
NIG
HTLY

DO
NOT

CIT
E

ORBITAL CATEGORIES AND WEAK INDEXING SYSTEMS

NATALIE STEWART

Abstract. We initiate the combinatorial study of the poset wIndexT of weak T -indexing systems, consisting
of composable collections of arities for T -equivariant algebraic structures, where T is an orbital ∞-category,
such as the orbit category of a finite group. In particular, we show that these are equivalent to weak
T -indexing categories and characterize various unitality conditions.

Within this sits a natural generalization IndexT ⊂wIndexT of Blumberg-Hill’s indexing systems, consisting
of arities for structures possessing binary operations and unit elements. We characterize the relationship
between the posets of unital weak indexing systems and indexing systems, the latter remaining isomorphic to
transfer systems on this level of generality. We use this to characterize the poset of unital Cpn -weak indexing
systems.
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1. Introduction

Fix G a finite group. In [BH15], the notion of N∞-operads for G was introduced, encapsulating a
collection of blueprints for G-equivariantly commutative multiplicative structures on Mackey functors which
possess underlying Green functors. They demonstrated that the ∞-category of N∞-operads for G is an
embedded sub-poset of the lattice of indexing systems IndexG.

Subsequently, the embedding N∞−OpG ⊂ IndexG was shown to be an equivalence in several independent
works [BP21; GW18; Rub21]; of particular note is the equivalent characterization of indexing systems as a
poset of wide subcategories IndexCatG ⊂ Sub(FG) (referred to as indexing categories [BH18, § 3.2]) and the
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observation that indexing categories only depend on their pullbacks to the subgroup lattice SubGrp(G), the
resulting embedded subposet

IndexG IndexCatG TransfG

FullSubG(FG) Sub(FG) Sub(OG) SubPosetSubGrp(G)

∼ ∼

F(−) (−)∩OG p.b.

being referred to as transfer systems [BBR21; Rub19]. It is in this language that enumerative problems
concerning N∞-operads are often solved.

Noting that SubGrp(OCpn ) = [n+ 1], the transfer system approach was used in [BBR21] to prove that
TransfCpn is equivalent to the (n + 2)nd associahedron Kn+2, where Cm is the cyclic group of order m.
Furthermore, transfer systems have powered a large amount of further work on the topic; for instance,
TransfCpqr is enumerated for p,q, r distinct primes in [BBPR20], with some indications on how to generalize
this to arbitrary squarefree integers.

In this paper, we aim to demonstrate how one may extend this work in two ways:
(1) we will remove the assumption on indexing systems that they are closed under finite coproducts; on

the side of algebra, we will see in [Ste25b] that this removes the assumption that algebras over the
corresponding G-operad N ⊗I∞ in Mackey functors possess underlying Green functors;

(2) we will replace the orbit category OG with an axiomatic version, called an atomic orbital ∞-category ;
this allows us to fluently describe equivariance under families and cofamilies, as well as extend to
more general orbit categories, such as the finite-index orbit category of a compact Lie group.

For the former, when we assert a unitality assumption, we find that wIndexuni
G is finite when G is finite,

and it can usually be explicitly described in terms of transfer systems and G-families (c.f. Theorem B
and Corollary C). Moreover, unitality is compatible with joins (c.f. Proposition 2.57), and in [Ste25b] we will
establish that joins compute tensor products of unital weak N∞-operads.

We assure the skeptical reader that they may freely assume T is (the orbit category of) a G-family F
and replace all instances of orbits V ∈ T with homogeneous G-spaces [G/H] for H ∈ F (or with the subgroup
H ⊂ G itself, depending on which is contextually appropriate);1 then, our results will only be novel in way (1).
Regardless, we will now review the axiomatic setting of (atomic) orbital ∞-categories.

1.1. Orbital ∞-categories. We briefly review the setting introduced in [BDGNS16] generalizing the orbit
category OG; we assume basic intuition for OG, consistent e.g. with the characterization in [Die09, § 1.2-1.3].
Construction 1.1 (c.f. [Gla17]). Given T an ∞-category2, its finite coproduct completion is the full subcategory
FT ⊂ Fun(T op,S) spanned by finite coproducts of representable presheaves, where S denotes the ∞-category
of spaces. ◁

Example 1.2. If G is a finite group, then FOG is equivalent to the 1-category of finite G-sets; more generally, if
F ⊂ OG is (the orbit category of) a G-family, then FF ⊂ FOG is the full subcategory spanned by finite G-sets
S such that the stabilizer stabG(x) lies in F for all x ∈ S. ◁

FT is freely generated by T under finite coproducts; in particular, given S ∈ FT , there is a unique
expression S ≃

⊕
V ∈Orb(S)

V for some finite set of S-orbits Orb(S)→ObT . Another important property of the

finite coproduct completion is existence of equivalences [Gla17, Lem 2.14]

FT ,/S ≃
∏

V ∈Orb(S)

FT ,/V ; FT ,/V ≃ FT/V .

1 Throughohut this paper, a G-family will always refer to a subconjugacy closed collection of subgroups of G, That the reader
understands weak indexing systems over G-families will become non-negotiable over the course of this paper, as we critically employ
change of universe functors throughout the text, such as Borelification.

2 Throughout this paper, we say ∞-categories to refer to (∞,1)-categories as in [HTT], and we say n-categories to refer to
(n,1)-categories, i.e. ∞-categories whose mapping spaces are (n− 1)-truncated. 1-categories embed fully faithfully into ∞-categories,
and the reader is free to safely assume all categorical terminology refer to 1-categories (and spaces as sets) except for the 2-category
Cat1 of 1-categories, which must be a 2-category in order for the definition of I-symmetric monoidal 1-categories to have coherences
compatible with the ∞-categorical case.
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We henceforth refer to FT ,/V ≃ FT/V as FV . Note that, in the case T = OG, induction furnishes an equivalence
OG,/[G/H] ≃ OH , so F[G/H] ≃ FH .

Fundamental to genuine-equivariant mathematics is the effective Burnside category Span(FG); for
instance, the G-Mackey functors of [Dre71] may be presented as product-preserving functors Span(FG)→Ab.
In fact, the spectral Mackey functor theorem of [GM17] presents G-spectra as product-preserving functors of
∞-categories Span(FG)→ Sp, a perspective which has been greatly exploited e.g. in [Bar14; BGS20].

In Span(FG), composition of morphisms is accomplished via the pullback

(1)

Rf g

Rg Rf

S T Q

⌟

Indeed, given T an arbitrary ∞-category, the triple (FT ,FT ,FT ) is adequate in the sense of [Bar14] if and
only if FT has pullbacks, in which case the triple is disjunctive. Thus, Barwick’s construction [Bar14, Def 5.5]
defines an effective Burnside ∞-category Span(FT ) = Aef f (FT ,FT ,FT ) precisely if T is orbital in the sense of
the following definition.
Definition 1.3 ([Nar16, Def 4.1]). A (small) ∞-category T is orbital if FT has pullbacks; an orbital ∞-category
T is atomic if all retracts in T are equivalences. ◁

If T is an orbital 1-category, then the effective Burnside ∞-category Span(FT ) is a 2-category with
objects the finite T -sets, morphisms the spans of finite T -sets, 2-cells the isomorphisms of spans, and
composition defined by Eq. (1). We will not discuss the Burnside ∞-category for the main combinatorial
results of this paper, but it factors greatly into the parallel study of genuine equivariant algebra, and hence in
the forthcoming article [Ste25b]. Instead, we spend the rest of the subsection on examples.
Remark 1.4. We will show in Section 2.1 that, if T is an orbital ∞-category, then ho(T ) is as well; furthermore,
the main combinatorial objects of this paper are the same between T and ho(T ). Hence the reader may
uniformly assume that T is a 1-category, at the loss of essentially none of the combinatorics. ◁

Example 1.5. Given X a space considered as an ∞-category, X is atomic orbital; by [Gla18, Thm 2.13], the
associated stable ∞-category is the Ando-Hopkins-Rezk ∞-category of parameterized spectra over X (c.f.
[ABGHR14]). In particular, for X = BG, this recovers spectra with G-action. ◁

Example 1.6. Given P a meet semilattice, P is atomic orbital, as the meets in FP are easily computed in
terms of meets in P . ◁

Given G a topological group, let SG denote the ∞-category of G-spaces, presented for instance by the
simplicial localization of topological spaces with G-action at the maps inducing weak equivalences on point-set
fixed points for each closed subgroup. Let OG ⊂ SG denote the full subcategory spanned by the homogeneous
G-spaces [G/H] for H ⊂ G a closed subgroup. We call this the orbit ∞-category.

A famous issue with equivariant stable homotopy theory over an infinite group G is that the orbit
∞-category OG is not orbital ; the G-Burnside category does not exist, as FG does not have pullbacks with
which to define composition of spans, since the double coset formula constructs infinitely many elements in
many such pullbacks. Nevertheless, this has been rectified in various homotopical contexts. One particularly
lucid treatment due to Cnossen-Lenz-Linskens uses the slightly more general setting of global homotopy theory.

Definition 1.7 ([CLL23, Def 4.2.2, 4.3.2]). Given P ⊂ T a wide subcategory of an ∞-category, we denote by
FPT B FP ⊂ FT the wide subcategory whose maps are induced by maps in P . We say P ⊂ T is an orbital
subcategory if FPT ⊂ FT is stable under pullbacks along arbitrary maps in FT , and all such pullbacks exist.
We say P ⊂ T is additionally atomic if any morphism in P which admits a section in T is an equivalence. ◁

Note that an ∞-category is atomic orbital if and only if it’s an atomic orbital subcategory of itself, so
the orbital setting specializes the global setting. On the other hand, many global examples can be pulled
back to the orbital setting.

Lemma 1.8. Suppose P ⊂ T is an atomic orbital subcategory. Then, P is atomic orbital as an ∞-category.
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Proof. First, assume we have a square in FP ≃ FTP ; since P ⊂ T is an orbital subcategory, we may extend our
square to a pullback diagram FT

T ′

T ×S S ′ T

S ′ S

h

g ′

f ′
πT

πS′
⌟

f

g

To prove that P is orbital, it suffices to verify that the inner square is a pullback diagram lying in P ; to check
that it lies in P we are tasked with verifying that πS ′ and πT are in P and to check that it’s a pullback we
are tasked with verifying that h lies in P . In fact, πS ′ and πT are in P since P ⊂ T is an orbital subcategory;
h is then in P since atomic orbital subcategories are left cancellable by [CLL23, Lem 4.3.5].

We’ve proved that P is orbital. To see that P is atomic, note that this immediately follows from the
second condition of Definition 1.7. □

To use this for equivariance over infinite groups, we make the following definition.
Definition 1.9. Given T an ∞-category, a T -family is a full subcategory F ⊂ T satisfying the condition that,
given V →W a morphism with W ∈ F , we have V ∈ F . A T -cofamily is a full subcategory F ⊥ ⊂ T such
that F ⊥,op ⊂ T op is a T op-family. ◁

Observation 1.10. Suppose F ⊂ T is a full subcategory of an atomic orbital ∞-category satisfying the following
conditions:

(a) whenever U,W ∈ F and there is a path U → V →W , we have V ∈ F , and
(b) whenever U,W ∈ F and there is a cospan U → V ←W , there is a span U ← V ′→W with V ′ ∈ F .

Then, the inclusion FF ⊂ FT creates pullbacks; in particular, F is an atomic orbital ∞-category. Note that
(a) is satisfied by all families and cofamilies, and (b) is satisfied by all families. ◁

Example 1.11. Let G be a Lie group and Of .i.G ⊂ OG the wide subcategory of the orbit ∞-category spanned
by projections [G/K]→ [G/H] corresponding with finite-index closed subgroup inclusions K ⊂H . Then, by
[CLL23, Ex 4.2.6], Of .i.G ⊂ OG is an orbital subcategory with pullbacks implemented by a double coset formula.

In fact, it follows quickly from definition that it is atomic as well; hence Of .i.G is an atomic orbital ∞-category.

In fact, by Observation 1.10, the Of .i.G -family Of inG spanned by finite subgroups is an atomic orbital
∞-category as well. In the case G = T this yields the cyclonic orbit category, so its stable homotopy theory is
that of cyclonic spectra, i.e. finitely genuine S1-spectra (c.f. [BG16, Thm 2.8]). ◁

Example 1.12. Given H ⊂ G a closed subgroup, the Of .i.G -cofamily Of .i.G,≤[G/H] spanned by homogeneous G-spaces
[G/J] admitting a quotient map from [G/H] satisfies the assumption of Observation 1.10, so it is atomic
orbital; in the case H =N ⊂ G is normal, it is equivalent to Of .i.G/N . In any case, the associated stable homotopy
theory is the value category of H-geometric fixed points with residual genuine G/H-structure (c.f. [Gla17]). ◁

1.2. Weak indexing systems and weak indexing categories. Throughout the remainder of this introduction,
we fix T an orbital ∞-category.

1.2.1. Weak indexing systems. In the case T = OG is the orbit category of a compact Lie group G, Elmendorf’s
theorem [DK84; Elm83] implies that the ∞-category of G-spaces is equivalent to the functor ∞-category

SG ≃ Fun(Oop
G ,S),

i.e. they are (homotopy coherent) coefficient systems of spaces. It is becoming traditional to allow G to act
on the category theory surrounding genuine equivariant mathematics, culminating in the following definition.
Definition 1.13. The 2-category of small T -1-categories is the functor 2-category

CatT ,1 B Fun(T op,Cat1) ≃ Fun(h2T op,Cat1),

where Cat1 is the 2-category of small 1-categories and h2(−) denotes the homotopy 2-category. ◁
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For the remainder of this paper, all T -1-categories will be small, so we omit the word “small.” We refer
to the morphisms in CatT ,1 as T -functors. Given a T -1-category C and an object V ∈ T , C has a V -value
1-category CV B C(V ), and given a map V →W in T , C has an associated restriction functor ResWV : CW →CV .

Example 1.14. By [NS22, Prop 2.5.1], the ∞-category T/V is a 1-category, so FV B FT/V ≃ FT ,/V is a 1-category.
Hence the functor T op→ Cat∞ sending V 7→ FT ,/V is a T -1-category, which we call the T -1-category of finite
T -sets and denote as FT . ◁

Notation 1.15. We refer to the terminal object (V = V ) ∈ FV as ∗V and call it the contractible V -set. We refer
to the initial object (∅→ V ) ∈ FV as ∅V and call it the empty V -set. ◁

Evaluation is functorial in the T -1-category; indeed, a T -functor F : C →D is just a collection of functors

FV : CV →DV
intertwining with restriction. We refer to a T -functor whose V -values are fully faithful as a fully faithful
T -functor ; if ι : C → D is a fully faithful T -functor, we say that C is a full T -subcategory of D. A full
T -subcategory of D is uniquely determined by an equivalence-closed and restriction-stable class of objects in
D; see [Sha23] for details.

Definition 1.16 (c.f. [HHR16, § 2.2.3]). Fix C a T -1-category. The induced V -set functor IndVU : CU →CV , if
it exists, is the left adjoint to ResVU . Furthermore, given a V -set S and a tuple (TU )U∈Orb(S), the S-indexed
coproduct of TU is, if it exists, the element

S∐
U

TU B
∐

U∈Orb(S)

IndVUTU ∈ CV .

Dually, the coinduced V -set CoIndVU : CU →CV is the right adjoint to ResVU (if it exists), and the S-indexed
product is (if it exists), the element

S∏
U

TU B
∏

U∈Orb(S)

CoIndVUTU ∈ CV . ◁

Example 1.17. Given a subgroup inclusion K ⊂ H ⊂ G, the associated functor FH → FK is restriction, and
hence its left adjoint FK → FH is G-set induction, matching the indexed coproducts of [HHR16, § 2.2.3]. ◁

Given S ∈ FV , we write
CS B

∏
U∈Orb(S)

CV ;

we say that C strongly admits finite indexed coproducts if
∐S
U TU always exists, in which case it is a functor

S∐
U

(−) : CS →CV .

