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Abstract

We describe several methods of constructing∞-operads andO-monoidal∞-categories from other ones.
We first show that a ⊗-closed full subcategory of an O-monoidal ∞-category is canonically O-monoidal.
We then state that a slice category of an O-monoidal ∞-category over a O-algebra is canonically O-
monoidal.

We go on to construct coproducts in Op∞. We then construct the Boardman-Vogt tensor product
for operads in Set and for preoperads, and hence we present the symmetric monoidal ∞-category Op⊗

∞.
We sketch the Eckmann Hilton argument in Set, and its homotopy-coherent generalization, called Dunn
additivity. Time permitting, we describe the constructions of the monoidal envelope and Day convolu-
tion.
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These notes are currently rough. We’ll cover most of HA §2.2 to some extent.
In what follows, we generally fix O⊗ an ∞-operad and C⊗ an O∞-monoidal ∞-category. Recall that,

forM a symmetric monoidal category, a full subcategory ofM inherits a compatible symmetric monoidal
structure iff obM is closed under the monoidal product; in Section ref , we state an analog of this for
O∞-monoidal ∞-categories.

Similarly, recall that, for A ∈M a commutative monoid and M finitely cocomplete, the overcategory
M/A has a symmetric monoidal structure given by a combination of the external tensor product with
multiplication:

X ⊗ Y → A⊗A
µ−→ A.

In Section ref , we prove results containing this for ∞-operads; when the underlying category O is
contractible, C⊗p/ and C⊗/p are given the structure of operads with fibrations to O⊗. Assuming one
believes that Fun(X,Y ) can be made symmetric monoidal when Y is, this and the previous section will
allow us to construct a symmetric monoidal structure on AlgO(C).

In Section ref , we briefly discuss coproducts of ∞-operads.
There is a forgetful ∞-functor Cat⊗∞ → Op∞, and many constructions of symmetric monoidal ∞-

categories are lifted from constructions of operads. In Section ref , we construct a left adjoint to this
forgetful functor, called the O-monoidal envelope.

The main thrust of this talk is Section ref , as it is the least familiar; using the object-wise tensor
product (of functor categories), AlgO(C) is itself a symmetric monoidal∞-category, and hence an operad.
We define a symmetric monoidal tensor product, called the Boardman-Vogt tensor product, on Op∞ which
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endows it with a structure akin to a closed monoidal category; in particular, this is the essentially unique
monoidal product on Op∞ satisfying the adjunction

AlgO′⊗O(C) AlgO′(AlgO(C))

Op
∞

(O′ ⊗O, C) Op
∞

(
O′,Op

∞
(O, C)

)
n

∼

∼

This is the derived monoidal product of a symmetric monoidal model category of preoperads and, con-
jecturally, a more classical symmetric monoidal model category of either dendroidal sets or topologi-
cal/simplicial operads. In this language we state Dunn additivity, i.e. the computation that

En ⊗ E1 = En+1, i.e. AlgEn+1
(C) = AlgE1

AlgEn
(C),

an unreasonably useful result.
We finish up by discussing the Day convolution monoidal structure on Fun(C,D) for C,D symmetric

monoidal ∞-categories.

1 Familiar closure properties for monoidal categories
1.1 A ⊗-closed full subcategory of an O-monoidal ∞-category is O-
monoidal

Let p : C⊗ → O be a coCartesian fibration of∞-operads, let D ⊂ C be a full subcategory stable under
equivalence, and let D⊗ ⊂ C⊗ be the full subcategory of C⊗ spanned by objects of the form D1 ⊕ · · ·Dn

where each object belongs to D. The following proposition is more or less obvious when thinking hard
about the definition of ∞-operads:
Proposition 1.1. D⊗ is an ∞-operad, and the inclusion D⊗ ↪→ C⊗ is a map of ∞-operads.

The legumes1 of this section is in the following proposition.HA 2.2.1.1
Proposition 1.2 (Tensor closed subcategories of O-monoidal ∞-categories.). Let p : C⊗ → O⊗ be
a coCarteisan fibration of ∞-operads and let D,D⊗ be as above. Suppose that, for every operation
θ ∈ {Xi} ,Y, the induced functor

θ∗ :
∏
i

CXi → CY

descends to a functor
∏

iDXi → DY . Then,
(i) The restricted map D⊗ → O⊗ is a coCartesian fibration of ∞-operads.

