Constructions on oo-operads: subcategories, overcategories,
envelopes, and tensor products

Natalie Stewart

Abstract

We describe several methods of constructing co-operads and O-monoidal co-categories from other ones.
We first show that a ®-closed full subcategory of an O-monoidal co-category is canonically O-monoidal.
We then state that a slice category of an O-monoidal co-category over a (O-algebra is canonically O-
monoidal.

We go on to construct coproducts in Op_,. We then construct the Boardman-Vogt tensor product
for operads in Set and for preoperads, and hence we present the symmetric monoidal co-category Op..
We sketch the Eckmann Hilton argument in Set, and its homotopy-coherent generalization, called Dunn
additivity. Time permitting, we describe the constructions of the monoidal envelope and Day convolu-
tion.
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These notes are currently rough. We’ll cover most of HA §2.2 to some extent.

In what follows, we generally fix O® an oo-operad and C® an @*°-monoidal co-category. Recall that,
for M a symmetric monoidal category, a full subcategory of M inherits a compatible symmetric monoidal
structure iff ob M is closed under the monoidal product; in Section ref , we state an analog of this for
O -monoidal co-categories.

Similarly, recall that, for A € M a commutative monoid and M finitely cocomplete, the overcategory
M4 has a symmetric monoidal structure given by a combination of the external tensor product with
multiplication:

XY 5AAL A

In Section ref , we prove results containing this for oo-operads; when the underlying category O is
contractible, Cf?/ and C;@Z’) are given the structure of operads with fibrations to O®. Assuming one
believes that Fun(X,Y’) can be made symmetric monoidal when Y is, this and the previous section will
allow us to construct a symmetric monoidal structure on Alg,(C).

In Section ref , we briefly discuss coproducts of co-operads.

There is a forgetful co-functor Cat®, — Op,_, and many constructions of symmetric monoidal co-
categories are lifted from constructions of operads. In Section ref , we construct a left adjoint to this
forgetful functor, called the O-monoidal envelope.

The main thrust of this talk is Section ref , as it is the least familiar; using the object-wise tensor
product (of functor categories), Algy(C) is itself a symmetric monoidal co-category, and hence an operad.
We define a symmetric monoidal tensor product, called the Boardman-Vogt tensor product, on Op_, which



endows it with a structure akin to a closed monoidal category; in particular, this is the essentially unique
monoidal product on Op_, satisfying the adjunction

Algorgo(C) ———— Algo (Algo(C))

Op_(0'®0,C) —= Op_ (o’,@m (O,C)) n

This is the derived monoidal product of a symmetric monoidal model category of preoperads and, con-
jecturally, a more classical symmetric monoidal model category of either dendroidal sets or topologi-
cal/simplicial operads. In this language we state Dunn additivity, i.e. the computation that

E, ® E1 =Epy1, ie. Algg . (C) = Algg, Algg (C),

n+1

an unreasonably useful result.
We finish up by discussing the Day convolution monoidal structure on Fun(C, D) for C, D symmetric
monoidal co-categories.

1 Familiar closure properties for monoidal categories

1.1 A ®-closed full subcategory of an O-monoidal co-category is O-
monoidal

Let p: C® — O be a coCartesian fibration of co-operads, let D C C be a full subcategory stable under
equivalence, and let D® C C® be the full subcategory of C® spanned by objects of the form Dy @ --- D,

where each object belongs to D. The following proposition is more or less obvious when thinking hard
about the definition of co-operads:

Proposition 1.1. D® is an co-operad, and the inclusion D® — C® is a map of co-operads.
The legumes® of this section is in the following proposition.HA 2.2.1.1

Proposition 1.2 (Tensor closed subcategories of O-monoidal co-categories.). Let p : C® — O% be
a coCarteisan fibration of co-operads and let D,D® be as above. Suppose that, for every operation
0 € {Xi},Y, the induced functor

0. : [JCx; = Cv

descends to a functor [[, Dx, — Dy. Then,
(i) The restricted map D® — O is a coCartesian fibration of co-operads.
(ii) The inclusion D® — C® is an O-monoidal functor.

(i) Suppose that for each object X € O, the inclusion Dx C Cx admits a right adjoint Lx > Then,
there exists a functor L® : C® — D® which is a right adjoint of the inclusion D® — C® with counit
projecting to degenerate edges of O%; further, L® is a map of co-operads.