Remark 1.18. Given S ∈ FV , we may define the functor ∆S : CV → CS so that for each U ∈ Orb(S), the
associated functor CV → CU is restriction along the composite map U → S → V . This is the rightwards
horizontal composition in the following:

CV
∏

U∈Orb(S)
CV

∏
U∈Orb(S)

CU∆

∐
U∈Orb(S)(−)

∏
U∈Orb(S)(−)

(ResVU )

(IndVU )

(CoIndVU )

⊣
⊣

⊣
⊣

In particular, by composing adjoints, we acquire adjunctions
∐S
U (−) ⊣ ∆S ⊣

∏S
U (−), i.e. we’ve constructed

indexed (co)limits in the sense of [Sha22]. ◁

It follows from construction that FT strongly admits finite indexed coproducts; indeed, FT ,/V = FT/V
admits finite coproducts by definition, and T -set induction along a map f : V →W is implemented by the
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postcomposition f! : FT ,/V → FT ,/W , as it participates in the categorical push-pull adjunction f! ⊣ f ∗. Similarly,
FT strongly admits finite indexed products, so in particular, ResVU preserves coproducts.
Definition 1.19. Given a full T -subcategory C ⊂ FT and a full T -subcategory E ⊂ D, we say that E is closed

under C-indexed coproducts if, for all S ∈ CV and (TU ) ∈ ES , the object
S∐
U

TU exists and is in EV . ◁

Definition 1.20. We say that a full T -subcategory C ⊂ FT is closed under self-indexed coproducts if it is closed
under C-indexed coproducts. ◁

Definition 1.21. Given T an orbital ∞-category, a T -weak indexing system is a full T -subcategory FI ⊂ FT
with V -values FI,V B (FI )V satisfying the following conditions:
(IS-a) whenever FI,V ,∅, we have ∗V ∈ FI,V ; and
(IS-b) FI is closed under self-indexed coproducts.

We denote by wIndexT ⊂ FullSubT (FT ) the embedded sub-poset spanned by T -weak indexing systems.
Moreover, we say that a T -weak indexing system has one color if it satisfies the following condition:

(IS-i) for all V ∈ T , we have FI,V ,∅;
these span an embedded subposet wIndexoc

T ⊂wIndexT . We say that a T -weak indexing system is almost
essentially unital or (aE-unital) if it satisfies the following condition:
(IS-ii) for all noncontractible V -sets S ⊔ S ′ ∈ FI,V , we have S,S ′ ∈ FI,V .

An almost essentially unital T -weak indexing system is almost unital if it has one color. These are denoted
wIndexauni

T ⊂ wIndexaEuni
T ⊂ wIndexT . We say that a T -weak indexing system is essentially unital (or

E-unital) if it satisfies the following condition:
(IS-iii) for all V -sets S ⊔ S ′ ∈ FI,V , we have S,S ′ ∈ FI,V .
We say that an essentially unital T -weak indexing system is unital if it has one color. We write wIndexuni

T ⊂
wIndexEuni

T ⊂wIndexT . Lastly, a T -weak indexing system is an indexing system if it satisfies the following
condition:
(IS-iv) the subcategory FI,V ⊂ FV is closed under finite coproducts for all V ∈ T .
We denote the resulting poset by IndexT ⊂wIndexuni

T . ◁

Remark 1.22. The indexing systems of [BH15] are seen to be equivalent to ours when T = OG by unwinding
definitions. The weak indexing systems of [BP21; Per18] are equivalent to our unital weak indexing systems
when T = OG by [Per18, Rem 9.7] and [BP21, Rem 4.60]. ◁

In practice, we will find that non-aE-unital weak indexing systems are not well behaved, and questions
involving aE-unital weak indexing systems are usually quickly reducible to the unital case; the reader is
encouraged to focus primarily on unital weak indexing systems for this reason.

1.2.2. Some examples. We begin with some universal examples.
Example 1.23. The terminal T -weak indexing system is FT ; the initial T -weak indexing system is the empty
T -subcategory; the initial one-color T -weak indexing system Ftriv

T is defined by

Ftriv
T ,V B {∗V } . ◁

To understand the conditions of Definition 1.21, we introduce some invariants. Write

n · S B

n-fold︷     ︸︸     ︷
S ⊔ · · · ⊔ S .

Lemma 1.24. Given FI a T -weak indexing system, the following are T -families:

c(I)B
{
V ∈ T | ∗V ∈ FI,V

}
υ(I)B

{
V ∈ T |∅V ∈ FI,V

}
∇(I)B

{
V ∈ T | 2 · ∗V ∈ FI,V

}
Proof. This follows by noting that ResVU n · ∗V = n · ∗U . □
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We call c(I) the color family of I , υ(I) the unit family, and ∇(I) the fold map family. Note that
c(I) ≤ υ(I)∩∇(I); that is, Condition (IS-a) implies that whenever FI prescribes a unit or a fold map over V ,
it possesses a color over V . We will use the following lemma ubiquitously.

Lemma 1.25. Let FI be a T -weak indexing system.
(1) FI has one color if and only if c(I) = T .
(2) FI is E-unital if and only if υ(I) = c(I).
(3) FI is unital if and only if υ(I) = T .
(4) FI is an indexing system if and only if υ(I)∩∇(I) = T .

Proof. (1) follows immediately by unwinding definitions. For (2), if FI is E-unital and V ∈ c(I), then choosing
∅V ⊔ ∗V ∈ FI,V yields ∅V ∈ FI,V , i.e. V ∈ υ(I). Conversely, if υ(I) = c(I) and S ⊔ S ′ ∈ FI,V , then

S =
S⊔S ′∐
U

χS (U ), where χS (U )B

∗U U ∈ S
∅U U < S

so S ∈ FI , i.e. FI is E-unital. (3) follows by combining (1) and (2).
For (4), note that FI an indexing system implies that υ(I)∩∇(I) = T by taking nullary and binary

coproducts of ∗V ∈ FI,V . Conversely, if υ(I)∩∇(I) = T , then by iterating binary coproducts (n− 1)-times, we
find that n · ∗V = (∗V ⊔ (n− 1) · ∗V ) ∈ FI,V for all V ∈ T and n ∈ N. Applying Condition (IS-b), we find that
FI,V is closed under n-ary coproducts for all n ∈ N, i.e. FI is an indexing system. □

In fact, the proof of (2) shows more; we may use the same argument to show the following.

Lemma 1.26. FI is aE-unital if and only if whenever S ∈ FI,V is noncontractible, V ∈ υ(I).

We may use c to reduce study of weak indexing systems to the one-color case via the following.
Construction 1.27. Given F a T -family and FI an F -weak indexing system, we may define the T -weak
indexing system ETF FI by (

ETF FI
)
V
B

FI,V V ∈ F ;
∅ otherwise.

◁

This yields an embedding of posets wIndexF →wIndexT . In Proposition 2.31, we prove the following.

Proposition 1.28. The fiber of c : wIndexT → FamT is the image of ETF |oc : wIndexoc
F →wIndexT .

In particular, we find that ETF FF and ETF F
triv
F are terminal and initial among c−1(F ).

Example 1.29. In [Ste25a] we define the underlying T -symmetric sequence O(−) of a T -operad O⊗; the space
O(S) parameterizes the S-ary operations endowed on an O-algebra. We define the arity support

FAO,V B {S ∈ FV | O(S) ,∅} ;
in [Ste25a], we show that this possesses a fully faithful right adjoint, making T -weak indexing systems
equivalent to weak N∞-T -operads, i.e. subterminal objects in the ∞-category of T -operads. This inspires our
naming; [Ste25a] establishes that FAtrivT = Ftriv

T and FACommT = FT .
We may choose T = OG, R an orthogonal G-representation, and ER the little R-disks operad. This has

arity support
FRH B FAER,H = {S ∈ FH | ∃ H-equivariant embedding S ↪→ R}

(see [Hor19]). The unital weak indexing system FR is not always an indexing system; for instance, choosing
G = Cp and λ a 2-dimensional irreducible real orthogonal Cp-representation, we see by unwinding definitions
that

Fλe = Fe, FλCp =
{
n · [Cp/e] | n ∈ N

}
⊔

{
∗Cp +n · [Cp/e] | n ∈ N

}
.

In fact, a unital G-weak indexing system FI is an indexing system if and only if it contains 2 · ∗G (in which
case, it must contain its restrictions 2 · ∗H for all H ⊂ G), and R admits a G-equivariant embedding of 2 · ∗G if
and only if the inclusion {0} ⊂ RG is proper, i.e. R has positive-dimensional fixed points. Thus FR is not an
indexing system when R has 0-dimensional fixed points. ◁

We will see in Section 2.3 that the construction R 7→ FR is monotone and compatible with direct sums.
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Example 1.30. The intial unital T -weak indexing system F0
T is defined by

F0
T ,V B {∅V ,∗V } ;

the initial T -indexing system F∞T is defined by

F∞V B {n · ∗V | n ∈ N} . ◁

Example 1.31. Let T = ∗ be the terminal category. Then, a full subcategory FI ⊂ F can be identified with a
subset n(I) ⊂ N, Condition (IS-a) with the condition that n(I) is empty or contains 1, and Condition (IS-b)
with the condition that n(I) is closed under k-fold sums for all k ∈ n(I). There are many such things; for
instance, for each n ∈ N, the set {1} ∪N≥n ⊂ N gives a nonunital ∗-weak indexing system.

Nevertheless, if we assert that 0 ∈ n(I) (i.e. FI is unital), then FI is closed under summands, i.e. n(I) ⊂ N
is lower-closed in N. Thus we have the following computations for T = ∗:

condition poset
indexing system F

unital F0 F
almost unital Ftriv F0 F

essentially unital ∅ F0 F

almost essentially unital ∅ Ftriv F0 F
◁

Example 1.32. We will see in Corollary 2.4 that when X is a space, there is a canonical equivalence wIndexX ≃
wIndex∗ respecting our various conditions. In particular, the computations for Borel equivariant weak
indexing systems mirror those of Example 1.31. ◁

1.2.3. Weak indexing categories. With a wealth of examples under our belt, we now simplify the combinatorics.
Observation 1.33. Denote by IndTV S→ V the map corresponding with a finite V -set S under the equivalence
FV ≃ FT ,/V . This equivalence implies that a full T -subcategory C ⊂ FT is determined by the subgraph

I(C)B

∐
i

IndTViSi → Vi

∣∣∣∣∣∣∣ ∀i, S ∈ CVi

 ⊂ FT .

In other words, the construction I yields an embedding of posets

I(−) : wIndexT ↪→ Subgraph(FT ). ◁

We will prove the following in Section 2.2.

Theorem A. Fix T an orbital ∞-category. Then, the image of the map I(−) consists of the subcategories
I ⊂ FT satisfying the following conditions
(IC-a) (restriction-stability) I is stable under arbitrary pullbacks in FT ;
(IC-b) (Segal condition) the pair T → S and T ′→ S ′ are in I if and only if T ⊔ T ′→ S ⊔ S ′ is in I; and
Moreover, for all numbers n, condition (IS-n) of Definition 1.21 is equivalent to condition (IC-n) below:
(IC-i) (one color) I is wide; equivalently, I contains F≃T .
(IC-ii) (aE-unital) if S ⊔ S ′→ T is a non-isomorphism map in I, then S→ T and S ′→ T are in I.
(IC-iii) (E-unital) if S ⊔ S ′→ T is a map in I, then S→ T and S ′→ T are in I.
(IC-iv) (indexing category) the fold maps n ·V → V are in I for all n ∈ N and V ∈ T .

We refer to the image of I(−) as the weak indexing categories wIndexCatT ⊂ SubCat(FT ). In general, we
will refer to a generic weak indexing category as I and its corresponding weak indexing system as FI . The
following observations form the basis for the proof of Theorem A.
Observation 1.34. By a basic inductive argument, Condition (IC-b) is equivalent to the following condition:
(IC-b’) T → S is in I if and only if TU = T ×S U →U is in I for all U ∈Orb(S).
In particular, I is uniquely determined by the maps to orbits. ◁

Observation 1.35. By Observation 1.34, in the presence of Condition (IC-b), Condition (IC-a) is equivalent to
the following condition:
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(IC-a’) for all Cartesian diagrams in FT

(2)
T ×V U T

U V

α′
⌟

α

with U,V ∈ T and α ∈ I , we have α′ ∈ I . ◁

Remark 1.36. In view of Observations 1.34 and 1.35, Theorem A essentially boils down to the observation
that composition in I corresponds with indexed coproducts in FI (see Observation 2.11), identity arrows on
orbits correspond with contractible V -sets (by definition), and Condition (IC-a’) for I corresponds with the
condition that FI ⊂ FT is restriction-stable, i.e. a full G-subcategory.

On the level of arity-supports for equivariant operads, composition of arrows in AO lifts to the formation
of composite operations, identity arrows to the data of identity operations, Condition (IC-a’) lifts to the
restriction map from T -ary operations to ResVU T -ary operations and Condition (IC-b’) corresponds with the
Segal condition for multimorphisms in a G-∞-operad. ◁

One of the major reasons for this formalism is the technology of equivariant algebra. If ι : I ⊂ FT is a
pullback-stable subcategory, then (Fc(I),Fc(I), I) is an adequate triple in the sense of [Bar14], so we may form
the span ∞-category

SpanI (FT )B Aef f (Fc(I),Fc(I), I),

whose forward maps are I and backwards maps are arbitrary. If C is an ∞-category, the ∞-category of
I-commutative monoids in C is the product preserving functor ∞-category

CMonI (C)B Fun×(SpanI (FT ),C);

the I-symmetric monoidal 1-categories are

Cat⊗I,1 B CMonI (Cat1),

where Cat1 denotes the 2-category of 1-categories. These are a form of I-symmetric monoidal Mackey functors
in the sense of [HH16].

T -commutative monoids yield I-commutative monoids by neglect of structure.3 By [Ste25b], a T -1-
category D with I-indexed coproducts possesses an essentially unique cocartesian I-symmetric structure
DI−⊔ satisfying the property that its I-indexed tensor products implement I-indexed coproducts; a full
T -subcategory C ⊂ D is I-symmetric monoidal under this structure if and only if it’s closed under I-indexed
coproducts. Thus we may reinterpret Condition (IS-b) as stipulating that FI ⊂ FI−⊔T is an I-symmetric
monoidal full subcategory; we will see throughout this paper that indexed coproducts implement arities of
composite operations.
Remark 1.37. If C is an I-symmetric monoidal category, V →W a map in I , and U →W a map in T , then
there is an associated commutative diagram

U ×V W CU×VW

U W CU
∏

X∈Orb(U×VW )
CX CW

V CV

⌟ ≃

∆S

NV
U

⊗U×V W

ResWV

In particular, this encodes the double coset formula ResVW N
V
U RU =

⊗U×VW
X ResUX RU .

3 In particular, this is modeled by pullback along the product-preserving inclusion SpanI (FT )→ Span(FT ) induced by the inclusion
of adequate triples (Fc(I),Fc(I), I) ↪→ (FT ,FT ,FT ).
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In the case of the (co)cartesian structure this recovers a more traditional double coset formula: replacing
U with some V -set S, we get the formula

ResWV

S∐
U

ZU ≃
ResWV S∐
X

Reso(X)
X Zo(X),

where o(X) is the orbit of S satisfying X ⊂ ResWV o(X) ⊂ ResWV S. ◁

1.3. Unital weak indexing categories and transfer systems. We now turn to transfer systems.
Definition 1.38. Given T an orbital ∞-category, an orbital transfer system in T is a core-containing wide
subcategory T ≃ ⊂ R ⊂ T satisfying the base change condition that for all T diagrams

V ′ V

U ′ U

α′ α

whose associated FT map V ′ → V ×U U ′ is a summand inclusion and with α ∈ R, we have α′ ∈ R. The
associated embedded sub-poset is denoted TransfT ⊂ SubCat(T ). ◁

Observation 1.39. If I is a unital weak indexing category, the intersection R(I)B I ∩T is an orbital transfer
system; hence it yields a monotone map

R(−) : wIndexCatuni
T → TransfT . ◁

We refer to the associated map wIndexuni
T ≃ wIndexCatuni

T → TransfT by the same name. Transfer
systems were first defined because of the following phenomenon.