(ii) The inclusion D⊗ ↪→ C⊗ is an O-monoidal functor.
(iii) Suppose that for each object X ∈ O, the inclusion DX ⊂ CX admits a right adjoint LX> Then,

there exists a functor L⊗ : C⊗ → D⊗ which is a right adjoint of the inclusion D⊗ ↪→ C⊗ with counit
projecting to degenerate edges of O⊗; further, L⊗ is a map of ∞-operads.

(iv) L⊗ induces the right adjoint to the inclusion Alg/O(D) ↪→ Alg/O(C).
This has a plain english Corollary:

Corollary 1.3. Suppose C⊗ is a symmetric monoidal ∞-category and D ⊂ C is a full subcategory closed
under equivalence and the tensor product functor ⊗ : C×C → C. Then, there is a canonical sub-symmetric
monoidal∞-category D⊗ ↪→ C⊗ whose underlying category is D; in particular, D is canonically symmetric
monoidal.

Suppose p : C⊗ → O⊗ is a coCartesian fibration of ∞-operads, suppose that CX is stable for each X.
Suppose further that every operation θ ∈ MulO({Xi} , Y ) induces an exact functor

θ∗ :
∏
i∈I

CXi → CY .

Suppose even further that we’re given a family of t-structures (CX,≥0, CX,≤0) preserved by each θ∗. Let
C⊗≤0 ⊂ C

⊗ be the full subcategory spanned by objects C ∈ C⊗ such that, for every C′ ∈ CX and every
inert morphism C → C′, the object C′ belongs to CX,≥0.

1This is an ethical replacement for the “meat” of the section.
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Corollary 1.4 (Monoidal structure on connective objects). The induced map C⊗≥0 → O
⊗ is a coCartesian

fibration of ∞-operads.
We refer to HA §2.2.1 for the proof of the third part; the first and second part follow by the tensor

closure, as this essentially says that the coCartesian lifts with chosen domains D⊗ are contained in D⊗

(and are hence coCartesian and preserved by the inclusion).
Localization????

1.2 Slices of an O-monoidal ∞-category over a commutative algebra
are O-monoidal; slices of an operad over O are operads over O

First, let’s form a notion of relative slicing:
Definition 1.5. Let q : X → S be a map of simplicial sets, and suppose we’re given a diagram

X

S ×K S

q
p

Define the simplicial set q′ : XpS/ → S over S universally such that there is a natural bijection between
FunS(Y,XpS/) with the commutative diagrams

Y ×K Y ×K▷ Y

S ×K X S

qY ×idK
qY

p qX

where the top left arrow is inclusion and the top right arrow is projection to the “tip” of K.
We define the relative overcategory X/pS by replacing . with /. This notion recovers traditional

overcategories and undercategories when S = ∗.
Remark. The only piece of data supplied in the functor represented byXpS/ is the arrow highlighted in red.
We may read this definition as saying that a map ϕ : Y → XpS/ is the same as a map ϕ̃ : Y ×K▷‘ → X
from “points of Y together with a K-shape extended by a cone point to the right,” satisfying the
conditions that

1. The restriction of the map ϕ to Y ×K factors through the diagram S ×K
p−→ X.

2. Pushing forward to the cone point yields is compatible with the structure maps to the base simplicial
set; this implies that the restricted map Y × {∗} → X is a functor over S.

For q : C⊗ → O⊗ a fibration of∞-operads and p : K → Alg/O(C) a diagram, there is an adjoint map

K → FunO⊗(C⊗,O⊗) ⇝ K ×O⊗ → C⊗ over O⊗

and hence we may form the slices C⊗
/pO and C⊗pO/. In the case p = A ∈ Alg/O(C), we denote this by

C⊗AO/.
We can now state the mushrooms and potatoes of this section, from HA §2.2.2.4:

Theorem 1.6. Let q : C⊗ → O⊗ be a fibration of ∞ operads and let p : K → Alg/O(C) be a diagram.
Then,

(1) the maps C⊗pO/ → O
⊗ ← C⊗/pO are fibrations of ∞-operadds.