(iv) L® induces the Tight adjoint to the inclusion Alg,(D) = Alg,(C).

This has a plain english Corollary:

Corollary 1.3. Suppose C® is a symmetric monoidal co-category and D C C is a full subcategory closed

under equivalence and the tensor product functor ® : CxC — C. Then, there is a canonical sub-symmetric

monoidal co-category D® — C® whose underlying category is D; in particular, D is canonically symmetric
monoidal.

Suppose p : C® — O is a coCartesian fibration of co-operads, suppose that Cx is stable for each X.
Suppose further that every operation 6§ € Mulo ({X;},Y) induces an exact functor

0. : HCXi — Cy.
iel

Suppose even further that we're given a family of ¢-structures (Cx,>0,Cx,<0) preserved by each 6.. Let
C?O C C® be the full subcategory spanned by objects C' € C® such that, for every C’ € Cx and every
inert morphism C' — C’; the object C’ belongs to Cx >o.

IThis is an ethical replacement for the “meat” of the section.



Corollary 1.4 (Monoidal structure on connective objects). The induced map CS, — O is a coCartesian
fibration of oco-operads. a

We refer to HA §2.2.1 for the proof of the third part; the first and second part follow by the tensor
closure, as this essentially says that the coCartesian lifts with chosen domains D® are contained in D®
(and are hence coCartesian and preserved by the inclusion).

Localization?777

1.2 Slices of an O-monoidal oco-category over a commutative algebra
are O-monoidal; slices of an operad over O are operads over O

First, let’s form a notion of relative slicing:

Definition 1.5. Let ¢ : X — S be a map of simplicial sets, and suppose we'’re given a diagram
X
2
q
SxK —— S

Define the simplicial set ¢’ : Xps; —+ S over S universally such that there is a natural bijection between
Funs (Y, X,,s/) with the commutative diagrams

YXK—sYXxK —»Y

— | e

SxK —2 s x X ,g

where the top left arrow is inclusion and the top right arrow is projection to the “tip” of K.

We define the relative overcategory X,,s by replacing > with <. This notion recovers traditional
overcategories and undercategories when S = x.

Remark. The only piece of data supplied in the functor represented by X,,5, is the arrow highlighted in red.
We may read this definition as saying that a map ¢ : Y — X s, is the same as a map ¢ : ¥ x K¥ > X
from “points of Y together with a K-shape extended by a cone point to the right,” satisfying the
conditions that

1. The restriction of the map ¢ to Y x K factors through the diagram S x K 2 X.

2. Pushing forward to the cone point yields is compatible with the structure maps to the base simplicial
set; this implies that the restricted map Y x {*} — X is a functor over S.

For g : C® — O a fibration of co-operads and p : K — Alg,»(C) a diagram, there is an adjoint map
K — Funee (C%,0%) ~o K x 0% - C® over O%

and hence we may form the slices C’%o and Cf’o/. In the case p = A € Alg,,(C), we denote this by

C% -
/
We can now state the mushrooms and potatoes of this section, from HA §2.2.2.4:

Theorem 1.6. Let q : C® — O be a fibration of co operads and let p : K — Alg/o(C) be a diagram.
Then,

(1) the maps C?O/ — 0% « C%o are fibrations of oco-operadds.
(2) A morphism in Cf’o/ is inert if and only if its image in C® is inert; the same is true of C%O.

(3) If q is a coCartesian fibration, then C%O — 0% is a coCaretian fibration. If in addition, p(k) :

0® — C® is an O-monoidal functor for each vertex k € K, then C}?O/ — 0% is a coCartesian
fibration of co-operads.

We get a plain english corollary.

Proposition 1.7. Suppose C is an oo-operad and A € CAlg(C) a commutative algebra object. Then,
each of Cf’/ and C?A are oo-operads. If C is a symmetric monoidal co-category, then C,4 is a symmetric
monoidal co-category.

No proof? *megamind meme*



1.3 An application: the pointwise monoidal structure On Alg,(C)

Let C be a category and D a symmetric monoidal category. There is a symmetric monoidal structure
on the functor category Fun(C, D) given by

(FeG)(-):=FE)oG(-).