Proposition 1.40 ([NS22, Rmk 2.4.9]). R(−) restricts to an equivalence

R(−) : IndexT
∼−→ TransfT .

Remark 1.41. In the case T = OG, before Nardin-Shah’s result, it was shown independently in [Rub19,
Thm 3.7] and [BBR21, Cor 8] that pullback along the composite inclusion SubGrp(G) ↪→OG ↪→ FG yields
an embedding IndexG ↪→ SubPoset

(
SubGrp(G)

)
whose image is identified by those subposets which are closed

under restriction and conjugation, which were called G-transfer systems; this and Proposition 1.40, together
imply that pullback along the homogeneous G-set functor SubGrp(G)→OG induces an equivalence between
the poset of G-transfer systems of [BBR21; Rub19] and the orbital OG-transfer systems of Definition 1.38. ◁

In view of Remark 1.41, we henceforth in this paper refer to orbital transfer systems simply as transfer
systems, never referring to the other notion. Proposition 1.40 additionally allows for a reformulation of
transfer systems which may be familiar to global equivariant homotopy theorists.
Observation 1.42. Let T be an orbital ∞-category. Then, a wide subcategory R ⊂ T is a transfer system
if and only if it is an orbital subcategory in the sense of Definition 1.7; indeed, the axioms for an orbital
subcategory encapsulate that of a transfer system, and give a transfer system, [NS22, Rmk 2.4.9] argues that
FRT is indexing category, so in particular it is pullback-stable.4 Furthermore, if T is atomic orbital, then all
of its orbital subcategories are atomic orbital, so in particular, weak indexing categories are equivalent to
atomic orbital subcategories in this case. ◁

In Proposition 2.42, we will show that the composite

TransfT ≃ IndexT ↪→wIndexuni
T

is a fully faithful right adjoint to R, i.e. the poset of unital weak indexing systems possessing a given transfer
system has a terminal object, given by the unique such indexing system. However, the fibers can be quite
large; for instance, in Remark 2.47, we will see that R also attains a fully faithful left adjoint, which is distinct
from the right adjoint over all transfer systems when T has a terminal object (e.g. when T = OG).

4 In essence, the foundational difference between the orbital and global settings is that the orbital setting develops stable homotopy
theory over a transfer system by specialization from the complete transfer system, whereas the global setting characterizes this directly;
the latter strategy is more complicated, but allows for base categories which are not themselves orbital, such as the global indexing
category.
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The upshot is that unital weak indexing systems are not determined by their transitive V -sets. Never-
theless, we specify them by a small collection of data, for which we need the following definitions.
Definition 1.43. Denote by π0T the set of isomorphism classes of objects in T . Given C a T -1-category, there
is an underlying diagram Ob′ C : π0T → Set; We refer to a π0T -graded subset of Ob′ C as a C-collection. We
will generally refer to FT -collections simply as collections. ◁

Construction 1.44. If T is an orbital ∞-category, then we define the collection of sparse T -sets Fsprs
T ⊂ FT to

have V -value spanned by the V -sets
ε · ∗V ⊔W1 ⊔ · · · ⊔Wn,

for ε ∈ {0,1} and W1, . . . ,Wn ∈ T/V subject to the condition that there exist no maps Wi →Wj for i , j. ◁

Example 1.45. Let G be a finite group. Then, for (H) a conjugacy class of G, the sparse H-sets are precisely
the H-sets of one of the following forms:

(1) 2 · ∗H .
(2) ∗H ⊔ [H/K1]⊔ · · · ⊔ [H/Kn] where none of K1, . . . ,Kn are conjugate by elements of H .
(3) [H/K1]⊔ · · · ⊔ [H/Kn] where none of K1, . . . ,Kn are conjugate by elements of H .

◁

Given Csprs ⊂ Fsprs
T , we may form the full T -subcategory C ⊂ FT generated by Csprs under iterated

Csprs-indexed coproducts We say that Csprs is closed under applicable self-indexed coproducts if Csprs = C∩Fsprs
T .

We prove the following in Section 3.1.

Theorem B. Suppose T is an atomic orbital ∞-category. Then, restriction along the inclusion Fsprs
T ↪→ FT

yields an embedding of posets
wIndexaEuni

T ⊂ Coll(Fsprs
T )

whose image is spanned by the aE-unital collections which are closed under applicable self-indexed coproducts.

Example 1.46. Let σ be the sign C2-representation; following from Example 1.29, the sparse collection
corresponding with Fσ = F∞σ has nonequivariant part {2 · ∗e} and C2-equivariant part

{
[C2/e],∗Cp + [C2/e]

}
.

On the level of algebra, this corresponds with the fact that the data underlying an E∞σ -algebra in a
1-category is generated from the underlying unital object ∗C2

→ A together with binary multiplication on Ae,
a transfer Ae→ ACp , and a module structure map ACp ⊗Ae→ ACp , subject to conditions; we can see that
nontransitive and nontrivial sparse C2-sets must appear, as the module structure map is not determined by
the remaining data.

This heavily contrasts the case of indexing systems; it is almost tautological that indexing systems are
generated under binary coproducts by their orbits. ◁

In Remark 3.9, we will see that Theorem B is compatible with the conditions of Definition 1.21; namely,
the conditions of almost unitality, essential unitality, unitality, and being an indexing system correspond with
the same conditions on the sparse collection. We will prove in [Ste25b] that the aE-unital weak indexing
systems are isomorphic to the poset of ⊗-idempotent weak N∞-operads; this allows us to show that the poset
of ⊗-idempotent weak N∞ G-operads is finite whenever G is a finite group.
Remark 1.47. Let T = OG for G a finite group. By Theorem B, one may devise an inefficient algorithm to
compute wIndexuni

G . Namely, given a sparse collection Csprs ⊂ Fsprs
G , one may compute all of its self-indexed

coproducts in finite time using the double coset formula in order to determine whether Csprs is closed under
applicable self-indexed coproducts. One may simply iterate over the finite poset Coll(Fsprs

G ), performing the
above computation at each step, to determine the unital weak indexing systems. ◁

The above algorithm is quite inefficient; in practice, we instead prefer to divide and conquer, first
computing FamG and TransfG, then computing the fibers under R and ∇. We will state the result of this for
G = Cpn = Z/pnZ, but first we need notation. Given R ∈ TransfG for G Abelian, we define the families

Dom(R) :=
{
U ∈ OG | ∃U → V

f
−→W s.t. f ∈ R−R≃

}
;

Cod(R) :=
{
U ∈ OG | ∃V

f
−→W ←U s.t. f ∈ R−R≃

}
.
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Given a full subcategory F ⊂ OG and a G-transfer system R, we denote by SieveR(F ) ⊂ Subgraph(R) the poset
of R-precomposition-closed and isomorphism-closed collections of maps in R whose codomains lie in F and
satisfy the condition that, whenever K ⊂H is in R and L ⊂H lies in F , the map L∩K ⊂ L is in R.

For n ∈ N, we let Kn be the nth associahedron, i.e. the poset of parenthesizations of a string of length n.
The main result of [BBR21] constructs an equivalence TransfCpn ≃ Kn+2, and it’s not too hard to construct
an equivalence FamCpn ≃ [n+ 2] for [n+ 2] the total order on n+ 2 elements.

Corollary C. Let p be a prime. Then, there is a map of posets

(R,∇) : wIndexuni
Cpn
→ Kn+2 × [n+ 2]

with fibers satisfying

R−1(R)∩∇−1(F ) =


∅ Dom(R) ≰ F ;
∗ Cod(R) ≤ F ;
SieveR(Cod(R)−F ) otherwise.

Moreover, the associated surjection onto its image is a cocartesian fibration, with cocartesian transport
computed along R ≤ R′ given by the map

SieveR(Cod(R)−F )→ SieveR′ (Cod(R′)−F )

sending S 7→ R≃ ∪ {J ⊂ K ⊊H | J ⊂ K ∈ R′ , K ⊊H ∈ S} and cocartesian transport computed along F ≤ F ′ by
the restriction

SieveR(Cod(R)−F )↠ SieveR(Cod(R)−F ′).

This completely determines wIndexuni
Cpn

. Nevertheless, we draw this explicitly for n ≤ 2 in Section 3.

1.4. Why (unital) weak indexing systems? The author finds primarily weak indexing systems compelling for
the following two reasons:

(1) once the algebraist is convinced that they want finite H-sets to index their G-equivariant algebraic
structures, weak indexing systems are forced upon them, and our various conditions classify useful
properties of algebraic theories;

(2) EV -spaces and EV -ring spectra naturally appear in algebraic topology, sometimes for V a representa-
tion which has zero-dimensional fixed points. As argued in Example 1.29, the associated G-operad
EV has arities supported only on a (unital) weak indexing system.

Hopefully this paper and [Ste25b] will demonstrate the first point handily; indeed, we will see in [Ste25b] that
wIndexCatT occurs “in nature” as the poset of sub-terminal objects in the ∞-category OpT of T -operads,
and aE-unitality of I classifies the property that I satisfies a weak Eckmann-Hilton argument, i.e.

CAlgICAlg⊗
I

(C)
U−−→ CAlgI (C)

is an equivalence.
The author’s favorite example behind the second point is the sign C2-representation σ ; as explained

above, its arity-support (which is shared with ∞σ) is not an indexing system. Furthermore, the evident
conjectural extension of Dunn’s additivity theorem [Dun88] in the equivariant setting would imply that
E⊗∞σ ≃ E∞σ , and in [Ste25b] we argue that E∞σ is a weak N∞-operad; one should expect E∞σ -algebras to be
relevant to constructions utilizing Eσ structures, such as Real topological Hochschild homology [AGH21, § 3].

1.5. Notation and conventions. There is an equivalence of categories between that of posets and that of
categories whose hom sets have at most one point; we safely conflate these notions. In doing so, we use
categorical terminology to describe posets.

A sub-poset of a poset P is an injective monotone map P ′ ↪→ P , i.e. a relation on a subset of the elements
of P refining the relation on P . A embedded sub-poset (or full sub-poset) is a sub-poset P ′ ↪→ P such that
x ≤P ′ y if and only if x ≤P y for all x,y ∈ P ′.

An adjunction of posets (or monotone Galois connection) is a pair of opposing monotone maps
L : P ⇄Q : R satisfying the condition that

Lx ≤Q y ⇐⇒ x ≤P Ry ∀ x ∈ P , y ∈Q.
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In this case, we refer to L as the left adjoint and R as the right adjoint, as L is uniquely determined by R and
vice versa.

A cocartesian fibration of posets (or Grothendieck opfibration) is a monotone map π : P →Q satisfying
the condition that, for all pairs q ≤ q′ and p ∈ π−1(q), there exists an element tq

′
q p ∈ π−1(q′) characterized by

the property

p ≤ p′ ⇐⇒ q′ ≤ π(p′) and t
q′
q p ≤ p′ ;

in this case, we note that tq
′
q : π−1(q) → π−1(q′) is a monotone map, and we may express P as the set∐

q∈Qπ
−1(q) with relation determined entirely by the above formula.
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assumption that weak indexing categories be replete subcategories, which follows from pullback stability. I
would be remiss to fail to mention that this project is closely linked with [Ste25a; Ste25b], about which many
illuminating conversations were had with Clark Barwick, Dhilan Lahoti, Mike Hopkins, Piotr Pstrągowski,
Maxime Ramzi, and Andy Senger.

While developing this material, the author was supported by the NSF Grant No. DGE 2140743.

2. Weak indexing systems

This section concerns non-enumerative aspects of the study of weak indexing systems and weak indexing
categories. We begin in Section 2.1 by recognizing weak indexing categories as indexed collections of weak
indexing categories with respect to the slice categories of FT over orbits, allowing us to universally reduce
structural statements about wIndexCatT to the case that T possesses a terminal object, so it is a 1-category.
Using this, in Section 2.2, we prove Theorem A.

Following this, we dedicate some study to structural statements about wIndexT , developing a litany of
adjunctions and cocartesian fibrations involving it and its variants. We begin in Section 2.3 by developing
the technology of weak indexing system closures, and using it to combinatorially characterize joins in the
poset wIndexT ; as examples, we compute joins of the arity support FR of the little R-disks G-operad and
characterize weak indexing system coinduction.

Next, in Section 2.4, we characterize the families c and υ; the former is a fully faithful left and
right adjoint (so we may reduce to the one-object case), and the latter has a fully faithful left adjoint,
but interacts with joins in a complicated way. Following this, in Section 2.5, we characterize the map
R : wIndexCatuni

T → TransfT of Observation 1.39, showing it possesses fully faithful left and right adjoints,
which seldom agree; we then characterize ∇, showing that it has fully faithful left and right adjoints. We
additionally develop another family ϵ, and use it to characterize adjoins and join-compatibility of the various
conditions of Definition 1.21.

Lastly, in Section 2.6, we take a detour and generalize the theory of compatible pairs of indexing systems
to the setting of weak indexing systems, showing that the multiplicative hull of a weak indexing system exists
and is an indexing system.

2.1. Recovering weak indexing categories from their slice categories. Recall that the poset of weak indexing
categories wIndexCat ⊂ SubCat(FT ) is the embedded subposet spanned by those subcategories satisfying
Conditions (IC-a) and (IC-b) of Theorem A; that is, they are pullback subcategories which are extended by
coproducts from their maps to orbits.

We refer to T -1-categories C whose V -values CV are posets for all V ∈ T as T -posets.
Construction 2.1. Given C ⊂ FT a subcategory and V ∈ T an object, we write

CV B

f :
S T

V

f̃
∣∣∣∣∣∣∣∣ f̃ ∈ C

 ⊂ FV ;
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that is, maps in CV are maps over V whose underlying map in FT lies in C. For every map V →W , this
yields a map (−)V : SubCatW (FW )→ SubCatV (FV ), compatibly with composition. We let SubCatT

(FT ) be the
resulting T -poset ◁

Proposition 2.2. If I ⊂ FT is a T -weak indexing category, then IV ⊂ FV is a T/V -weak indexing category.

Proof. Condition (IC-b) for IV follows by unwinding definitions, noting that IndTV : FV → FT is coproduct-
preserving. Lastly, Condition (IC-a) follows by unwinding definitions, noting that the pullback functor
FV → FW is pullback-preserving for each W → V . □

Proposition 2.2 lifts wIndexCatT ⊂ SubCatT (FT ) to an embedded T -subposet

wIndexCatT ⊂ SubCatT
(FT ).

Given a T -poset P : T op→ Poset, we denote by Γ T P the associated limit. There is a monotone map

γ̃ : SubCat(FT )→ Γ SubCatT
(FT )

defined by γ̃(C)V B CV . We may use γ̃ to recover wIndexCatT from wIndexCatT .

Proposition 2.3. γ̃ restricts to an equivalence

γ : wIndexCatT
∼−→ ΓwIndexCatT

Proof. Proposition 2.2 implies that γ̃ restricts to a monotone map of posets γ : wIndexCatT → Γ T wIndexCatT ,
so it suffices to prove that this is bijective. If γI = γJ, then for a map f : T → V , the canonical T/V -map
T → ∗V lies IV if and only if it lies in JV , so f lies in I if and only if it lies in J ; thus Condition (IC-b’) implies
that I = J, so γ is injective.

