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ON TENSOR PRODUCTS OF EQUIVARIANT COMMUTATIVE OPERADS

NATALIE STEWART

Abstract. We lift the Boardman-Vogt tensor product to a symmetric monoidal closed G-∞-category Op⊗G
of OG-∞-operads. Using this, we construct a G-colocalizing subcategory

N(−)∞ : wIndexG →Op
G

called the G-poset of weak N∞-G-operads whose colocalization functor constructs arity support weak indexing
system.

We precisely characterize the weak N∞-G-operads whose tensor powers are weak N∞, called the aE-unital

weak N∞-G-operads. We show that the G-subcategory

wIndexaE−uni,⊗G →Op⊗
G

is pointwise-symmetric monoidal and combinatorially characterize its tensor products; in particular, the full

G-subcategory of unital weak N∞-G-operads is cocartesian symmetric monoidal, i.e. its tensor products are

joins of weak indexing systems.
As a special case, we recognize Blumberg-Hill’s N∞-operads as a symmetric monoidal sub-poset Index∨G ⊂

wIndexuni,∨G conrming a conjecture of Blumberg-Hill. In particular, for I , J unital weak indexing systems and

C an I ∨ J-symmetric monoidal ∞-category, we construct a canonical I ∨ J-symmetric monoidal equivalence

CAlg⊗
I
CAlg⊗

J
C ≃ CAlg⊗

I∨J
C.
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Introduction

Summary of main results. Homotopy-coherent algebraic structures in genuine-equivariant mathematics are
naturally founded in the notion of G-commutative monoids. In the context of this paper, the ∞-category of
G-commutative monoids in an ∞-category D is the ∞-category of product-preserving functors

CMonG(D) := Fun×(Span(FG),D),

where FG denotes the category of nite G-sets.1 The ∞-category of small G-symmetric monoidal ∞-categories
is Cat⊗G degCMonG(Cat), where Cat denotes the ∞-category of small ∞-categories.

Given C⊗ ∈ Cat⊗G a G-symmetric monoidal ∞-category, the product-preserving functor

ιH : Span(F)
∗→G/H
−−−−−−−→ Span(FG)

constructs a symmetric monoidal ∞-category C⊗H := ι∗HC
⊗ whose underlying ∞-category CH is the value of C⊗

on the orbit G/H.2 For all subgroups K ⊂H ⊂ G, the covariant and contravariant functoriality of C⊗ then
yield a lax-symmetric monoidal restriction and symmetric-monoidal norm functor

ResHK : C⊗H → C⊗K ,

NH
K : C⊗K → C⊗H.

We use this structure to encode algebras in C⊗, for which we need a notion of G-operads.
Various notions of G-operad have been introduced for this. In Section 2.3 we introduce an ∞-category

OpG of OG-∞-operads (henceforth G-operads) equivalent to that of [NS22]. Given O⊗ ∈ OpG a G-operad
and S ∈ FH an H-set for some H ⊂ G, we construct a space of S-ary operations O(S), together with operadic
composition maps

(1) O(S)⊗


H/Ki∈Orb(S)

O(Ti )→ O



















H/Ki∈Orb(S)

IndHKi
Ti

















,

operadic restriction maps

(2) O(S)→ O(ResHK S),

1 In this paper we will call ∞-categories ∞-categories and 0-truncated ∞-categories 1-categories. We hope this prevents avoidable

confusion in older readers.
2 In this paper, “orbits” refer to transitive G-sets, i.e. objects of the orbit category OG .
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and equivariant symmetric group action

(3) AutH (S)×O(S)→ O(S).

Eqs. (2) and (3) together ascend to a structure of a G-symmetric sequence; we go on to show in Corollary 2.68
that this structure is monadic under a reducedness assumption.