(2) A morphism in C⊗pO/ is inert if and only if its image in C⊗ is inert; the same is true of C⊗/pO.

(3) If q is a coCartesian fibration, then C⊗/pO → O
⊗ is a coCaretian fibration. If in addition, p(k) :

O⊗ → C⊗ is an O-monoidal functor for each vertex k ∈ K, then C⊗pO/ → O
⊗ is a coCartesian

fibration of ∞-operads.
We get a plain english corollary.

Proposition 1.7. Suppose C is an ∞-operad and A ∈ CAlg(C) a commutative algebra object. Then,
each of C⊗A/ and C⊗/A are ∞-operads. If C is a symmetric monoidal ∞-category, then C/A is a symmetric
monoidal ∞-category.

No proof? *megamind meme*
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1.3 An application: the pointwise monoidal structure On AlgO(C)
Let C be a category and D a symmetric monoidal category. There is a symmetric monoidal structure

on the functor category Fun(C,D) given by

(F ⊗G)(−) := F (−)⊗G(−).

We refer to this as the pointwise (symmetric) monoidal structure. Our goal is to repeat this construction
in the∞-operadic setting, and use our formalism for restriction and slicing to descend this to a pointwise
monoidal structure on AlgO(C).

This is pedagogical in nature; we frequently need to define an ∞-operad structure on AlgO(C) for
C⊗ an ∞-operad (not necessarily a symmetric monoidal ∞-category). Our construction is generalized in
HA §3.2.4, which we will cover later in this seminar. As such, proceed with caution; I haven’t seen this
worked out elsewhere, so mistakes are relatively more likely here than in material covered in HA.
Construction 1.8. Let C⊗ be a symmetric monoidal ∞-category and O an ∞-category. Let θ :
N(Fin∗)→ Cat∞ be the functor corresponding to C⊗ → N(Fin∗) via the Grothendieck construction.

Define the functor ∆O : N(Fin∗)→ Catop∞ to be the functor sending

∆O(〈n〉) := On

and acting on f : 〈n〉 → 〈m〉 via the “traditional” diagonal on fibers.
There is a functor

ϕ : N(Fin∗) Catop∞ ×Cat∞ Cat∞
∆O×θ Fun(−,−)

such that the induced map
Fun(On, Cn) Fun(O, C)

ϕ(n) ϕ(1)

∏
ρi

is an equivalence. The pointwise symmetric monoidal category of functors is the associated symmetric
monoidal ∞-category, written Funptws(O, C)⊗.

The pointwise symmetric monoidal category of algebras is the full symmetric monoidal∞-subcategory

AlgO(C)⊗ ⊂ Funptws(C,O)⊗.

formed on the functors over N(Fin∗) preserving inert morphisms.2

Note that the underlying category of AlgO(C)⊗ is AlgO(C), avoiding notational and conceptual
confusion.

2 New constructions on operads
We first construct the coproduct of ∞-operads; classically, the BV-tensor product of operads is

constructed as a quotient of this construction.

2.1 Coproducts of ∞-operads
Suppose we have a coproduct functor

⨿
: Op×2

∞ → Op∞; this is uniquely determined by the identity

AlgO
⨿

O′(C)≃ = Op∞(O
⨿
O′, C)

' Op∞(O, C)×Op∞(O′, C)
= AlgO(C)≃ ×AlgO′(C)≃.

That is, we’re looking for an operad O
⨿
O′ whose algebras are precisely the pairs of O-algebras and

O′-algebras; we will construct this as the restriction of a product

⊠ : Cat×2
∞,/N(Fin∗)

→ Cat∞,/N(Fin∗).

But first, we need an auxiliary construction.
2Check that this makes sense!
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Construction 2.1. The category Sub has:
• objects given by triples (〈n〉, S, T ) where n ∈ Fin∗, and S, T are pointed subsets forming a partition

of 〈n〉, and
• morphisms (〈n〉, S, T )→ (〈n′〉, S, T ) a morphism of triples in Fin∗.