It remains to prove that γ is surjective, so we fix I• ∈ Γ T wIndexCatT . Define the subcategory

I B {T → S | ∀U ∈Orb(S), T ×S U →U ∈ IU } ⊂ FT .
By definition, γI = I•, so it suffices to verify that I is a weak indexing category. First note that I satisfies
Condition (IC-b’) by definition; additionally Condition (IC-a’) is precisely the condition that I(−) is an element
of wIndexCatT . Hence I is a T -weak indexing system, proving that γ is an isomorphism. □

Noting that spaces (as ∞-categories) have contractible slice categories, this implies the following.

Corollary 2.4. If X is a space, then the forgetful map wIndexX →wIndex∗ is an equivalence.

We would like to use this to uniformly replace T with a 1-category, for which we need the following.
Example 2.5. The atomic orbital ∞-category T/V has a terminal object; by [NS22, Prop 2.5.1], this implies
that T/V is a 1-category. In general for F : J →T a diagram in an atomic orbital ∞-category indexed by a
finite 1-category, T/J is also a 1-category; in particular, the top arrow

T/J ho(T )/J

ho(T/J )

≃

is an equivalence. This implies that Fho(T ) has pullbacks, i.e. ho(T ) is orbital; because T is atomic, retracts
in ho(T ) are isomorphisms, i.e. ho(T ) is atomic orbital. ◁

Using this and fact that the 1-category of posets is a 1-category, we an equivalence

Sub(FT ) Sub(Fho(T ))

wIndexCatT wIndexCatho(T )

limV ∈T op wIndexCatT/V limV ∈hoT op wIndexCatho(T )/V

ho

∼

≃ ≃

∼

In other words, we’ve observed the following.
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Corollary 2.6. The homotopy category construction restricts to an equivalence wIndexCatT ≃wIndexCatho(T ).

Using this, for the rest of the paper, we will assume that T is a 1-category.

2.2. Weak indexing categories vs weak indexing systems.
Construction 2.7. Given I ⊂ FT a subcategory, define the class of I-admissible V -sets

FV ,I B
{
S

∣∣∣ IndTV S→ V ∈ I
}
⊂ FV .

Taken altogether, we refer to the associated collection as FI ⊂ FT . ◁

Recall the notation I(−) used in Observation 1.33.
Observation 2.8. Given C ⊂ FT a collection, we have FV ,I(C) ≃ C; conversely, if a subcategory I ⊂ FT satisfies
Condition (IC-b), then I(FI ) = I . ◁

These are candidates for inverse maps wIndexT ⇄wIndexCatT , and they are well behaved:
Observation 2.9. Pullback-stable subcategories are replete, i.e. they contain all automorphisms of their objects.
On the other hand, if S ≃ S ′ as V -sets, then there exists an equivalence IndTV S ≃ IndTV S

′ over V . Hence
whenever I ⊂ FT is a pullback-stable subcategory and S ∈ FI , the map IndTV S

′→ V is in I , i.e. FV ,I ⊂ FV is
closed under equivalence; these objects determine a unique full subcategory which we also call FV ,I . On the
other hand, if FI satisfies Condition (IS-a), this implies directly that I(FI ) has identity arrows. ◁

Observation 2.10. By definition, the restriction functor ResWV : FW → FV is implemented by the pullback

IndTV ResWV S IndTW S

V W

⌟

thus I satisfies Condition (IC-a’) if and only if ResWV FW,I ⊂ FV ,I for all maps V →W ; in particular, in this
case,

{
FV ,I

}
V ∈T corresponds with a unique full T -subcategory FI ⊂ FT . ◁

The following is fundamental to passing between weak indexing categories and weak indexing systems.
Observation 2.11. Let (TU ) ∈ FS be an S-tuple of elements of FT for some S ∈ FV . Then, the indexed coproduct
of (TU ) corresponds with the composite arrow

(3) IndTV

S∐
U

TU =
∐

U∈Orb(S)

IndTV IndVUTU =
∐

U∈Orb(S)

IndTUTU → IndTV S→ V ;

in particular, if I ⊂ FT is a subcategory satisfying Condition (IC-b) and (TU ) and S are I-admissible, both
arrows in Eq. (3) lie in I , so the structure map of

∐S
U TU is in I , i.e.

∐S
U TU ∈ FI . In other words, Condition (IC-

b) and the condition that I ⊂ FT is a subcategory together imply that FI satisfies Condition (IS-b).
On the other hand, if I ⊂ FT is a subgraph satisfying Condition (IC-b) such that FI satisfies Condition (IS-

b), then taking coproducts of Eq. (3) shows that I is closed under composition. If I additionally has identity
arrows (e.g. if FI satisfies Condition (IS-a)), this implies that I ⊂ FT is a subcategory. ◁

We are now ready to verify that I(−) and F(−) restrict to maps between wIndexT and wIndexCatT .

Proposition 2.12. If C ⊂ FT is a weak indexing system, then I(C) is a weak indexing category.

Proof. By Proposition 2.3, we may assume that T has a terminal object. By Observations 1.34 and 1.35, it
suffices to verify that I ⊂ FT is a subcategory satisfying Conditions (IC-a’) and (IC-b’). Condition (IC-a’)
is verified by Observation 2.10; Condition (IC-b’) follows immediately from construction; Observation 2.11
verifies that I ⊂ FT is a subcategory. □

Proposition 2.13. If I ⊂ FT is a weak indexing category, then FI is a weak indexing system.

Proof. Observations 2.9 and 2.10 verify that FI ⊂ FT is a full T -subcategory, and the fact that the identity
arrow on V corresponds with the contractible V -set implies that whenever FI,V ,∅ (i.e. V ∈ I), ∗V ∈ FI,V .
Thus it suffices to verify that FI is closed under self-indexed coproducts; this is Observation 2.11. □

Having done this, we’re poised to conclude that I(−) and F− are inverse equivalences.
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Proof of Theorem A. By Propositions 2.12 and 2.13, I : wIndexT ⇄ wIndexCatT : F(−) are well defined
monotone maps; by Observation 2.8, they are inverse to each other, so they are equivalences.

What remains is to verify that (IC-n) is equivalent to (IS-n) in Definition 1.21 and Theorem A. For
n = i, this follows immediately by noting that V ∈ I ⇐⇒ idV ∈ I ⇐⇒ ∗V ∈ FI,V ⇐⇒ FI,V ,∅. For n = ii
and n = iii, this follows by unwinding definitions using Condition (IC-b’). For n = iv, this follows by noting
that the fold map n ·V → V corresponds with the element n · ∗V ∈ FV . □

2.3. Joins and coinduction. We move on to intrinsic statements concerning wIndexT .

2.3.1. Prerequisites on adjunctions and cocartesian fibrations. Recall that a monotone map π : C →D is a
cocartesian fibration (i.e. a Grothendieck opfibration) if and only if, for all related pairs D ≤ D ′ in D and
elements C ∈ π−1(D), there is an element tD

′
D C ∈ π

−1(D ′) satisfying the property

∀ C′ s.t. D ′ ≤ π(C′), C ≤ C′ ⇐⇒ tD
′

D C ≤ C
′

In this section, we relate these to adjunctions of posets (i.e. monotone Galois connections).

Lemma 2.14. Let π : C →D be a monotone map. The following are equivalent.
(a) π possesses a fully faithful left adjoint L.
(b) For all D ∈ D, the preimage π−1(D≥D ) possesses an initial object L(D) with πL(D) =D.
(c) For all D ∈ D, the fiber π−1(D) has an initial object L(D), and D ≤D ′ implies L(D) ≤ L(D ′).

Furthermore, the element L(D) agrees between these three constructions.

Proof. By definition, π has a left adjoint L if and only if there are initial objects in π−1(D≤D ), which are
L(D). By the usual category theoretic nonsense, L is fully faithful if and only if the unit relation D ≤ πL(D)
is an equality, i.e. L(D) ∈ π−1(D); hence (a) ⇐⇒ (b).

To see (b) ⇐⇒ (c), first note that

L(D) ≤ C′ ⇐⇒ D ≤ π(C′) ⇐⇒ L(D) ≤ Lπ(C′);

if (b), then when D = L(D) ≤ LπL(D ′) = D ′, we have L(D) ≤ L(D ′), so (c). Conversely, if (c) and L(D) ≤ C′,
then we have D ≤ π(C′), so D is initial in π−1(D≤D ), so (b). □

Proposition 2.15. Suppose C has binary joins and π : C → D is a monotone map which is compatible with
binary joins and possesses a fully faithful left adjoint L. Then, π is a cocartesian fibration with

tD
′

D C = L(D ′)∨C.

Proof. First note that
π(L(D ′)∨C) = πL(D ′)∨π(C) =D ′ ∨π(C) =D ′ .

Thus the property for cocartesian transport is given by

L(D ′)∨C ≤ C′ ⇐⇒ L(D ′) ≤ C′ and C ≤ C′ ;
indeed, when we restrict to the case L(D ′) ≤ C′ (i.e. D ′ ≤ π(C′)), we then have C ≤ C′ if and only if
L(D ′)∨C ≤ C′, as desired. □

Remark 2.16. If π possesses a right adjoint R, then it is compatible with joins, as left adjoint functors are
compatible with colimits.5 The adjoint functor theorem for posets states the converse; indeed, R has arbitrary
joins and π is compatible with joins, then its right adjoint is computed by

R(Z) =
∨

π(Y )≤Z
Y .

Thus Proposition 2.15 may be weakened to state that whenever π has a left and right adjoint and the left is
fully faithful, π is a cocartesian fibration with transport computed as stated. In fact, the left adjoint is fully
faithful if and only if the right adjoint is fully faithful [DT87, Lem 1.3], so we may stipulate that either (or
both) are fully faithful.

5 We may see this directly in the binary case by noting that, for X,Y ∈ C, the universal property for joins is satisfied by

π(X ∨Y ) ≤ Z ⇐⇒ X ∨Y ≤ R(Z) ⇐⇒ X ≤ R(Z) and Y ≤ R(Z) ⇐⇒ π(X) ≤ Z and π(Y ) ≤ Z.
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This is manifestly self-dual; in this setting, the dual of Proposition 2.15 implies that π is a cartesian
fibration with cartesian transport given by tD

′
D C = R(D)∧C. We will not use this explicitly in this text, but

the author suggests that homotopical combinatorialists keep this trick in mind. ◁

2.3.2. Closures and joins of weak indexing systems. The following construction will be used often.
Construction 2.17. Given collections D,C ⊂ FT , inductively define ClD,0(C)B C and

ClD,n(C)V =

 S∐
U

TU

∣∣∣∣∣∣∣ (TU ) ∈ Cln−1(C)S , S ∈ D

 ,
with ClD,∞(C)B

⋃
nClD,n(C) and Cln(C)B ClC,n(C). We call this the n-step closure of C under D-indexed

coproducts, or just the closure of C under D-indexed coproducts when n =∞. ◁

Proposition 2.18. If D is a weak indexing system, then the canonical inclusion

ClD,1(C) ⊂ ClD(C)

is an equality for all C.

This follows immediately from the following lemma.

Lemma 2.19. Fix an orbit V ∈ T , a finite V -set S ∈ FV , and a finite S-set (TU ) ∈ FS . Write T B
∐S
U TU .

Then, there is a canonical natural equivalence
T∐
X

(−) ≃
S∐
U

TU∐
X

(−)

Proof. In view of Observation 2.11, this follows by composition of left adjoints to the composite functor

∆T : CV
∆S−−→ CS

(∆TU )
−−−−−→ CT . □

Observation 2.20. If D satisfies Condition (IS-a) and c(D) ⊃ c(C), then by taking ∗V -indexed coproducts for
all V ∈ c(C), we find that C ⊂ ClD,1(C). Similarly, if C satisfies Condition (IS-a) and c(D) ⊂ c(C), by taking
indexed coproducts of (∗U ), we find that C ⊂ ClC,1(D). Combining these, if C and D satisfy Condition (IS-a)
and c(C) = c(D) (e.g. they each have one color), then we have

C,D ⊂ ClD,1(C).

Furthermore, note that c(ClD,1(C)) = c(C) in this situation, so ClD,1(C) satisfies Condition (IS-a). ◁

Let FullSub∗T (FT ) ⊂ FullSubT (FT ) denote the full subposet of elements satisfying Condition (IS-a).

Proposition 2.21. The fully faithful map ι : wIndexT ↪→ FullSub∗T (FT ) is right adjoint to Cl∞.

Proof. If Cl∞(C) is a weak indexing system, then it is clearly minimal among those containing C, so it suffices
to prove that it’s a weak indexing system. By Observation 2.20, Cl∞(C) satisfies Condition (IS-a), so it
suffices to verify Condition (IS-b).

In fact, by Lemma 2.19, we find that Cli(C)-indexed coproducts of elements of Clj (C) are Cli+1(C)-indexed
coproducts of elements of Clj−1(C); applying this j-many times, we find that Cli(C)-indexed coproducts of
elements in Clj (C) are in Cl∞(C), so taking a union, we find that Cl∞(C) satisfies Condition (IS-b). □

Define the rectified closure

ĈlC,1(D) = ClC∪Ftriv
c(D),1

(D) = ClC,1(D)∪D;

the equalities follow from Observation 2.20, and in particular, when c(C) ⊃ c(D) we have ClC,1(D) = ĈlC,1(D).
Similarly define ĈlC(D)BD∪ClC(D) and write ĈlI (−)B ĈlFI (−).

Proposition 2.22. wIndexT is a lattice; the meets in wIndexT are intersections, and the joins are

FI ∨FJ =
⋃
n∈N

2n︷              ︸︸              ︷
ĈlI ĈlJ · · · ĈlI ĈlJ (FI ∪FJ ).
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Proof. By Proposition 2.21, wIndexT has meets computed in FullSub∗T (FT ), which are clearly given by
intersections. Furthermore, Proposition 2.21 implies that FI ∨FJ = Cl∞(FI ∪FJ ). Thus is suffices to note that,
for arbitrary C,D,E, we have

ĈlC∪D,∞(E) =
⋃
n∈N

2n︷                                           ︸︸                                           ︷
ĈlC∪Ftriv

c(D)
ĈlD∪Ftriv

c(C)
· · · ĈlC∪Ftriv

c(D)
ĈlD∪Ftriv

c(C)
(E),

and set C = FI , D = FJ , and E = FI ∪FJ . □

Remark 2.23. In fact, Proposition 2.21 constructs arbitrary meets in wIndexT . Furthermore, chains in
wIndexT have joins computed by unions; hence wIndexT is a complete lattice. ◁

Observation 2.24. Similarly, if C ⊂ FT is a collection, then the full T -subcategory Ĉ defined by

ĈV =

{∗V } ∪
⋃
V→W ResWV CW CV ,∅,

∅ CV = ∅

is initial among full T -subcategories containing C and satisfying Condition (IS-a) Combining adjunctions,
we find that the fully faithful map ι : wIndexT ↪→ Coll(FT ) possesses a left adjoint Cl∞(̂−), which we write
simply as Cl∞(−) for brevity. ◁

Given S ∈ FV , let FIS ,V be the closure of {∗V } under S-indexed coproducts; more generally, let FIS ,W :=⋃
f : W→V ResVW FIS ,V . Let FIS be the collection defined by

(
FIS

)
W
B FIS ,W .

Proposition 2.25. Given S ∈ FV , we have Cl∞({S}) = FIS .