Denition. We say that O⊗ has at least one color if O(∗H ) is nonempty for all subgroups H ⊂ G, and we say
O⊗ has at most one color if O(∗H ) ∈ {∗,∅} for all H ⊂ G. We say that O⊗ has one color if it has at least one
color and at most one color. ◁

When O⊗ has one color, an O-algebra in the G-symmetric monoidal ∞-category C⊗ can intuitively be

viewed3 as a tuple (XH ∈ C
BWG(H)
H )G/H∈OG

satisfying XK ≃ ResHK XH , together with O(S)-actions

(4) µS : O(S)⊗X⊗S
H → XH

for all S ∈ FH and H ⊂ G, homotopy-coherently compatible with the maps Eqs. (1) to (3), where we write

X⊗S
H :=



H/K∈Orb(S)

NH
K ResHK XH.

for the indexed tensor products in C⊗. In this paper, we are concerned with dening indexed tensor products
of O-algebras, as well as P -algebras in the resulting G-symmetric monoidal ∞-category. Mirroring the
nonequivariant case, we will accomplish this by realizing the operad of O-alebras in P as the internal hom
with respect to a symmetric monoidal structure on the ∞-category of G-operads.

In order to characterize this tensor product, we will relate it to a tensor product on the category of
G-symmetric monoidal ∞-categories. In Section 1.1 we dene the ∞-category of G-∞-categories to be

CatG  Fun(O
op
G ,Cat).

As a weakening of the notion of G-symmetric monoidal ∞-categories, we dene a symmetric monoidal G-∞-
category to be a commutative monoid object in CatG. The restriction structure between the ∞-categories
CMonG(C) is summarized dening a G-∞-category CMonG(C) with the values



CMonG(C)


H
 CMonH (C).

This G-∞-category underlies a symmetric monoidal G-∞-category satisfying an analogous universal property
to [GGN15, Thm 5.1], whose free functor depends on the G category of coecient systems



CoefGC


H
 Fun(O

op
H ,C).

Theorem A. If C is a presentable ∞-category, then there exists a unique symmetric monoidal structure

CMon⊗−mode
G (C) on CMonG(C) such that the free G-commutative monoid G-functor

CoefGC → CMonG(C)

possesses a (necessarily unique) symmetric monoidal structure.

In Section 1.3, we generalize the above theorem generalizes directly to the setting of G-presentable
∞-categories as developed in [Hil24]. We use this to dene the coherences on a Boardman-Vogt symmetric
monoidal structure on G-categories.

Theorem B. There exists a unique symmetric monoidal structure Op⊗
G

on Op
G

attaining a (necessarily

unique) symmetric monoidal structure on the fully faithful G-functor

Env/F
⨿

T : Op⊗
G
→ CMon⊗−mode

G (Cat)/FT
,

Furthermore, Op⊗
G
satises the following.

3 Throughout this paper, we let the orbit category OG ⊂ FG be the full subcategory spanned by transitive G-sets G/H.
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(1) In the case G = e, there is a canonical symmetric monoidal equivalence Op⊗e ≃ Op⊗∞, where the
codomain has the symmetric monoidal structure of [BS24a]; in particular, the underlying tensor
product is equivalent to that of [BV73; HM23; HA].4

(2) the underlying tensor functor − ⊗BV O : OpG → OpG possesses a right adjoint Alg⊗
O
(−), whose

underlying G-∞-category is the G-∞-category of algebras Alg
O
(−); the associated ∞-category is the

∞-category of algebras AlgO(−).

(3) The unit of Op⊗G is the G-operad triv⊗T dened in [NS22]; hence Alg⊗
trivT

(O) ≃ O⊗.

(4) When C⊗ is G-symmetric monoidal, Alg⊗
O
(C) is G-symmteric monoidal; furthermore, when O⊗ has

one object, the forgetful functor
Alg⊗

O
(C)→ C⊗

is G-symmetric monoidal.
(5) When C⊗ →D⊗ is a G-symmetric monoidal functor, the induced lax G-symmetric monoidal functor

Alg⊗
O
(C)→Alg⊗

O
(D)

is G-symmetric monoidal.

Remark. In analogy to [BV73], in Observation 2.27 we interpret algebras over the tensor product O⊗ ⊗BV P⊗

in a G-symmetric monoidal category C⊗ as Bifunctors of G-operads O⊗ ×P⊗ → C⊗; unwinding denitions in
the case C⊗ is G-symmetric monoidal (e.g. as in Section 5.2), we interpret these as interchanging pairs of O-
and P -algebras structures on an object of C; we show that this fully determines ⊗BV in Corollary 4.7.