We refer to this as the pointwise (symmetric) monoidal structure. Our goal is to repeat this construction
in the oco-operadic setting, and use our formalism for restriction and slicing to descend this to a pointwise
monoidal structure on Alg,(C).

This is pedagogical in nature; we frequently need to define an oo-operad structure on Alg(C) for
C® an oco-operad (not necessarily a symmetric monoidal co-category). Our construction is generalized in
HA §3.2.4, which we will cover later in this seminar. As such, proceed with caution; I haven’t seen this
worked out elsewhere, so mistakes are relatively more likely here than in material covered in HA.

Construction 1.8. Let C® be a symmetric monoidal co-category and O an oo-category. Let 6 :
N(Fin,) — Cateo be the functor corresponding to C® — N(Fin,) via the Grothendieck construction.
Define the functor Ap : N(Fin.) — CatZl to be the functor sending

Ao(<n>) = On

and acting on f : (n) — (m) via the “traditional” diagonal on fibers.
There is a functor

¢ N(Fin,) —29"%  Cat® x Cate — 7, Catu

such that the induced map

Fun(0™,¢™) 2% pun(0,0)

H H
p(n) ——— »(1)

is an equivalence. The pointwise symmetric monoidal category of functors is the associated symmetric
monoidal co-category, written Funpiws(O,C)®.
The pointwise symmetric monoidal category of algebras is the full symmetric monoidal co-subcategory

Alg,(C)® C Funpws(C,0)%.

formed on the functors over N(Fin,) preserving inert morphisms.”

Note that the underlying category of Alg,(C)® is Algy(C), avoiding notational and conceptual
confusion.

2 New constructions on operads

We first construct the coproduct of co-operads; classically, the BV-tensor product of operads is
constructed as a quotient of this construction.
2.1 Coproducts of co-operads
Suppose we have a coproduct functor [ : Opjf — Op; this is uniquely determined by the identity
Algo 1o (C) =O0p(O]]O',0)

~ Op,,(0,C) x Op,,(O',C)
= Alg, ()~ x Alg,, (C)~.

That is, we're looking for an operad O[] O’ whose algebras are precisely the pairs of O-algebras and
O'-algebras; we will construct this as the restriction of a product

2
X : Cat:o,/N(Fin*) — Catoo, /N (Fin.)-

But first, we need an auxiliary construction.

2Check that this makes sense!



Construction 2.1. The category Sub has:

 objects given by triples ({(n),S,T) where n € Fin,, and S, T are pointed subsets forming a partition
of (n), and

« morphisms ({n),S,T) — ({n’),S,T) a morphism of triples in Fin..

There is a triple of functors m, 7—, 74 : Sub — Fin, given by
ﬂ-*(<n>>S7T) = [S] 71-(<"FL>>*S'7,1_') = <n> 7T+(<TL>,S7T) = [T]

Note that m_ x 74 : Sub — Fin}? is an equivalence.
With this done, we can construct the product X

Construction 2.2. Given maps O® — N(Fin,) and o' N(Fin,), define the map O® K O0'® - Fin
to be the highlighted composition in the following diagram:

OPRO® —~ L, 0%x0®
L l
N (Sub) ?:wf N(Fin,) x N(Fin)

o=

N(Fin,)

Choosing a pullback functor, this can be assembled into an honest bifunctor, completing the construction.

Now that we’ve made the construction, let’s simply list the reasons why we care; there is a morphism

Ll 0® 5 09RO'® given by including O as the fiber over * of 74, and a similar embedding ¢+ of O’,
piecing into a diagram

0% 5 0°RO® 0 (1)

Theorem 2.3. Let O%, 0'® be oo-operads. Then, O X 0'® is an oo-operad, and Diagram (1) induces
an equivalence of co-categories

Alg om0s (C) = Algy(C) x Algy/ (C),

natural in C. In particular, Diagram (1) is a colimit diagram in Op,, .

proof here, maybe

2.2 The Boardman-Vogt tensor product in the oco-operadic setting, and
Dunn additivity

For the sake of staying grounded, let’s first work out a closed monoidal structure on the operads in
Set.