Proof. First, note that {S} ⊂ FIS ⊂ Cl∞({S}). By Proposition 2.21, it suffices to prove that FIS is a weak
indexing system. By construction, FIS ⊂ FT is a full T -subcategory satisfying the property that

∗W ∈ FIS ,W ⇐⇒ ∃f : W → V ⇐⇒ FIS ,W ,∅,

i.e. it satisfies Condition (IS-a). Hence it suffices to prove that FIS is closed under self-indexed coproducts.
Lemma 2.19 implies that that if C ⊂ FT is closed under T -indexed coproducts and XU -indexed coproducts

for (XU ) ∈ FT , then C is closed under
∐T
U XU -indexed coproducts, as they are T -indexed coproducts of XU -

indexed coproducts; hence FIS is closed under FIS ,V -indexed coproducts. Furthermore, Remark 1.37 implies
that if CW is generated under restrictions by CU and CU is closed under T -indexed coproducts, then CW is
closed under ResUW T -indexed coproducts; hence FIS is closed under self-indexed coproducts, as desired. □

2.3.3. Joins and FR. Let G be a finite group and R a real orthogonal G-representation. Recall from
Example 1.29 that there is a weak indexing system FR satisfying

FRH = {S ∈ FH | ∃H-equivariant embedding S ↪→ R} .

Observation 2.26. If S ∈ FRV and R is a subrepresentation of R′, then the composite embedding S ↪→ R ↪→ R′

witnesses the membership S ∈ FR′V ; that is, F(−) is monotone under inclusions of subrepresentations. ◁

In particular, monotonicity yields relations FR,FR
′ ⊂ FR⊕R

′
, and hence a relation FR ∨FR′ ⊂ FR⊕R

′
. We

verify that this relation is an equality in the following argument; throughout the argument, when x ∈ T is an
element of an H-set, we will write [x]H for its orbit under the H-action.

Proposition 2.27. For R,R′ real orthogonal G-representations, we have FR ∨FR′ = FR⊕R
′
.

Proof. By the above argument, it suffices to verify the relation FR⊕R
′ ⊂ FR ∨FR. Let S ∈ FR⊕R

′

H be a finite
H-set embedding into R⊕R′. The composite map S→ R⊕R′→ R possesses an image factorization

S R⊕R′

SR R

ι

ψ π

ι′=im(πι)
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Given x ∈ SR, note that there is an isomorphism

ψ−1 [x]H ≃ IndHstabH (x)ψ
−1(x),

where the stabH (x) action on ψ−1(x) is restricted from the H-action on S. Furthermore, note that the
fiber of R⊕R′ over (0, ι′(x)) is invariant under the stabH (x) action and the resulting stabH (x)-space is taken
isomorphically onto R′ ≃ {0} ⊕R′ by (−)− (0, ι′(x)); thus ψ−1(x) admits a stabH (x)-equivariant embedding into
R′.

To summarize, we may make a choice of an element xKi in each orbit [H/Ki] ⊂ SR and apply the above
argument to conclude that SR ∈ FRH , that ψ−1(xKi ) ∈ F

R′
Ki

, and that

S =
∐

[H/Ki ]∈Orb(SR)

ψ−1([H/Ki]) =
∐

[H/Ki ]∈Orb(SR)

IndHstabH (x)ψ
−1

(
xKi

)
=

SR∐
Ki

ψ−1(xKi ).

In particular, this shows that
FR⊕R

′
⊂ ClFR(FR′ ) ⊂ FR ∨FR

′
,

proving the proposition. □

2.3.4. Coinduction. If it exists, the right adjoint to ResWV : wIndexW →wIndexV is denoted CoIndWV .

Proposition 2.28. Let FI be a weak indexing system. Then, CoIndWV FI exists and is computed by(
CoIndWV FI

)
U

=
{
S ∈ FU

∣∣∣ ∀W ←U ←U ′→ V , ResUU ′ S ∈ FI,U ′
}

Proof. Denote by C the right hand side of the above equation. Note that C ⊂ FW is the maximum full
T -subcategory such that ResWV C ≤ FI . Indeed, if S ∈ FU −CU , then for some U ′→ V , we have ResUU ′ S < FI,U ′ ;
thus whenever FJ ≰ ResWV C, we have FJ ≰ FI . Hence it suffices to prove that C is a weak indexing system.

First, suppose that S ∈ CU ; then, ResUU ′ S ∈ FI,U for all U ′→ V , so ∗U ′ = ResUU ′ ∗U ∈ FIU for all U ′→ V .
Hence ∗U ∈ CU , i.e. C satisfies Condition (IS-a). Now, fix (TX ) ∈ CS an S-tuple. What remains is to verify
that for all U ′→ V ,

ResUU ′
S∐
X

TX ≃
ResU

U ′ S∐
X′

Reso(X′)
X′ To(X′) ∈ FI,U ′ ,

the equivalence coming from Remark 1.37. But by assumption, we have ResUU ′ S, Reso(X′)
X′ To(X′) ∈ FI , so this is

in FI by Condition (IS-b), as desired. □

We will use this in [Ste25b] to see that CoIndWV AO = ACoIndWV O for all T -operads O⊗.

2.4. The color and unit fibrations. Recall the maps c, υ, and ∇ of Lemma 1.24 and R of Observation 1.39. In
this subsection, we study c and υ, for which we start at the following observation.
Observation 2.29. By definition, we find that c,υ,∇, and R are compatible with joins, in the sense that for
each F ∈ {c,υ,∇,R}, and set of collections (Cα)α∈A we have an equality⋃

α∈A
F (Cα) = F

⋃
α∈A

Cα

 . ◁

Much of the following work concerns joins and these maps, beginning with c.

2.4.1. The color-support fibration. We will reduce the analysis of wIndexT to the one-color case.

Proposition 2.30. The monotone map c : wIndexT → FamT has a fully faithful left adjoint Ftriv
(−) and a fully

faithful right adjoint F(−).

Proof. By Lemma 2.14 it suffices to note that Ftriv
c(FI )
≤ FI ≤ Fc(FI ) for all F , and that Ftriv

F ≤ Ftriv
F ′ and FF ≤ FF ′

whenever F ≤ F ′. □

The following proposition additionally follows by unwinding definitions.
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Proposition 2.31. The fiber c−1(FamT ,≤F ) is equivalent to wIndexF , and the associated fully faithful functor
ETF : wIndexF ↪→wIndexT is left adjoint to BorTF (−)B (−)∩FF and has values given by

ETF CV =

CV V ∈ F ;
∅ otherwise.

In particular, the fiber c−1({F }) is the image of ETF : wIndexoc
F ↪→wIndexT .

Finally, in order to understand cocartesian transport, we make the following observation.
Observation 2.32. Since Ftriv

F ,V is ∗V when V ∈ F and empty otherwise, a finite V -set X is a Ftriv
F -indexed

coproduct of elements in C if and only if V ∈ F and X ∈ CV . In other words, we have

ClI triv
F

(C) = BorTF (C).

In fact, extending this logic, if BorTc(I)C is closed under I-indexed coproducts, then we have ClI (C) = BorTc(I)C;
hence ĈlI (C) = C. In particular, applying Proposition 2.22, we find that

Ftriv
F ∨FI = Ftriv

F ∪FI . ◁

Thus, applying Remark 2.16, Propositions 2.30 and 2.31, and Observation 2.32, we arrive at the following.

Corollary 2.33. Let T be an orbital ∞-category.
(1) The map c : wIndexT → FamT is a cocartesian fibration with fiber c−1(F ) = wIndexocF and with

cocartesian transport along F ≤ F ′ sending FI 7→ Ftriv
F ′ ∨E

F ′
F FI .

(2) The map c : wIndexEuni
T → FamT is a cocartesian fibration with fiber c−1(F ) = wIndexuni

F and cocarte-
sian transport along F ≤ F ′ sending FI 7→ Ftriv

F ′ ∨E
F ′
F FI .

(3) The map c : wIndexaEuni
T → FamT is a cocartesian fibration with fiber c−1(F ) = wIndexauni

F and
cocartesian transport along F ≤ F ′ sending FI 7→ Ftriv

F ′ ∨E
F ′
F FI .

Remark 2.34. Entailed in this corollary is the statement that FI is E-unital if and only if FI = ETc(I)BorTc(I)FI
and BorTc(I)FI is unital; in particular, we find that the E-unital weak indexing systems are those which come

about by applying ET(−) to unital weak indexing systems. ◁

2.4.2. The unit fibration. We study the map υ using the following.

Proposition 2.35. The map υ : wIndexT → FamT has fully faithful left adjoint given by ET− F0
(−).

Proof. In view of Lemma 2.14, we’re tasked with proving that ETF F
0
F ∈ υ

−1(FamT ,≥F ) is initial and υ
(
F0
F
)

= F ,
both of which follow by unwinding definitions. □

Once again, we would like to simplify our expression for cocartesian transport.
Observation 2.36. Let V ∈ F . Note that a V -set is an S-indexed coproduct of elements of ETF F

0
F if and only

if it is a summand of S; in particular, if FI is closed under nonempty summands, then FI ∪F
0
c(I) = ClI (F0

c(I)).
In this case we have

FI ∨E
T
F F

0
cF = · · · ĈlFI ĈlETF F0

F
(FI ∪E

T
F F

0
F ) = FI ∪E

T
F F

0
F .

In particular, if FI is aE-unital, then it is closed under nonempty summands, so this applies. ◁

We may use this to reduce enumerative problems from the almost unital setting (or the aE-unital setting
in view of Corollary 2.33) to the unital setting.

Proposition 2.37. The restricted map υa : wIndexauni
T → FamT is a cocartesian fibration with fiber υ−1

a (F ) =
wIndexuni

F embedded along Ftriv
T ∪ ETF (−). Moreover, the cocartesian transport map tF

′
F : wIndexuni

F →
wIndexuni

F ′ is implemented by
tF
′
F FI = F0

F ′ ∪E
F ′
F FI
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Proof. The property υ−1
a (F ) = wIndexuni

F follows by unwinding definitions using Lemma 1.25. For the
remaining property, we’re tasked with proving that F0

F ′ ∪E
F ′
F FI ∈ wIndexuni

F ′ is the initial unital F ′-weak
indexing system which embeds FI after each are embedded into wIndexauni

T along Ftriv
T ∪E

T
− (−). Unwinding

definitions, this universal property is satisfied of F0
F ′∨E

F ′
F FI ; thus the proposition follows from Observation 2.36.

□

The fibers of the unrestricted map υ have terminal objects, which are sometimes useful counterexamples.

Proposition 2.38. Given F ∈ FamT , the fiber υ−1(F ) has a terminal object computed by

FF ⊥−nu,V =

FV V ∈ F ;
FV − {S | ∀U ∈Orb(S),U ∈ F } V < F

Proof. We begin by noting that FF ⊥−nu contains all T -weak indexing systems with unit family F ; indeed for
contradiction, if FJ satisfies υ(J) = F and there is some S ∈ FJ,V −FF ⊥−nu,V , then we must have U ∈ F ⊂ υ(J)
for all U ∈Orb(S) and V < F , so

S∐
U

∅U = ∅V ∈ FJ,V ,

implying that V ∈ υ(J)−F (which contradicts our assumption). Thus it suffices to verify that FF ⊥−nu is a
T -weak indexing system. Since it contains all contractible V -sets, it suffices to prove that it’s closed under
self-indexed coproducts.

Fix some S ∈ FF ⊥−nu,V and (TU ) ∈ FF ⊥−nu,S . If V ∈ F , then there is nothing to prove, so suppose V < F .
Then, note that

Orb

 S∐
U

TU

 =
∐

U∈Orb(S)

Orb(TU ).

S must contain some orbit U outside of F , and by assumption, TU contains an orbit outside of F ; thus
S∐
U
TU

contains an orbit outside of F , i.e.
S∐
U
TU ∈ FF ⊥−nu , as desired. □

Warning 2.39. υ does not admit a right adjoint, as it is not even compatible with binary joins; for instance, if
T = OG, then note that the weak indexing system F∅⊥−nu consists of all nonemptyH-sets, and EGBGF

0
BG contains

only the e-sets {∅e,∗e}. Nevertheless, the join F∅⊥−nu,V ∨E
G
BGF

0
BG contains the inductions IndHe ∅e = ∅H , so

it is equal to the complete indexing system FG. Thus when G is nontrivial, we have a proper family inclusion

υ(F∅⊥−nu)∪υ(EGBGF
0
BG) = BG ⊊ OG = υ(F∅⊥−nu ∨E

G
BGF

0
BG). ◁

Remark 2.40. Despite Warning 2.39, υ is lax -compatible with joins, in the sense that there is a relation

υ(I)∪υ(J) ≤ υ(I ∨ J);

this follows by simply noting that I ∨ J contains I and J. In particular, by Lemma 1.24, we find that joins of
unital weak indexing systems are unital. ◁

Observation 2.41. Despite Warning 2.39, υ is compatible with joins on aE-unital weak indexing systems;
indeed, if FI is aE-unital, then we have

FI = ETc(I)F
triv
c(I) ∪E

T
υ(I)BorTυ(I)FI ,

so that
FI ∨FJ = ETc(I)F

triv
c(I) ∪E

T
c(J)F

triv
c(J) ∪E

T
υ(I)∪υ(J)BorTυ(I)∪υ(J)

(
FI ∨FJ

)
.

Thus we have
υ(I)∪υ(J) ≤ υ(FI ∨FJ ) = υ

(
BorTυ(I)∪υ(J)

(
FI ∨FJ

))
≤ υ(I)∪υ(J). ◁

2.5. The transfer system and fold map fibrations. We further reduce our classification using R and ∇.
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2.5.1. The transfer system fibration. Recall that the monotone map R : wIndexCatuni
T → TransfT is defined

by R(I) = I∩T ; we denote the composite wIndexT ≃wIndexCatT → TransfT as R as well. Given R a transfer
system, define the weak indexing system

FR B F0
T ∨Cl∞

({
ResWV U |U →W ∈ R, V →W ∈ T

})
Our main statements about R will be the following proposition and its immediate corollary

Proposition 2.42. The map of posets R : wIndexuni
T → TransfT has fully faithful right adjoint given by the

composite TransfT ≃ IndexT ↪→wIndexT and fully faithful left adjoint given by F(−).

Corollary 2.43. If I, J are unital weak indexing categories, then

R(I)∨R(J) = R(I ∨ J) and R(I)∩R(J) = R(I ∩ J).

We begin with an easy technical lemma concerning closures and transfer systems.

Lemma 2.44. RClD,1(C) = RClR(D),1 (RC).

Proof. Since RClR(D),1(RC) ⊂RClD,1(C), it suffices to prove the opposite inclusion; indeed, whenever
∐S
U TU ∈

ClD,1(C) is an orbit, there is exactly one TU which is nonempty, in which case IndVUTU =
∐S
U TU , implying

that TU is an orbit, so that
∐S
U TU ∈RClR(D),1 (RC). □

We use this to give compatibility of R with joins in a restricted setting.

Lemma 2.45. If I, J unital satisfy R(I) ≤R(J), then R(I ∨ J) = R(J).

Proof. Note that FI ∪FJ is closed under I-indexed induction, so we have

RClFI∪FJ ,1(FI ∪FJ ) = RClR(FI∪FJ ),1(R(FI ∪FJ )) = RClR(J),1(R(J)) = R(J).

Iterating this and taking a union, we find that

R(I ∨ J) = RClFI∪FJ ,∞(FI ∪FJ ) = R(J). □

We additionally note the following.

Lemma 2.46. FR is initial in R−1(TransfT ,≥R) and RFR = R.