Furthermore, by Yoneda’s lemma, the T -operad Alg⊗
P
(C) itself is determined by the property that its

O-algebras are interchanging pairs of O- and P -algebra structures on an object in C; we show in Philosophical
remark 4.1 that G-symmetric monoidal ∞-categories are determined by their underlying G-operads, so this
fully determines Alg⊗

P
(C) as a G-symmetric monoidal ∞-category. ◁

Remark. After this introduction, we replace OG with an atomic orbital ∞-category T for the remainder of the
paper; we prove Theorem B as well as other theorems in this introduction in this setting, greatly generalizing
the stated results, at the cost of intuition. ◁

Given O⊗ ∈OpocG a G-operad with one color and ψ : T → S a map of nite H-sets, we also dene the

space of multimorphisms5

Mul
ψ

O(T ;S) :=


U∈Orb(S)

O(T ×S U ).

We then dene the subcategory6 AO ⊂ FG of O-admissible maps by

AO :=


ψ : T → S







Mul

ψ

O(T ;S)  ∅



⊂ FG.

In essence, taking tensor products of Eq. (4) yields an action

Mul
ψ

O(T ;S)⊗X⊗T
H → X⊗S

H ,

and AO consists of the pairs of equivariant arities over which this produces structure on X.
The fact that ∅ accepts no maps from nonempty sets potentially obstructs construction of maps as in

Eqs. (1) and (2), so AO can’t be an arbitrary subcategory. In Corollary 3.10, we combinatorially characterize
the image of A in Sub(FG) as the poset wIndexG of weak indexing systems, a weakened variant of the notion
introduced in [BP21] which is studied combinatorially in upcoming work of the author [St].

4 The author shares the perspective of [BHS22, Rem p.4] that the construction of [HA] has coherences which are delicate, inaccessible,

and as far as she knows, yet to be applied anywhere. On the other hand, the coherences of the construction of this paper and [BHS22]

are canonically determined by symmetric monoidality of the sliced G-symmetric monoidal envelope, whose underlying functor is in

frequent use.
5 We only make the assumption that O⊗ has one color for ease of exposition; throughout the remainder of text following the

introduction, we will not make this assumption.
6 Throughout this paper, we say subobject to mean monomorphism in the sense of [HTT, § 5.5.6]; in the case the ambient

∞-category is a 1-category, this agrees with the traditional notion.

In the case our objects are in the ∞-category Cat of small ∞-categories, we call this a subcategory ; in the case that the containing

∞-category is a 1-category, this is canonically expressed as a wide subcategory of a full subcategory, and it is uniquely determined by

its morphisms, so we will implicitly identify subcategories of C a 1-category with their corresponding subsets of Mor(C).
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We say that a G-operad O⊗ is E-unital if

O(∅V ) ∈















∗ O(∗V )  ∅;

∅ O(∗V ) = ∅.

We say that O⊗ is unital if it is E-unital and has at least one color. We denote the full subcategory spanned
by unital G-operads by OpuniG ⊂OpG.

Theorem C. The following posets are each equivalent:

(1) The poset SubCat⊗G
(F⨿

G ) of G-symmetric monoidal subcategories of F⨿

G .

(2) The poset SubOpG
(CommG) of sub-commutative G-operads.

(3) The poset


triv⊗
∅



⋆ SubCAlgOpG
(CommG), where the right subposet consists of nonempty sub-commutative

G-operads possessing split codiagonal natural transformations

AlgOAlg
⊗

O
(C)

AlgO(C) AlgO(C)

U

(4) The poset OpG,≤−1 of G-(−1)-operads.
(5) The image A(OpG) ⊂ SubCat(FG)
(6) The sub-poset wIndexG ⊂ SubCat(FG) spanned by subcategories I ⊂ FT which are closed under base

change and automorphisms and satisfy the Segal condition that

T → S ∈ I ⇐⇒ ∀U ∈Orb(S), T ×S U →U ∈ I

(7) The sub-poset SubfullCatG
(FG) spanned by full G-subcategories C ⊂ FG which are closed under self-indexed

coproducts and have ∗H ∈ CH whenever CH  ∅.

