spω ⊗ (• ←− • −→ •) is given by the sta-
ble subcategory Cospan(Sp)f of Cospan(Sp) generated by the three objects in the span (28)
(which are given as the values of the le� Kan extensions of the inclusions of the individual
objects in the category (• −→ • ←− •) at the sphere). Using this description, the equivalence
Funex(Cospan(Sp)f , C) ≃ Span(C) is given by evaluation at the universal span




S

0 0







S

0 S







S

S 0


 .

(28)

It suffices to prove the claim in this specific case. Any span in C is the image of this universal
span under an exact functor and thus also satisfies the statment of the lemma.
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�e possibilites for φB and φC are limited, since

π0 Map




S

S S

,
ΣS

0 0




≃π0 Map


S, lim




ΣS

0 0





 ≃ π0 Map(S,S) ≃ Z.

so φB and φC identify with integers nB and nC . Note that if nB is divisible by k ∈ Z, then
φB is divisible by k for any pushout in any stable category. But in the case of the following
pushout in Sp

S 0

0 ΣS

(29)

the map φB is clearly an equivalence, so nB = ±1. �e same holds for φC , so by lack of
alternatives we see φB = ±φC .

Remark B.0.2. A more careful analysis of (29) in fact yields that φB = −φC .
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