Proof. The only nontrivial part is showing that RFR = R; in fact, this follows by unwinding definitions and
applying Lemma 2.44. □

Proof of Proposition 2.42. The left adjoint is Lemma 2.46, so we’re left with proving that we’ve constructed
the right adjoint. By Lemma 2.45, the indexing category I∞T ∨ I satisfies R(I∞T ∨ I) = R(I) and is an upper
bound for I . In fact, by Proposition 1.40, I∞F ∨ I is the unique indexing system with R(I ∨ I∞F ) = I , and so
it is an upper bound for all J with R(I) = R(J). In fact, if R(I) ≥ R(J), then J ≤ J ∨ I ≤ I∞F ∨ I by the same
argument, so I∞F ∨ I satisfies the conditions of Lemma 2.14, as desired. □

Remark 2.47. If T is an atomic orbital ∞-category with a terminal object V , then 2 · ∗V is not in FR for any
R, since 2 · ∗V is not a summand in the restriction of any orbital W -sets for any W ∈ T ; indeed, since T is
atomic, there are no non-isomorphisms V →W , so this would require that 2 · ∗V is an orbit, but it is not.
Hence FR is not an indexing system; equivalently, R−1(R) has multiple elements. We may interpret this as
saying that unital weak indexing systems are seldom determined by their transitive V -sets. ◁

2.5.2. The fold map fibration. Our first statement about ∇ is the following.

Proposition 2.48. For all unital weak indexing systems FI and FJ , we have ∇(FI ∨FJ ) = ∇(FI )∪∇(FJ ).

To prove this, we work through the formula in Proposition 2.22 one step at a time.

Lemma 2.49. Suppose FI is unital. If ∇(FI ),∇(C) ≤ F ′, then ∇(ClFI ,1(C)) ≤ F ′.



WINDEX DRAFT 23

Proof. Suppose V ∈ ∇(ClFI ,1(C)), i.e. there exists some S ∈ FI,V and some (XU ) ∈ CS such that
∐S
U XU = 2 · ∗V .

We would like to prove that V ∈ F ′. Since FI is unital, writing S = Sne ⊔ S∅ for S∅ the disjoint union of
S-orbits over which XU is empty, we have Sne ∈ FI,V and

S∐
U

XU =
Sne∐
U

XU ;

hence we may replace S with Sne and assume that XU is nonempty for all U .
Note that, for all U ∈ Orb(S), we have IndVUXU = m · ∗V for some m ≥ 1; in particular, this implies

U = V . Hence S = k · ∗V for some k ≥ 1. Writing our decomposition as S = {1, . . . , k} and Xi =mi∗V , we find
that 2 =

∑k
i=1mi , so either mi = 2 for some i or k = 2. In either case, we find V ∈ ∇(FI )∪∇(C) ⊂ F ′, as

desired. □

Proof of Proposition 2.48. By Observation 2.29, we have ∇(FI )∪∇(FJ ) = ∇(FI ∪FJ ) ≤ ∇(FI ∨FJ ), so we are
tasked with proving the opposite inclusion. By Lemma 2.49, we find inductively that ∇ClFI ,1ClFJ ,1 · · ·ClFJ,1(FI∪
FJ ) ≤ ∇(FI )∪∇(FJ ); applying Observation 2.29 to take a union, we find that ∇(FI ∨FJ ) ≤ ∇(FI )∪∇(FJ ), as
desired. □

Now we’re ready to use this to show that ∇ is a cocartesian fibration.

Proposition 2.50. The restricted map ∇u : wIndexuni
T → FamT has fully faithful left adjoint given by F0

T ∪E
T
− F∞(−)

and a fully faithful right adjoint; hence it is a cocartesian fibration, and the cocartesian transport map tF
′
F is

implemented by

tF
′
F FI ≃ FI ∨E

T
F F
∞
F

Proof. First note that Observation 2.29 and Proposition 2.48 together imply that ∇(−) is compatible with
arbitrary joins; since wIndexuni

T has arbitrary joins, the adjoint functor theorem recalled in Remark 2.16
implies that ∇(−) has a right adjoint. In light of Remark 2.16, it thus suffices to prove that the monotone
map F0

T ∪E
T
(−)F

∞
(−) is a fully faithful left adjoint to ∇u , or equivalently by Lemma 2.14, that F0

T ∪E
T
F F
∞
F is an

initial element of ∇−1
u (F ).

First note that it follows from Lemma 1.25 and Observation 2.36 that F0
T ∪E

T
F F
∞
F is a weak indexing

system; additionally, it follows from Proposition 2.48 that F0
T ∪E

T
F F
∞
F ∈ ∇

−1
u (F ), i.e. it’s unital and has fold

family F . Lastly, it follows from Lemma 1.25 that every unital T -weak indexing system with fold family F
contains F0

T ∪E
T
F F
∞
F , as desired. □

Remark 2.51. The author is not aware of an informative formula for the right adjoint to ∇u , but there are
interesting examples; for instance, if λ is a nontrivial irreducible real orthogonal Cp-representation, then we
show in Section 3.2 that Fλ is terminal among the Cp-weak indexing systems with fold maps over the trivial
subgroup. In algebra, this may be interpreted as saying that Eλ∞ presents the terminal sub-Cp-commutative
algebraic theory prescribing a multiplication on the underlying Borel type of a genuine Cp-object, but not on
genuine Cp-fixed points. ◁

We would like to compute examples with many transfers and few fold maps.
Observation 2.52. Given V →W a map in T , write FIIndWV ∗V

for the weak indexing system of Proposition 2.25.

In view of Observation 2.36, we may compute the associated fold family as

∇
(
F0
T ∨FIU

)
=

{
U ∈ T

∣∣∣ ∃U →W s.t. 2 · ∗U ⊂ ResWU IndWV ∗V
}
,

Furthermore, if R is a transfer system, then Propositions 2.25 and 2.42 yield an equality

FR = F0
T ∨

∨
V→W∈R

FIIndWV ∗V
=

∨
V→W∈R

F0
T ∨FIIndWV ∗V

;
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thus Proposition 2.48 yields

∇FR =
⋃

V→W∈R
∇
(
F0
T ∨FIIndTW V

)
=

{
U ∈ T | ∃U →W

f
←− V s.t. f ∈ R and 2 · ∗U ⊂ ResWU IndWV ∗V

}
.

We write Dom(R)B ∇FR for the above expression. ◁

We may simplify this in a number of equivariant examples.
Remark 2.53. If T = F ⊂ OG is a family of normal subgroups of a finite group (e.g. any family of subgroups of
a finite Dedekind group), then for every pair of proper subgroup inclusions H,K ⊂ J , the double coset formula
implies that ResJK IndJH ∗H = |K\J/H | · [H/H ∩K]. In particular, 2∗H ⊂ ResJK IndJH ∗H if and only if H ⊂ K .

Unwinding definitions, we find in this case that Dom(R) is the family

Dom(R) =
{
K ∈ F

∣∣∣∣∣ ∃K →H
f
−→ G, f ∈ R, H , G

}
,

where we conflate [G/K] with K ; that is, it is the family generated by domains of nontrivial transfers in R. ◁

2.5.3. The essence fibration. Given FI a weak indexing system, define the essence family

ϵ(I)B
{
U ∈ T |U → V s.t. ∃FI,V − {∗V } ,∅

}
so that FI is aE-unital if and only if ϵ(I) = υ(I). This behaves similarly to c and ∇.

Lemma 2.54. If ϵ(C) ⊂ ϵ(D), then
ϵ
(
ĈlC,1(D)

)
= ϵ(D).

Proof. Fix some non-contractible V -set T ∈ ClC,1(D), and express it as an S-indexed colimit

T =
S∐
U

TU

for S ∈ CV and (TU ) ∈ DS . Since T is non-contractible, either S is non-contractible or TU is non-contractible;
either way, this implies that V ∈ ϵ(D), so any U mapping to V is in ϵ(D). In other words, ϵ

(
ĈlC,1(D)

)
⊂ ϵ(D).

The opposite inclusion follows by the fact D ⊂ ĈlC,1(D). □

Observation 2.55. For all A-indexed diagrams in wIndexT , we have ϵ
(⋃

α∈AFIα
)

=
⋃
α∈A ϵ

(
FIα

)
. ◁

Proposition 2.56. ϵ is compatible with arbitrary joins.

Proof. ϵ is clearly compatible with unions; hence it suffices to prove that it’s compatible with binary joins.
In fact, we may inductively prove using Lemma 2.54 that

ϵ(

2n︷              ︸︸              ︷
ĈlI ĈlJ · · · ĈlI ĈlJ (FI ∪FJ )) = ϵ(FI ∪FJ ) = ϵ(FI )∪ ϵ(FJ );

taking a union as n→∞ yields the desired statement. □

We’re finally ready to round up localizations to our various conditions.

Proposition 2.57. Let T be an orbital ∞-category.
(1) The inclusion wIndexaEuni

T ↪→wIndexT is right adjoint to FI 7→ FI ∨ETc(I)F
0
ϵ(I).

(2) The inclusion wIndexEuni
T ↪→wIndexT is right adjoint to FI 7→ FI ∨ETc(I)F

0
c(I).

(3) The inclusion wIndexoc
T ↪→wIndexT is right adjoint to FI 7→ FI ∨F

triv
T .

(4) The inclusion wIndexauni
T ↪→wIndexT is right adjoint to FI 7→ FI ∨F

0
ϵ(FI )

.

(5) The inclusion wIndexuni
T ↪→wIndexT is right adjoint to FI 7→ FI ∨F

0
T .

(6) The inclusion IndexT ↪→wIndexT is right adjoint to FI 7→ FI ∨F
∞
T .

Furthermore, each inclusion is additionally compatible with joins.
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Proof. We begin with compatibility of each condition with joins. First, note by Propositions 2.30 and 2.56
that the maps c,ϵ : wIndexT → FamT are compatible with joins, by Remark 2.40 the map υ is lax-compatible
with joins, and by Proposition 2.48, ∇ is compatible with joins of unital weak indexing systems. This implies
that the conditions that c(I) = T , that υ(I) = c(I), that υ(I) = T , and that ∇(I)∩υ(I) = T are all compatible
with joins, so we are left with proving that aE-unital weak indexing systems are closed under joins. But this
follows by noting whenever I, J are aE-unital that

ϵ(I ∨ J) = ϵ(I)∪ ϵ(U ) = υ(I)∪υ(J) = υ(I ∨ J)

in view of Observation 2.41. Thus we are left with constructing left adjoints.
We begin by proving (1). By Lemma 2.14, we are tasked with verifying that FI ∨ETc(I)F

0
ϵ(I) is initial

among aE-unital weak indexing systems C satisfying the property that FI ≤ C. In fact, if FI ≤ FJ and FJ
is aE-unital, then ϵ(I) ≤ ϵ(J) = υ(J) and c(I) ≤ c(J), so we have ETc(I)F

triv
c(I) ,E

T
ϵ(I)F

0
ϵ(I) ≤ FJ . Taking a join, this

implies that

FI ∨E
T
c(I)F

0
ϵ(I) = FI ∨E

T
c(I)F

triv
c(I) ∨E

T
ϵ(I)F

0
ϵ(I) ≤ FJ .

Thus we’re left with verifying that FI ∨ETc(I)F
0
υ(I) is aE-unital; in fact, we have

υ(FI ∨E
T
c(I)F

0
ϵ(I)) ≥ υ

(
ETc(I)F

0
ϵ(I)

)
= ϵ(I),

and by Proposition 2.56 we have

ϵ(FI ∨E
T
c(I)Fϵ(I)0 ) = ϵ(I).

Together these imply that ϵ(FI ∨ETc(I)F
0
ϵ(I)) ≥ υ(FI ∨E

F
c(I)F

0
ϵ(I)), so it is aE-unital, proving (1).

The proof of (2) is analogous, instead concluding the relation υ(FI ∨ ETc(I)F
0
c(I)) = c(FI ∨ ETc(I)F

0
c(I)) by

the same argument, replacing Proposition 2.56 with Proposition 2.30. The proof of (3) is easier, as we only
need to use Proposition 2.30 to verify that c(FI ∨F

triv
T ) = T Similarly, the proof of (6) uses Proposition 2.48

and Remark 2.40 to verify that T ≥ ∇(FI ∨F
∞
T )∩υ(FI ∨F

∞
T ) ≥ T . (4) follows by combining (1) and (3), and

(5) follows by combining (1) and (2). □

2.5.4. The combined transfer-fold fibration. We now combine ∇ and R.
Observation 2.58. By Lemma 2.46 and Observation 2.52, if Dom(R) 1 F , then R−1(R)∩∇−1(F ) is empty. In
fact, by Proposition 2.48 and Observation 2.52 we find that FR ∨F

∞
F ∈ F

−1(R)∩∇−1(F ∪Dom(R)) is initial ;
in particular the condition Dom(R) ⊂ F is necessary and sufficient for R−1(R)∩∇−1(F ) to be nonempty.
Furthermore, this is functorial in R and F , since FR ≤ FR′ and F∞F ≤ F∞F ′ whenever R ≤ R′ and F ≤ F ′. ◁

Define the embedded subposet (TransfT ×FamT )admsbl ⊂ TransfT ×FamT spanned by the pairs (R,F )
such that Dom(R) ⊂ F . Note that (R,∇) is compatible with joins by Propositions 2.42 and 2.48, and joins of
admissible pairs are admissible; in light of Lemma 2.14, we may rephrase this together with Observation 2.58
as follows.

Proposition 2.59. The map (R,∇) : wIndexuni
T → TransfT × FamT has image (TransfT ×FamT )admsbl and

factors as the following diagram of join-preserving maps

wIndexuni
T

(TransfT ×FamT )admsbl TransfT ×FamT

(R,∇)
(R,∇)

where the lefthand vertical map admits a fully faithful left adjoint computed by (R,F ) 7→ FR ∨F
∞
F . Thus the

left vertical map is a cocartesian fibration with cocartesian transport computed by

t
(R′ ,F ′)
(R,F ) FI = FI ∨FR′ ∨F

∞
F ′ .
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2.6. Compatible pairs of weak indexing systems. We finish the section with a discussion of compatible pairs
of weak indexing systems, generalizing the setting of [BH22].
Definition 2.60. A pair of one-object weak indexing categories (Ia, Im) is compatible if FIa ⊂ FT is closed under

Im-indexed products, i.e. FIa ⊂ FIm−×T is an Im-symmetric monoidal full subcategory. ◁

We’d like to compare these with the notions from [CHLL24b], beginning with the following.
Observation 2.61. FT is extensive in the sense of [CHLL24b, Def 2.2.1]. Furthermore, a subcategory I ⊂ FT
furnishes a span pair (Fc(I), I) if and only if it satisfies Condition (IC-a); thus a span pair (Fc(I), I) is weakly
extensive in the sense of [CHLL24a, Def 2.2.1] if and only if I is a weak indexing category. Furthermore, by
Lemma 1.25, a weakly extensive pair (Fc(I), I) is extensive if and only if I is an indexing category. ◁

They have their own notion of compatibility, which generalizes ours.
Observation 2.62. A bispan triple (FT , Im, Ia) whose span pairs are weakly extensive is called a semiring
context in [CHLL24a, Def 4.1.1] when the right adjoint f∗ : FT ,/X → FT ,/Y to pullback along a map f : X→ Y
in Im preserves morphisms whose image in FT lies in Ia; unwinding definitions, this is precisely the condition
that (Ia, Im) is a compatible pair of one-object weak indexing systems. ◁

Note that (Ia, Im) is a compatible pair of indexing categories in the sense of [BH22, Def 3.4] if and only
if it is a compatible pair of weak indexing categories such that Ia and Im are both indexing categories. In this
setting, we have argued that the triple (FT , Im, Ia) is a semiring context in the sense of [CHLL24a]. This is
useful, as [CHLL24a, Thm 4.2.4] yields an operadic presentation for the associated theory of bi-incomplete
Tambara functors valued in cocomplete cartesian closed ∞-categories.

Our main contribution to this is to concretely characterize the terminal (weak) indexing category m(I)
such that (I,m(I)) is a compatible pair, generalizing [BH22, Cor 6.19].

Proposition 2.63 (Multiplicative hull). Given FI a one-object weak indexing system, the subcategories

Fm(I),V B
{
S ∈ FV | FI ⊂ FT is closed under S-indexed products

}
form an indexing system whose corresponding indexing category m(I) is characterized by the property that,
for all Im ∈wIndexT , the pair (I, Im) is compatible if and only if Im ≤m(I).