There is a triple of functors π, π−, π+ : Sub→ Fin∗ given by

π−(〈n〉, S, T ) = [S] π(〈n〉, S, T ) = 〈n〉 π+(〈n〉, S, T ) = [T ]

Note that π− × π+ : Sub→ Fin×2
∗ is an equivalence.

With this done, we can construct the product ⊠;
Construction 2.2. Given maps O⊗ → N(Fin∗) and O

′⊗ → N(Fin∗), define the map O⊗⊠O′⊗ → Fin
to be the highlighted composition in the following diagram:

O⊗ ⊠O′⊗ O⊗ ×O
′⊗

N(Sub) N(Fin∗)×N(Fin∗)

N(Fin∗)

∼

⌟

∼
π−×π+

π

Choosing a pullback functor, this can be assembled into an honest bifunctor, completing the construction.
Now that we’ve made the construction, let’s simply list the reasons why we care; there is a morphism

ι− : O⊗ → O⊗ ⊠O′⊗ given by including O as the fiber over ∗ of π+, and a similar embedding ι+ of O′,
piecing into a diagram

O⊗ ↪→ O⊗ ⊠O
′⊗ ←↩ O

′⊗ (1)

Theorem 2.3. Let O⊗,O
′⊗ be ∞-operads. Then, O⊗ ⊠O′⊗ is an ∞-operad, and Diagram (1) induces

an equivalence of ∞-categories

AlgO⊗⊠O′⊗(C) ∼−→ AlgO(C)×AlgO′(C),

natural in C. In particular, Diagram (1) is a colimit diagram in Op∞.
proof here, maybe

2.2 The Boardman-Vogt tensor product in the ∞-operadic setting, and
Dunn additivity

For the sake of staying grounded, let’s first work out a closed monoidal structure on the operads in
Set.

The BV tensor product of operads in Set. Let O and O′ be operads in Set. Given an ideal
in an operad I ⊂ O, we may describe the quotient operad O/I in exactly the way one might expect. We
use this:
Construction 2.4. The Boardman-Vogt tensor product of O and O′ is the quotient of the coproduct
O

⨿
O′ by the interchange law:

O ⊗O′ :=
O

⨿
O′

(γ(θ; θ′, . . . , θ′))− γ(θ′; θ, . . . , θ) · σk,k′)

where γ is composition in the coproduct, θ ∈ O(k), θ′ ∈ O′(k′), and σk,k′ ∈ Skk′ is the permutation
which “exchanges rows and columns.”

This was first constructed in the BV reference , at the same time as the instantiation of much of the
rest of modern homotopy theory. The following is a classical result, and the internal hom is not too hard
to see:
Theorem 2.5. The Boardman-Vogt tensor product endows on Op the structure of a closed monoidal
category, with internal hom given by Alg(−)(−).
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With this done, we can give a universal algebraic version of the Eckmann Hilton argument:
Theorem 2.6 (Eckmann-Hilton argument).

Assoc⊗Assoc ' Comm;

in particular, if an object in a symmetric monoidal category bears two monoid structures which distribute
over each other, then the two structures agree and are commutative, i.e. the natural functor is an
equivalence:

Comm(C) ∼−→ AssocAssoc(C)
.

In the more-classical setting, this extends to a notion of an enriched BV tensor product on operads
in a suitably nice monoidal model category (say, M such a category satisfying the monoid axiom and
everything else we want). Unfortunately, this does not satisfy the pushout product axiom.3 After
introducing a monoidal model structure on preoperads, we’ll shout out that the model for dendroidal sets
is simply better, and (homotopy-symmetric) strong-monoidally equivalent to our category of preoperads.

The BV tensor product of preoperads Let C⊗,O⊗,O
′⊗ be ∞-operads. We’d like to introduce

a process akin to passing from the direct sum of vector spaces to the tensor product. To do so, we’ll
consider the analog of bilinear maps; first, we need an auxiliary construction, which is likely familiar.
Construction 2.7. Suppose C is a finitely bicomplete symmetric monoidal category with terminal object.
Then, the category of pointed objects is the slice category

C∗ := CI/.