The BV tensor product of operads in Set. Let O and O’ be operads in Set. Given an ideal
in an operad I C O, we may describe the quotient operad O/I in exactly the way one might expect. We
use this:

Construction 2.4. The Boardman-Vogt tensor product of O and O’ is the quotient of the coproduct
O]] O’ by the interchange law:

oo’
(v(6;6",...,6) —~(0;6,...,0) - o) k)

where 7 is composition in the coproduct, 8 € O(k), 0 € O'(k'), and oy € Skis is the permutation
which “exchanges rows and columns.”

00 =

This was first constructed in the BV reference , at the same time as the instantiation of much of the
rest of modern homotopy theory. The following is a classical result, and the internal hom is not too hard
to see:

Theorem 2.5. The Boardman-Vogt tensor product endows on Op the structure of a closed monoidal
category, with internal hom given by A1g<7)(—).



With this done, we can give a universal algebraic version of the Eckmann Hilton argument:

Theorem 2.6 (Eckmann-Hilton argument).
Assoc ® Assoc ~ Comm;

in particular, if an object in a symmetric monoidal category bears two monoid structures which distribute
over each other, then the two structures agree and are commutative, i.e. the natural functor is an
equivalence:

Comm(C) = Assoc Assoc(C)

In the more-classical setting, this extends to a notion of an enriched BV tensor product on operads
in a suitably nice monoidal model category (say, M such a category satisfying the monoid axiom and
everything else we want). Unfortunately, this does not satisfy the pushout product axiom.® After
introducing a monoidal model structure on preoperads, we’ll shout out that the model for dendroidal sets
is simply better, and (homotopy-symmetric) strong-monoidally equivalent to our category of preoperads.

The BV tensor product of preoperads Let C®,0%,0'® be co-operads. We'd like to introduce
a process akin to passing from the direct sum of vector spaces to the tensor product. To do so, we’ll
consider the analog of bilinear maps; first, we need an auxiliary construction, which is likely familiar.

Construction 2.7. Suppose C is a finitely bicomplete symmetric monoidal category with terminal object.
Then, the category of pointed objects is the slice category

C* = CI/.

This is endowed with a symmetric monoidal structure given by
X AY := Cofibe (X®{*Y}H{*X}®Y %X@Y)

In the special case that C = Fin is the category of finite sets, we call A the smash product of finite pointed
sets.

This endows on N (Fin,) the structure of a simplicial monoid. We use this:

Definition 2.8. A bifunctor of operads is a map f : O® x 0'® c® sending each pair of inert morphisms
to an inert morphism, such that the following diagram commutes:

0¥x0® %

! |

N (Fin,) x N(Fin.) —2— N(Fin.)

These form a full subcategory of a functor category, called BiFun(O, O’; C).

Bilinear maps, when corepresented by a bifunctor, form half of a closed monoidal structure on Vecty,
through noting by currying that

BiHom(V, V'; W) ~ Hom(V, Hom(V', W)).

‘We make a bold claim, which we can only currently understand in the case that C is a symmetric monoidal
oo-category. The following argument is not in HA as far as I can find, but it is heavily implied that Lurie
believes it to be true.

Claim. There is a natural equivalence of functors
BiFun(0, 0’;C) ~ Alg, Alg, (C)
Proof idea. We push through the adjunction: an object in Alg,Alg, (C) corresponds with:
¢ : O — Funy(pin, ) (0’,C) ~ $:0x 0 —=C over N(Fin,).

The functor ¢ must preserve inert morphims and be valued in functors preserving inert morphisms; this
is equivalent to ¢ preserving pairs of inert morphisms.” O

3See the following math overflow post.
41 don’t know if this is actually true!!!


https://mathoverflow.net/questions/198205/boardman-vogt-tensor-product

This gives some hope that we could form a closed symmetric monoidal structure on Op_,. The easiest
way to go about doing this is to present it as the simplicial localization of a symmetric monoidal model
category. Let P Op,, C SSet;rN(Fin*) be the full subcategory of marked simplicial sets whose markings
lie above inert morphisms. We call these co-preoperads. Every oo-operad O% has an underlying oo-
preoperad O®% whose marked morphisms are the inert morphisms. The following is the core of HA
§2.1.4.

Theorem 2.9. There exists a left proper combinatorial simplicial model structure on P Op,, character-
ized by the following structure:

o A morphism f: X — Y in POp,, is a weak equivalence iff for every oco-operad O%, the induced
map - o
Mapp o, (Y, 0%®*%) = Map,, opo, (X, 0%,h)

is a weak homotopy equivalence.
o The fibrant objects of P Op,, are precisely those of the form O®f for O% some oo-operad.
This model presents Op, .