Proof. It follows directly from construction that Im ≤m(I) if and only if (I, Im) is compatible. Furthermore,
the ∗V -indexed product functor is the identity, so ∗V ∈ Fm(I),V for all V . Hence it suffices to prove that
∅V ∈ Fm(I),V for all V ∈ T and that Fm(I) is closed under binary coproducts and self-induction.

For the first statement, empty products are terminal objects (i.e. ∗V ), so ∅V ∈ Fm(I),V for all V ∈ T .
For binary coproduts, note that Lemma 2.19 implies that T ⊔ T ′-indexed products are equivalently presented
as simply binary products of T - and T ′-indexed products, so it suffices to prove that FI,V is closed under
binary products. Indeed, by distributivity of finite products and coproducts, we have

S × S ′ =
∐

U∈Orb(S)

U × S ′ =
S∐
U

ResVU S
′ ,

which is in FI,V by closure under restrictions and self-indexed coproducts. For self-induction, note that

IndVW S∏
U

TU =
∏

U∈Orb(IndVW S)

CoIndVUTU

=
∏

U∈Orb(S)

CoIndVWCoIndWU TU

= CoIndVW
∏

U∈Orb(S)

CoIndWU TU

= CoIndVW

S∏
U

TU ;
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if S and IndVW ∗W are in Fm(I), then this implies that
∏IndVW S
U TU ∈ FI,V whenever (TU ) ∈ FI,IndVW S

, so IndVW S ∈
Fm(I),V . In other words, Fm(I) is closed under self-induction, as desired. □

3. Enumerative results

Having developed the main beats of the theory of (unital) weak indexing systems in Section 2, we now
turn to enumerating weak indexing systems under a number of unitality assumptions. In Section 3.1, we
prove Theorem B; we use this in Section 3.2 to draw a Hasse diagram for wIndexaEuni

Cp
. Finally, in Section 3.3,

we prove Corollary C and draw a Hasse diagram for wIndexuni
Cp2

.

3.1. Sparsely indexed coproducts. The following is the heart of our enumerative efforts.

Proposition 3.1. If T is an atomic orbital ∞-category and FI is an aE-unital T -weak indexing system, then

FI = Cl∞(Fsprs
I )

In order to show this, given S an I-admissible V -set, we let

Istrp(S)B {U ∈ T/V | ∃ summand inclusion U ↪→ S} ⊂ T/V
be the isotropy category of S. We will make a non-canonical choice of subcategory of Istrp(S) along which we
break S into pieces with simpler isotropy.

Lemma 3.2. There exists a full subcategory Istrp(S) ⊂ Istrp(S) ⊂ T/V along with the data of, for each
U ∈ Istrp(S), a map

fU : U → e(U )

subject to the following conditions:
(a) e(U ) ∈ Istrp(S) for all U ∈ Istrp(S);
(b) e(U ) ; V unless U ≃ V ;
(c) fV is an isomorphism; and
(d) there exist no maps U →W in Istrp(S) whenever V ;U ;W ; V .

Proof of Lemma 3.2. First note that Istrp(S) together with the identity maps fU = idU satisfies conditions
Properties (a) to (c). Given C ⊂ Istrp(S) a full subcategory with the data fU satisfying conditions Properties (a)
to (c), let b(C) ∈ N be the number of pairs of isomorphism classes (U,W ) ∈ C2 with V ;U ;W ; V such that
there exists a map U →W ; the case b(C) = b(Istrp(S)) forms the base case in an inductive argument which
constructs (C, (fU )) satisfying Properties (a) to (c) with arbitrarily small b(C).

Fix (C, (fU )) satisfying conditions Properties (a) to (c) and g : U ′→W a map in C with V ;U ′ ;W ; V .
Note that b(C − {U ′}) < b(C); furthermore, we may endow this with the structure (f̃U ) by

f̃U B


idU U ∈ C − {U ′} ;
g ◦ fU e(U ) =U ′ ;
fU otherwise.

By the assumption W ∈ C, (f̃U ) satisfies Property (a); by the assumption that W ; V , (f̃U ) satisfies
Property (b); by construction, (f̃V ) satisfies Property (c). Thus we have performed the inductive step.
Repeatedly applying this, we eventually arrive at C with b(C) = 0, i.e. (C, (fU )) satisfy Properties (a) to (d),
as desired. □

Once and for all, we fix Istrp(S) and (fU ) as in Lemma 3.2 for all V ∈ T and S ∈ FV . Using this, we
define the V -set

S B
∐

W∈Istrp(S)

IndVW ∗W .

and for all W ∈ Istrp(S), we define the W -set

S(W ) B
∐

U∈Orb(S)
e(U )=W

IndWU ∗U
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where the inductions are taken along fU . These participate in a sequence of equivalences

S ≃
∐

W∈Istrp(S)

∐
U∈Orb(S)
e(U )=W

IndVU ∗U ;(4)

≃
∐

W∈Istrp(S)

IndVW
∐

U∈Orb(S)
e(U )=W

IndWU ∗U ;(5)

≃
Istrp(S)∐
W

S(W );

indeed the equivalence Eq. (4) follows from Property (a), and the equivalence Eq. (5) follows from the fact
that fU is a map over V . We’ve shown the following.

Lemma 3.3. There is an equivalence S ≃
∐S
W S(W ).

Property (d) then implies that this is a sparsely indexed coproduct:

Lemma 3.4. S is a sparsely indexed summand in S.

To make use of this, we utilize the following lemmas; to do so, we write SV ⊂ S for the maximal V -subset
of S of the form n · ∗V , and we refer to orbits of SV as fixed points of S.

Lemma 3.5. If T is an atomic orbital ∞-category, the U -set ResVU IndVU ∗U has a fixed point.

Proof. We have a diagram

U

IndTU ResVU IndVU ∗U U

U V

⌟

Taking slices over U , the lefthand triangle establishes ∗U as a retract of ResVU IndVU ∗U , i.e. it is a retract of an
orbital summand ∗U ⇄ S ⊂ ResVU IndVU ∗U . By the atomic assumption, this establishes ∗U = S, as desired. □

Lemma 3.6. When FI is an almost essentially unital weak indexing system and S ∈ FI , we have S(W ),S ∈ FI .

Proof. Note that Lemma 3.5 provides a summand inclusion

(6)

S(W ) ResVW S

∐
U∈Orb(S)
e(U )=W

IndWU ∗U
∐

U∈Orb(S)
e(U )=W

ResVW IndVW IndWU ∗U ⊔
∐

W ′∈Istrp(S)−{W }
IndVW ′S(W )

≃ ≃

In particular, S ⊂ S and S(W ) ⊂ ResVW S are nonempty summands of elements of FI , so they are in FI by the
assumption that it is almost essentially unital. □

We’re now ready to prove that aE-unital weak indexing systems are generated by their sparse collections.

Proof of Proposition 3.1. First note that, since n · ∗V ≃ ∗V ⊔ (n−1) · ∗V and 2 · ∗V is sparse, the usual inductive
argument shows that FI ∩F

∞
T ⊂ Cl∞

(
Fsprs
I

)
. Hence it suffices to prove that FI is generated under sparsely

I-indexed coproducts by Fsprs
I ∪

(
F∞T ∩FI

)
.

Fix S ∈ FI,V . In the case ObIstrp(S) = {V }, Properties (b) and (c) imply that all orbits of S are
equivalent to ∗V , so S ∈ Fsprs

I ∪
(
F∞T ∩FI

)
; in the case ObIstrp(S) = {W } for some W ; V , then by Lemmas 3.3,

3.4 and 3.6, we may replace S with S(W ), which is a W -set with W ∈ Istrp(S); in other words, it suffices to
prove this in the case that

∣∣∣ObIstrp(S)
∣∣∣ > 1.
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We will prove the membership

S ∈ ClFsprs
T

(
Fsprs
T ∪

(
FI ∩F

∞
T
))

inductively on |Orb(S)|. Note that |Orb(S)| ≥
∣∣∣ObIstrp(S)

∣∣∣, so the above argument covers the base cases
|Orb(S)| ∈ {0,1}; we argue in the case

∣∣∣ObIstrp(S)
∣∣∣ ≥ 2 under the inductive assumption that the statement is

true for all T ∈ FT with |Orb(T )| < |Orb(S)|.
In this case, by the assumption

∣∣∣ObIstrp(S)
∣∣∣ ≥ 2, we have IndVW S(W ) ⊊ S, so in particular, we have∣∣∣∣Orb

(
S(W )

)∣∣∣∣ < |Orb(S)|. Since S(W ) ∈ FI,W for each W , the inductive hypothesis and Lemma 3.6 guarantee

S(W ) ∈ ClFsprs
I

(
Fsprs
I ∪

(
FI ∩F

∞
T
))

for each W ; Lemmas 3.3, 3.4 and 3.6 then witnesses the membership

S ∈ ClFsprs
I

(
Fsprs
I ∪

(
F∞T ∩FI

))
= Cl∞

(
Fsprs
I

)
,

as desired. □

Proof of Theorem B. By Proposition 3.1, (−)sprs is a section of Cl∞(−) and a right adjoint; this implies that
(−)sprs is an embedding by Lemma 2.14, with image spanned by those collections C satisfying C ≃ Cl∞(C)sprs.
Unwinding definitions, this is what we set out to prove. □

Corollary 3.7. If T is an atomic orbital ∞-category such that π0(T ) is finite and T/V is finite as a 1-category
for all V ∈ π0(T ), then there exist finitely many ⊗-idempotent weak N∞-T -operads.

Proof. In the forthcoming work [Ste25b] we prove that the ⊗-idempotent weak N∞-T -operads are the essential
image of wIndexaEuni

T under N ⊗(−)∞, so we’re tasked with proving that wIndexaEuni
T is finite. Theorem B yields

an injective map
wIndexaEuni

T ↪→
∏

V ∈π0T
P(ObFsprs

T/V ),

where P(−) denotes the power set. By assumption, Fsprs
T/V is finite, and hence P(ObFsprs

T/V ) is finite. Since π0T
is finite, this implies that the wIndexaEuni

T injects into a finite poset, so it is finite. □

For instance, if G is finite, then there are finitely many subgroups of G, and hence finitely many transitive
G-sets; this implies that π0OG is finite. Furthermore, since Map([G/H], [G/K]) is a subquotient of G, it is
finite as well, so OG is finite as a 1-category; more generally, OH ≃ OG,/[G/H] is finite for all H ⊂ G. Hence
Corollary 3.7 specializes to the following.

Corollary 3.8. If G is a finite group, then there exist finitely many ⊗-idempotent weak N∞-G-operads.

Remark 3.9. Note that the maps υ,c,∇,R all factor as

wIndexT C

Coll(Fsprs
T ) Coll(FT ) D

υ,c,∇,R

−∩Fsprs
T

υ,c,∇,R

where (C,D) = (TransfT ,SubCat(T )) for R and (FamT ,FullSub(T )) otherwise. Using Lemma 1.25, we find
that:

(1) R(FI ) = R(Fsprs
I ).

(2) FI has one color if and only if Fsprs
I has one color.

(3) FI is essentially unital if and only if Fsprs
I is essentially unital.

(4) FI is unital if and only if Fsprs
I is unital.

(5) FI is an indexing system if and only if υ(Fsprs
I )∩∇(Fsprs

I ) = T .
In particular, we may enumerate the associated posets using Theorem B. ◁

In fact, our description in terms of sparse V -sets is not as compact as it could be.
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Observation 3.10. If FI is almost essentially unital and contains the sparse V -set S = ε · ∗V ⊔V1 ⊔ · · · ⊔Vn
and the transfer U → V1, then FI contains the sparse V -set ε · ∗V ⊔U ⊔V2 ⊔ · · · ⊔Vn, as it’s an S-indexed
coproduct of elements of FI . ◁

3.2. Warmup: the (aE-)unital Cp-weak indexing systems. The orbit category of the prime-order cyclic group
Cp may be presented as follows:

〈
[Cp/e] ∗Cpx

r

∣∣∣∣∣∣∣∣∣∣∣ x
p = id[Cp/e], r = rx

〉

It is easy to see that there are precisely two Cp-transfer systems: R0 contains no transfers, and R1
contains the transfer e→ Cp. Thus the poset TransfCp is (R0→ R1). Furthermore, there are exactly three Cp
families, and the poset is

(
∅→ {e} →

{
e,Cp

})
. We will use this to perform the following computation.

Theorem 3.11. The poset wIndexaEuni
Cp

is presented by the following

∅

E
Cp
e Ftriv E

Cp
e F0 E

Cp
e F∞

Ftriv
Cp

F0
e Ftriv

Cp
∨E

Cp
e F∞

F0
Cp

F∞e F∞Cp

FCp Fλ FCp

where
{
F∞Cp ,FCp

}
are the indexing systems,

{
F0
Cp
,F∞e ,FCp ,F

λ
}

are the otherwise-unital weak indexing systems,{
Ftriv
Cp
,F0
e ,F

triv
Cp
∨E

Cp
e F∞

}
are the otherwise-almost unital weak indexing systems, and

{
∅,E

Cp
e F0,E

Cp
e F∞

}
are

the otherwise-essentially unital weak indexing systems.

Remark 3.12. Already, we see that none of wIndexuni
Cp

, wIndexauni
Cp

, wIndexEuni
Cp

, or wIndexaEuni
Cp

are self-dual,
since each embed the poset •→ •→ •← • as a cofamily, but none embed its dual as a family. This heavily
contrasts the cases of IndexG = TransfG and of FamG, which are known to be self-dual for arbitrary abelian
G by [FOOQW22].

Similarly, we may see that wIndexuni
Cp
⊂ wIndexCp is a cofamily, as it consists of the elements which

are at least F0
Cp

. However, its dual does not embed into wIndexCp as a family, since wIndexCp admits

∅→ E
Cp
e Ftriv as an initial sub-poset; hence wIndexCp is not self-dual either. ◁

Note that F∞Cp ⊂ FCp are Cp-indexing systems; Proposition 1.40 shows that this is the poset of indexing

systems. This completely characterizes ∇−1(T )∩R−1(−), and we will extend this to arbitrary fibers. First,
those with no transfers:
Observation 3.13. For any atomic orbital ∞-category T , the map ∇ : R−1(T ≃)→ FamT is an equivalence by
Proposition 3.1; the fibers of this are

∇−1(F )∩R−1(T ≃) =
{
F∞F

}
. ◁

The only remaining case is ∇−1({e})∩R−1(R1). Unwinding definitions, we find that there are two options
for unital sparse collections closed under applicable self-indexed coproducts with the specified transfers and



WINDEX DRAFT 31

fold maps; they each must have e-values given by {∅e,∗e,2 · ∗e}, and the two options for Cp-values are

Fsprs
Cp

=
{
∅Cp ,∗Cp , [Cp/e]

}
, Fλ,sprs

Cp
=

{
∅Cp ,∗Cp , [Cp/e],∗Cp ⊔ [Cp/e]

}
.

Furthermore, in view of Corollary 2.4, we have wIndexuni
BCp
≃ wIndexuni

∗ . Applying Example 1.31, we’ve
arrived at the following computations:

wIndexuni
BCp

: F0 F∞

F0
Cp

F∞e F∞Cp

wIndexuni
Cp

:

FCp Fλ FCp

Theorem 3.11 then follows by applying Corollary 2.33 and Proposition 2.37.