This is endowed with a symmetric monoidal structure given by

X ∧ Y := CofibC

(
X ⊗ {∗Y }

⨿
{∗X} ⊗ Y → X ⊗ Y

)
In the special case that C = Fin is the category of finite sets, we call ∧ the smash product of finite pointed
sets.

This endows on N(Fin∗) the structure of a simplicial monoid. We use this:
Definition 2.8. A bifunctor of operads is a map f : O⊗×O

′⊗ → C⊗ sending each pair of inert morphisms
to an inert morphism, such that the following diagram commutes:

O⊗ ×O
′⊗ C⊗

N(Fin∗)×N(Fin∗) N(Fin∗)
∧

These form a full subcategory of a functor category, called BiFun(O,O′; C).
Bilinear maps, when corepresented by a bifunctor, form half of a closed monoidal structure on Vectk,

through noting by currying that

BiHom(V, V ′;W ) ' Hom(V,Hom(V ′,W )).

We make a bold claim, which we can only currently understand in the case that C is a symmetric monoidal
∞-category. The following argument is not in HA as far as I can find, but it is heavily implied that Lurie
believes it to be true.
Claim. There is a natural equivalence of functors

BiFun(O,O′; C) ' AlgOAlgO′(C)

Proof idea. We push through the adjunction: an object in AlgOAlgO′(C) corresponds with:

ϕ : O → FunN(Fin∗)(O
′, C) ⇝ ϕ̃ : O ×O′ → C over N(Fin∗).

The functor ϕ must preserve inert morphims and be valued in functors preserving inert morphisms; this
is equivalent to ϕ̃ preserving pairs of inert morphisms.4

3See the following math overflow post.
4I don’t know if this is actually true!!!
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This gives some hope that we could form a closed symmetric monoidal structure on Op∞. The easiest
way to go about doing this is to present it as the simplicial localization of a symmetric monoidal model
category. Let P Op∞ ⊂ sSet+/N(Fin∗)

be the full subcategory of marked simplicial sets whose markings
lie above inert morphisms. We call these ∞-preoperads. Every ∞-operad O⊗ has an underlying ∞-
preoperad O⊗,♮ whose marked morphisms are the inert morphisms. The following is the core of HA
§2.1.4.
Theorem 2.9. There exists a left proper combinatorial simplicial model structure on P Op∞ character-
ized by the following structure:

• A morphism f : X → Y in P Op∞ is a weak equivalence iff for every ∞-operad O⊗, the induced
map

MapP Op∞
(Y ,O⊗,♮)→ MapP Op∞

(X,O⊗, \)

is a weak homotopy equivalence.
• The fibrant objects of P Op∞ are precisely those of the form O⊗,♮ for O⊗ some ∞-operad.

This model presents Op∞.
Construction 2.10. Let X = (X,M) and Y = (Y,N) by ∞-preoperads; then, the preoperad X ⊗ Y is
defined by

(X × Y,M ×M ′).

with structure map
X × Y → N(Fin∗)×N(Fin∗)

∧−→ N(Fin∗).

The following theorem is not so new, and the proof is not enlightening.
Theorem 2.11 (⊗ presents the BV tensor product). The functor ⊗ endows P Op∞ with the structure
of a monoidal model category; the left-derived monoidal structure on Op restricts to a functor

⊗ : Op∞×Op∞ → Op∞

such that
AlgO⊗O′(C) = BiFun(O,O′; C).

Remark. We have two remarks. First, the monoidal structure on P Op∞ is not symmetric5. However,
its derived functor satisfies a symmetric universal property, so it must be symmetric.

Second, monoidal model categories are in fact monoidal closed, with right-Quillen internal hom; hence
there is a derived functor

AlgO(C)⊗ := RHomP Op∞(O, C)
satisfying an analog of Claim ref ; hence when C is a symmetric monoidal ∞-category, we recover the
pointwise tensor product of algebras.
Corollary 2.12. There exists a symmetric monoidal ∞-category Op⊗

∞ with underying category Op∞
such that ⊗ : Op∞×Op∞ → Op∞ corepresents BiFun.