Construction 2.10. Let X = (X, M) and Y = (Y, N) by oco-preoperads; then, the preoperad X ® Y is
defined by
(X xY,M x M").
with structure map
X x Y — N(Fin.) x N(Fin,) 2 N(Fin..).
The following theorem is not so new, and the proof is not enlightening.

Theorem 2.11 (® presents the BV tensor product). The functor ® endows P Op,, with the structure
of a monoidal model category; the left-derived monoidal structure on Op restricts to a functor

®: Opy X Opyg = Opy,

such that
Algy 0/ (C) = BiFun(0, 0';C).

Remark. We have two remarks. First, the monoidal structure on P Op_, is not symmetric’. However,
its derived functor satisfies a symmetric universal property, so it must be symmetric.
Second, monoidal model categories are in fact monoidal closed, with right-Quillen internal hom; hence
there is a derived functor
Alg,(C)® := RHomp op__ (0,C)

satisfying an analog of Claim ref ; hence when C is a symmetric monoidal co-category, we recover the
pointwise tensor product of algebras.

Corollary 2.12. There exists a symmetric monoidal co-category Op% with underying category Op,,
such that ® : Op,, X Op,, = Op,, corepresents BiFun.

This enables us to talk about a generalization of Dunn additivity! Let E,, refer to the little n-cubes
operad, realized as the operadic nerve of the usual construction. It is a general fact® that the co-category
of algebras over a X-cofibrant topological operad agrees with the co-category of algebras over its operadic

nerve, so we are safe to equivocate between these two. Note that E? ~ Assoc® and E€ ~ Comm®.

Theorem 2.13 (Dunn additivity). Ef @ EY ~ EE’M.

Proof idea. It suffices to construct a weak equivalence of topological operads « : E?k = Eix. We can
construct this map rather easily; there are n inclusions E; — E; “along the axes,” and o may be defined
to be the map induced by these.” We just have to prove that « is a weak equivalence, which proceeds in
two steps:

1. « induces an isomorphism of E?k onto a suboperad E{e°™ C E,.

2. the operad E*°™ consists of the decomposable elements of Eg, i.e. the little cube diagrams such
that each axis has a perpendicular hyperplane with cubes on each side and intersecting the interior
of no cubes; “shrinking cubes” yields a local deformation retract E, — Ezecom] witnessing that the

inclusion is a weak equivalence.

5flesh this out
6cite???

"This is essentially that the tensor product corepresents BiFun.



The second part is a continuous analog of Eckmann-Hilton; the first part is hard, and the reader can
read Dunn for a proof. O

Remark. This statement is true both as cofibrant topological operads and as oo-operads; unfortunately,
in the literature, Ex operads are often allowed to only be X-cofibrant, in which case this theorem may
fail.

2.3 The O-monoidal envelope of a co-operad

Construction 2.14. Let O be an oo-operad and C® — O a fibration of oco-operads. For Act(O%) C
Fun(A', O®) the full subcategory of active morphisms, the O-monoidal envelope of C® is the fiber product

Envo(C)® := C® Xpyun((o},09) Act (0F)

When 0% = Comm®, we simply write Env(C)®.

This may be viewed as the co-category of pairs (C, a) where C' € C® and « : p(C) — X is an active
morphism in O%.

The following is the tempeh of this section:
Proposition 2.15. Let p: C® — O% be a fibration of co-operads.

(1) Ewaluation at {1} C A" together with p induces a coCartesian fibration of operads
p : Envo(C) — 0%,

That is, Envo(C) is an O-monoidal co-category.
(2) The inclusion ¢ : C® < Enve(C) is fully faithful.

(3) Let D be an O-monoidal co-category. The inclusion v : C® — Enve(C) induces an equivalence
Fun$ (Envo(C), D) — Alg. (D).

Note that the underlying co-category Env(C)P is identified with the active morphisms in C®; we can
informally view Env(C)® as consisting of a monoidal structure on C2,.
We get the following plain-english corollary.