3.3. The fibers of the Cpn -transfer-fold fibration. Fix T = OCpn for some n ∈ N.

Observation 3.14 ([Die09, Prop 1.3.1]). Fix N ⊂ G a normal subgroup and H ⊂ G another subgroup. Whenever
Map([G/N ], [G/H]) is nonempty, evaluation at a point yields a bijection

Map([G/N ], [G/H]) ≃ G/H
whose right AutG([G/N ]) ≃ G/N -action is right multiplication by residues modulo H ; furthermore, whenever
Map([G/H], [G/N ]) is nonempty, it is similarly in bijective correspondence with G/N and with left G/N
action given by left multiplication. In either case, the G/N action is transitive.

In particular, when F ⊂ OG is a collection of normal subgroups of G (e.g. any collection if G is a
Dedekind group or an abelian group), an isomorphism-closed collection of arrows S with codomains lying
in F is determined by the corresponding inclusions K ⊂H such that the S contains any (hence every) map
[G/K]→ [G/H]. In this scenario, we will safely conflate these notions. ◁

Recall that when F ⊂ OCpn is a collection of orbits and R a Cpn-transfer system, the term R-sieves on
F refers to subgraphs S ⊂ R satisfying the following conditions:

(a) arrows in S are closed under isomorphism;
(b) given an inclusion K ⊂H in S and L ⊂H with L ∈ F , the inclusion L∩K ⊂ L is in S;
(c) given an inclusion K ⊂H in S, we have H ∈ F ; and
(d) given inclusions J ⊂ K in R and K ⊊H in S, the composite J ⊂H is in S.

We will denote the full sub-poset of R-sieves on F by

SieveR(F ) ⊂ SubGraph(R).

Given FI ⊂ FCpn an almost essentially unital weak indexing system, let S (FI ) ⊂ R(FI ) be the subgraph
consisting of maps U → V with V ∈ (Cod(R(FI ))−∇(FI )) such that ∗V ⊔U ∈ FI,V .

Proposition 3.15. The restricted map S : R−1(R)∩∇−1(F )→ SubGraph(Cod(R)) is an embedding with image
spanned by the R-sieves on F .

Proof. In view of Theorem B, a unital T -weak indexing system lying over (R,F ) is determined by its nontrivial
V -sets S such that:

• SV = ∗V ;
• S − SV =U1 ⊔ · · · ⊔Un ,∅ and there exist no maps Ui →Uj over V for i , j; and
• V ∈ Cod(R)−F .

In fact, since the subgroup lattice SubGrp(OCpn ) = [n+ 2] is a total order, such a sparse H-set is exactly an
H-set of the form ∗H ⊔ [H/J] for some J ⊊H . Thus S is an embedding, so it suffices to characterize its image.

Condition (a) follows immediately for S (FI ) by the fact that FI is a full subcategory. Condition (b)
follows by using the double coset formula to construct a summand inclusion [L/L∩K] ⊂ ResHL [H/K], and thus
a summand inclusion ∗L⊔ [L/L∩K] ⊂ ResHL (∗H ⊔ [H/K]). Condition (c) follows by construction. Condition (d)
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follows by noting that ∗H ⊔ [H/J] is a ∗H ⊔ [H/K]-indexed coproduct of elements of FI . Thus we’ve shown
thatℑS ⊂ SieveR (Cod(R)−F ), so it suffices to verify the opposite inclusion.

Fixing S an R-sieve on Cod(R)−F , we define the collection FS by its values

FS,H = {S | ∀ [H/K] ∈Orb(S), K ⊂H ∈ R}

when H ∈ F , and

FS,H =

∐
i

ni · [H/Ki]

∣∣∣∣∣∣∣ ∀ i, ni ∈ N, and Ki ⊊H ∈ R


∪

∗H ⊔∐
i

ni · [H/Ki]

∣∣∣∣∣∣∣ ∀ i, ni ∈ N, and Ki ⊊H ∈ S


when H < F . These are full subcategories by Condition (a), and they are restriction-stable (hence a full
G-subcategory) by Condition (b). Furthermore, it follows immediately by definition that ∇(FS) = F , that
R(FS) = R, that υ(FS) = OCpn = c(FS), and by Condition (c) that S (FS) = S, so to conclude that FS ∈S −1(S)
(and hence the proposition), it remains to show that FS is closed under self-indexed coproducts.

The cases H ∈ F or T H = ∅. In either of these cases, we’re tasked with proving that the orbital summands of
T lie in R/H . In any case, all orbital summands of TKi lie in R/Ki by assumption; since the orbital summands
of S lie in R/H by assumption, all orbital summands of T are then R-indexed inductions of orbital summands
of TKi . Unwinding definitions, we’ve argued that any orbital summand [H/J] has structure map factoring as
a composite J ⊂ K ⊂H of inclusions in R, so J ⊂H is in R, which is what we were trying to show.

The case H < F and T H ,∅. Write T =
∐S
Ki
TKi . Since T has a fixed point, S must as well; the decomposition

S = ∗H ⊔ S ′ yields a decomposition T = TH ⊔ T ′ where TH ∈ FS and T ′ is a coproduct of nontrivial S-indexed
inductions of elements of R/Ki . In particular, T ′ is fixed-point free, so T H = T HH ⊔ (T ′)H = T HH = ∗H .

Fix [H/K] ⊂ T a nontrivial orbital summand. We’re tasked with proving that K ⊂ H lies in S. The
inclusion [H/K] ⊂ T factors through an inclusion [H/K] ⊂ TH or [H/K] ⊂ T ′. In the case [H/K] ⊂ TH , the
claim follows by unwinding definitions since TH ∈ FS,H has a fixed point. In the case [H/K] ⊂ T ′, orbital
summands of T ′ are nontrivial S-indexed inductions of [K/J] for J ⊂ K in R; hence they correspond with
compositions J ⊂ K ⊊H , which lies in S since K ⊊H is in S and S is closed under precomposition with maps
in R by Condition (d). To summarize, we’ve shown that T H = ∗H and the nontrivial orbital summands of T
lie in S/H , so T ∈ FS,H , and we are done. □

Proof of Corollary C . In view of [BBR21, Thm 25], the combined transfer-fold fibration has signature

(R,∇) : wIndexuni
Cpn
→ Kn+2 × [n+ 2].

After Propositions 2.59 and 3.15, we’ve identified the fibers and proved that the restricted map is a cocartesian
fibration. Thus it suffices to understand cocartesian transport, which is implemented by

t
(R′ ,F ′)
(R,F ) FI = FI ∨FR′ ∨F

∞
F ′

by Proposition 2.15, in terms of R-sieves. When R = R′, it is clear that this is given by the restriction
SieveR(Cod(R)−F )↠ SieveR(Cod(R)−F ′), so it suffices to characterize this in the case F = F ′. Unwinding
definitions, we’re tasked with characterizing for which K ↪→H , we have

∗H + [H/K] ∈ FI ∨FR′ .

Let tR
′

R : SieveR(Cod(R)−F ) ↪→ SieveR′ (Cod(R′)−F ) be the map sending an R-sieve S to the R′-sieve whose
non-isomorphisms are the composites J ⊂ K ⊊ H with K ⊊ H ∈ S−S≃ and J ⊂ K ∈ R′. On one hand, note
that, for all J ⊂ K ⊊H in tR

′
R S, we have

∗H ⊔ [H/J] = ∗H ⊔ IndHK [K/J],

i.e. ∗H ⊔ [H/J] is a ∗H ⊔ [H/K]-indexed coproduct of elements of FR′ ; unwinding definitions, this implies that
S

(
FI ∨FR′

)
≥ tR′R S (FI ).
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Rtriv RCp/e RCp2 /Cp RCp2 /e OCp2

∗Cp2 • • • • •

Cp2 /Cp • • • • •

Cp2 /e • • • • •

Figure 1. Pictured is the result of Rubin and Balchin-Barnes-Rotzheim’s computation of TransfCp2 .

On the other hand, note that FtR′R S (FI )
is a unital weak indexing system containing both FI and FR′ ;

this implies that FI ∨FR′ ≤ FtR′R S (FI )
, so applying S together with the above inequality yields S

(
FI ∨FR′

)
=

tR
′

R S (FI ), which is what we set out to prove. □

We finish by drawing this out for n = 2. We may illustrate OCp2 as follows[
Cp2 /e

] [
Cp2 /Cp

]
∗C2

p

Cp2 Cp

with Map([Cp2 /e], [Cp2 /Cp]) a Cp-torsor and Map([Cp2 /Cp],∗Cp2 ) = ∗. The independent computations of
[BBR21; Rub21] verify the that TransfCp2 agrees with Fig. 1.

Given R ∈ TransfCp2 , we let FR be the corresponding indexing system. We will use Corollary C to

compute wIndexuni
Cp2

, which we will populate with examples from real representation theory. First, a simple
lemma.

Lemma 3.16. For all n and all real orthogonal Cpn-representations V , the element

FV ∈R−1
(
RFV

)
∩∇−1

(
∇
(
FV

))
is terminal.

Proof. The observation ConfH∗H+S (V ) = ConfHS (V − {0}) implies that S
(
FV

)
is the complete R

(
FV

)
-sieve on

Cod
(
R

(
FV

))
−∇

(
FV

)
, so this follows from Corollary C. □

In view of this, to compute the position of FV in the classification of Corollary C, we need only compute
its transfers and fold maps. Fix a distinguished generator x ∈ Cp2 .
Example 3.17. Let λCp2 be a 2-dimensional real orthogonal Cp2 -representation wherein x acts by a rotation of

order p2. Then, both λCp2 and Res
Cp2

Cp
λCp2 have 0-dimensional fixed points, so they do not embed 2 · ∗(−);

hence

∇
(
F
λC

p2
)

= {e} .

The non-fixed points of λCp2 have orbit type [Cp2 /e] and the non-fixed points of Res
Cp2

Cp
λ
Cp2 have orbit type

[Cp/e]; together these imply that

R

(
F
λC

p2
)

= RCp2 /e

as in Fig. 1. ◁
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Example 3.18. Similarly to Example 3.17, let λCp be an irreducible Cp2-representation wherein x acts by a
rotation of order p; this is 1-dimensional (and the sign representation) if p = 2, and 2-dimensional if p > 2.

Note that λCp has 0-dimensional fixed points, but Res
Cp2

Cp
λCp is trivial; hence

∇
(
FλCp

)
=

{
e,Cp

}
.

Furthermore, the orbit type of non-fixed points in λCp is [Cp2 /Cp]; this implies that

R

(
F
λC

p2
)

= RCp2 /Cp

as in Fig. 1. ◁

Note that FR corresponds with the minimal R-sieve on Cod(R)−Dom(R). Together with Examples 1.29,
3.17 and 3.18, this completely characterizes the image of the join generators of Fig. 2 under (R,∇,S ); since
R,∇,S are compatible with joins, this completely characterizes the image of the entirety of Fig. 2 under
(R,∇,S ). In fact, this is everything.

Corollary D. The poset of unital Cp2-weak indexing systems is presented by Fig. 2.

What remains is to verify that Fig. 2 bijects onto the Sieve posets of Corollary C and that cocartesian
transport as described by Corollary C is implemented by horizontal arrows. Cocartesian transport will follow
simply by unwinding definitions.

When R = F≃Cp2
or F = OCp2 , the fibers are one point by Proposition 1.40 and Observation 3.13. The

remaining one-point fiber R−1(RCp/e)∩∇
−1(

{
e,Cp

}
) is trivial since Cod(RCp/e) ⊂ F . The empty fibers in Fig. 2

follow from Corollary C,
The two-point fibers all follow from a similar consideration, which we may exemplify in the case

R = RCp2 /Cp and F =
{
e,Cp

}
. In this case, the only orbit in Cod(R)−F is ∗Cp2 , and the only R-transfer with

codomain ∗Cp2 is Cp ⊂ Cp2 . Thus there are exactly two R-sieves on Cod(R)−F , depending on whether or not
they contain a transfer. The reader may easily verify that the other two-point fibers in Fig. 2 each also have
only one applicable transfer.

The first example of a three-point fiber is R = RCp2 /e and F = {e}. In this instance, Cod(R) − F ={
[Cp2 /Cp],∗Cp2

}
, and all non-isomorphisms in R have codomain lying in Cod(R)−F ; thus we are enumerating

restriction and RCp2 /e-precomposition-closed subsets of
{
e ⊂ Cp, e ⊂ Cp2

}
. In fact, there are no applicable

precompositions, so the only condition comes from the fact that the restriction of e ⊂ Cp2 to Cp is e ⊂ Cp, i.e.
any R-sieve containing e ⊂ Cp2 is complete. Thus there are three R-sieves on Cod(R)−F : the empty sieve,
the complete sieve, and

{
e ⊂ Cp

}
.

The other example of a three-point fiber is R = OCp2 and F =
{
e,Cp

}
. In this instance, Cod(R)−F =

{
∗Cp2

}
,

so we are considering restriction and precomposition-closed subsets of
{
e ⊂ Cp2 ,Cp ⊂ Cp2

}
. The only relevant

condition is the precomposition condition; since e ⊂ Cp is in R, if Cp ⊂ Cp2 is in S, then e ⊂ Cp2 is in S. Thus
there are three R-sieves on Cod(R)−F : the empty sieve, the complete sieve, and

{
e ⊂ Cp2

}
.

3.4. Questions and future directions. To stimulate further development in this area, we now pose a litany of
questions concerning the structure and tabulation of weak indexing systems. The first arose to the author
out of consternation concerning the apparent lack of structure arising in Fig. 2.

Question 3.19. Is there a closed form expression for wIndexuni
OCpn

or
∣∣∣∣∣wIndexuni

OCpn

∣∣∣∣∣? ◁

The author believes that, akin to the strategy employed in [BBR21], this may be solved by characterizing
change-of-group functors such as restriction, Borelificaiton, and inflation. In particular, given H ⊂ G a
subgroup, the cofamily OG/H consisting of transitive G-sets on which H acts trivially is an atomic orbital
∞-category, so it possesses a well-defined theory of weak indexing systems, which should participate in an
adjunction

InflGH : wIndexG/H ⇄wIndexG : FGH ,
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F∞Cp2
FRCp/e FRC
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Figure 2. Pictured is a Hasse diagram for the poset of unital Cp2 -weak indexing systems. Dashed
lines separate the fibers of the cocartesian fibration (R,∇).

where FGH metaphorically represents “fixed points with residual genuine WG(H)-action,” and literally sends
FI to a OG/H -weak indexing system satisfying FGHFI,V = FI,V for all V ∈ OG/H ⊂ OG. In the setting where
N ⊂ G is normal, OG/N is canonically equivalent to the orbit category for the group G/N , so given a choice
of a normal subgroup, this produces an inductive procedure: characterize OG weak indexing systems by
picking a normal subgroup and inductively characterizing weak indexing systems for OG,≥N (related to ON
by Proposition 2.3), weak indexing systems for OG/N , and the possible transfers from outside OG/N to inside
(as well as the possible additional data of H-sets S for which N acts trivially on G/H but not on G/stabH (x)
for all x ∈ S).

Outside of closed form expressions, the following question is evident as an extension of Corollary C.
Question 3.20. Is there a good combinatorial expression of ∇−1(F )∩R−1(R) over an arbitrary abelian, dedekind,
nilpotent, or general finite group? ◁

The author expects that our techniques may be extended to a similar sieve-based presentation for
∇−1(F )∩ f R−1(R) over more general families of groups.

Another question arises by looking closely at Corollary D; we were able to tabulate all 21 unital Cp2 -weak

indexing systems using only the examples FR, FR, and FV together with joins and the functors E
Cp2

(−) .6 Thus
we ask the following.

6 To see this, note that F0
G is the arity support of the 0 G-representation and F∞G is the arity support of any positive-dimensional

trivial G-representation.
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Question 3.21. Which unital weak indexing systems are realizable via tensor products of
{
FV

}
under various

change of group functors? ◁

In particular, all recorded instances of the right adjoint to ∇ occur as the arity support FV of an
EV -G-operad, so we ask the following.
Question 3.22. What is the right adjoint to ∇? Is it related to EV ? ◁
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