This enables us to talk about a generalization of Dunn additivity! Let En refer to the little n-cubes
operad, realized as the operadic nerve of the usual construction. It is a general fact6 that the∞-category
of algebras over a Σ-cofibrant topological operad agrees with the∞-category of algebras over its operadic
nerve, so we are safe to equivocate between these two. Note that E⊗

1 ' Assoc⊗ and E⊗
∞ ' Comm⊗.

Theorem 2.13 (Dunn additivity). E⊗
k ⊗ E⊗

ℓ ' E⊗
k+ℓ.

Proof idea. It suffices to construct a weak equivalence of topological operads α : E⊗k
1

∼−→ Ek. We can
construct this map rather easily; there are n inclusions E1 ↪→ Ek “along the axes,” and α may be defined
to be the map induced by these.7 We just have to prove that α is a weak equivalence, which proceeds in
two steps:

1. α induces an isomorphism of E⊗k
1 onto a suboperad Edecom

k ⊂ Ek.
2. the operad Edecom

k consists of the decomposable elements of Ek, i.e. the little cube diagrams such
that each axis has a perpendicular hyperplane with cubes on each side and intersecting the interior
of no cubes; “shrinking cubes” yields a local deformation retract Ek

∼−→ Edecom]
k witnessing that the

inclusion is a weak equivalence.
5flesh this out
6cite???
7This is essentially that the tensor product corepresents BiFun.
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The second part is a continuous analog of Eckmann-Hilton; the first part is hard, and the reader can
read Dunn for a proof.

Remark. This statement is true both as cofibrant topological operads and as ∞-operads; unfortunately,
in the literature, Ek operads are often allowed to only be Σ-cofibrant, in which case this theorem may
fail.

2.3 The O-monoidal envelope of a ∞-operad
Construction 2.14. Let O be an ∞-operad and C⊗ → O a fibration of ∞-operads. For Act(O⊗) ⊂
Fun(∆1,O⊗) the full subcategory of active morphisms, theO-monoidal envelope of C⊗ is the fiber product

EnvO(C)⊗ := C⊗ ×Fun({0},O⊗) Act
(
O⊗)

When O⊗ = Comm⊗, we simply write Env(C)⊗.
This may be viewed as the ∞-category of pairs (C,α) where C ∈ C⊗ and α : p(C)→ X is an active

morphism in O⊗.
The following is the tempeh of this section:

Proposition 2.15. Let p : C⊗ → O⊗ be a fibration of ∞-operads.
(1) Evaluation at {1} ⊂ ∆1 together with p induces a coCartesian fibration of operads

p′ : EnvO(C)→ O⊗.

That is, EnvO(C) is an O-monoidal ∞-category.
(2) The inclusion ι : C⊗ ↪→ EnvO(C) is fully faithful.
(3) Let D be an O-monoidal ∞-category. The inclusion ι : C⊗ ↪→ EnvO(C) induces an equivalence

Fun⊗
O(EnvO(C),D)→ AlgC(D).

Note that the underlying ∞-category Env(C)op is identified with the active morphisms in C⊗; we can
informally view Env(C)⊗ as consisting of a monoidal structure on C⊗act.

We get the following plain-english corollary.
Corollary 2.16. Let C be an∞-operad. Then, there exists a fully faithful embedding of C into a symmetric
monoidal ∞-category, which is left adjoint to the inclusion of symmetric monoidal ∞-categories into ∞-
operads.

2.4 Day convolution
We will again delve first into classical results in the 1-categorical setting, then upgrade to the ∞-

categoriecal setting.