Furthermore, there are a equalities of sub-posets

IndexG = wIndexG,≥AE∞
= wIndexuniG,≥AE∞

⊂ SubCat(FG),

where IndexG denotes the indexing systems of [BP21; GW18; Rub21a].

References. The sliced G-symmetric monoidal envelope is shown to implement an equivalence between (1)
and (2) in [BHS22], which we recall in Corollary 2.62. We then characterize the image of A, constructing an
equivalence between (5) and (6) in Proposition 2.35 and Corollary 3.10. The equivalence between (6) and (7)
is handled in [St].

(4) and (5) in Corollary 3.10 by constructing a fully faithful right adjoint to

(5) A : OpT −−−−−−−−→
←−−−−−−−−wIndexG :N(−)∞.

Along the way, in Remark 3.9 we show that (2) and (4) are equivalent as subcategories. Finally, the equivalence
between (2) and (3) is observed to follow from the computation of the arity-support of Boardman-Vogt tensor
products in Observation 5.3. □

Under the assumption that O⊗ is reduced (i.e. unital and one-colored), by [St], the information of AO
may be understood as simply specifying the colors over which O⊗ prescribes a binary multiplication

X⊗2
H → XH

and the subgroup inclusions K →H over which O⊗ prescribes a transfer

XK → XH.

We call the operads N ⊗

I∞ constructed by Eq. (5) weak N∞-operads. In general, by Theorem C, we nd
that a slice category OpG,/O⊗ →OpG is a full subcategory if and only if O⊗ is a weak N∞-operad, in which
case we write

OpI := OpG,/N ⊗

I∞
≃ A−1(wIndexG,≤I );

explicitly, maps P⊗ →N ⊗

I∞ are a property of O⊗, and this property is the support condition AP ≤ I .
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We may understand N ⊗

I∞ in a hands-on manner in a number of ways; for instance, it is constructed
explicitly in Proposition 2.35. On the other hand, the equivalence between conditions (4) and (6) of Theorem C
shows that N ⊗

I∞ is uniquely identied by the property

(6) NI∞(S) =















∗ IndGHS → G/H is in I ;

∅ otherwise.

Alternatively, we may see this indirectly using the existence of free G-operads on symmetric sequences (see
Corollary 2.68).

In fact, there are many weak N∞-G-operads of interest outside of the world of N∞-G-operads:

Example. Given F ⊂ O
op
G a G-family, the operad triv⊗F N ⊗

F
≃
F
is characterized by a natural equivalence

Alg⊗
trivF

(C) = BorGF (C
⊗),

in Proposition 2.51, where BorGF is the F -Borelication discussed in Section 3.3. ◁

Given I a unital weak indexing system, in Corollary 4.12, we characterize the∞-category of I-commutative
monoids in C a complete ∞-category as

CMonI (C)AlgNI∞
(C×) ≃ Fun×(SpanI (FG),C),

where SpanI (FG) ⊂ Span(FG) is the subcategory whose forward maps are in I ; we dene the ∞-category of
I-symmetric monoidal ∞-categories as

Cat⊗I  CMonI (Cat).

We also show in Proposition 2.41 that I-symmetric monoidal ∞-categories have underlying I-operads; for
C ∈ Cat⊗I , we dene the ∞-category of I -commutative algebras in C as

CAlgI (C)AlgNI∞
(C).

We show in Corollary 3.16, that analogs of Theorem B (5) and (6) hold for I -commutative algebra objects in
I -symmetric monoidal categories.

We go on to compute the I -indexed tensor products in CAlg⊗
I
C under a distributivity assumption; they

are I-cocartesian, in the sense that their I -indexed tensor products are indexed coproducts (c.f. Section 4.3),
under a weak unitality assumption.

To that end, we say that a G-operad is almost-E-unital (henceforth aE-unital) if, whenever O(S)  ∅ for
some noncontractible S ∈ FH , we have O(∅H ) = ∗. In the aE-unital setting, we show that weak N∞-G-operads
are precisely the G-operads whose algebras have cocartesian tensor products indexed over their support.

Theorem D. Let O⊗ be an aE-unital G-operad. Then, the following properties are equivalenent.