Corollary 2.16. LetC be an co-operad. Then, there exists a fully faithful embedding of C into a symmetric
monoidal co-category, which is left adjoint to the inclusion of symmetric monoidal co-categories into co-
operads.

2.4 Day convolution

We will again delve first into classical results in the 1-categorical setting, then upgrade to the oco-
categoriecal setting.

Day convolution in the 1-categorical setting Let C,D be two symmetric monoidal categories
with D cocomplete, preserving small colimits separately in each variable. We may define a monoidal
product ® : Fun(C, D) x Fun(C, D) — Fun(C, D) pointwise via a left Kan extension:

cxc 2% pxp 22, p

o ruee
”,%G::Lan
c-

Cocompleteness of D ensures that this exists, and it is computed by a colimit:
(F'® G)(C) = colimgygcc, —c F(Co) @p G(C1)

In the case that D =V is bicomplete and monoidal closed, and C is a tensored V-category, we can repeat
this construction in the enriched setting, yielding a V-enriched monoidal functor category. This is the
setting in which Day convolution was originally conceived, and in this setting we have a coend formula
for the defining Left Kan extension:

FeG(-)= / Cle®c,—)® F(e) ® G(c).



For § a kernel, it is the analogy between this and the convolution formula

fro®= [~ ft=@ = [ byt @iala)

that gives Day convolution its name.

Note that this computation still applies when D is not given by V, but is instead given by a tensored
V-category.

Let’s mention a few examples:

Example 2.17:

Let V be a closed bicomplete symmetric monoidal category, and let M be a small monoid, realized as
a discrete monoidal V-category. Let gr™ V be the category of V-enriched functors M — V), i.e. the
M-indexed collection of objects in V. This admits a Day convolution monoidal product, who ends up
being computed by

(Xc®Yo)n:/ 7 M(m@m',n)@Xm®Ym/

@ X ® V.

m4+m’=n

Example 2.18:
Let ¥ be the symmetric monoidal Top,-category having objects given by N and hom objects given by

% n=m
O(n,m) =4 """ )

* otherwise
with the obvious composition, which acts via addition in N on objects, and which (when nontrivial)
acts on hom objects by block inclusion

Yo X S < Do

A symmetric sequence in Top, is a Top,-functor ¥ — Top,, i.e. a sequence of spaces with > -
actions which are associative and unital. This is endowed with a day convolution symmetric monoidal
product.

The sphere spectrum S : n — S" = (51)/\n has the structure of a symmetric sequence via
the X, action permuting indices. In fact, the sphere spectrum has an evident structure of a com-
mutative monoid in symmetric sequences in Top,; hence we have a symmetric monoidal category
S* := Mods(Fun(X, Top,)), called symmetric spectra.

It is known that this may be refined to the structure of a symmetric monoidal model category, who
presents the symmetric monoidal co-category of spectra that we're familiar with.

One useful fact about Day convolution is as follows:

Proposition 2.19. The category CAlg(Fun(C, D), ®) of commutative algebra objects for Day convolution
is equivalent to the category of lax symmetric monoidal functors from C to D.

As an application of this, we could show that S is a commutative monoid in symmetric sequences
directly by using the isomorphism S™ A S™ = S"™ and the twist map to give S a lax symmetric monoidal
structure.

Day convolution in the oco-categorical setting This section will be brief, and consist mostly
of a statement:

Theorem 2.20 (Glasman, Lurie). Let C®, D% be O-monoidal co-categories, and let k be an uncountable
reqular cardinal such that the following are satisfied:

(a) For each object X € O, the oo-category Cx 1is essentially r-small.

(b) For each object Y € O, the co-category Dy admits k-small colimits.

(c) For each operation § € Mulo({X;},Y), the associated tensor product functor [, Dx, — Dy preserves
Kk-small colimits separately in each variable.



Then, there exists an O-monoidal co-category Fun®(C, D)® satisfying the following conditions:

1. For each object X € O, there is a canonical equivalence of categories
Fun®(C,D)x = Fun(Cx, Dx).
2. There is a canonical equivalence of categories
Alg), (Funo (C,D)) =5 Alge (D)

from O-algebras in Fun® (C,D)® to lax O-monoidal functors C — D.

Moreover, when O = Comm®, the underlying tensor product functor
® : Fun(C, D) x Fun(C,D) — Fun(C, D)

is given by Day convolution.
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