Day convolution in the 1-categorical setting Let C,D be two symmetric monoidal categories
with D cocomplete, preserving small colimits separately in each variable. We may define a monoidal
product ⊛ : Fun(C,D)× Fun(C,D)→ Fun(C,D) pointwise via a left Kan extension:

C × C D ×D D

C

F×G

⊗C

⊗D

F⊛G:=Lan

Cocompleteness of D ensures that this exists, and it is computed by a colimit:

(F ⊛G)(C) := colimC0⊗CC1→C F (C0)⊗D G(C1)

In the case that D = V is bicomplete and monoidal closed, and C is a tensored V-category, we can repeat
this construction in the enriched setting, yielding a V-enriched monoidal functor category. This is the
setting in which Day convolution was originally conceived, and in this setting we have a coend formula
for the defining Left Kan extension:

F ⊛G(−) =
∫ c,c′

C(c⊗ c′,−)⊗ F (c)⊗G(c′).
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For δ a kernel, it is the analogy between this and the convolution formula

f ∗ g(t) :=
∫ ∞

−∞
f(t− x)g(x) =

∫
R2

δx=y+tf(y)g(x)

that gives Day convolution its name.
Note that this computation still applies when D is not given by V, but is instead given by a tensored

V-category.
Let’s mention a few examples:

Example 2.17:
Let V be a closed bicomplete symmetric monoidal category, and let M be a small monoid, realized as
a discrete monoidal V-category. Let grM V be the category of V-enriched functors M → V, i.e. the
M -indexed collection of objects in V. This admits a Day convolution monoidal product, who ends up
being computed by

(X• ⊛ Y•)n =

∫ m,m′

M(m⊗m′, n)⊗Xm ⊗ Ym′

=
⊕

m+m′=n

Xm ⊗ Yn.

Example 2.18:
Let Σ be the symmetric monoidal Top∗-category having objects given by N and hom objects given by

O(n,m) =

{
Σn,+ n = m

∗ otherwise

with the obvious composition, which acts via addition in N on objects, and which (when nontrivial)
acts on hom objects by block inclusion

Σn × Σm ↪→ Σn+m.

A symmetric sequence in Top∗ is a Top∗-functor Σ → Top∗, i.e. a sequence of spaces with Σ+-
actions which are associative and unital. This is endowed with a day convolution symmetric monoidal
product.

The sphere spectrum S : n 7→ Sn =
(
S1

)∧n has the structure of a symmetric sequence via
the Σn action permuting indices. In fact, the sphere spectrum has an evident structure of a com-
mutative monoid in symmetric sequences in Top∗; hence we have a symmetric monoidal category
SΣ := ModS(Fun(Σ,Top∗)), called symmetric spectra.

It is known that this may be refined to the structure of a symmetric monoidal model category, who
presents the symmetric monoidal ∞-category of spectra that we’re familiar with.

One useful fact about Day convolution is as follows:
Proposition 2.19. The category CAlg(Fun(C,D),⊛) of commutative algebra objects for Day convolution
is equivalent to the category of lax symmetric monoidal functors from C to D.

As an application of this, we could show that S is a commutative monoid in symmetric sequences
directly by using the isomorphism Sn∧Sm = Snm and the twist map to give S a lax symmetric monoidal
structure.

Day convolution in the ∞-categorical setting This section will be brief, and consist mostly
of a statement:
Theorem 2.20 (Glasman, Lurie). Let C⊗,D⊗ be O-monoidal ∞-categories, and let κ be an uncountable
regular cardinal such that the following are satisfied:

(a) For each object X ∈ O, the ∞-category CX is essentially κ-small.
(b) For each object Y ∈ O, the ∞-category DY admits κ-small colimits.
(c) For each operation θ ∈ MulO({Xi} , Y ), the associated tensor product functor

∏
iDXi → DY preserves

κ-small colimits separately in each variable.
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Then, there exists an O-monoidal ∞-category FunO(C,D)⊗ satisfying the following conditions:
1. For each object X ∈ O, there is a canonical equivalence of categories

FunO(C,D)X
∼−→ Fun(CX ,DX).

2. There is a canonical equivalence of categories

Alg/O

(
FunO (C,D)

)
∼−→ AlgC/O(D)

from O-algebras in FunO(C,D)⊗ to lax O-monoidal functors C → D.
Moreover, when O⊗ = Comm⊗, the underlying tensor product functor

⊛ : Fun(C,D)× Fun(C,D)→ Fun(C,D)

is given by Day convolution.
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