(a) The AO-symmetric monoidal ∞-category Alg⊗
O
SG is AO-cocartesian.

(b) The unique map O⊗ →N ⊗

AO∞
is an equivalence.

Furthermore, CAlg⊗
I
C is I-cocartesian for any distributive I-symmetric monoidal ∞-category C and almost-E-

unital weak indexing system I .

We say that an I -operad O⊗ is reduced if the (unique) map O⊗ →NI∞ induces equivalences

O(S) ≃NI∞(S) ∀ S ∈ FH empty or contractible

(c.f. Eq. (6)). We characterize algebras in cocartesian I-symmetric monoidal categories in Theorem 2.54,
and from this Theorem D entirely characterizes the tensor products of reduced I-operads with N ⊗

I∞ in the
almost-E-unital setting.

Corollary E. N ⊗

I∞ ⊗N ⊗

I∞ is a weak N∞-operad if and only if I is aE-unital. In this case, if O⊗ is a reduced
I-operad, then the unique map

O⊗
⊗N ⊗

I∞ →N ⊗

I∞

is an equivalence.
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The only part of Corollary E which doesn’t follow directly from Theorem D is the statement that I
non-aE-unital implies that N ⊗

I∞ ⊗N ⊗

I∞ is not weak N∞; we prove this in Section 5.1.
This immediately characterizes many tensor products of weak N∞-operads, since NI∞ is a J-operad

whenever I ≤ J . We go on to completely characterize indexed tensor products of almost-E-unital weak
N∞-operads, conrming Conjecture 6.27 of [BH15].

Theorem F. The functor N ⊗

(−)∞ : wIndexG →OpG lifts to a G-colocalizing subcategory inclusion

wIndexG Op
G

N ⊗

(−)∞

A

⊣

whose restriction wIndexwuni
G ⊂Op

G
is symmetric monoidal. Furthermore, the resulting tensor product on

wIndexwuni,⊗
G is computed by the join

I ⊗ J = BorGcSupp(I∩J) (I ∨ J)

=

















i

(ψi : Ti → Si )















∀i, Si ∈ I ∩ J , and ψi ∈ I ∪ J















.

In particular, when I and J are almost-E-unital weak indexing systems, we have

N ⊗

I∞ ⊗N ⊗

J∞ ≃N ⊗

(I∨J)∞ ⊗ triv⊗cSupp(I∩J)

N ⊗

I∞ ×N ⊗

J∞ ≃N ⊗

(I∩J)∞

ResGH N ⊗

I∞ ≃N ⊗

ResGH I∞

CoIndGHN
⊗

I∞ ≃N ⊗

CoIndGHI∞
.

Hence norms of I-commutative algebras are CoIndGHI-commutative algebras, and when I , J are unital, we have

(7) CAlg⊗
I
CAlg⊗

J
(C) ≃ CAlg

I∨J
(C).

We oer various additional corollaries in Sections 3.5 and 4.5 concerning lifts of various functors in
equivariant homotopy theory to functors between categories of I -commutative algebras; included among these
are equivariant factorization homology and equivariant algebraic K-theory. We go on to state a family of
conjectures concerning further properties of equivariant higher algebra in Section 5.5.

Notation and conventions.

Acknowledgements.

1. Equivariant symmetric monoidal categories

1.1. Recollections on T -∞-categories. In this section, we briey summarize some relevant elements of
parameterized and equivariant higher category theory. There have been many developments in this theory
outside of what is summarized here; further details can be found in the work of Barwick-Dotto-Glasman-
Nardin-Shah [Bar+16a; Bar+16b; Nar16; Sha22; Sha23], Cnossen-Lenz-Linskens [CLL23a; CLL23b; CLL24;
Lin24; LNP22], and Hilman [Hil24].

We view this setting of orbital ∞-categories as a natural home for higher algebra centered around
categories of spans (see [Nar16, § 4]), generalizing the orbit categories families of subgroups of pronite
groups. We summarize the dictionary between these settings in ref . The reader who is exclusively interested
in equivariant homotopy theory is encouraged to assume every orbital ∞-category is the orbit category of a
(pro-)nite group, or of a family of subgroups; these are always epiorbital.


